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Abstract

The present paper aims at determining the most influential features to be extracted from smart meter data

to facilitate machine learning-based classification of non-residential buildings. Smart meter-driven remote

estimation of the chosen characteristics (the buildings’ performance class, use type, and operation group)

is significantly helpful in buildings’ commissioning, benchmarking, and diagnostics applications. As the

first step, state-of-the-art feature selection methods and a proposed customized approach are utilized for

determining the most influential parameters in the pool of temporal features, proposed in a previous study.

Next, importance-in-prediction based features, generated from an hour-ahead load prediction pipeline, that

can improve the classification accuracy are proposed and added as additional input parameters. Finally,

interpretations about some of the most influential features for different classification targets are provided.

The obtained results demonstrate that, while aiming at estimating the buildings’ use type, through

performing feature selection and adding importance-in-prediction based features, the number of utilized

features is reduced from 290 (initial pool of features proposed in a previous study) to 29, while also increasing

the accuracy from 71% to 74%. Similarly, number of employed features for estimating the performance class

is decreased from 224 to 17 and the achieved accuracy is improved from 56% to 62%. Finally, using only 6

selected features, compared to 287 features in the initial set, the obtained accuracy for the classification of

operation group is increased from 98% to 100%. It is thus demonstrated that the proposed methodology,

through selecting and utilizing notably fewer features, results in a notable simplification of the feature

extraction procedures, improves the achieved accuracy, and facilitates providing interpretations about the

reason behind the influence of some of the most important features.
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Abbreviations

allDays meanvs95thRatio std Standard deviation of the ratio between the mean value of consumption

and the corresponding 95th percentile considering all days of the week

allDays meanvsmaxRatio std Standard deviation of the ratio between the mean value of consumption

and the maximum consumption considering all days of the week

allDays minvs95thRatio max Maximum of the ratio between the minimum value of consumption and

the corresponding 95th percentile considering all days of the week

AreaNormalizedConsMean Mean of area normalized consumption

AreaNormalizedConsMin Minimum area normalized consumption

breakoutsNumber i j k Number of breakouts where i is the minimum breakout size in days, j is the

penalization level on closeness of breakout points (0 not penalized, 2 max penalization), and k

represents the beta penalization threshold whose value is 0.00k

CV Cross-validation

dailyMaxV ariance Maximum daily variance in consumption

dayF ilterFreq a wh min Minimum of DayFilter patterns where a is the alphabet size (number of

equiprobable regions in which the daily consumption distribution is split) and w is the size (in

hours) of the time periods in which the day is split

dayF ilterFreq a wh std Standard deviation of DayFilter patterns where a is the alphabet size (number

of equiprobable regions in which the daily consumption distribution is split) and w is the size

(in hours) of the time periods in which the day is split

eemeter cvrmse Model fit coefficient using EEMeter

hourlyStats maxConsHourOfDay Hour of the day with maximum consumption

hourlyStats meanCons4hr Mean consumption at 4:00 a.m.

imp ConsumptionX Importance-in-prediction of consumption lagged for X hours

imp MaxUse Importance-in-prediction of the maximum consumption value in the last 24 hours

imp meanvsmax use24 Importance-in-prediction of the ratio between mean and maximum values of

the previous 24 hours of consumption

imp quant50vsmax use24 Importance-in-prediction of the ratio between 50th percentile and maximum

values of the previous 24 hours of consumption
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imp SeaLevelPressurehPaX Importance-in-prediction of sea level pressure lagged for X hours

imp sinHour Importance-in-prediction of sin(hour)

imp std use24 Importance-in-prediction of the standard deviation of the previous 24 hours of consump-

tion

imp stdvsmax use24 Importance-in-prediction of the ratio between standard deviation and maximum

values of the previous 24 hours of consumption

imp V isibilityKmX Importance-in-prediction of visibility lagged for X hours

imp WindSpeedKm/hX Importance-in-prediction of the speed of the wind lagged for X hours

loadshape mapeIntervalDaytime MAPE interval of prediction during day time using the loadshape

model

loadshape rmse Interval RMSE interval of prediction using the loadshape model

maxDailyConsDate Date at which the maximum daily consumption occurs

meta dateLast Last date of sampling

MI Mutual Information

mostCommonHourTop10perc Most common hour at which the top 10% of consumption values occur

RF Random forest

RFE Recursive feature elimination

RFECV Recursive feature elimination procedures that include cross validation loop

stats minDailyConsDate Date at which the minimum daily consumption occurs

stats minHourlyCons Minimum hourly consumption

stats minHourlyConsDate Date at which the minimum hourly consumption occurs

STLweeklyPatternXMean STL model trend mean on X weekday, X being Thu: Thursday, Fri: Friday,

Sat: Saturday

summerConsV ariance Variance of consumption in the summer

weekdays meanvs95thRatio min Minimum of the ratio between the mean value of consumption and

the corresponding 95th percentile considering only weekdays

weekdays meanvs95thRatio std Standard deviation of the ratio between the mean value of consump-

tion and the corresponding 95th percentile considering only weekdays

weekdays minvs95thRatio max Maximum of the ratio between the minimum value of consumption

and the corresponding 95th percentile considering only weekdays
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weekdays minvs95thRatio mean Mean of the ratio between the minimum value of consumption and

the corresponding 95th percentile considering only weekdays

weekdays minvsmaxRatio mean Mean of the ratio between the minimum value of consumption and

the maximum consumption considering only weekdays

weekdays minvsmaxRatio min Minimum of the ratio between the minimum value of consumption and

the maximum value of consumption considering only weekdays

winterConsV ariance Variance of consumption in winter

1. Introduction1

The energy demand of buildings has a considerable impact on the global primary energy consumption and2

greenhouse gas emissions. According to a 2019 IEA report [1], buildings will play a central role in the3

clean energy transition as this sector is responsible for 28% of energy-related CO2 emissions worldwide,4

two-thirds of which is associated with the electricity consumption. In addition, the share of electricity use5

in the buildings’ energy demand is rapidly growing as the average incomes rise and the urban migration6

continues in non-OECD countries [2] and it is consequently expected to increase from 33% in 2017 to nearly7

55% of total buildings’ energy use in 2050 [1]. Therefore, increasing the energy efficiency and performance8

of buildings is a critical step towards global sustainability.9

Building commissioning, and retro-commissioning in particular, is proved to have a considerable energy10

saving potential [3], which is also the focus of the many other energy auditing related procedures employed in11

this field [4, 5]. Moreover, as the majority of the existing buildings worldwide were constructed without the12

obligation of following mandatory energy performance related protocols and considering that these buildings13

will make up a considerable share of the future building stock, large-scale procedures to enhance the overall14

building performance should be a priority in the coming years [6].15

Estimating the use type of the building, specifically while having access to the corresponding consump-16

tion profile, can help several parties including the utility companies, the grid management firm, and the17

public organizations (e.g. sustainability work groups) to have a proper estimation of the building’s ener-18

getic performance. The latter is due to the fact that the performance metrics (e.g. yearly consumption19

per conditioned surface) are defined differently for various building applications (e.g. residential building,20

education dwellings, hospitals). As an instance, having knowledge about the performance of a large number21

of buildings (determining which requires knowledge about their use type) can permit public organizations to22

prepare the most suitable incentive programs (for improving the performance of the building) that can at-23

tract the highest number of users and to predict the impact of the corresponding energy saving interventions24

4



in a large (e.g. national) scale.25

However, performing conventional energy auditing procedures on a large number of buildings is a time-26

consuming and costly procedure. Furthermore, buildings types, in terms of the corresponding construction,27

performance, and system technologies, are often very diverse. Accordingly, a notable effort, in terms of time28

and economic investment, is required to perform a dedicated analysis on each specific type of building.29

A promising alternative for dealing with the latter obstacle, is exploiting the enormous amount of data30

generated by smart electrical meters, which are already largely diffused in most of Europe (around 200 million31

units [7] in 2020) and USA (87 million units in 2018 [8]). It should be noted that the smart meters in different32

countries are installed by various organizations and, while the consumption data can be shared with other33

parties/organizations, it is commonly anonymized because of privacy concerns. Thus, public organizations34

can commonly be provided by the consumption profiles of a large number of buildings (obtained from smart35

meters), without having access to information about the use type of the building. Thus, facilitating the36

possibility of estimating the building use type while only employing the smart meter data can provide these37

organizations with a notable benefit.38

In this context, several research works, have employed meter data analysis, for a variety of applications39

including load profile classification and clustering, energy disaggregation, and demand response potential40

estimation. Examples from the first category include studies such as the one conducted by Räsänen and41

Kolehmainen [9], where the use of extracted statistical features improved the clustering accuracy of electricity42

load curves, and the research carried out by Dasgupta et al. [10], which clustered and analyzed load curves43

employing elastic shape analysis, successfully discovering broad consumption patterns across different seasons44

and neighborhoods. In the study conducted by Najafi et al. [11], the use of non intrusive load monitoring45

(NILM) was investigated to classify electrical appliances with possible applications in demand prediction,46

mal-functioning identification and occupancy monitoring, whereas the research performed by Mathieu et47

al. [12] analyzed 15-min-interval electric load data for building benchmarking, demand response, peak load48

management, and other purposes.49

An important attempt towards utilizing the smart meter data analysis for estimating the building type50

and performance has been conducted by Miller [13], in which the Building Data Genome Project [14] was51

utilized as the dataset. The latter is a large public dataset including weather and electrical meter data of52

several buildings along with their use categories and characteristics. In this study, an extensive investigation53

on extracting temporal features from the smart meter data of non-residential buildings was carried out.54

These features were then employed to estimate the buildings’ category of use, performance index, and55

operation strategy. This process facilitates building characterization, which is at the basis of techniques like56

commissioning, benchmarking and diagnostics, while only employing the smart meter data [13]. However,57

making the related decisions human-interpretable is also important for the final expert’s judgement. The58

utilization of a large number of features, despite being utilized aiming at increasing the model accuracy59
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and generalisability, reduces the interpretability of the results and increases the model complexity and60

consequently the calculation cost. Therefore, implementing a comprehensive feature selection methodology61

can notably reduce the complexity of the model and enhance the interpretability, while increasing the62

estimation accuracy.63

It is noteworthy that, although a few previous studies have provided interpretations about the reason64

behind the possible contribution of some of the extracted temporal features to the accuracy of estimation65

pipelines (utilizing for building characteristics estimation), as these studies did not include the feature66

selection step, the extent of this influence (if any) could not be verified. Thus, the latter shortage impeded67

providing interpretations utilizing a set of features, the extent of contribution of which (to the achieved68

accuracy) is verified. The feature selection procedure that is performed in the present study permits avoiding69

the latter obstacle.70

Previous studies have investigated the impact of feature selection methods on the models’ accuracy,71

resulting in improved or comparable prediction performance. In particular, Zhao and Magoulès [15] analyzed72

the influence of feature selection on the prediction of a building energy consumption, Kapetanakis et al. [16]73

captured the effect of selecting input variables on thermal loads prediction of commercial buildings, while74

Zhang and Wen [17] proposed a feature selection procedure based on pre-processing, filtering and grouping75

through a wrapper method. However, in most of the cases, this process is carried out on a relatively76

small set of features and is commonly performed manually. Furthermore, to the authors’ knowledge, no77

previous work has been conducted on implementing a comprehensive variable selection methodology for78

building characterization, for which most of the conducted studies do not employ large sets of attributes,79

nor extensively investigate the underlying physical behaviours. It is the case of the study conducted by80

Westermann et al. [18], where 27 variables are used for customer characterization, the research performed81

by Yang et al. [19], the result of which utilizes 6 variables for building climate zoning, and the study carried82

out by Piscitelli et al [20], implementing the classification of load profiles in buildings of 114 customers with83

9 variables.84

Motivated by the above-mentioned necessity and research gap, the present work is implemented starting85

from the temporal features, which are proposed and extracted in [13] from the electrical meter data and86

the corresponding weather dataset of several commercial buildings. Next, while considering three classifica-87

tion objectives (building use, performance class, and operation strategy), state-of-the-art feature selection88

methodologies are implemented and the corresponding results, in terms of classification performance and89

number of selected features, for each of the considered objectives, are compared. A customized feature selec-90

tion method is then proposed and implemented and the obtained results are compared with those achieved91

using conventional methods. It is demonstrated that the implemented feature selection methodologies, and92

particularly the proposed customized method, can notably reduce the number of utilized temporal features93

and thus the dimension of the dataset, while even improving the classification accuracy.94
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In the next step, importance-in-prediction based features, extracted in the framework of a short-term95

load prediction pipeline, are added. These features, to the author’s knowledge, have never been utilized in96

the previous studies for non-residential building characterization purposes. It is shown that adding these97

features can result in an enhancement of the obtained accuracy. The influence of each feature of the final98

set on the overall accuracy is then demonstrated. Finally, following the methodology proposed in a previous99

study [21], the selected features are analysed and interpretations about the reason behind the impact of100

some of the most influential features are provided.101

Accordingly, the contributions of the present paper are summarized as follows:102

• Besides applying state-of-the-art feature selection methods, a customized approach is proposed and103

implemented aiming at selecting the most influential temporal features to be extracted from smart104

meter data, proposed in a previous study [13], aiming at building characterisation;105

• The importance-in-prediction based features are proposed and extracted, in the framework of a short-106

term load prediction pipeline, to enhance the building characterization accuracy;107

• The final proposed pipelines provide higher accuracy while utilizing notably fewer features with respect108

to the corresponding initial set, which significantly simplifies the feature extraction procedure and109

facilitates the interpretation of the obtained results;110

• Interpretations about the reason behind the influence of some of the most important features on the111

achieved classification accuracy are provided.112

In this framework, section 2 briefly introduces the dataset and the classification objectives of the study.113

Section 3 presents the overall methodology including a brief explanation of the extracted features. Section114

4 provides a description about the utilized machine learning algorithms, the accuracy metrics, and the115

employed feature selection methodologies. In section 5, the obtained results of the feature selection procedure116

are presented and discussed and physical interpretations of selected features are provided. Finally, section117

6 presents the conclusions reached based on the obtained results.118

2. Case Study119

In the present work, the Building Data Genome Project [14], a public, open dataset, is employed. The120

dataset is composed of 507 non-residential buildings, located in the USA (New York, Los Angeles, Denver,121

Chicago, Phoenix), London, Zurich and Singapore, and therefore representing discreetly varied climate areas122

(the overall temperature ranges from -30°C to +50°C). The metadata file provides information about each123

building’s primary space use, timezone, surface area, and its corresponding weather file name. Smart meter-124

derived hourly electrical consumption data for a period of at least one year is also given for every building.125
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The dataset is finally completed by a set of hourly weather data files for each of the locations mentioned126

above, including temperature, humidity, pressure, visibility and wind speed. An example of the consumption127

and temperature profile of a university building, provided in this dataset, is demonstrated in Fig. 1.128

Figure 1: An example of the load and temperature profiles for one of the buildings provided in the Building Data Genome
Project [14] dataset

Starting from the extraction of 315 temporal features, proposed by Miller [13], that are publicly accessible129

in an open source project [22], the first part of this study is focused on conducting different feature selection130

methods aiming at selecting the most influential features. Different categories of features, proposed in [13]131

that are present in the pool of features provided in [22], are summarized in Table 1. Brief descriptions132

about each of these categories of features are provided in sub-section 3.1. In order to ensure an effective133

comparison with the results obtained by Miller [13], the set of extracted features employed in the first step134

and the utilized classification algorithm are identical to the ones implemented in this work.135

Feature Category Description
Statistics-based Application of basic statistical functions such as mean,

median, maximum, minimum and standard deviation
to the time series data

Regression-based Output parameters and attributes obtained from the
development and training of predicting models

Pattern-based Frequent daily, weekly, monthly and long-term patterns
extracted from the time series data

Table 1: Main categories of extracted features utilized for building characterization.

2.1. Prediction Targets136

Different classification targets are set as objectives of the analysis, namely building primary use type,137

performance class, and operation group. The first two are identical to the ones considered in [13], while the138

latter is partially modified to obtain more balanced classes.139
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• Principle Building Use indicates the primary use for which a certain building was designated, in our140

case being either an office, a primary or secondary school classroom, a college classroom, a dormitory141

or a laboratory. It is possible that some spaces are utilized for multiple purposes, which complicates the142

classification task; thus, only the primary application of these buildings is considered as the objective143

[13]. Furthermore, while estimating this target, features related to in-class similarity and temporal144

specificity, that are generated using ”jmotif” library [23] and indicate how well a certain building fits145

in its own class, were removed due to their dependency on the use type.146

• Performance Class is evaluated based on the floor area-normalized consumption of buildings, which147

are therefore assigned to three groups of low (bottom 33% percentiles), intermediate or high (top 33%148

percentiles) consumption levels within each primary use category [13]. While considering this target, all149

features that are evidently correlated to consumption, such as area normalized consumption, ”eemeter”150

[24] outcomes and inherent statistics, are excluded.151

• General Operation Strategy distinguishes between different campuses and groups of buildings152

operated by the same authority, which can therefore have similar operation strategies. For this purpose,153

four distinct campuses with a comparable number of buildings were selected, excluding a few smaller154

campuses that were used in [13]. All variables that are indicators of weather sensitivity are removed155

from the set to avoid any possible relation with the location of the buildings.156

Each step of the process will be applied on a dedicated set of features utilized for specific classification157

targets. Being able to estimate the considered targets facilitates performing techniques like commissioning,158

benchmarking and diagnostics. The building primary use type, as an instance, defines the benchmark used for159

the building’s performance level assessment. Space use estimation can also be used to determine whether the160

building principal use type has changed over time without being recorded [13]. The performance class target161

is also related to the benchmarking process as it can help understanding how a building performs compared162

to its peers and what are the behaviours that lead to a good or poor performance. These latter evaluations163

can also provide useful insights for identifying critical aspects to address during the commissioning process.164

In the next sections, more details about the overall implemented methodology, including the employed165

data pre-processing, features extraction, feature selection steps and the utilized machine learning algorithms,166

are provided.167

3. Implemented methodology168

The first step is dedicated to cleaning the dataset from invalid and missing values. Secondly, the raw169

temporal data, including meter and weather data, is processed utilizing multiple tools and techniques for170

feature extraction, aiming at achieving a comprehensive description of different phenomena. Once all the171
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variables are obtained and integrated together, while utilizing a chosen benchmark algorithm (Random172

Forest Classifier [25, 26]), different feature selection algorithms are performed. The accuracy obtained for the173

considered classification targets, while providing the complete set of features and different sets obtained with174

various feature selection methods, are then compared. Afterwards, importance-in-prediction based features,175

generated in the context of an hour-ahead load prediction framework, that improve the achieved accuracy,176

are added to the selected set of temporal features for each classification target. Finally, interpretations about177

the reason behind the selection of specific features for each classification target are provided.178

The above mentioned steps are represented in Fig. 2.179

Figure 2: Schematic representation of the implemented methodology.

3.1. Data pre-processing and feature extraction180

For each building and each feature extraction technique, all invalid or missing values in the dataset are first181

removed. The temporal load data and the corresponding hourly weather information are next combined,182

depending on the variables needed for each extraction process.183

In the last phase of the data processing procedure and before implementing the machine learning algo-184

rithm, each target’s dataset is shuffled (to obtain an even distribution of the classes) and is then split into185

50% training and 50% testing sets. In the next sub-section, brief descriptions about the main categories of186

temporal features, proposed in [13], are provided. Further details about the extraction of these features can187

be found in [13] and [22], while the distribution of the most significant variables among different classes can188

be observed in Fig. 9, 11 and 13.189

3.1.1. Statistics-based features190

The statistics-based features include temporal basic statistics such as mean, median, maximum, minimum,191

variance, and standard deviation, calculated on the whole time-series load vector or on shorter intervals192

such as the winter and summer seasons [13]. Mean and variance can be calculated using Eqs. 1 and 2193

respectively, while standard deviation is defined as the square root of the variance.194

µ =
1

n

n∑
i=1

xi (1)
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σ2 =

∑N
i=1 (xi − µ)

2

n
(2)

Many of these features were generated through the visdom R package [27]. Variance is useful to understand195

how much certain values vary across a time range, whereas 97th and 3rd percentiles can be more meaningful196

than minimum and maximum values due to the exclusion of extreme outliers. In addition, hour and date197

that correspond to the consumption peak are determined and added as variables. Furthermore, a series of198

hour-of-day metrics, which are determined based on the time at which a particular behaviour occurs most199

frequently, are also extracted.200

Other extracted statistics-based features include ratios of the above-mentioned statistical parameters,201

which can be used as a better comparison basis between different buildings, along with other normalized202

quantities such as the floor area-normalized consumption. An example of these is given by Fig. 3-a, which203

shows the daily ratio between mean consumption and maximum consumption for a selected building. Lastly,204

the utilized Spearman rank order correlation (ROC) coefficient indicates the correlation between the total205

electrical consumption of a building and the outdoor temperature in a range between -1 and +1. A highly206

positive correlation (+1) implies that consumption and temperature increase accordingly as in a cooling207

sensitive building, whereas for a heating sensitive building, consumption will tend to increase with decreasing208

temperatures, described by a ROC coefficient close to -1 [13]. Fig. 3-b demonstrates the determined yearly209

Spearman rank order correlation coefficient for a specific building.210

3.1.2. Pattern-based features211

Pattern-based features facilitate capturing the typical (motifs) and atypical patterns (discords) in the con-212

sumption of buildings [13]. The aim of extracting these features is to understand whether a building follows213

some kind of daily or weekly pattern. Fig. 4-a provides a visual representation of the consumption pattern214

of a specific building.215

These features include categories such as diurnal patterns, long-term consistency and pattern specificity.216

Employing the ”Day Filter” function, which is based on Symbolic Aggregate approXimation (SAX)217

representation of time-series data [28], the mentioned patterns are extracted on a 24 hour period, quantifying218

the size and the number of motifs obtained for a particular building [13]. The volatility of a building’s219

consumption over a long period of time (such as a year) is instead captured by the long-term pattern220

consistency that permits monitoring as an instance changes in the schedules between different seasons or221

due to particular events. These evident changes are identified as ”breakouts” and are also added as features222

to the set, counting the number of occurrences within a chosen interval [13]. An example of the latter feature223

is represented in Fig. 4-b, where the cumulative number of breakouts in the chosen year is computed.224

The last category of pattern-based features concerns the pattern specificity, which indicates whether a225
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(a) Daily ratio of mean consumption and maximum consumption

(b) Yearly Spearman rank order correlation coefficient for a specific building, blue indicates stronger cooling correlation while
red demonstrates higher heating correlation

Figure 3: Visual representation of two statistics-based features

building’s patterns are typical of a certain use type class; and therefore if it operates analogously to other226

buildings of the same group [13]. The SAX-VSM process [29] is employed for the extraction of these features.227

3.1.3. Regression-based features228

The output parameters of performance prediction models can provide information about the physical be-229

haviour of buildings. Several electrical consumption prediction models and libraries were employed to obtain230

these features, among which the Time-of-week and Temperature (TOWT) model [30] implemented in the231

eetd-loadshape library [31], the Seasonal Decomposition of Time Series using the STL package [32] in R,232

and the PRISM method [33].233

The TOWT model’s outcomes attempt to capture the intensity of load dependence to either scheduling234

or outdoor air temperature. Building load is calculated separately for occupied and unoccupied hours,235
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(a) Daily consumption pattern frequency

(b) Cumulative number of breakouts

Figure 4: Visual representation of two pattern-based features

which are empirically distinguished according to the different temperature dependence of the consumption236

during the day. For both cases, the predicted load depends on the selected one-hour time period of the237

week, its relative outdoor temperature interval among six equally sized intervals, and two coefficients α238

and β indicating respectively the base load for the selected period and the temperature dependency for239

that temperature interval and time. Once the prediction is performed, it is possible to obtain a series of240

metrics from the analysis of the fitted model, such as hourly residuals indicating the actual consumption241

deviation from the model, and the periods of under-prediction, which indicate whether the building is242

operated according to its set schedule or not [13, 30].243

Another category of features is designed to capture the seasonality and trend behaviours of buildings.244

Seasonality typically refers to the different consumption patterns occurring between weekdays and weekends,245

or nights and days. Trends, instead, identify a long-term increase or decrease which usually does not follow246
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a pattern but are due to the external influences such as weather-related factors, change in occupancy, and247

loss of system efficiency. These behaviours are extracted using the seasonal trend decomposition procedure248

based on Loess with the STL R package. Input data is obtained from weather normalized daily consumption,249

then the remainder quantities R are calculated subtracting the computed trend components T and seasonal250

components S from the initial input data I, as shown in Eq. 3:251

R = I − T − S (3)

The remainder values indicate which decomposed loads are not well described by the STL model’s predic-252

tion, as illustrated in Fig. 5-b for a specific building of the dataset, whereas Fig. 5-a provides a visual253

representation of the daily trend component for the same building. The resulting features consist in the254

weekly seasonal patterns of each building (daily trend mean), the long-term trend (monthly trend mean),255

and the remainders from the resulting model using the STL procedure (monthly remainder mean) [13, 32].256

The outputs of linear change point models, based on the PRISM method [33], complete the set of257

regression-based features. Such models can approximate the amount of load used for each part of the HVAC258

system through the use of a linear regression model that identifies the point (temperature), after which the259

relation between consumption and outdoor temperature becomes linear. This point is called cooling balance260

point and the slope of the line is the cooling energy increase rate. The same procedure is conducted for the261

heating case, where consumption and temperature are inversely proportional [13].262

3.2. Feature Selection263

The above-mentioned feature extraction procedure leads to the generation of a large number of features,264

including which results in an elevated computational cost. Furthermore, employing features that do not265

contribute to the achieved accuracy (do not provide any benefit to the estimation procedure) can result in266

over-fitting (to the training set), as the model attempts to include uninfluential parameters as inputs, which267

in turn reduces the accuracy obtained on the test set. Therefore, implementing a feature selection proce-268

dure, which facilitates choosing only the influential parameters [34], permits reducing the calculation cost269

and models’ complexity while increasing (even if marginally) the achieved accuracy (through evading the270

mentioned over-fitting issue). Different feature selection methods, including the state-of-the-art methodolo-271

gies and a customized method, are thus employed. The results are determined using a 3-fold cross validation272

(CV) procedure and the achieved accuracy and number of features, obtained using different feature selec-273

tion methodologies for different classification targets, are then compared. Detailed descriptions about the274

employed feature selection procedures are provided in section 4.5.275
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(a) Daily trend component of consumption obtained through the STL decomposition

(b) Remainder values of the the STL model’s prediction

Figure 5: Visual representation of two regression-based features

3.3. Importance-in-prediction based features276

In the next step, importance-in-prediction based features, which are the coefficients generated based on the277

features’ influence and relevance in an hour-ahead load prediction pipeline, are extracted. These features,278

can help the model to correctly classify buildings based on the importance of different features in the279

corresponding load prediction process. Accordingly, a load prediction pipeline is first developed, in which280

the target to be predicted is the consumption of the building in the next hour. Next, starting from the raw281

consumption and weather data, several parameters including statistics-based, seasonality related (calendar282

based), and lagged features (which are explained in details in sub-section 3.3.1), are extracted and provided to283

the pipeline as input features. In the next step, different coefficients are generated, using both correlation and284

importance-related indexes. The employed correlation coefficients are Mutual Information for Regression [26,285

35] (with n neighbors = 3), Pearson Correlation [36, 37], Spearman’s Rank Correlation [38, 39] (described286
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in details in section 4.3) that represent the correlation and mutual dependence between each of the extracted287

features and the target (consumption in the next hour).288

In order to evaluate the contribution of each feature to the prediction process, the pipeline is first289

implemented, trained and validated using different algorithms. For this purpose, a subset of 15 buildings,290

randomly selected with equal numbers from different use type categories, are employed, while Random Forest291

Regressor [26, 40], Multilayer Perceptron (a back propagation-based neural network) [26, 41] and Support292

Vector Regression [26, 42] are utilized and tuned [43] as prediction algorithms. In the implemented pipelines,293

the algorithms were trained on 80% of data of each building and tested on the remaining 20%. The algorithm294

with the highest accuracy (measured using coefficient of determination R2) for the chosen buildings was295

determined to be the Random Forest Regressor (with n estimators=50 and max depth=10). Accordingly, the296

feature importance coefficients, generated by Random Forest Regressor through the feature importances297

attribute, constitute the last type of generated coefficients that are utilized to represent the influence of each298

feature in the prediction process.299

All of the generated coefficients are then sorted based on the corresponding mutual information values300

and are progressively added, as additional features, to the previously obtained selected features of each301

target. The impact (in terms of achieved score improvement and the number of added features) for each302

index type is then compared in order to select the most suitable one for each classification target. For each303

case, only the coefficients adding which results in an increment in the achieved average cross validation304

scores is kept.305

3.3.1. Feature Extraction for the load prediction pipeline306

As was previously pointed out, different types of features including, statistics-based, seasonality related,307

and lagged features are extracted from the from the raw consumption and weather data in order to be308

provided as input features in the load prediction pipeline. For the extraction of statistics-based variables,309

total load consumption and temperature temporal statistics have been obtained on a daily basis and have310

been included in the dataset. The latter include basic metrics such as mean, maximum, minimum, variance311

and different quantiles in the previous 24 hours (with respect to the target’s timestamp) [30]. In addition,312

the ratios and differences of some of the mentioned metrics have also been extracted and added. Lastly,313

Spearman correlation coefficients between temperature and consumption are generated for intervals of the314

previous 4, 6, 12 and 24 hours.315

Seasonality related features instead include: hour of the day (along with cos(hour) and sin(hour)),316

month, day of the week, week of the year, the weekend flag and the night flag. Lagged features, which317

are the values of parameters in the previous timestamps, are the last category of provided inputs. These318

input features are particularly important to take into account the effect of features such as temperature319

and other ambient conditions that do not have an immediate influence on the load variations (e.g. owing320
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to the influence of heating or cooling systems’ consumption). In the present study, lagged values of total321

consumption and temperature up to 26 hours (to capture a possible day-ahead consumption correlation),322

and other features like sin(hour), cos(hour), sea level pressure, humidity, visibility, and wind speed up to 12323

hours are extracted and added to the dataset.324

3.4. Interpretation of the selected final set of features325

Once the final set of selected features is obtained, the relative importance of features along with their contri-326

bution to the overall classification performance is demonstrated through graphical illustration. Furthermore,327

it is attempted to provide interpretations about the reason behind the importance of the most influential328

features. In this context, distribution plots of different features in various classes have been employed to329

understand the feature’s classification effectiveness and spot differences among classes.330

4. Machine learning based pipeline implementation and improvement concepts: utilized clas-331

sifier, accuracy metrics, correlation indexes and feature selection methods332

This present section is focused on providing further theoretical explanations about the machine learning333

algorithm, accuracy metrics, and correlation indexes along with the feature selection methods which have334

been utilized in this study.335

4.1. Random forests classifier336

Random forests, or random decision forests, which is utilized in the present study as the classification

algorithm, is an ensemble learning method that is based on building several decision trees in the training

process while minimizing a given error metric and providing the average of their predictions as output

[40, 44]. The resulting model predicts the value of a target variable by learning simple decision rules from

the data features. Considering Ti(x) to be a single regression tree built based on a subset of input features

and the bootstrapped samples [40], the tree can be expressed as:

f̂CRF (x) =
1

C

T∑
i=1

Ti(x) (4)

in which C represents number of trees and x is the vectored input variable [40].337

A random forest classifier is employed for the classification task, the performance of which is assessed both338

using average 3-fold cross validation scores and directly employing a 50% training set to generate confusion339

matrices and other visual indicators. Cross validation scores are mostly utilized during the feature selection340

process to ensure that the whole dataset is considered when evaluating the impact of features addition or341

removal.342
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4.2. Accuracy metrics343

In the present sub-section, the key metrics that have been employed to evaluate the model’s performance are344

presented. It is worth noting that, as the pipelines implemented in the present work are defined as multi-345

class classification problems, per-class scores have to be combined to obtain a single averaged value. This346

value is called micro-averaged if the average is determined on the total number of elements, macro-averaged347

if it is computed for each class and then divided by the number of classes, and weighted-averaged if the348

number of elements belonging to each class is considered in the averaging procedure [26, 45, 46].349

4.2.1. Accuracy350

While considering false positive (FP) (number of elements wrongly labeled as positive) and false negative

(FN) (number of elements wrongly labeled as negative) as the two types of possible errors in a classification

process, accuracy can be defined as the ratio between correct predictions (true positives (TP) and true

negatives (TN)) and the total number of cases [26, 46]:

Accuracy =

∑
TP + TN∑

(TP + TN + FP + FN)
(5)

4.2.2. Precision,recall, and F1-score351

Precision, also called positive predicted value, indicates the fraction of correctly selected elements among

the relevant ones in a classification context [46, 47].

Precision =

∑
TP∑

(TP + FP )
(6)

Recall, or true positive rate (sensitivity), is the ratio of the true positives to the total elements classified as

positive, defined as [26, 46]:

Recall =

∑
TP∑

(TP + FN)
(7)

The F1-score is a measure that combines precision and recall in the following way [46]:

F1 = 2 · precision · recall
precision+ recall

(8)

4.2.3. Coefficient of determination352

The coefficient of determination (R2 score) is the proportion of the variance in the dependent variable353

that can be estimated by the independent variable(s). It measures the extent that the model replicates354

the observed outcomes, based on the proportion of total variation of outcomes explained by the model355

[44, 48, 49].356

Considering SSres as the sum of squares of residuals, and SStot to be the total sum of squares, then R2
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is expressed as [44, 48, 49]:

R2 = 1 − SSres

SStot
(9)

357

4.3. Coefficients utilized to represent importance-in-prediction358

In the preset sub-section, the theoretical description about the indexes that have been employed for gener-359

ation of importance-in-prediction based features are provided.360

4.3.1. Mutual information361

Mutual Information (MI) quantifies the mutual dependence between two random variables that are sampled

simultaneously. It measures the amount of information acquired about a random variable through observing

the other variable. The mutual information, while considering two random variables X and Y, is determined

employing the following equation [50, 51]:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
(10)

where p(x, y) represents the joint probability mass function of X and Y , and p(x) and p(y) are the marginal

probability mass functions of X and Y [50, 51] that can be expressed as:

PX(x) =
∑
y∈Y

PXY (x, y) (11)

Mutual information is employed to determine the importance of each feature with respect to the estimation362

target, which can be either discrete or continuous.363

4.3.2. Pearson correlation364

The Pearson correlation coefficient is a measure of the linear correlation between two variables and is365

expressed as the ratio between the corresponding covariance and the product of their standard deviations366

[36, 37], as shown in equation (12).367

ρX,Y =
cov(X,Y )

σXσY
(12)

The range of this index is between -1 and +1 [36, 37].368

4.4. Spearman correlation369

Spearman’s rank correlation coefficient is a measure of the rank correlation, which is the statistical de-

pendence between the two variables’ rankings. While Pearson’s correlation evaluates linear relationships,

19



Spearman’s correlation assesses the extent that two variables’ relationship can be described using a mono-

tonic function (whether linear or not). In other words, the Spearman correlation coefficient can be defined

as the Pearson correlation coefficient [36, 39] between the rank variables. Ideal Spearman correlation of +1

or -1 occurs when each of the variables is an idea monotone function of the other one [38, 39]. Considering

n ranks as distinct integers, it can be computed using Eq. (13) [38]:

rs = 1 − 6
∑
d2i

n(n2 − 1)
(13)

4.4.1. Random forest’s feature importance370

Once a random forest model is fit using the training data, it is possible to access the corresponding feature371

importance coefficients (employing the feature importances attribute) [40], each of which is an index of372

how well a certain variable can help predicting the target. As expressed in Eq. (14), the importance of373

input feature Xi for predicting Y is found by summing the importances of the j-th nodes nij on which Xi374

is split, divided by all nodes’ importances, and finally averaged over all T trees in the forest [52].375

Imp(Xi) =
1

T

∑
t∈allTrees

∑
j∈nodeSplitOnXi

nij∑
k∈allNodes nik

(14)

4.5. Feature Selection376

As was previously pointed out, selecting features is an effective method for reducing the computational cost377

and model’s complexity, while maintaining an acceptable accuracy and even marginally improving it [53] by378

evading the over-fitting issue. Accordingly, different state-of-the-art feature selection methods (which are379

implemented in SciKit-Learn [26, 54] library) along with a customized approach are employed in the present380

work, a brief description of which is provided in the present sub-section.381

4.5.1. Univariate selection382

This method uses univariate statistical tests to select the features of a data set which have the strongest383

relationship with the output variable [26, 54] , it includes different approaches:384

• SelectKBest, which only keeps the k highest scoring features;385

• SelectPercentile only holds a user-specified percentage of the highest scoring features;386

• Common univariate statistical tests like SelectFpr, SelectFdr and SelectFwe respectively for false pos-387

itive rate, false discovery rate and family wise error [26, 54];388

• GenericUnivariateSelect allows to select the best univariate selection strategy among the previous389

methods and possible scoring functions with hyper-parameter search [26, 54] .390
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These objects take as inputs a scoring function which vary according to the nature of the machine learning391

problem and include: ANOVA F-value between label/feature for classification tasks (f classif), Chi-squared392

stats of non-negative features for classification tasks (chi2), F-value between label/feature for regression tasks393

(f regression), mutual information between features and the target (mutual info regression) [26, 54].394

4.5.2. Select from model395

Select from model method can be used with any estimator which has a coef or feature importances396

attribute and it consequently removes insignificant features according to the given threshold parameter.397

Accordingly, an option is using tree-based feature selection within estimators such as random forest regressor398

[40] or extra trees regressor [55] that are able to compute features’ importance. The parameters of such399

estimators include n estimators (number of trees in the forest), criterion (the function according to which400

the quality of a split is measured) and max features (number of the best features to keep).401

4.5.3. Recursive feature elimination402

Recursive Feature Elimination (RFE) recursively considers smaller sets of features and eventually selects the403

best set with the best scores that are given by an external estimator which assigns weights to features [56, 57].404

The estimator is first trained on the initial set obtaining the importance of each feature through a coef or405

feature importances attribute, secondly the least important features are dismissed from the current set.406

These two steps are recursively repeated until the desired number of features is reached. RFECV, is an407

extended version of RFE that includes a cross-validation loop to find the optimal number of features [56].408

4.5.4. Customized Feature Selection409

A customized feature selection method, in which the mutual information and above-mentioned accuracy410

metrics are employed, was also proposed and implemented. In this approach, the features are first sorted411

based on their mutual information coefficient. Next, starting with the most correlated feature, the loop412

adds a new element to the set only if it leads to an improvement in the averaged cross validation scores413

(either weighted F1-score or accuracy). The use of cross validation allows to consider whether one feature414

is significant on average and not only for the portion of data on which the model is tested.415

It is noteworthy that, while implementing this approach, besides mutual information, RF feature impor-416

tance, Pearson correlation and permutation importance were also tested as sorting criterion, though mutual417

information turned out to give better overall results. Different steps of this method are represented in Fig.418

6.419

5. Results and discussions420

In the present section, results of the feature selection procedures, in terms of accuracy and the number421

of selected features, are first presented and discussed. The improvement in the classification performance422
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Figure 6: Schematic representation of the implemented customized feature selection methodology.

through adding the importance-in-prediction based features (extracted from prediction pipelines) are then423

determined and demonstrated. Lastly, interpretations about the selected features and the obtained results424

are provided.425

5.1. Feature selection results426

As was previously pointed out, different feature selection procedures were conducted for all three classifi-427

cation targets, starting from the corresponding initial feature set. Fig. 7 represents the resulting weighted428

F1 scores, accuracy, and the number of selected features. It is worth mentioning that the classification429

outcomes (classification performance and number of selected features) were found to be fairly sensitive to430

each method’s tuning parameters and the most promising ones, obtained after performing a thorough test431

of different parameters, are provided in this figure.432

It can be observed that all of the implemented feature selection methods can substantially reduce the433

number of utilized features, while, in most of the cases, leading to even an improvement in the obtained434

classification performance. Furthermore, it can be noticed that the proposed customized method results435

in the highest performance and lowest number of features for use type and performance class targets.436

Therefore, for these two targets, the feature sets obtained by the customized method are chosen as the final437

ones. Accordingly, the 13 selected features for the performance class target result in an accuracy score of438

0.609 (and a weighted F1 score of 0.608), while the 23 chosen features for the use type target lead to an439

accuracy score of 0.724 (and a weighted F1 score of 0.711).440

For the case of operations group target, the features selected using the RFECV and ”Select from Model”441

methods provide a higher classification performance compared to the one obtained using the proposed442

customized method (weighted F1 scores of 0.997 and 0.994 respectively compared to 0.985 obtained by443

the customized method). Although the features selected by RFECV method provide a slightly higher444

classification performance than the ones obtained using ”Select from Model”, 16 features are chosen using445

the former method, while only 8 features are selected using the latter one. Since, owing to the reasons446

provided in section 4.5, having a small number of features is preferred, the feature set obtained employing447

”Select From Model”, which leads to the second highest score and the fewest features, is chosen as the final448

set for the operation group target. This latter set is then further reduced using a similar loop to that of the449

customized feature selection, which allows obtaining an even smaller set (only four features) with the same450

accuracy.451
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Figure 7: Comparison of the results of performing different feature selection methods for the considered classification targets
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5.2. Addition of Importance-in-prediction based Features452

Starting from the features sets and the resulting scores obtained from the feature selection step, the453

importance-in-prediction based features (extracted from an hour ahead prediction pipeline) are progres-454

sively added and are only kept in case the addition results in an improvement in the obtained score. For all455

of the considered targets, the four different indexes that measure the influence of features in the hour ahead456

pipelines (which were described in section 4.3) are extracted and the resulting impact of adding them to457

the set of features is assessed. It was demonstrated that for the use type and operation group targets, the458

scaled mutual information based features lead to the highest improvement in the achieved scores. For the459

case of performance class target, the Spearman’s Rank Correlation coefficients were determined to result460

in a slightly higher improvement. Pearson correlation and random forest importance coefficients were also461

demonstrated to improve the scores but were not as effective as the latter indexes.462

Accordingly, six new features are added to the selected set for the use type target, while four features are463

added to that of the performance class and two features are added to the operation group target’s selected464

set. Table 2 reports the improvements obtained in the classifications score for different targets by adding465

the latter features. It can specifically be noticed that, through adding the mentioned additional features,466

the accuracy and F1 score achieved for the performance group target is increased to 1.467

Building Use Type Performance Class Operation Group
Pipeline A B C A B C A B C

Mean CV Accuracy 0.706 0.724 0.742 0.558 0.609 0.621 0.982 0.994 1.000
Mean CV F1-score 0.688 0.711 0.731 0.558 0.608 0.621 0.981 0.994 1.000

Number of Features 290 23 29 224 13 17 287 4 6

Table 2: Performance of model employing pipeline (A): initial set of features , pipeline (B): selected features, and pipeline (C):
selected features plus the addition of importance-in-prediction based features.

5.3. Selected features and interpretation of the results468

In the present sub-section, the selected features and the added importance-in-prediction based features,469

for each of the considered targets, along with the corresponding effect on the obtained classification score470

are presented. Next, an interpretation about the reason behind the impact of some of the most influential471

parameters is provided. Having a deeper understanding of how, why, and which variables affect the building472

classification performance is a meaningful step towards improving the models, that can favour a more focused473

approach in this area. In this context, the selected features and the corresponding interpretation is provided474

for each target individually and the results of the analysis is compared with those presented in the foregoing475

works [58] and [21].476
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5.3.1. Use type477

Fig. 8 represents all of the selected features and the added importance-in-prediction based features (denoted478

by the initial term ”imp”) for the building use type target along with the contribution of adding each479

feature to improving the achieved classification scores. As can be observed in this figure, the minimum area480

normalized consumption (”AreaNormalizedConsMin”), coherently with what was reported in [58], is still481

among the first selected features and results in a notable score improvement as it is an intuitive index of the482

energy intensity of each space, which is higher for labs and more similar for the other use types. Similarly,483

the average of this normalized variable (”AreaNormalizedConsMean”) is among the selected features.484

Figure 8: Improvements in the achieved scores after each feature is added to the selected set for building use type target

Considerable improvement in accuracy is also observed to be caused by the addition of maximum daily485

variance in consumption (”dailyMaxVariance”) and the standard deviation of average consumption with486

respect to the corresponding 95th percentile value both for all days (”allDays meanvs95thRatio std”) and487

weekdays (”weekdays meanvs95thRatio std”). These features are promising describers of the higher vari-488

ance of both daily maximum consumption and of the daily ratio mean/95th percentile consumption of489

Primary/Secondary Classrooms compared to the other classes. The latter difference can be clearly observed490

in the box plot provided in Fig. 9, which represents the distributions of significant features for different491

classes for the Building Use Type target. The latter difference can be attributed to the fact that primary and492
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secondary classrooms (PrimClass) are among the buildings with the lowest area-normalized consumption493

and have a less regular use of electric appliances, the impact of which is easily detected owing to their lower494

base-load.495

Other features which notably enhance the achieved accuracy are the hour at which the maximum con-496

sumption takes place (”hourlyStats maxConsHourOfDay”) and the most common hour at which the top497

10% of consumption takes place ”mostCommonHourTop10perc”, which are indicators of the hour at which498

the maximum consumption occurs. These features help distinguishing between dormitories and other use499

types as their maximum consumption is typically taking place later at night when most people are back500

from office or university. The latter difference can be easily noticed in Fig. 9.501

Another variable that is useful to spot primary and secondary classes is variance in the winter consump-502

tion ”winterConsVariance”, a seasonal consumption statistics, which once again underlines the significantly503

higher consumption variance of such class. In addition, number of breakouts are also confirmed to be suit-504

able indexes to detect primary and secondary classrooms, that are more likely to have frequent changes of505

schedule for holiday breaks and similar events, while other categories like Offices often follow only few days506

of national holidays and have more regular schedules. Finally, the selected STL normalized weekly pattern,507

is useful to spot human-behavior influenced patterns of dormitories.508

Regarding the importance-in-prediction based features, as was pointed out in section 5.2, for the case509

of the use type target, the scaled mutual information based coefficients were determined to be the ones510

adding which results in the highest improvement in the achieved accuracy. Therefore, the importance-in-511

prediction based features (denoted by the initial term ”imp” in Fig. 8) for this target, refer to the scaled512

mutual information of each indicated feature with the target (consumption in the next hour). Among these513

features, the ones corresponding to 23-hour-lagged consumption (”imp Consumption23”) and deviation of514

daily consumption (”imp std use24”) seem to be promising indicators of different use types. As an instance,515

for the case of dormitories, the 23 hours lagged consumption (thus, the consumption of the building 24516

hours before the time-stamp to be predicted) has a higher correlation with the predicted consumption. This517

observation can be attributed to the fact that the consumption of dormitories in a specific day is pretty similar518

to the previous one, thus implying that day-ahead load can be a good predictor for the next-hour forecast.519

Standard deviation of the previous 24 hours of consumption also has an elevated correlation with the target520

for dormitories and primary/secondary classes (as can be observed in Fig. 9) that could be the consequence521

of the fact that specific consumption schedules are not followed in these spaces, which in turn results in522

a stronger importance of the consumption deviation as a useful parameter for load prediction. The latter523

interpretation can also be extended to the next added feature, importance-in-prediction of the ratio between524

mean and maximum consumption values of the last 24 hours, which is higher for primary/secondary classes525

and that can be attributed to their higher consumption variance. The remaining importance-in-prediction526

features are mainly related to weather parameters, which could be identifying different weather-related527
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Figure 9: Boxplots of distributions of significant features for building use type target
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Figure 10: Improvements in the achieved scores after each feature is added to the selected set for performance class target

behaviours for different building types, even though values distribution for these features are very similar528

among classes.529

Differently from what was reported in the previous investigations ([21, 58]), consumption statistics and530

other statistical features, in particular indicating variance, are the most common category in the character-531

ization of building use type. It is worth noting that, based on the classification outcomes, the offices are532

often mistaken for university classrooms or laboratories. This might be due to the resemblance of these533

spaces which can be used with similar purposes, or in part to outdated/inaccurate labeling.534

It is also worth mentioning that, although Fig. 8 illustrates the improvements obtained in the achieved535

accuracy owing to the addition of each feature, the observed improvement does not necessarily correspond536

to the exact individual importance of each specific feature, as it can also be attributed to the joint influence537

of the added features and the existing (previously added) ones. A list of the exact accuracy values obtained538

after each selected feature is given in Tab. 3.539

5.3.2. Performance class540

Fig. 10 represents the selected feature and the added importance-in-prediction features for the performance541

class target along with the corresponding resulting influence on the achieved accuracy scores. It can be no-542
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ticed that the most notable improvements in accuracy is observed while adding features such as the date on543

which the minimum daily consumption takes place (”stats minDailyConsDate”), ”dayFilterFreq 3 4h mean”544

and ”weekdays meanvsmaxRatio min”. The date on which the minimum daily consumption occurs appears545

to be more variable for low consuming buildings, that can be attributed to the corresponding lower de-546

pendence on the weather condition and, therefore, on the time of the year. The latter difference in the547

distribution of this variable can also be observed in Fig. 11.548

Coherently with the observation reported in [58], the two most relevant groups of features, for the classi-549

fication of this target, include the load diversity (represented by load ratios) and consumption patterns. The550

first group, which includes the above mentioned minimum mean/max ratio (”weekdays meanvsmaxRatio min”551

and ”weekdays meanvs95thRatio min”), indicates the magnitude of the mean consumption compared to the552

peak and tends to be lower for low consuming buildings, implying that a building is more likely to consume553

less overall if there are only limited moments of high peak consumption and a low mean load. The pattern-554

based features manage to indicate some pattern differences among classes, which confirms the link between555

variety of patterns (possibly due to the implemented energy-saving or demand-response policies) and lower556

consumption. ”loadshape rmse interval” is particularly effective to distinguish low consumers, for which the557

regression fitting error is sensibly lower than that of the other classes. This implies that in the buildings558

with a regular and predictable schedule, reasoned control strategies might have been implemented and are559

thus the ones that are supposed to consume less.560

Lastly, four importance-in-prediction based features (denoted by the initial term ”imp”) were also added.561

These, as pointed out in section 5.2 for the performance class target, are the Spearman’s Rank Correlation562

coefficients between the indicated parameter and the consumption in the next hour. One of these fea-563

tures is the one that represents the correlation between the visibility and the consumption to be predicted564

(”imp VisibilityKm8”), which can be attributed to the differences in the weather dependence among differ-565

ent performance classes. As can be observed in Fig. 11, for the low consumers, visibility has a slightly lower566

correlation (with the predicted target) compared to the other classes, that can be linked to the fact that low567

consumption is also related to higher energy efficiency, better envelope insulation, and consequently lower568

dependence on weather related parameters.569

Other features are related to the importance of different maximum load statistics-related variables570

(”imp MaxUse”), which are on average slightly more important for the load prediction of high consum-571

ing buildings. The last feature (”imp sinHour”) concerns the importance of the ”sin(hour)” variable, that is572

slightly higher for low consuming buildings, implying that, as was previously pointed out, a higher regularity573

and respect of schedules during the day can be linked to a lower overall consumption.574

Lastly, based on the classification results, it can also be observed that the accuracy is promising for high575

and low consuming buildings, whereas the the intermediate class are often mis-classified. This phenomenon576

can clearly be attributed to the similar distribution of values of the features for this target.577
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5.3.3. Operation group578

For the last target, the selected features are only six, while the resulting scores are nonetheless notably high579

as an accuracy and F1 score of 1 can be achieved. The contribution of adding each feature to the obtained580

accuracy is shown in Fig. 12. As can be noticed in this figure, the most influential feature to differentiate581

between groups is a pattern-based one (”dayFilterFreq 9 6h min”). Other important features are statistics-582

based, including ”allDays minvs95thRatio max”, ”stats minDailyConsDate” and ”maxDailyConsDate”. As583

can also be noticed in Fig. 13, the first mentioned feature describes Group 2 class, while the other two584

variables help distinguishing Group 4 from the other groups. Overall, it can be concluded that the features585

that better underline different operation strategies and schedules are mainly consumption statistics/ratios586

and pattern-based ones.587

To conclude, two importance-in-prediction based features are added; similarly to the case of use type588

target, these are referring to the scaled mutual information of each indicated parameter with the consumption589

in the next hour. These features include the importance of a load-ratio feature (”imp quant50vsmax use24”)590

and the importance of a 5-hour lagged consumption (”imp Consumption5”), both of which help separating591

Group 2 from the other groups. A summary of the scores improvement during the feature selection process592

for all classification targets can be found in Tab. 3.593

6. Conclusion594

In the present work, the most influential temporal and importance-in-prediction based features, which can595

be extracted from smart meter data, aiming at remote characterisation of non-residential buildings, were596

determined. Remote estimation of the defined targets (use type, performance class, and operation group) can597

be notably helpful in the large-scale building commissioning, benchmarking, and diagnostics processes. In598

this context, reducing the number of features utilized in the procedure can notably simplify the corresponding599

implementation, significantly reduce the calculation cost in large-scale deployment, help evading the model600

over-fitting, enhance the interpretability, and even improve the achieved accuracy.601

Accordingly, state-of-the-art feature selection methods and a proposed customized approach were first602

employed for determining the influential parameters in a pool of temporal features proposed in a previous603

study [13]. It was demonstrated that employing the latter procedures can notably reduce the number604

of utilized features; while, even if marginally, improving the obtained accuracy. Furthermore, a set of605

importance-in-prediction based features, which are coefficients that represent the correlation of various606

parameters with the consumption in the next hour (to be predicted), were added to the previously obtained607

selected set of features. It was shown that adding these features can improve the obtained accuracy for all608

of the considered classification targets.609

It was demonstrated that, through performing the latter steps, number of the utilized features for610
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Use type Performance class
Accuracy F1-score Accuracy F1-score

dailyMaxVariance 0.46 0.445 stats minHourlyCons 0.456 0.456
allDays meanvs95thRatio std 0.513 0.502 weekdays meanvsmaxRatio min 0.485 0.482

AreaNormalizedConsMin 0.572 0.552 stats minDailyConsDate 0.536 0.536
loadshape mapeIntervalDaytime 0.606 0.589 loadshape rmse interval 0.536 0.535

summerConsVariance 0.609 0.594 weekdays minvs95thRatio max 0.55 0.548
stats minHourlyConsDate 0.609 0.591 weekdays meanvs95thRatio min 0.55 0.548

winterConsVariance 0.609 0.591 dayFilterFreq 7 2h min 0.556 0.555
weekdays meanvs95thRatio std 0.627 0.612 STLweeklyPatternFriMean 0.566 0.565
allDays meanvsmaxRatio std 0.629 0.618 eemeter cvrmse 0.57 0.568

weekdays minvsmaxRatio mean 0.635 0.616 dayFilterFreq 9 2h std 0.574 0.574
hourlyStats meanCons4hr 0.635 0.619 dayFilterFreq 9 8h min 0.576 0.573

hourlyStats maxConsHourOfDay 0.673 0.655 dayFilterFreq 3 4h mean 0.602 0.602
weekdays minvs95thRatio mean 0.675 0.654 STLweeklyPatternSatMean 0.609 0.608

stats minHourlyCons 0.68 0.659 imp MaxUse 0.613 0.613
AreaNormalizedConsMean 0.688 0.672 imp VisibilityKm8 0.615 0.615
breakoutsNumber 60 1 5 0.688 0.668 imp stdvsmax use24 0.619 0.62
breakoutsNumber 30 1 5 0.69 0.675 imp sinHour 0.621 0.621

meta dateLast 0.702 0.688
breakoutsNumber 30 1 3 0.706 0.69 Operation group

mostCommonHourTop10perc 0.71 0.699 Accuracy F1-score
STLweeklyPatternThuMean 0.712 0.699 stats minDailyConsDate 0.751 0.749

dayFilterFreq 3 2h std 0.718 0.701 maxDailyConsDate 0.79 0.791
dayFilterFreq 5 8h min 0.724 0.711 dayFilterFreq 9 6h min 0.976 0.976

imp Consumption23 0.72 0.711 allDays minvs95thRatio max 0.994 0.994
imp std use24 0.726 0.715 imp quant50vsmax use24 0.997 0.997

imp meanvsmax use24 0.734 0.724 imp Consumption5 1 1
imp WindSpeedKm/h12 0.736 0.728

imp VisibilityKm10 0.74 0.73
imp SeaLevelPressurehPa12 0.742 0.731

Table 3: Accuracy scores improvement during the feature selection process for all classification targets
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estimating the buildings’ use type is reduced from 290 to 29 while augmenting the accuracy from 71% to611

74%. The classification accuracy for the performance class was instead improved from 56% to 62% while612

employing 17 features compared to 224 features available in the initial pool of temporal features. While613

aiming at estimating the buildings’ operation groups, employing only 6 selected features, an accuracy of 100%614

was achieved. In the last step, multi-class box-plots were utilized to demonstrate the distributions of various615

features in buildings belonging to different classes, which were then employed to provide interpretations616

about the capability of some features in distinguishing specific classes.617

It is noteworthy that, in order to enhance the generalisability of the implemented method, the authors618

have provided, the processed dataset, the obtained optimal pipelines (selected feature sets), and the im-619

plemented feature selection procedures in an online repository (link provided in Appendix A). The latter620

scripts permit the researchers to perform the same procedures for other datasets (including more buildings,621

additional building use types, or classification targets) and obtain similar feature distribution and feature622

selection plots along with the corresponding optimal feature sets.623

Appendix A. Online repository of the implemented procedures624

The utilized processed dataset, the obtained optimal sets of features (for each considered target), and625

the implemented feature selection procedures are provided in an online repository (Link).626
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Figure 11: Boxplots of distributions of significant features for performance class target
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Figure 12: Improvements in the achieved scores after each feature is added to the selected set for the operation group target
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Figure 13: Boxplots of distributions of significant features for operation group target
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