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Abstract. Let e1, . . . , ec be positive integers and let Y ⊆ Pn be the monomial complete

intersection defined by the vanishing of xe1
1
, . . . , xecc . In this paper, we study sharp upper

bounds on the number of equations and syzygies of subschemes parametrized by the

Hilbert scheme of points Hilb
d(Y), and discuss applications to the Hilbert scheme of

points Hilb
d(X) of arbitrary complete intersections X ⊆ Pn.

Introduction

In this paper, we investigate the extremal behavior of free resolutions of finite sub-

schemes of complete intersections X ⊆ Pn. Our motivating question is the following.

Let e = (e
1
, . . . , ec) be a degree sequence and d a positive integer: are there uniform

bounds on the syzygies of Z ⊆ X, where X ⊆ Pn is a complete intersection of degrees e
and Z ⊆ X a finite subscheme of length d?

In order to address this problem, we study Hilbert schemes of points of Clements-

Lindström schemes Y ⊆ Pn, defined by the vanishing of pure powers xe1
1
, . . . , xecc . Our

main result, Theorem 3.7, states that a distinguished monomial ideal C(d) attains the

largest possible number of i-th syzygies for a subscheme in Hilb
d(Y), for every homo-

logical degree i. There are advantages in considering Clements-Lindström schemes Y
for various degree sequences e, as opposed to just considering Pn. First, by taking the

degree sequence into account, and restricting thus to a smaller Hilbert scheme, one ob-

tains sharper numerical bounds on Betti numbers. A similar point of view is adopted

e.g. in [EGH93], where bounds on the number of points in intersections of quadric

hypersurfaces are improved using the data of the degree sequence, or in the study

of balanced Cohen-Macaulay simplicial complexes in [JKV21]. More importantly, our

bounds extend conjecturally to arbitrary complete intersections in Pn. In fact, we show

that, under the validity of the Lex Plus Powers Conjecture, the distinguished ideal C(d)

yields uniform bounds for the syzygies of subschemes Z ∈ Hilb
d(X) for all complete

intersections X ⊆ Pn of degrees e, thus giving a complete answer to our motivating

problem.
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When restricting to c = 0, that is, for Y = Pn, we recover the main result of [V94].

In fact, a major motivation for this work was the desire to extend classical results on

Hilb
d(Pn) [B81,BI78,ERV91,V94] to the general setting of complete intersections.

We apply our methods also to infinite free resolutions over complete intersections,

motivated by the recent progress in this area [EP16, EP20]. We conjecture that the

extremal behavior of Theorem 3.7 holds for infinite free resolutions, and prove this

conjecture for quadratic Clements-Lindström rings in characteristic zero in Theorem

4.3. We also discuss the analogous problem for deviations and Poincaré series, solving

it in the case of Hilb
d(Pn) in Corollaries 4.5 and 4.6.

Organization. In Section 1, we set up the notation, introduce Clements-Lindström

rings and the relevant classes of monomial ideals. Section 2 discusses a decomposition

of monomial ideals in Clements-Lindström rings, which plays an important role in

the recursive study of syzygies. In Section 3, we prove our main result on extremal

syzgyies in Hilb
d(Y), Theorem 3.7. It relies on the study of the decomposition of a

special monomial ideal C(d), which we carry out in detail in Proposition 3.2, and in

particular on the extremality of C(d)with respect to certain “hypersurface sections”. In

Section 4, we study infinite free resolutions. Our main result is Theorem 4.3, where we

combine the tools of Section 3 with a construction of [AAH00,EPY03,GHP02] to show

that the idealC(d) also attains themaximumBetti numbers of the infinite free resolution

over quadratic Clements-Lindström rings, if the ground field has characteristic zero.

Finally, in Section 5,we conclude thepaperwith someapplications to arbitrary complete

intersections, combining ourmain resultswith the known cases of the Eisenbud-Green-

Harris and Lex-Plus-Powers conjectures.

1. Clements-Lindström rings

Let N denote the set of nonnegative integers, and let k denote an arbitrary field.

All rings considered in this work are standard graded k-algebras, and all ideals and

modules are graded; these attributes are often assumed implicitly and omitted.

Let V be a Z-graded k-vector space. The j-th graded component is denoted by [V]j.
The Hilbert functionHF(V) is HF(V , j) = dimk[V]j. The Hilbert polynomialHP(V), when

it exists, satisfies HP(V , j) = HF(V , j) for all j� 0.

Let A be a ring and I ⊆ A an ideal. The maximal ideal of A is denoted by mA. An

ideal I ⊆ A is saturated if I : mA = I, equivalently, if depth(A/I) > 0. The saturation

I : m∞
A = ∪t>0

I : mtA of I ⊆ A is a saturated ideal with HP(I : m∞
A) = HP(I). IfM is a

finite A-module, the integers

βAi,j(M) = dimk[Tor
A
i (M,k)]j and βAi (M) = dimk Tor

A
i (M,k)

are the graded Betti numbers and the (total) Betti numbers ofM, respectively.

Let I ⊆ A be an ideal. The multiplicity of A/I, defined as normalized leading co-

efficient of HP(A/I), is denoted by mult(I). This slight abuse of notation should not

generate confusion, since the multiplicity of I as A-module often does not carry in-

teresting information. When dim(A/I) = 1, as in the setting of this paper, HP(A/I)
is a constant polynomial, equal to mult(I). When dim(A/I) = depth(A/I) = 1, then

mult(I) = dimk
A

I+(z)
where z ∈ [A]

1
is a non-zerodivisor on A/I.
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Given the projective schemeX = ProjA andd ∈ N, theHilbert scheme of points, denoted
by Hilb

d(X), is the projective scheme parametrizing finite subschemes Z ⊆ X of length

d, equivalently, with mult(IZ) = d. As it is common in the literature, we identify a

closed subscheme Z ⊆ X with its saturated ideal IZ ⊆ A and with the point on the

Hilbert scheme parametrizing it. Moreover, we adopt the following:

Convention 1.1. If I ⊆ A is an ideal, the expression “I ∈ Hilb
d(ProjA)” means that I is

saturated, dim(A/I) = 1 and mult(I) = d.

We now introduce the rings that are central to this work.

Convention 1.2. Wewill useN∪ {∞} as index set and as range for exponents. We adopt

standard conventions on ∞, e.g. ` <∞ and ∞− ` = ∞ for all ` ∈ N. If r is an element

in a ring, then r∞ := 0. If e = ∞, the expression “` < e” means “` ∈ N”.

Definition 1.3. A Clements-Lindström ring is a ring of the form

A =
k[x

1
, . . . , xm](

xe1
1
, . . . , xemm

)
for some e

1
6 e

2
6 · · · 6 em with ei ∈ N ∪ {∞}.

For the remainder of this section, A denotes a Clements-Lindström ring. We em-

phasize that x∞i = 0; thus, A is a polynomial ring if e
1
= ∞, whereas it is Artinian if

em <∞.

Remark 1.4. Suppose that ProjA 6= ∅, equivalently, em = ∞. Then, Hilb
d(ProjA) 6= 0 if

and only if either dimA > 1, that is, em−1
= ∞, or dimA = 1 and the multiplicity of A

is at least d, that is, em−1
<∞ and d 6 e

1
e
2
· · · em−1

.

An ideal I ⊆ A is monomial if it is the image of a monomial ideal of k[x
1
, . . . , xm].

We denote the lexicographic monomial order in A by <
lex
. A monomial ideal I ⊆ A is

lex if every [I]j is a generated by an initial segment with respect to <
lex
, equivalently,

if I is the image of a lex ideal of k[x
1
, . . . , xm]. The saturation of a lex ideal is again

lex. A theorem of Clements and Lindström, which generalizes the classical results of

Macaulay and Kruskal-Katona, states that lex ideals classify Hilbert functions in A:

Proposition 1.5 ([CL69]). Let A be a Clements-Lindström ring and I ⊆ A an ideal. There
exists a unique lex ideal L ⊆ A such that HF(L) = HF(I).

If H is the Hilbert function of some ideal of A, we denote by Lex(H,A) the lex ideal

L ⊆ A with HF(L) = H, and, if I ⊆ A, we define Lex(I) := Lex(HF(I),A).

A monomial ideal I ⊆ A is strongly stable if we have
xku
xh
∈ I whenever u ∈ I is a

nonzero monomial, xh divides u, and k < h. It suffices to check this condition for

the generators u of I. A strongly stable ideal I ⊆ A is saturated if and only if the last

variable xm is a non-zerodivisor on A/I; when dimA > 0, this is equivalent to xm not

dividing any monomial generator of I. The saturation of a strongly stable ideal is again

strongly stable.

A monomial ideal I ⊆ A is almost lex if the last variable xm is a non-zerodivisor

on A/I and (I+ (xm))/(xm) is a lex ideal of the Clements-Lindström ring A/(xm) ∼=
k[x

1
, . . . , xm−1

]/(xe1
1
, . . . , x

em−1

m−1
). Thus, almost lex ideals are saturated. Observe that a
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lex ideal is not almost lex in general, since it may not be saturated. Both lex ideals and

almost lex ideals are strongly stable.

Examples 1.6. Let e
1
= 2, e

2
= 3, e

3
= e

4
= ∞. The associated Clements-Lindström

ring is A = k[x
1
,x2,x3,x4]

(x2
1
,x3

2
)

. We consider the following ideals:

• I =
(
x
1
x
2
, x2

2
, x

1
x2
3
, x

2
x2
3
, x4

3

)
∈ Hilb

8(ProjA) is strongly stable, but it is neither lex

nor almost lex, as x
1
x
3
>

lex
x2
2
.

• J =
(
x
1
x
2
, x

1
x
3
, x2

2
, x

2
x
3
, x6

3

)
∈ Hilb

8(ProjA) is almost lex, but not lex, as x
1
x
4
>

lex

x2
2
.

• K =
(
x
1
x
2
, x

1
x
3
, x

1
x
4
, x2

2
, x

2
x2
3
, x

2
x
3
x4
4
, x

2
x6
4
, x8

3

)
= Lex(J) is lex, but not almost

lex, as K : x
4
6= K. Its saturation L =

(
x
1
, x

2
, x8

3

)
∈ Hilb

8(ProjA) is lex and almost

lex.

• C =
(
x
1
x
2
, x

1
x2
3
, x

2
x2
3
, x2x

3
, x3

3

)
∈ Hilb

8(ProjA) is almost lex. This is an example

of the ideals that will play an important role in Section 3.

IfHilb
d(ProjA) 6= ∅, then there is exactly one lex ideal inHilb

d(ProjA). We emphasize

that the lex ideal of a given Hilbert function and the (saturated) lex ideal of a given

multiplicity are different concepts. The notation Lex(I) is reserved for the lex ideal

with the same Hilbert function as I. We remark that there are algorithms to compute

all strongly stable or almost lex ideals of Hilb
d(Pn) [AL18,CLMR11,MN14], and these

algorithms can be extended to themore general setting of Clements-Lindström schemes

ProjA.

2. Decomposition of monomial ideals

We introduce a recursive decomposition of ideals in Clements-Lindström rings. This

decomposition is particularly effective for strongly stable and almost lex ideals, and it

will play a fundamental role in our study of syzygies in the subsequent sections.

Notation 2.1. For the rest of the paper, we fix the following rings:

S = k[x
1
, x

2
, . . . , xn, xn+1

], R = S/
(
xe1
1
, . . . , xenn

)
,

S = k[x
1
, x

2
, . . . , xn−1

, xn+1
], R = S/

(
xe1
1
, . . . , x

en−1

n−1

)
,

S̃ = k[x
1
, x

2
, . . . , xn−1

, xn], R̃ = S̃/
(
xe1
1
, . . . , xenn

)
,

where 2 6 e
1
6 e

2
6 · · · 6 en 6 ∞. That is, we set en+1

= ∞, and x
en+1

n+1
= 0 will be

omitted. We use I and ˜I to denote the image of an ideal I ⊆ S, respectively, I ⊆ R, in the

factor rings S and S̃, respectively, R and R̃.

The ring R̃ is an algebra retract of R, since R = R̃[xn+1
], and thus it may be regarded

both as a subring and as a factor ring of R; both points of view will be useful in this

paper. This fact, together with the short exact sequence 0→ R/I
xn+1−−→ R/I→ R̃/̃I→ 0,

induces a tight relation between ideals ofR and R̃, andwe summarize themain formulas

in the next remark.
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Remark 2.2. Let I ⊆ R be an ideal such that I : xn+1
= I. For all d ∈ Z we have

HF(̃I,d) = HF(I,d) −HF(I,d− 1). Moreover, for all i, j ∈ N we have

βS̃i,j(R̃/̃I) = β
S
i,j(R/I), βSi,j(R̃/̃I) = β

S
i,j(R/I) + β

S
i−1,j−1

(R/I),

βR̃i,j(R̃/̃I) = β
R
i,j(R/I), βRi,j(R̃/̃I) = β

R
i,j(R/I) + β

R
i−1,j−1

(R/I).

If I is strongly stable, then so is Ĩ. Conversely, the extension KR ⊆ R of a strongly stable

K ⊆ R̃ is a saturated strongly stable ideal whose image in R̃ is K.

Proposition 2.3. Let I ⊆ J ⊆ R be monomial ideals such that I : xn+1
= I, J : xn+1

= J, and
dim(R/I), dim(R/J) 6 1. The quotient J/I is a finite free module over k[xn+1

] via restriction
of scalars, with rankk[xn+1

] (J/I) = dimk
(̃
J/̃I
)
= mult(I) −mult(J).

Proof. DenotingM = J/I and M̃ = J̃/̃I, we haveM ∼= M̃⊗R̃ R̃[xn+1
] ∼= M̃⊗kk[xn+1

]. This

implies the first statement and rankk[xn+1
] (J/I) = dimk

(̃
J/̃I
)
. For the other equality, we

have rankk[xn+1
](M) = HP(M) = HP(R/I) −HP(R/J) = mult(I) −mult(J). �

For a monomial ideal I ⊆ R, there exist uniquely determined monomial ideals I` ⊆ R
such that the following decomposition of R-modules holds

(2.1) I =

en−1⊕
`=0

I`x
`
n.

The set of components {I`} is finite if en <∞, infinite otherwise. Throughout the paper,

the notation I` will always refer to this decomposition; it should not be confused with

graded components, denoted instead by [I]j.

In the next proposition, we list the basic properties of the decomposition (2.1).

Proposition 2.4. Let R be a Clements-Lindström ring and I ⊆ R a monomial ideal such that
I : xn+1

= I and dim(R/I) = 1.
(1) The sequence {I`} is a non-decreasing chain of ideals of R.
(2) If en = ∞, then I` = R for `� 0.
(3) I` is saturated with dim(R/I`) = 1 for all ` = 0, . . . , en − 1.
(4) mult(I) =

∑en−1

`=0
mult(I`).

(5) I is strongly stable if and only if I` is strongly stable for all ` = 0, . . . , en − 1 and
(x

1
, . . . , xn−1

)I` ⊆ I`−1
for all ` = 1, . . . , en − 1.

(6) The quotient I`/I`−1
is a free k[xn+1

]-module with rank mult(I`−1
) −mult(I`) for all

` = 1, . . . , en − 1.

Proof. Item (1) follows from (2.1), since I is closed under multiplication by xn. Since

dim(R/I) = 1 and I : xn+1
= I, we have

√
I = (x

1
, . . . , xn), thus, if en = ∞, we have

x`n ∈ I and I` = R for ` � 0, proving (2). Observe that each monomial generator of I`
divides a monomial generator of I; hence, the generators of I` are coprime with xn+1

,

and so each I` is saturated. We have

√
I` = (x

1
, . . . , xn−1

), since
√
I = (x

1
, . . . , xn), and

this concludes the proof of (3). Item (4) follows from (2.1) and item (3), since mult(I) is
the asymptotic value of HF(R/I). Item (5) follows by definition of strongly stable ideals.

Finally, (6) follows directly from Proposition 2.3. �



6 GIULIO CAVIGLIA AND ALESSIO SAMMARTANO

Example 2.5. Let R = k[x
1
, x

2
, x

3
, x

4
]/
(
x2
1
, x3

2

)
, so R = k[x

1
, x

2
, x

4
]/
(
x2
1
, x3

2

)
. Consider the

saturated strongly stable ideal I =
(
x
1
x
2
, x2

2
, x

1
x2
3
, x

2
x2
3
, x4

3

)
⊆ R of Examples 1.6. The

components of I are the R-ideals

I
0
= I

1
=
(
x
1
x
2
, x2

2

)
, I

2
= I

3
=
(
x
1
, x

2

)
, I` = R for ` > 4.

We have mult(I) = 8, and the sequence {mult(I`)} is {3, 3, 1, 1, 0, 0, . . .}.

3. Maximal syzygies

We begin this section by studying a special almost lex ideal in R, which plays a central

role in the extremality of syzygies in Hilb
d(ProjR).

Definition 3.1. Let R be a Clements-Lindström ring and d ∈ N with Hilb
d(ProjR) 6= 0.

We let C(d,R) or C(d) denote the unique almost lex ideal C ∈ Hilb
d(ProjR) such that

(x
1
, . . . , xn)

p+1 ⊆ C ⊆ (x
1
, . . . , xn)

p
for some p ∈ N.

If I ∈ Hilb
d(ProjR), we define C(I) := C(d,R).

The ideal C(d,R) is generated by (x
1
, . . . , xn)

p+1
and by an initial <

lex
-segment of the

vector space [(x
1
, . . . , xn)

p]p, such that mult(C(d,R)) = d. It is clear that such C(d,R) is

unique for every d ∈ N, and exists as long as Hilb
d(ProjR) 6= 0. In Examples 1.6, we

have C = C(8,R).

The next proposition highlights the key extremal features of the ideal C(d,R).

Proposition 3.2. Let R be a Clements-Lindström ring and d ∈ N.
(C1) C(d,R) is almost lex.
(C2) Every component C(d,R)` ⊆ R is equal to C(d`,R) for some d` ∈ N.
(C3) If d

1
< d

2
, then C(d

2
,R) ⊆ C(d

1
,R).

(C4) If I ∈ Hilb
d(ProjR) is strongly stable, then, for every ρ < en, we have

ρ∑
`=0

mult

(
I`
)
6

ρ∑
`=0

mult

(
C(d,R)`

)
.

(C5) If I ∈ Hilb
d(ProjR) is strongly stable, then

mult

(
(x

1
, . . . , xn)I

)
6 mult

(
(x

1
, . . . , xn)C(d,R)

)
.

Proof. We prove the proposition by induction on n. The case n = 0 is trivial, since (0)
and R are the only saturated ideals of R, so we assume n > 0. Properties (C1), (C2) and

(C3) follow immediately by Definition 3.1.

We prove (C4) by induction on d. The case d = 0 is trivial, so let d > 0. Assume by

contradiction there is a strongly stable I ∈ Hilb
d(ProjR) violating (C4). Define

J =

en−1⊕
`=0

C(I`)x
`
n ⊆ R.

We claim that J is a saturated strongly stable ideal of R. We have I` ⊆ I`+1
and

mult(I`) > mult(I`+1
) for every `, hence C(I`) ⊆ C(I`+1

) by (C3), and this implies that J
is an ideal of R. Moreover, J is saturated, since J : xn+1

= J. To show that J is strongly
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stable, we use Proposition 2.4 (5). Each component J` = C(I`) is almost lex by (C1),

and, in particular, strongly stable. It remains to show that (x
1
, . . . , xn−1

)C(I`) ⊆ C(I`−1
)

for 1 6 ` < en. It follows by Definition 3.1 that (x
1
, . . . , xn−1

)C(I`) = C(d ′,R) for some

d ′ ∈ N, thus, by (C3), it suffices to show that mult((x
1
, . . . , xn−1

)C(I`)) > mult(C(I`−1
)).

We have (x
1
, . . . , xn−1

)I` ⊆ I`−1
, since I is strongly stable. Combining with (C5), we get

mult

(
(x

1
, . . . , xn−1

)C(I`)
)
> mult

(
(x

1
, . . . , xn−1

)I`
)
> mult(I`−1

) = mult

(
C(I`−1

)
)
,

yielding the desired inequality and completing the proof of the claim.

To summarize, there exists a strongly stable J ∈ Hilb
d(ProjR) violating (C4) and

such that J` = C(J`) ⊆ R for every `. Let `
1
denote the least ρ for which (C4) fails

for J. Then, mult(J`) = mult(C(d,R)`) for ` < `
1
and mult(J`

1
) > mult(C(d,R)`

1
).

Since mult(J) = mult(C(d,R)), by Proposition 2.4 (4) there is some `
2
> `

1
such that

mult(J`2) < mult(C(d,R)`2). By (C3), it follows that J`
1
( C(d,R)`

1
and J`2 ) C(d,R)`2 .

Let p ∈ N be the integer such that (x
1
, . . . , xn)

p+1 ⊆ C(d,R) ( (x
1
, . . . , xn)

p
, then

(x
1
, . . . , xn−1

)p+1−` ⊆ C(d,R)` ⊆ (x
1
, . . . , xn−1

)p−` for every `. We have

(x
1
, . . . , xn−1

)p+1−`
1 ⊆ J`

1
( C(d,R)`

1
⊆ (x

1
, . . . , xn−1

)p−`1 ,

where the first inclusion holds since since (x
1
, . . . , xn−1

)p+1−`2 ⊆ C(d,R)`2 ⊆ J`2 , and
(x

1
, . . . , xn−1

)`2−`1J`2 ⊆ J`1 by Proposition 2.4 (5). Thus, there is a monomial generator

u of C(d,R)`
1
such that u /∈ J`

1
and deg(u) = p− `

1
. Furthermore, we have

(x
1
, . . . , xn−1

)p+1−`2 ⊆ C(d,R)`2 ( J`2 ⊆ (x
1
, . . . , xn−1

)p−`2

since if J`2 6⊆ (x
1
, . . . , xn−1

)p−`2 then (x
1
, . . . , xn−1

)`2−`1J`2 6⊆ (x
1
, . . . , xn−1

)p−`1 , so, by
Proposition 2.4 (5), J`

1
6⊆ (x

1
, . . . , xn−1

)p−`1 , contradiction. Thus, there is a a monomial

generator v of J`2 such that v /∈ C(d,R)`2 and deg(v) = p − `
2
. We have ux`1n ∈ C(d,R),

vx`2n /∈ C(d,R), and both monomials have degree p, so necessarily ux`1n >lex
vx`2n . This

implies ux`1n >lex
vx`2−`1n−1

x`1n and, hence, u >
lex

vx`2−`1n−1
. Since u /∈ J`

1
and J`

1
is almost lex,

we see that vx`2−`1n−1
/∈ J`

1
. This is a contradiction, since v ∈ J`2 and (x

1
, . . . , xn−1

)`2−`1J`2 ⊆
J`

1
. The proof of (C4) is concluded.

In order to prove (C5), we begin by observing that (x
1
, . . . , xn)I has the decomposition

(x
1
, . . . , xn)I = (x

1
, . . . , xn−1

)I
0
⊕
en−1⊕
`=1

(
I`−1

+ (x
1
, . . . , xn−1

)I`
)
x`n.

However, we have (x
1
, . . . , xn−1

)I` ⊆ I`−1
by Proposition 2.4 (5), so we may rewrite

(x
1
, . . . , xn)I = (x

1
, . . . , xn−1

)I
0
⊕
en−1⊕
`=1

I`−1
x`n

and, by Proposition 2.4 (4), this implies that

(3.1) mult

(
(x

1
, . . . , xn)I

)
= mult

(
(x

1
, . . . , xn−1

)I
0

)
+

en−2∑
`=0

mult(I`).
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By the same argument, we have

(3.2) mult

(
(x

1
, . . . , xn)C(d,R)

)
= mult

(
(x

1
, . . . , xn−1

)C(d,R)
0

)
+

en−2∑
`=0

mult(C(d,R)`).

Using (C4) with ρ = 0, we get mult(I
0
) 6 mult(C(d,R)

0
), hence, C(d,R)

0
⊆ C(I

0
) by

(C3). It follows that (x
1
, . . . , xn−1

)C(d,R)
0
⊆ (x

1
, . . . , xn−1

)C(I
0
) and

mult

(
(x

1
, . . . , xn−1

)C(d,R)
0

)
> mult

(
(x

1
, . . . , xn−1

)C(I
0
)
)
> mult

(
(x

1
, . . . , xn−1

)I
0

)
,

where the last inequality follows by applying (C5) to I
0
. On the other hand, using (C4)

with ρ = en − 2, we also see that

∑en−2

`=0
mult(I`) 6

∑en−2

`=0
mult(C(d,R)`). Comparing

(3.1) and (3.2), we have proved (C5). �

Remark 3.3. Proposition 3.2 captures the essential properties needed to obtain sharp

upper bounds for the syzygies. Moreover, the assignment d 7→ C(d,R) ∈ Hilb
d(ProjR)

is uniquely characterized by the properties of Proposition 3.2, as it follows by induction

on n using (C2) and (C4). One may thus give a recursive construction of C(d,R)
based on these axioms. This less explicit but effective approach might be the basis for

extending the methods and results of this paper to other classes of rings R or other

Hilbert schemes.

The most important property of C(d,R) is (C4). As the following equivalent formu-

lation shows, it is closely related to similar inequalities about “hypersurface sections”,

see for instance [CS18, Lemma 3.3], [G99, Theorem 2.2], or the main theorem in [HP99].

Corollary 3.4. Let J ∈ Hilb
d(ProjR) be strongly stable. For every 0 6 h < en, we have

mult

(
J+ (xhn)

)
6 mult

(
C(d) + (xhn)

)
.

We now turn our focus to the study of syzygies of ideals I ∈ Hilb
d(ProjR). The results

of [MM11] allow us to perform an important reduction to strongly stable ideals.

Lemma 3.5. For every I ∈ Hilb
d(ProjR) there exists a strongly stable J ∈ Hilb

d(ProjR) with
βSi (R/I) 6 β

S
i (R/J) for all i > 0.

Proof. Since I ⊆ R is saturated, there exists z ∈ [R]
1
that is a non-zerodivisor on R/I. Up

to a change of coordinates, wemay assume z = xn+1
. By [MM11, Proposition 8.7], there

exists a strongly stable ideal K ⊆ R̃ with HF(K) = HF(˜I) and β
˜S
i,j(

˜R/˜I) 6 β ˜S
i,j(

˜R/K) for
all i, j. The conclusion follows from Remark 2.2 considering the extension J = KR. �

In the next lemma, we consider the natural Zn+1
-grading on R.

Lemma 3.6. Let M be a finite Zn+1-graded R-module that is a finite free k[xn+1
]-module of

rank r via restriction of scalars. For every i ∈ N, we have
(i) βSi (M) 6 r · βSi (k[xn+1

]) and βRi (M) 6 r · βRi (k[xn+1
]);

(ii) βSi (M) = r · βSi (k[xn+1
]) and βRi (M) = r · βRi (k[xn+1

]) if annR(M) = (x
1
, . . . , xn).

Proof. We prove (ii) first. Letm
1
, . . . ,ms be minimal Zn+1

-graded R-module generators

ofM. The assumptions imply the isomorphisms of R-modulesM ∼= Rm
1
⊕ · · · ⊕ Rms

and Rmh ∼= k[xn+1
] for every h, therefore, s = r and the formulas for the Betti numbers

follow. To prove (i), we may assume r > 1. LetM ′ = (x
1
, . . . , xn)M andM ′′ =M/M ′.
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BothM ′ andM ′′ are finite Zn+1
-graded R-modules. As k[xn+1

]-modules via restriction

of scalars,M ′ is free of rank less than r, whereasM ′′ is also free, bymultidegree reasons,

and it satisfies (ii). The conclusions follow, by induction on r, from the exact sequence

0→M ′ →M→M ′′ → 0. �

We are ready to present the main result.

Theorem 3.7. Let S = k[x
1
, . . . , xn+1

] be a polynomial ring and R = S/(xe1
1
, . . . , xenn ) a

Clements-Lindström ring, where 2 6 e
1
6 · · · 6 en 6∞. For each d ∈ N, we have

βSi
(
R/I
)
6 βSi

(
R/C(d)

)
for all I ∈ Hilb

d(ProjR) and all i > 0.

Proof. We proceed by induction on n. The case n = 0 is trivial, so let n > 0. By Lemma

3.5, we may assume without loss of generality that I is strongly stable. Let I,C denote

the preimages of I,C(d) ⊆ R in the polynomial ring S. There are decompositions

(3.3) I =

∞⊕
`=0

I`x
`
n and C =

∞⊕
`=0

C`x
`
n,

where I`,C` are ideals of S. Specifically, I` ⊆ S is the preimage of I` ⊆ R if ` < en, and

I` = S if en 6 ` < ∞; likewise for C`. Since R/I ∼= S/I and R/C(d) ∼= S/C, we must

prove that βSi (I) 6 β
S
i (C) for all i. The variable xn is a non-zerodivisor on S, I,C, so it

suffices to prove βSi (I/xnI) 6 β
S
i (C/xnC) for all i.

Let J ⊆ S be the preimage of C(I
0
) ⊆ R. Since S/I

0

∼= R/I
0
and S/J ∼= R/C(I

0
), we

have βSi (I0) 6 β
S
i (J) for every i > 0 by induction. Applying (C4) with ρ = 0, we get

mult(I
0
) 6 mult(C(d)

0
), and from (C3) we deduce C(d)

0
⊆ C(I

0
) and, hence, C

0
⊆ J.

By Proposition 2.3, the quotient J/C
0

∼= C(I
0
)/C(d)

0
is a free k[xn+1

]-module of rank

r
0
= mult(C(d)

0
) − mult(C(I

0
)). Applying Lemma 3.6 (i) to the short exact sequence

0→ C
0
→ J→ J/C

0
→ 0, we obtain

(3.4) βSi (I0) 6 β
S
i (J) 6 β

S
i (C0

) + βSi (J/C0
) 6 βSi (C0

) + r
0
βSi
(
k[xn+1

]
)
.

First, assume that en = ∞. From (3.3), we deduce decompositions of S-modules

(3.5)

I

xnI
∼= I

0
⊕

∞⊕
`=1

I`

I`−1

∼= I
0
⊕

∞⊕
`=1

I`

I`−1

,

C

xnC
∼= C

0
⊕

∞⊕
`=1

C`

C`−1

∼= C
0
⊕

∞⊕
`=1

C(d)`
C(d)`−1

.

Applying Proposition 2.4 (2) and (6) we see that the terms

⊕∞̀
=1

I`
I`−1

and

⊕∞̀
=1

C(d)`
C(d)`−1

are free k[xn+1
]-modules of ranks r

1
= mult(I

0
) and r

2
= mult(C(d)

0
), respectively.

Moreover, by Proposition 2.4 (5), they are annihilated by (x
1
, . . . , xn−1

). Using Lemma

3.6 (ii) and combining with (3.4), we obtain

βSi (I/xnI) = β
S
i (I0) + β

S
i

( ∞⊕
`=1

I`

I`−1

)
= βSi (I0) + r1β

S
i

(
k[xn+1

]
)

6 βSi (C0
) + (r

0
+ r

1
)βSi
(
k[xn+1

]
)
.
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Finally, we have βSi (C/xnC) = β
S
i (C0

)+ (r
0
+ r

1
)βSi
(
k[xn+1

]
)
by (3.5) and Lemma 3.6 (ii),

since

⊕∞̀
=1

C(d)`
C(d)`−1

has rank r
2
= r

0
+ r

1
. This concludes the proof in this case.

Now, assume en <∞. The decompositions of S-modules obtained from (3.3) become

(3.6)

I

xnI
∼= I

0
⊕
en−1⊕
`=1

I`

I`−1

⊕ R

Ien−1

and

C

xnC
∼= C

0
⊕
en−1⊕
`=1

C(d)`
C(d)`−1

⊕ R

C(d)en−1

.

Ourgoal is to estimateβSi (R/Ien−1
). By induction,wehaveβSi (R/Ien−1

) 6 βSi
(
R/C(Ien−1

)
)

for all i > 0. Using Proposition 2.4 (4) and (C4) with ρ = en − 2 we see that

en−1∑
`=0

mult(I`) = mult(I) = d = mult(C(d)) =

en−1∑
`=0

mult(C(d)`)

and

en−2∑
`=0

mult(I`) 6
en−2∑
`=0

mult(C(d)`),

implying that mult(Ien−1
) > mult(C(d)en−1

), and, thus, C(Ien−1
) ⊆ C(d)en−1

, by (C3).

The exact sequence 0→ C(d)en−1
/C(Ien−1

)→ R/C(Ien−1
)→ R/C(d)en−1

→ 0 yields

(3.7) βSi (R/Ien−1
) 6 βSi

(
R/C(Ien−1

)
)
6 βSi

(
C(d)en−1

C(Ien−1
)

)
+ βSi

(
R

C(d)en−1

)
.

Finally, we are going to use (3.6) to give an upper bound for βSi (I/xnI). As before,

the S-modules

⊕en−1

`=1

I`
I`−1

and

⊕en−1

`=1

C(d)`
C(d)`−1

are annihilated by (x
1
, . . . , xn−1

), and, by

Proposition 2.4 (6), they are free k[xn+1
]-modules of ranks r ′

1
= mult(I

0
) −mult(Ien−1

)
and r ′

2
= mult(C(d)

0
) − mult(C(d)en−1

), respectively. By Proposition 2.3, the module

C(d)en−1

C(Ien−1
)
is also free over k[xn+1

], of rank r
3
= mult(C(Ien−1

)) −mult(C(d)en−1
). Com-

bining the decomposition (3.6) and the bounds (3.4), (3.7), and using Lemma 3.6 (i), we

find

βSi (I/xnI) = β
S
i (I0) + β

S
i

(
en−1⊕
`=0

I`

I`−1

)
+ βSi

(
R

Ien−1

)
6
[
βSi (C0

) + r
0
βSi
(
k[xn+1

]
)]

+ r ′
1
βSi
(
k[xn+1

]
)
+

[
r
3
βSi
(
k[xn+1

]
)
+ βSi

(
R

C(d)en−1

)]
= βSi (C0

) + (r
0
+ r ′

1
+ r

3
)βSi
(
k[xn+1

]
)
+ βSi

(
R

C(d)en−1

)
.

The expression in the last line is equal to βSi (C/xnC), because of (3.6), Lemma 3.6 (ii),

and the fact that r ′
2
= r

0
+ r ′

1
+ r

3
. This concludes the proof. �

Remark 3.8. The numerical bounds on the Betti numbers provided by Theorem 3.7 can

be determined by means of the combinatorial formula in [M08, Proposition 2.1]. The

formula also implies that the bounds are independent of the characteristic of k.
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4. Infinite free resolutions

In this section, we investigate bounds for the Betti numbers of the infinite free reso-

lutions associated to a finite subscheme of a Clements-Lindström scheme.

We begin by proposing the following natural problem.

Conjecture 4.1. Let R be a Clements-Lindström ring. We have βRi (I) 6 βRi (C(d)) for every
I ∈ Hilb

d(ProjR) and every i > 0.

When the field has characteristic zero, the results of [MP12] reduce the problem to

strongly stable ideals.

Lemma 4.2. Assume that char(k) = 0. For every I ∈ Hilb
d(ProjR) there exists a strongly

stable J ∈ Hilb
d(ProjR) such that βRi (I) 6 βRi (J) for all i > 0.

Proof. This follows from [MP12, Theorem 1.4], proceeding exactly as in Lemma 3.5. �

The following theorem is the main result of this section. The proof employs a

construction from [AAH00,EPY03,GHP02].

Theorem 4.3. Let S = k[x
1
, . . . , xn+1

] be a polynomial ring and R = S/(xe1
1
, . . . , xenn ) a

Clements-Lindström ring, where ej ∈ {2,∞} for every j. Assume that char(k) = 0. We have
βRi
(
I
)
6 βRi

(
C(d)

)
for every I ∈ Hilb

d(ProjR) and every i > 0.

Proof. We proceed by induction on n, and the case n = 0 is trivial, so let n > 0. By

Lemma 4.2, we may assume that I is strongly stable. In addition to Notation 2.1, in this

proof we consider the “intermediate” ring

T =
S

(xe1
1
, . . . , x

en−1

n−1
)
,

so that R = T/(xenn ). By assumption, either en = ∞, in which case T = R, or en = 2.

Consider the ideal I ⊆ T generated by themonomials of T corresponding to theminimal

generators of I ⊆ R, that is, the ideal

I =

en−1⊕
`=0

I`x
`
n ⊕

∞⊕
`=en

Ien−1
x`n.

Notice that I may be smaller than the preimage of I in T if en = 2, whereas I = I

if en = ∞. Since xn is a non-zerodivisor on T and I, and T/(xn) ∼= R, we have

βTi,j(I) = β
R
i,j(I/xnI). We have a decomposition of R-modules

(4.1)

I

xnI
= I

0
⊕
en−1⊕
`=1

I`

I`−1

.

By induction, βRi (I0) 6 βRi (C(I0)). In the proof of Theorem 3.7, we established that

C(d)
0
⊆ C(I

0
), and that

C(I0)
C(d)0

is a freek[xn+1
]-module of rank r

0
= mult(C(d)

0
)−mult(I

0
).

By Lemma 3.6 (i), we obtain

(4.2) βRi (I0) 6 β
R
i (C(I0)) 6 β

R
i (C(d)0) + r0β

R
i (k[xn+1

]).
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First, assume that en = ∞. We have seen, in the proof of Theorem3.7, that theR-module

⊕en−1

`=1

I`
I`−1

= ⊕∞̀
=1

I`
I`−1

is annihilated by (x
1
, . . . , xn−1

), and is a free k[xn+1
]-module of

rank r
1
= mult(I

0
). By Lemma 3.6 (ii), we get βRi (I) = βRi (I0) + r1β

R
i (k[xn+1

]), and,

likewise, βRi (C(d)) = βRi (C(d)0) + r2β
R
i (k[xn+1

]), where r
2
= mult(C(d)

0
) = r

0
+ r

1
.

Combining with (4.2), we conclude that βRi (I) 6 β
R
i (C(d)) as desired.

For the rest of the proof, assume en = 2. The R-module ⊕en−1

`=1

I`
I`−1

= I
1

I0
is annihilated

by (x
1
, . . . , xn−1

), and is a free k[xn+1
]-module of rank r ′

1
= mult(I

0
) − mult(I

1
). By

Lemma 3.6 (ii) and (4.1), we obtain

(4.3) βTi (I) = β
R
i (I0) + r

′
1
βRi (k[xn+1

]).

We regard R,R, and T as Zn+1
-graded, but we also consider the Z-grading induced

by the variable xn only. If M is a Zn+1
-graded T -module, we define σ(M) to be the

vector space consisting of the graded components ofMwith xn-degrees 0 or 1. Clearly,
σ defines an exact functor from the category of Zn+1

-graded T -modules to the category

of Zn+1
-graded k-vector spaces.

Let F be the minimal Zn+1
-graded free resolution of I over T . The xn-twists in

this resolution are all equal to 0 or 1: this follows from the fact that F ⊗T T
(xn)

is a

minimal Zn+1
-graded free resolution of I/xnI over R, and that I/xnI is generated in

xn-degrees 0, 1. The complex E = σ(F) is acyclic and minimal, in the sense that the

image of its differential lies in (x
1
, . . . , xn+1

)E. Each direct summand in F has the form

T(−δ
1
, . . . ,−δn,−δn+1

) with δn ∈ {0, 1}; the corresponding summand in E is a factor

ring of R = T/(x2n), namely

σ
(
T(−δ

1
, . . . ,−δn,−δn+1

)
)
∼=

R

(x2−δnn )
(−δ

1
, . . . ,−δn,−δn+1

).

The cyclic R-module on the right hand side is free if and only if δn = 0. In fact, E
is an acyclic minimal Zn+1

-graded complex of (not necessarily free) finitely generated

R-modules. Since all the xn-twists in F are in {0, 1}, every free summand of F contributes

with a non-zero summand in E. In other words, in every homological degree i, the
numbers of generators is the same for F and E, and this number is βTi (I). Among the

direct summands of E, the free modules are precisely those coming from copies of T in

Fwith xn-twist equal to 0. These modules form themselves another complex E ′, which

is againminimal and acyclic, but it is even free. In fact, E ′ is the minimal free resolution

of I
0
over R, since I

0
is the truncation of I in xn-degree 0, and R is the truncation of T

in xn-degree 0. We conclude that, in homological degree i, in Ewe have exactly βRi (I0)
free summands, i.e., copies of R.

To summarize, E is an acyclic minimal complex of Zn+1
-graded R-modules, it has

βTi (I) generators in homological degree i, of which βRi (I0) generate a free module R,
whereas the remaining ones generate a non-free module isomorphic to R/(xn). The

number of non-free summands of E in homological degree i is, therefore, βTi (I) −

βRi (I0) = r
′
1
βRi (k[xn+1

]), by (4.3). Note also that the 0-homology of E is σ(T/I) = R/I.

Let Ei denote the module in homological degree i in E. The differentials of E can

be lifted to a complex of complexes, namely a double complex DI of R-modules where
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the i-th vertical complex is the minimal free resolution of Ei. By construction, the

double complex DI is free. Furthermore, it is minimal, and the total complex Tot(DI)
is a minimal Zn+1

-graded free resolution of R/I over R, cf. [EPY03, Proposition 5.6],

[AAH00, Theorem 1.3], or [GHP02, Theorem 2.10]. TheR-moduleR/(xn) has an infinite

minimal free resolution over R with βRj (R/(xn)) = 1 and differential given by ·xn for

every j ∈ N. It follows that in DI, for each i > 0, we have

(∗) βRi (I0) summands in homological bidegree (i, 0) arising from the free summands

of E,
(∗∗) r ′

1
βRi (k[xn+1

]) summands in homological bidegree (i, j) for every j ∈ N, arising
from the non-free summands of E,

where the first coordinate is horizontal and the second coordinate is vertical. We

conclude that the Betti numbers of a saturated strongly stable I ⊆ R depend only on

those of I
0
⊆ R and on the number r ′

1
= mult(I

0
) −mult(I

1
).

The same construction forC(d) yields a double complexDC(d). Let r
′
2
= mult(C(d)

0
)−

mult(C(d)
1
). We observed in the proof of Theorem 3.7 that mult(C(d)

1
) 6 mult(I

1
).

We deduce that r ′
2
> r

0
+ r ′

1
. Finally, we compare the contribution of the two types of

summands (∗) and (∗∗) to the double complexes DI and DC(d):

(∗) For every i > 0, by (4.2), DI has at most r
0
βRi (k[xn+1

]) more summands in

position (i, 0) than DC(d), among those arising from the free summands of E.
(∗∗) For every i, j > 0, DC(d) has at least (r ′

2
− r ′

1
)βRi (k[xn+1

]) more summands in

position (i, j) than DI, among those arising from the non-free summands of E.

Thus,DC(d) has at least asmany copies of R asDI, in every position (i, j). This concludes
the proof, sinceβRi (I),β

R
i (C(d)) are theBetti numbers of Tot(DI), Tot(DC(d)) respectively.

�

In the rest of this section, we explore bounds for deviations and Poincaré series.

The deviations of a ring A are a sequence of integers {εi(A)}i>1
measuring several

homological or cohomological data of A. Examples include: the generators of a Tate

resolution ofA over a polynomial ring, as well as a Tate resolution of k overA; the ranks
of the modules in a cotangent complex of A; the dimensions of the components of the

homotopy Lie algebra π(A) of A. We refer to [A98, Sections 7 and 10] for definitions

and background.

Lemma 4.4. Let I ∈ Hilb
d(ProjR) be strongly stable. There is an inclusion of vector spaces of

linear forms [C(d)]
1
⊆ [I]

1
.

Proof. We may assume d > 0. Since C(d) is saturated and strongly stable, we have

[C(d)]
1
= 〈x

1
, . . . , xm〉k for some 0 6 m 6 n. Ifm = n, then C(d) = (x

1
, . . . , xn) ⊆ R, so

d = 1 and I = C(d). If m < n, then [C(d)]
1
= [C(d)

0
]
1
. We induct on n, and the case

n = 0 is trivial. By (C4), we have mult(I
0
) 6 mult(C(d)

0
), thus C(d)

0
⊆ C(I

0
) by (C3).

By induction, [C(I
0
)]

1
⊆ [I

0
]
1
, hence, [C(d)]

1
= [C(d)

0
]
1
⊆ [C(I

0
)]

1
⊆ [I

0
]
1
⊆ [I]

1
. �

A consequence of Theorem 3.7 and the results of [BDGMS16] is the fact that an C(d)
has maximal deviations in the Hilbert scheme of Pn.
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Corollary 4.5. Let S = k[x
1
, . . . , xn+1

]. We have εi(S/I) 6 εi(S/C(d)) for every I ∈
Hilb

d(Pn) and all i > 1.

Proof. As in the proof Lemma 3.5, we may assume I : xn+1
= I. Let L̃ = Lex(̃I) ⊆ S̃.

By [BDGMS16, Theorem 3.4], we have εi(S̃/̃I) 6 εi(S̃/L̃) for all i > 2. It follows from

[A98, Proposition 7.1.6] that εi(S/I) 6 εi(S/L) for all i > 2, where L = L̃S ⊆ S. The

ideals L and C(d) are strongly stable, and this implies that S/L and S/C(d) are Golod

rings by [HRW99, Theorem 4]. Now, by [BDGMS16, Proposition 3.2], we derive that

εi(S/L) 6 εi(S/C(d)) for all i > 2. Finally, for i = 1, the deviation ε
1
(A) is equal to the

embedding dimension of A, cf. [A98, Corollary 7.1.5], therefore, ε
1
(S/L) 6 ε

1
(S/C(d))

by Lemma 4.4. �

In particular, C(d) has maximal Poincaré series, that is, the generating function of the

dimensions of Tor
A
• (k,k) or Ext

•
A(k,k).

Corollary 4.6. Let S = k[x
1
, . . . , xn+1

]. We have βS/Ii (k) 6 β
S/C(d))
i (k) for every I ∈

Hilb
d(Pn) and all i > 0.

Proof. Apply Corollary 4.5 and [A98, Remark 7.1.1]. �

We conclude this section by proposing a generalization of Corollaries 4.5 and 4.6.

Question 4.7. Let R be a Clements-Lindström ring. Is it true that β
S/I
i (k) 6 βS/C(d))i (k)

and εi(S/I) 6 εi(S/C(d)) for every I ∈ Hilb
d(ProjR) and every i > 0?

5. Applications and examples

We conclude the paper by illustrating the applications of our results to Hilbert

schemes of points of arbitrary complete intersections, and by exhibiting explicit ex-

amples of the numerical bounds obtained from Theorem 3.7.

Example 5.1. Consider the Clements-Lindström ring R = k[x
1
, x

2
, x

3
, x

4
]/(x2

1
, x2

2
) and

the Hilbert scheme Hilb
20(ProjR). In order to apply Theorem 3.7, we compute the Betti

numbers of C(20,R) = (x
1
, x

2
, x

3
)6 = (x

1
x
2
x4
3
, x

1
x5
3
, x

2
x5
3
, x6

3
) ⊆ R, and find the sharp

upper bounds for the syzygies of I ∈ Hilb
20(ProjR)

βS
1
(R/I) 6 6, βS

2
(R/I) 6 9, βS

3
(R/I) 6 4.

Note that ProjR ⊆ P3
. If we instead regard I as an element of Hilb

20(P3), and use the

results of [CM13] or [V94], which involve the Betti numbers of C(20,S) = (x
1
, x

2
, x

3
)4 ⊆

S, we find the coarser bounds

βS
1
(R/I) 6 15, βS

2
(R/I) 6 24, βS

3
(R/I) 6 10.

We say that a regular sequence f
1
, . . . , fc has degree sequence e1 6 e2 6 · · · 6 en 6∞

if c = max{j : ej < ∞} and ei = deg(fi) for every i 6 c, and we extend the same

terminology to complete intersections X ⊆ Pn. A notable consequence of Theorem

3.7 is the fact that, conjecturally, it provides sharp upper bounds for all subschemes

Z ∈ Hilb
d(X) of all complete intersections X ⊆ Pn with a given degree sequence. To
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justify this claim, we recall two famous conjectures on complete intersections. For our

purposes, it is convenient to state them in terms of ideals of S̃ = k[x
1
, . . . , xn].

Conjecture 5.2 (Eisenbud-Green-Harris). If I ⊆ S̃ contains a regular sequence of degree
sequence e

1
, . . . , en, then there exists a lex ideal L ⊆ S̃ with HF(I) = HF

(
L+ (xe1

1
, . . . , xenn )

)
.

Conjecture 5.3 (Lex-Plus-Powers). If I ⊆ S̃ contains a regular sequence of degree sequence
e
1
, . . . , en and if there exists a lex ideal L ⊆ S̃ with HF(I) = HF

(
L + (xe1

1
, . . . , xenn )

)
, then

βS̃i,j(S̃/I) 6 β
S̃
i,j

(
S̃/(L+ (xe1

1
, . . . , xenn ))

)
for all i, j.

We refer to them as the EGH and LPP Conjectures. Despite the apparently indepen-

dent statements, Conjecture 5.3 actually impliesConjecture 5.2: moreprecisely, theEGH

Conjecture is equivalent to the statement of theLPPConjecture for i = 1, see for example

[FR07, Conjecture 4.7] and the discussion preceding it. We refer to [CDSS21,FR07,G21]

for an overview of these two problems. We denote µ(Z) = βS
1
(S/IZ), the number of

generators of the saturated ideal IZ ⊆ S of a closed subscheme Z ⊆ Pn.

Proposition 5.4. LetX ⊆ Pn be a complete intersection of degree sequence e
1
6 · · · 6 en 6∞,

and consider the Clements-Lindström ring R = k[x
1
, . . . , xn+1

]/
(
xe1
1
, . . . , xenn

)
.

(1) If the EGH Conjecture holds, then µ(Z) 6 βS
1
(R/C(d,R)) for every Z ∈ Hilb

d(X).
(2) If the LPP Conjecture holds, then βSi

(
S/IZ

)
6 βSi

(
R/C(d,R)

)
for every Z ∈ Hilb

d(X)
and every i = 0, . . . ,n.

Proof. It suffices to present the proof for (2). As in the proof of Lemma 3.5, we may

assume that xn+1
is a non-zerodivisor on S/IZ, and we consider Ĩ = IZ+(xn+1

)
(xn+1

)
⊆ S̃. By

assumption, both Conjectures 5.2 and 5.3 hold, so, there exists a lex ideal L̃ ⊆ R̃ such

that HF(S̃/̃I) = HF(R̃/L̃) and βS̃i,j(S̃/̃I) 6 β
S̃
i,j(R̃/L̃) for all i, j > 0. The ideal L = L̃R ⊆ R

is almost lex. By Remark 2.2, we have βSi,j(S/IZ) 6 β
S
i,j(R/L) and HF(R/L) = HF(S/IZ),

hence, we havemult(L) = mult(IZ) = d. The conclusion follows from Theorem 3.7. �

The EGH Conjecture has been proved in several cases, cf. [CDSS21,G21]. Here we

sample some of the possible applications of Proposition 5.4.

Example 5.5. Let X ⊆ P7
be a complete intersection of 5 quadrics, and Z ⊆ X a finite

subscheme of length 60. The EGH Conjecture holds for X by [GH20]. We compute

C(60,R) ⊆ R = k[x
1
, . . . , x

8
]/(x2

1
, . . . , x2

5
), and deduce µ(Z) 6 66 by Proposition 5.4.

Example 5.6. Let X ⊆ P5
be a complete intersection of 3 cubics, and Z ⊆ X a finite

subscheme of length 60. The EGH Conjecture holds for X by [CDS20]. We compute

C(60,R) ⊆ R = k[x
1
, . . . , x

6
]/(x3

1
, x3

2
, x3

3
), and deduce µ(Z) 6 59 by Proposition 5.4.

On the other hand, Conjecture 5.3 is known in very few cases. Using [CS18, Main

Theorem] and Proposition 5.4, we obtain the following result.

Corollary 5.7. Assume char(k) = 0. Let X ⊆ Pn be a complete intersection with degree
sequence such that ej >

∑j−1

h=1
(eh − 1) for j > 3. Then, βSi

(
S/IZ

)
6 βSi

(
R/C(d,R)

)
for all

Z ∈ Hilb
d(X) and i > 0.
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Example 5.8. An elliptic quarticC ⊆ P3

C is a complete intersection of 2 quadric surfaces.

Every 0-dimensional scheme Z lying on C satisfies

βS
1
(S/IZ) 6 6, βS

2
(S/IZ) 6 9, βS

3
(S/IZ) 6 4.

To see this, let R = C[x
1
, x

2
, x

3
, x

4
]/(x2

1
, x2

2
). The ideals C(d,R), with d ∈ N, are (x

1
, x

2
, x

3
),

(x
1
, x

2
, x2

3
), (x

1
, x

2
x
3
, x2

3
), or (x

1
x
2
xα
3
, x

1
xα+1+δ

1

3
, x

2
xα+1+δ2
3

, xα+2+δ3
3

) for some α ∈ N and

0 6 δ
1
6 δ

2
6 δ

3
6 1. The claimed bounds follow from Corollary 5.7, by calculating

the Betti numbers in all four cases.

Example 5.9. Let X ⊆ P4

C be a complete intersection of 3 quadrics and let Z ⊆ X
be a finite subscheme of length 60. While Corollary 5.7 does not apply directly to

the degree sequence (2, 2, 2), it can still be used to provide upper bounds that are

sharper than the general ones valid for Hilb
60(P4), arguing as in [CS18, Example 4.3

and Remark 4.4]. In fact, any ideal containing IX also contains a regular sequence of

degrees e
1
= 2, e

2
= 2, e

3
= 3. Therefore, letting R = C[x

1
, x

2
, x

3
, x

4
, x

5
]/(x2

1
, x2

2
, x3

3
) and

determining C(60,R), Corollary 5.7 yields

βS
1
(S/IZ) 6 15, βS

2
(S/IZ) 6 39, βS

3
(S/IZ) 6 37, βS

4
(S/IZ) 6 12.
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