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Abstract

Defects and impurities strongly affect the timing and the character of the
(re)ordering or disordering transitions of thermodynamic systems captured in
metastable states. In this paper we analyze the case of two-dimensional mag-
netic systems. We adapt the classical JMAK theory to account for the effects of
defects on the free energy barriers, the critical droplet area and the associated
metastable time. The resulting predictions are successfully tested against the
Monte-Carlo simulations performed by adopting Glauber dynamics, to obtain
reliable time-dependent results during the out-of-equilibrium transformations.
We also focus on finite-size effects, and study how the spinodal line (separating
the single-droplet from the multi-droplet regime) depends on the system size,
the defect fraction, and the external field.

Keywords: Ising model, defects, metastable lifetime, dynamic spinodal line,
droplets, Monte Carlo simulation

1. Introduction

Macroscopic systems exhibit a large variety of phase transitions when subject
to continuous variations of external control parameters, such as temperature,
magnetic field, pressure, or chemical potential. The nature and timing of the
nucleation and growth processes associated with the transition strongly depend
on a number of factors, including the nature of the transition and the presence
of defects and/or impurities in the system. Ehrenfest [1, 2] first classified phase
transitions. In first-order transitions the system jumps discontinuously to a
different free energy branch, with a consequent discontinuous jump in the free
energy gradient. Higher order transitions were then identified through the order
of the discontinuous derivatives of the free energy, though now we know that
this is an over-simplified cartoon, and we talk of first-order and continuous
transitions.
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In the original work it was thought that there was no singularity in the
free energy at a first-order transition and that the free energy curve could be
analytically continued into a metastable region until well beyond the point at
which the transition should have taken place. Eventually the system reaches
a point at which a susceptibility diverges, and the metastable state become
unstable with respect to fluctuations of any sort. This is known as the spinodal
line (line, because one can draw a set of such points in the full phase space). The
fluctuations then grow, and the process is known as spinodal decomposition. In
a liquid-gas system, the signature of the spinodal line is the instability with
respect to density fluctuations. The system then develops spontaneous density
fluctuations and decays into regions of higher and lower density, a process which
stops when the densities become equal to the relevant equilibrium liquid and gas
densities. Droplets and/or bubbles form; at later times the droplets coagulate,
eventually triggering a full phase separation in which the liquid sits at the
bottom of the sample and the vapour at the top.

This theoretical picture of metastability is matched experimentally, even
though we now know that actually there is an essential singularity in the gradient
at the phase transition. All mean field theories, computer simulations and real
systems agree in that this metastable phase has a real existence, incidentally
in the process demonstrating that too rigid an insistence on a knowledge of
equilibrium properties can sometimes be self-defeating in statistical mechanical
studies. However, usually thermodynamic systems do not reach the spinodal
line and some other process intervenes beforehand causing phase separation
and sending the system toward a phase coexistence of true equilibrium phases.
What is required in such cases is so-called nucleation of the new phase.

The process of nucleation and subsequent growth has thus been the focus
of much study over the years. It is also the main focus of the present study, in
which we are particularly concerned with the effects of defects and impurities
on nucleation and droplet growth. The nucleation involves the formation of a
nucleus of the new phase, which then grows (depending on various conservation
laws) to invade the whole of the rest of the system, or alternatively enforces
phase separation into two coexisting equilibria. Examples might be a new solid
phase (say, martensite) invading another which had previously been stable (e.g.
austenite), a new magnetic phase (say, spin up) invading a formerly stable spin-
down phase, or a homogeneous metallic A-B alloy separating into two coexisting
alloys, one A-rich and the other B-rich. How this nucleation occurs is itself a
subject of considerable study. Textbooks usually draw a distinction between
homogeneous and heterogeneous nucleation.

In homogeneous nucleation droplets of the new phase form (and then usually
decay) as fluctuations around the original phase. Droplets in this condition are
called subcritical. To reach the size at which they would grow spontaneously
(supercritical droplets) involves a spontaneous fluctuation with a free energy
large enough to overcome the energy barrier ∆Fbarr. When this is the case the
classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory [3–6] is expected
to capture the main features of the transition. If the system is kept at constant
temperature T , the probability of fluctuations of the proper size is proportional
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to exp(−∆Fbarr/(kBT )), with kB the Boltzmann constant. As a consequence,
the process of developing such a fluctuation is Poisson-like, with the expected
time thus proportional to exp(+∆Fbarr/(kBT )), possibly with a complex pref-
actor in front.

By contrast, heterogeneous nucleation involves requires either large (i.e.,
of a dimension much larger than molecular dimensions) or many impurities
to seed the transition process. The homo/heterogenous character of a phase
transition deeply influences its character as well as the metastable lifetime, that
is, the mean decay time of a metastable state. When nucleation is originated
by sufficiently many seeds, the phase transition process is much more rapid and
predictable, in the sense that the standard deviation of the metastable lifetime
is reduced. Clearly, the number of nucleation seeds depends on the size of the
system itself: the larger the system the easier to nucleate transition droplets.
For this reason, the term spinodal line has also been used (see e.g. [7]), and will
here be used, to identify the minimum (finite) size of a system which exhibits
heterogeneous nucleation.

The full phase transformation thus involves several distinct stages. Firstly
there is an early-stage stochastic nucleation process. This is followed by a
deterministic phase during which the critical droplet is growing. Finally there
is a late stage stochastic phase, during which the different droplets amalgamate.
The dynamics might be expected to be different depending on conservation laws
which dictate the final state equilibrium (is it phase transformation, or merely
phase separation). Until the advent of computer simulation, these processes
were difficult to examine in detail. Even with computer simulations, the sizes
involved in the case of heterogeneous nucleation, not to mention the influence
of the finite size of the simulation box, present significant difficulties. The
present study seeks to alleviate some of the simulation difficulties by studying
a very simple model. We seek to extend understanding of nucleation processes
by considering a case which encompasses both homogeneous and heterogeneous
nucleation. In our study, the impurities are molecule-sized rather than, as in the
case of classical heterogeneous nucleation, colloid-particle-sized. Our simulation
uses a two-dimensional Ising model, which, of course, possesses a distinguished
lineage in the history of Statistical Mechanics [8, 9]. Spins may be either up or
down, are coupled to their neighbours on a lattice.

The precise aim of the present study is to analyze how the presence of im-
purities influences the relevant phase transitions, with particular focus on nu-
cleation and growth of critical droplets, and the homo/heterogenous character
of the transition itself. Common approaches for the modelling of imperfections
include the classical Random-Bond [10, 11] and Random-Field Ising Models,
where typically Gaussian-distributed bonds and/or quenched local fields [12–
14] embed the randomness, and diluted Ising lattices [15] where non magnetic
impurities are mixed with magnetic structure. The presence of quenched disor-
der requires a proper treatment of finite-size effects, including sample-to-sample
fluctuations and the possible lack of self-averaging [16]. In our study we do this
in two ways. First, we choose carefully the number of different samples with
the same disorder statistics – replicas – over which any physical quantity must
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be averaged. Second, we focus on the different regimes that might be present is
systems of different sizes (see section 4.4).

The present paper is organized as follows. In the next section we specify the
modelling of defects, and describe the Monte-Carlo algorithm used in the nu-
merical simulations. In Section 3 we focus on the nucleation process. We derive
a theoretical prediction of the influence of impurities on the critical droplet size,
and the corresponding free energy barrier, and test the prediction against the
outcomes of the simulations. In Section 4 we focus on the homo/heterogenous
character of the transition in the presence of defects, and draw conclusions about
the spinodal line. A careful analysis of the simulations allows us to analyze also
the finite-size effects. A concluding section summarizes and discusses the main
outcomes of the present study.

2. Model and algorithm

We consider a ferromagnetic Ising Model [17] occupying a L×L two-dimensional
square lattice, in which periodic boundary conditions are enforced. The system
Hamiltonian takes the standard form

H[ s ] = −J
∑
〈i,j〉

sisj − hext

∑
i

si, (1)

in which J represents the coupling interaction between neighboring spins and
hext the magnetic field applied to the system. All the simulations discussed
in the present paper adapt the n-fold way algorithm first introduced by Bortz
et al. [18]. In its original 2D version, each of the N = L2 spins is assigned
to one among n = 10 classes, based on their orientation and the number of
positively oriented neighbors. This allows us to easily monitor the spins which
are most/less likely to modify their state, and therefore to build a rejection-free
Monte-Carlo algorithm.

Defects are modelled as fixed spins which are not allowed to modify their
orientation during the evolution of the system. In a finite temperature Monte-
Carlo simulation the defect-flipping probability cannot be ruled out. Therefore
here we are in fact assuming that the characteristic defect-flipping time is larger
than the longest simulation time considered (the metastable lifetime analyzed in
Sect. 4). The presence of defects does not influence the efficiency of the Monte-
Carlo simulation. Ergodicity is ensured provided we restrict the phase space to
the free spins. Similarly, the detailed-balance condition is not affected by the
inclusion of defects. In the implementation of the algorithm, the defects are all
assigned to an additional 11-th class, whose transition probability is held fixed
at zero.

In order to understand how the quenched disorder influences the physical
properties of the system we study in parallel several different realizations of
the system with similar quenched-disorder characteristics. In all realizations
of the same system we introduce the same number of defects of positive and
negative defects, so to study neutral samples and therefore reduce the sample-to-
sample variation [19]. We parameterize the number of defects through their total
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fraction f in the system. Therefore, when a fraction f of defects is reported, it
means that there are precisely bfL2/2c quenched defects of each sign distributed
at random throughout the system.

2.1. Defects as random fields

It is known that in 2D the perfect Ising model sustains a low-temperature
ferromagnetic phase, characterized by long-range order [8, 20]. The addition of
defect sites introduces quenched randomness and possible frustration. Although
randomness and frustration are known to be two key ingredients leading to spin-
glass phases [21], we now show that in the thermodynamic limit no such behavior
should be expected.

The presence of defects can be interpreted as the effect of a peculiar type
random-field distribution. To be more precise, let D+ (resp. D−) denote the set
of defects with fixed positive (negative) orientation, and consider the following
random-field distribution on the entire system

hRF,i =


+hRF if i ∈ D+,

−hRF if i ∈ D−,
0 otherwise.

(2)

In the hRF � J regime, any reversal of the selected spins is prevented at any
finite (non-zero and non-infinite) temperature, so those spins will effectively
behave as defects. How large should hRF be taken depends on the chosen tem-
perature. It is well know that a random-field Ising model in thermal equilibrium
and in the thermodynamical limit, no spin glass phase can be observed [22, 23].
Moreover, no ordered phase can survive in the two-dimensional random-field
Ising model [12, 24]. As a result, in the thermodynamic limit, no ferromagnetic
nor spin-glass phases are to be expected. What we can and we do observe in-
stead are pseudo-phases [25] in finite systems, where domain clusterization and
finite-size effects generate pseudo-ferro or pseudo-glassy phases, depending on
the temperature and defect density. We postpone to a later study the report of
the characterization of such pseudo-phases.

2.2. Dynamic Monte-Carlo algorithm

The simulations presented in the present work were performed by using the
so-called n-fold Monte-Carlo algorithm [18], subject to Glauber dynamics [26].
We now discuss how this algorithm is adapted so as to describe the out-of-
equilibrium response of magnetic systems in the presence of defects.

The primary quantities of interest in our simulations concern magnitudes
and time scales associated with droplet formation and growth processes. More
generally, it is thus necessary to characterise the out-of-equilibrium and dynamic
response of the system to perturbation. To implement the Glauber dynamics, we
associate with each possible single spin flip si → −si the transition probability
rate

wi[ s ] =
1

2α

(
1− si tanhβ hi[ s ]

)
, (3)
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where α is a microscopic characteristic time, and hi = hext +
∑
j Jijsj is the

local field acting on the i-th spin.
We recall that in our model the transition probabilities associated with the

defects are set equal to zero. In an underlying real physical system, this will
not in general be rigorously true. Such a system would rather be composed of
two species with two very different microscopic characteristic times α � αdef.
Our key approximation involves taking the limit αdef/α→ +∞. This condition
is rather strong and may be weakened in future studies. With this choice, we
ensure that at any specific time it is much more probable that a normal spin
flips rather than a defect. As noted above in our discussion of the basic model,
our simulations also rely on yet another asymptotic limit, αdef/τ →∞. Here τ
represents the longest time in our simulations. In Section 4 this is labeled the
metastable lifetime. This second limit ensures that no defect can possibly flip
during the numerical experiments.

The sum wT =
∑
i wi provides the global transition rate for the entire sys-

tem. The interaction energy J and the characteristic time α are chosen as
units for energy and time, respectively. Then for each Monte-Carlo step, two
operations are required. These are:

1. Identify the associated time interval ∆t. This involves extracting a random
number from a Poisson distribution with parameter w−1

T .
2. Perform the move which occurs over this time interval ∆t. A specific spin
i to be flipped is chosen with probability proportional to wi. To enable
this choice to be made, we use the Bortz n-fold algorithm [18].

3. Droplets and defects

We now turn our attention to droplet formation and growth in the presence of
defects. We first adapt some theoretical predictions to account for the presence
of defects. This part of our analysis relies on the Droplet Theory, adapted to a
defect-free magnetic system as in [7] and then report and discuss the results of
a number of simulations which help us understanding the proper behaviour of
a magnetic system out of equilibrium.

3.1. Domains and free energy balance

We consider an initially magnetized system, in which all spins, with the
exception of the negative defects, are aligned parallel, and equal to +1. We
apply a negative field hext = −h, with h > 0, and study the reversal transition
in which droplets of negative spins are expected to form and grow. We identify a
droplet as a connected domain, possibly including n+ positive and n− negative
defects, in which all the free spins have already reversed their sign. Positive
defecs are counted as part of a negative droplet only if internal to it, that is
if it is surrounded by four already reversed spins. We notice that the positive
defects are aligned with the initial orientation of all remaining spins, while the
negative ones are aligned with the external magnetic field, and act as seeds for
droplet formation.

To characterize a droplet we introduce the following parameters:
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• The area A counts all the spins in the droplet, including the defects.

• The perimeter p represents the number of spins defining the droplet bound-
ary. We also introduce a related non-dimensional quantity, which we de-
note as the geometric parameter λ = 4πA/p2. For any simply connected
droplet λ ranges in the interval (0, 1]. In a circular domain λ = 1, in a
square droplet it drops to π/4, whereas for very thin domains, or those
with very jagged boundaries, λ→ 0.

• The defect imbalance µ = (n−−n+)/(n−+n+). By definition, the imbal-
ance µ is bounded between −1 (all enclosed defects are positive) and +1
(all negative defects). It is expected to vanish when the droplet becomes
large, as the defects eventually balance. If we focus on the droplet which
nucleates the reversal process, we expect µ to be close to +1, as this
domain will most probably be located in a region where predominantly
negative defects were located.

• The total number of defects included in the domain, nT = n− + n+.
Defects are randomly distributed in space. The Central Limit Theorem
implies that for sufficiently large droplets the defects can be regarded as
being homogeneously distributed, with the consequence that

nT ' fA (homogeneous defect distribution). (4a)

However, nucleating droplets may choose regions where there are more
defects, possibly including a gross defect imbalance (µ ∼ 1). For these
droplets, eq. (4a) is not expected to hold any longer. We introduce the
quantity ν(f) to describe this phenomenon, where

nT = ν(f)A. (4b)

The function ν(f) denotes the fraction of defects within the specific droplets
under consideration. Clearly, for sufficiently large droplets, the homo-
geneous assumption applies and ν(f) ≈ f . On the other hand, in the
nucleating droplets, we expect that ν(f)� f for small f .

Figure 1 shows two droplets with different size. Both are extracted from a
simulation of a 100 × 100 system with a defect density f = 4% (therefore, in
average there is a defect every 25 spins). The left panel shows a small (A =
26), almost critical, droplet which has been originated by two negative defects
(already aligned with the external field). Since it encloses nT = 2 defects, it
has ν = 0.08, larger than the homogeneous value 0.04. By contrast, the larger
(A = 567 spins) droplet in the right plot has nT = 29, so that ν = 0.05. Also
the parameter µ behaves as expected, with µ = 1 (all negative defects) in the
left panel, and µ = 0.7 in the right droplet, more balanced with the inclusion
also of positive defects.

By adapting [7], we compare the free energy of the configuration in which
the system possesses the spontaneous magnetization ms, against the generation
of a droplet. This involves surface and bulk contributions.
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Figure 1: Zoom into a 100 × 100 system after the creation of some droplets. The fraction
of defects is fixed at f = 4% in both cases. Color code: black and white spins respectively
identify negative and positive defects; dark grey and light grey spins are variable spins whose
value is resp. -1 and +1. The droplet areas are resp. 26 and 567 spins. The right droplet
can be considered as large as it already exceeds the critical nucleation threshold, but it still
occupies about 5.7% of the system. The geometric factor λ defined in the text is resp. equal
to 0.32 for the smaller droplet and 0.13 for the larger one.

We first consider the surface terms. If we let σ be the surface tension, the
cost associated with the formation of the droplet boundary is given by

∆Fsurf = σ
(
p+ 4(n+ − n−)

)
. (5)

This estimate involves three contributions. The term proportional to p evaluates
the cost of creating the external boundary of the droplet length p. In addition,
there is an energy cost around each of the n+ positive defects, cancelled by the
benefit associated with the n− negative defects.

The bulk contribution is given by

∆Fbulk = −2ms h
(
A− (n+ + n−)

)
. (6)

This estimate is proportional to the effective area of the droplet A′ = A − nT.
The effective area is reduced by the number of defects enclosed in the area. The
defect spins are invariant and therefore do not contribute to the energy gain.

The total free energy associated with the creation of a droplet is thus

∆F = ∆Fsurf + ∆Fbulk = σ

(√
4πA

λ
− 4µ ν(f)A

)
− 2mshA

(
1− ν(f)

)
. (7)

The maximum value of the expression (7) quantifies the height of the free energy
barrier that must be overcome to trigger the reversal process. The height of the
barrier will certainly decrease with the intensity h of the applied field, but the
estimate still depends on a number of other elements, both of geometric origin
(λ) and related to the defect distribution within the droplet (µ, ν). The following
probabilistic analysis will help us in identifying the expected behavior for some
of these parameters, allowing us to understand how the critical droplet size and
the free energy barrier are expected to depend on the external field and the
defect density.
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3.2. Critical size and growth velocity
When the magnetic field is reversed, the droplets which are most likely to

nucleate are located in those regions with the most negative and the fewest
positive defects. For quantitative estimates, it is therefore necessary to study
the probability of finding such domains when a defect fraction f is quenched
in random positions in the system. In the appendix we also derive the relevant
calculations to estimate the probability of finding specific numbers (n+, n−)
of positive and negative defects in an area A, provided that each site has a
probability f/2 of hosting a positive and a similar probability to host a negative
defect.

Let us consider a square system composed of N = L2 spins. If we aim at
locating a critical droplet of area A in such a system, there will be K = N/A
independent locations where the domain can be placed. Each of these loca-
tions will have a different distribution of positive and negative defects, and
we are interested in estimating ∆nopt, the most probable largest defect imbal-
ance ∆n = n− − n+ among these K different options. In the appendix (see
eq. (A.5)) we derive an expression for such a probability as a function of K, A,
and f . By applying Bayesian probability considerations we also derive there the
most probable number of defects nT,opt hosted in the optimal domain location
corresponding to ∆nopt.

Figure 2 shows the results obtained by applying the calculations in the ap-
pendix to the parameter values appropriate to understand the simulations dis-
cussed below. These calculations consider different defect fractions f ; the do-
main area A is set equal to a typical size corresponding to the critical droplets
(A ' 45, see below), and the system size is set equal to N = 104.

With these parameters, the upper panel shows that the optimal imbalance
∆nopt depends algebraically on f , as the theoretical prediction fits rather well
to a straight line in a log-log plot. The linear fit in the log-log plot is shown in
the figure for better comparison. The lower panel compares the same prediction
∆nopt (in blue) with the corresponding expectation for the total number of
defects nT,opt (orange line, above the blue one). The inset shows that when
the defect fraction f is small enough (f . 0.1) the optimal domain contains
very few positive defects, so that the total number of defects in that domain
is only slightly larger than the imbalance itself. Equivalently, when defects
are sufficiently sparse, it is possible to find a location (among the K available
positions) where (almost) all the defects are negative, and therefore nT ' ∆nopt,
corresponding to µ ' 1.

By using the above theoretical estimates we may reduce the number of free
parameters in the prediction eq. (7) by setting µopt ≈ 1 and νopt(f) = 0.5fα,
with α ≈ 0.5. We note the distinction between the result of eq. (4b), in which
ν(f) = f (i.e. α = 1) and this result:

ν(f) ∼ f0.5 (8)

However, these results apply to two different situations, in the following way.
The estimates for (µ, α) considered here are a function of the domain size

A, and more precisely on the ratio between A and the global system size N .
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Figure 2: Upper panel: Probabilistic predictions for a domain of area A = 45. The optimal
value for the defect unbalance ∆n (blue curve) is calculated by replicating the defect genera-
tion K times (K = N/A, with N = 104) and keeping the domain with the largest imbalance.
The orange line shows that the theoretical prediction fits to the algebraic functional depen-
dence ∆nopt = νopt(f)A, with νopt(f) = 0.5f0.5.
Lower panel: Total number of defects (nT, orange, upper curve) corresponding to the op-
timal imbalance ∆nopt (blue curve, identical as in the upper panel). In the inset one sees
clearly that for small values of f , the ratio µopt = ∆nopt/nT,opt can be approximated by 1.

10



The regions under consideration correspond to critical droplets. Positive and
negative defects in principle occur with the same probability. For small clusters,
there will be fluctuations, giving rise to a higher (or lower) imbalance between
the number of positive and negative defects, and a higher (or lower) local den-
sity of defects. The critical droplets are chosen selectively exactly because they
correspond locally to regions of higher imbalance and higher local defect density.

On the other hand for larger droplets, as A approaches N , the relative defect
imbalance decreases, and the number of defects approaches fA. Then µ ≈ 0
and ν(f) ≈ f when A . N , as in eq. (4b). We will return to this consideration
in §4 when we analyse the growth of a domain beyond its critical nucleating
size.

By including the theoretical estimates above in the free-energy calculation
eq. (7), we can derive the critical domain size, identified by the value of the area
corresponding to the maximum of ∆F . This yields

Acr =
πσ2

4λ
(
ms(T )h(1− ν(f)) + 2σν(f)

)2 , (9)

with related critical free energy barrier

∆Fbarr =
πσ2

2λ
(
ms(T )h(1− ν(f)) + 2σν(f)

) . (10)

These predictions, which rely only on a single fitting parameter (the geomet-
ric factor λ defined in §3.1), will be tested against the simulation results below.
It is worth mantioning that the critical domain size certainly depends on the
external field h triggering the reversal process. However, Acr does not diverge as
h→ 0, as it happens in absence of defects. Any finite defect fraction f induces
indeed a critical area size such that the system ordering will be destroyed sooner
or later, once the thermal fluctuations will generate a domain of the critical size.
This is in agreement with what we noted in §2.1 [12, 24]: in the presence of any
finite defect fraction the system long-range ordering is eventually unstable.

Once the thermal fluctuations allow the system to overcome the free energy
barrier in (10), the droplet invades the full domain, possibly merging with other
droplets (either sub or supra critical) that might be present in the system. In
the defect-free condition the velocity v⊥ of expansion of a spherical droplet can
be estimated by considering the Allen-Cahn approximation [27]

v⊥(R) = ΛR (R−1
cr −R−1), (11)

where ΛR is a temperature dependent coefficient. Since we aim also at under-
standing whether the presence of defects breaks the spherical symmetry of the
droplets we slightly modify eq. (11) to write it in terms of the domain area

v⊥(A) = ΛA

(
A
− 1

2
cr −A−

1
2

)
. (12)

Expression (12) is expected to hold for defect-free systems. We are now
interested in verifying its possible applicability in the presence of defects.
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Simulation results

In order to test the theoretical estimations, and to extract information on
the remaining relevant parameter, we extracted the growth velocity v⊥ from
our numerical simulations, as the algorithm described in §2.2 implements the
Glauber dynamics, and allows to trace how the physical time evolves across the
Monte-Carlo single steps. In order to derive the growth velocity, we perform a
set of simulations, all starting from the configuration in which a negative ex-
ternal field hext = −h is applied on a positively-magnetized system. We fix a
step ∆t for the physical time interval, and record the system configuration at
each ∆t. To average out rapid fluctuations, each snapshot comes in fact from
the average of 10 configurations, each taken at an interval ∆t/10. The value
∆t was chosen so to allow (in average) that N moves were performed within
each recording interval ∆t/10. Next, a cluster identification algorithm is used
to monitor the evolution of each single domain, and correspondent clusters (in
subsequent snapshots) are associated. We remark that in our simulations we
considered geometrical clusters, defined as a group of connected equally ori-
ented spins, even though other cluster definitions could be considered, such as
the physical clusters [28]. Geometric and physical clusters have been shown to
provide comparable results in nucleation theory away from the critical temper-
ature [29].

In order to obtain a clean estimate of the growth velocity of a single clus-
ter, we discarded from our statistical analysis all the snapshots which included
cluster merging or cluster separation. These processes would in fact provide
stochastic jumps in the growth velocity, with the jump intensity dependent on
the size of the merging/separating domains. Figure 3 shows the how the aver-
age velocity of all clusters of the same size depends on the droplet area. The
same set of data is reported twice, either as a function of the defects area A
or as a function of A−1/2, to better test the theoretical prediction (12). For
each value of the defect fraction f we performed 100 simulations. Because of
the presence of a free-energy barrier as in (10), the simulations might include a
possibly long initial period characterized by domain fluctuations, in which up to
103 different domains could be traced, none of which succeeded in overcoming
the free-energy barrier and therefore triggering the reversal process. Once the
supra-critical domain was formed, the reversal process was quite rapid. It is
not easy to provide a quantitative approximate estimate of the time a system
typically spends in the fluctuation regime, as we will see that this time diverges
exponentially as the external field and the defect fraction decrease.

The structure of the velocity profile in the left panel of Fig. 3 shows some
quite different regimes. At very small domain sizes the growth velocity is posi-
tive, as this accounts for the nucleation of (eventually unstable) domains. Once
the domain is generated, the average growth velocity becomes negative, be-
cause most of the domains simply revert their growth until annihilation. At a
critical domain size Acr the growth velocity becomes positive and we enter the
expansion regime.

As our results involve averaging over large numbers of individual simulations,
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Figure 3: Domain growth velocity for a 100 × 100 system. Left: Velocity as a function of
the domain area. The inset shows the typical magnitude of the error bars due to sample-to-
sample fluctuations. Right: Same data, but plotted as a function of A−1/2, as an improved
test of the Allen-Cahn prediction eq. (12). The inset shows the color code (for both panels) for
different defect fractions. Temperature and external field are respectively fixed at T = 0.8Tc
and h = 0.1.

Figure 4: Critical area computed from the linear fit in the right panel of Figure 3, as a
function of the fraction of defects. The error bars reported are computed from standard error
propagation theory, starting from the parameters fitted in the Allen-Cahn prediction, eq. (12).
The red line shows the fit Acr vs f , obtained from eq. (9), with ν(f) = νopt(f)
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the question of the reliability of the averaging process is of some importance.
The inset in the left panel of Fig. 3 reports the error bars obtained for one set
of data – the velocities in the growing regime for a system with f = 1% – as
a typical example. Error bars of similar magnitude are found in all other data
sets. The error bars confirm that the number of replicas chosen for each value
of f is enough to limit the sample-to-sample variation of the growth velocity.
This comes as no surprise, as the growth velocity is expected to be a quantity
which depends on the local structure around the droplet, rather than on details
about the global defect distribution or concentration.

In order both to check the validity of the Allen-Cahn prediction eq. (12) and
also to derive the most possible precise estimate of the dependence of the critical
area size on the defect fraction, in the right panel of Fig. 3 we plot the same
data, but now as a function of A−

1
2 . This plot demonstrates convincingly that

all the curves do indeed exhibit an almost linear part, ranging from quite large
domain sizes down to sizes corresponding to the minimum (negative) velocity.

For each value of the defect fraction f , we identify the points relevant to
study the domain growth (rather than the domain fluctuations) as those stand-
ing at the left of the minimum growth velocity. As discussed below, we exclude
the four left-most points, corresponding to largest areas, and perform a linear
regression fit in the variables vr vs. A−1/2. The fits performed for all values of
the defect fraction provide R2 > 0.95, with R2 increasing as we lower the defect
fraction. As a result we can conclude that the Allen-Cahn prediction is rather
well obeyed until the droplet becomes too large.

In the large-droplet regime the data are biased because a different effect,
related to the system topology, comes into play. Large droplets are most likely
to become elongated and eventually turn into connected stripes. This changes
the topology and increases the growth velocity (as demonstrated in the large-
area data in the panels), because a stripe is able to increase its area without
increasing its boundary, and therefore its growth is not restrained by the surface
tension.

Fig. 4 shows how the critical domain size Acr (as extracted from the linear
regression fit just discussed) depends on the defect fraction f . The estimation
errors are derived considering standard error propagation theory, starting from
the fitted parameters from Allen-Cahn formula, eq. (12). The data points are
then fitted to eq. (9), considering ν(f) = νopt(f) = 0.5f0.5 as discussed above.
The χ2 goodness of the fit, with 9 degrees of freedom, has a p-value of the
order of 10−3. Again, the theoretical prediction agrees quite well with the data
extracted from our simulations. We remark that the reported estimation of
the critical area identified as the value at which the droplet overcomes the free
energy barrier, provides a fairly stable prediction, as other possible strategies
in the literature (size at which the droplet has a 50% probability to cover the
whole lattice, or at which the free energy has a maximum) provide equivalent
results [30].

Qualitatively, our results demonstrate that the presence of defects enhances
the growth velocity of the expanding droplets. This can be easily understood,
as the droplet finds an easier growth direction towards positions where most

14



negative defects are already present. The existence of this local anisotropy
reduces the probability of spherical growth and as a consequence also reduces
the expected value of the geometric parameter λ. Quantitatively, by using eq. (9)
we can extract from Acr information about the average value of the geometrical
parameter λ, which results to be λ = 0.6. If the droplets were rectangular,
such value would correspond to a rectangle with aspect ratio of about 0.4. This
indicates that the presence of defects induces anisotropic domain growth. As a
consequence, stripe domains and/or jagged droplets are most likely to occur in
the presence of defects.

4. Metastable Lifetime

4.1. General Considerations

In this section we focus on the typical time taken τ̄ for the magnetisation
reversal transition to take place. We label this time the metastable lifetime of
the original phase. In general the process involves two different stages. The
first stage involves the formation – nucleation – of a domain of critical size.
The nucleation involves a stochastic Poisson-like process. In the second stage,
droplet growth and/or coalescence complete the transition. The growth process
is basically deterministic, although the coalescence involves a stochastic element,
depending on the expected separation of the droplets.

It is known [7, 31, 32] that in Ising systems there are two regimes for magneti-
sation reversal, which have been labelled Single-droplet (SD) and Multi-droplet
(MD). This result was first derived for systems without impurities, but we will
find that the basic theoretical estimates are qualitatively, although not quanti-
tatively, robust with respect to the introduction of defects. The distinguishing
feature between the two regimes is the global size of the system. Small systems
are in the SD regime, while large systems are in the MD regime. How small is
“small” depends on the reversal field and the density of defects.

In the SD regime, the nucleation time is considerably longer than the growth
time. The limiting factor is the nucleation of the single droplet. This then grows
until the nucleating droplet invades the whole system. The complete reversal
takes place before another droplet has had time to nucleate. The growth time
can be neglected.

In the MD regime, by contrast, which occurs when the system is large
enough, many critical droplets form before individual droplet growth can in-
vade the whole system. The reversal time is governed by droplet growth and
coalescence. The limiting factor is the time taken for two neighbouring nucleat-
ing droplets to collide. In this circumstance it is the nucleation time which can
be regarded as negligible.

It turns out that that similar but different exponential expressions govern
the metastable lifetimes in the SD and MD regimes. The basic physics is as
follows (see e.g. [7, 31–34]). We first discuss the SD regime, and then the MD
regime.
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In the SD regime, the limiting process involves the nucleation of a single
droplet. This requires that the free-energy barrier ∆Fbarr

(
see eq. (10)

)
associ-

ated with the critical droplet be overcome. The density of droplets of excess free
energy ∆F is proportional to the Boltzmann factor exp (−∆F/kBT ). Thus the
density ρc of critical droplets, and hence the probability pc that a critical droplet
is present in the system, is proportional to exp (−∆Fbarr/(kBT )) [33, 34]. The
time taken τ̄SD for such a droplet to spontaneously form will be proportional to
p−1

c . Thus in the SD regime

τSD(f, h) ∼ exp

(
∆Fbarr(f, h)

kBT

)
. (13)

In the MD regime, however, roughly speaking, the metastable lifetime is
given by the time taken for two expanding neighbouring droplets to merge. In
undefected Ising systems it has been shown that [31] that in aD-dimensional sys-

tem this is given by a quantity of the order of ρ
−1/(D+1)
c . In our two-dimensional

case, this leads to:

τ̄MD(f, h) ∼ exp

(
∆Fbarr(f, h)

3kBT

)
. (14)

Strictly speaking, the expressions in eqs. (13,14) also require (different) al-
gebraic prefactors, dependent on h, f , and the system size L. However, the
exponential terms in these equations are so dominant that our simulations are
not able to extract precise quantitative information about these prefactors. For
this reason we only focus on the dominant terms in τ . We will return to the
difference between the SD and MD regimes in §4.4.

The intuitive meaning of the metastable lifetime is clear, but a precise def-
inition of the metastable lifetime requires a more careful examination. Indeed,
when we measure the metastable lifetime and we stop the simulation, we want
to be sure that the reversal has proceeded to a point that a fluctuation in the
opposite direction – involving a reduction of the area of the droplet – could
not reverse the process. Specifically, we need a prescription of the configuration
in which the system is regarded as having escaped the metastable free-energy
well of a completely magnetised system in the opposite direction to the external
field.

In order to compare our results more easily with the previous analogous
studies on defect-free systems by Rikvold and collaborators [7], we adopt an
operational definition of the metastable lifetime τ̄ . This will be the time taken
by the system, starting fully oriented at m = 1, until the magnetisation drops
below a threshold level of m = 0.7. The criterion may seem arbitrary. An
alternative similar criterion which we have used in some test simulations is that
the supracritical droplet fills 15% of the system. However, we find that the
structural results which follow, i.e. the dependence of τ on defect fraction f
and reversal field h, are robust with respect to the precise criterion for the
irreversible nucleation of the spin-reversed state. This is consistent with the
results of other workers [7]. As a result, using the operational definition is a
satisfactory strategy.
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Figure 5: Metastable lifetime for a defect-free system (blue, upper points) and for sys-
tems with f = 1% (yellow, middle points) and f = 2% (purple, lower points), as a
function of the inverse of the magnetic field. For every choice of f and h results are re-
ported for different system sizes. Error bars (not shown) are on the same scale as the markers.

4.2. Magnetic field dependence

We first present an overview of simulation results of the dependence of the
average metastable lifetime τ on the external magnetic field h, as defect fraction
f and system dimension L are varied. Some illustrative results are shown in
Fig. 5. We then note some important features of these results, whose implica-
tions we examine further in subsequent subsections.

In Fig. 5, the blue points refer to defect-free simulations, and are in agree-
ment with [7]. In particular, by noting that the τ̄ -scale is logarithmic, the
observed linear dependence of τ on h−1 is consistent with the exponential de-
pendence of τ(∆F ) given in eqs. (13), (14), with ∆Fbarr given by eq. (10) with
f = 0.

The purple and red points report the effect of defects. The presence of
defects clearly reduces the metastable lifetime. The system is more reactive and
escapes more easily from the metastable free-energy well. On this logarithmic
scale the dependence τ(h−1) is sublinear. The h−1 → ∞ limit (corresponding
to h→ 0) is unclear, especially for larger (L = 300) systems, as the metastable
lifetime data are compatible with either a slow divergence and an asymptote.
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But in fact, although it is not obvious here, a different plot will next suggest
that for these values of f > 0, the metastable lifetime does tend to a finite value
when the external field vanishes. We discuss this in greater detail in the next
subsection.

We note also that the metastable lifetime τ exhibits some system size de-
pendence. In all cases τ is larger for small systems than it is for large systems.
This effect increases as f is reduced. In Fig. 5, the f = 0 plots show significant
L dependence, whereas the f = 0.02 case exhibits a much weaker L dependence.

To sum up, Fig. 5 demonstrates that different regimes exist, depending on
the external field, the defect fraction and the system size. These are:

(a) In the strong-field regime (left portion of the plot) τ becomes independent
of the fraction of defects and the system size and all curves collapse onto
a universal τ ∼ 1/h law.

(b) At intermediate values of the external field, the τ vs. 1/h curves change
their slope, but the τ remains basically size-independent.

(c) If we lower the field further (right portion of the plot), data corresponding
to different system sizes separate, informing us that a nucleation regime
appears.

In Sect 4.4 below we will further investigate these points. We shall identify the
regimes (b),(c) as the multi-droplet (MD) and single-droplet (SD) nucleation
regimes, separated by a spinodal line, with larger h and f favouring the MD
regime.

4.3. Zero-field Case

In the previous subsection we have speculated about the behaviour of the
metastable lifetime in the zero field limit. We first note that the zero-field case
h = 0 is an exceptional limit for all f ≥ 0. The metastable lifetime at finite
field h refers to a reversal transition. At f = 0, in equilibrium, the system is
ferromagnetic. In the absence of a reversing magnetic field, the spins will not
reverse, which corresponds to the simulation result that τ → ∞ in the limit
that the reversing field disappears. In the f > 0 case, as we have seen in §2.1,
for h = 0 the ferromagnetic state is no longer stable, but rather the equilibrium
state is disordered [12, 24].

For f > 0 an initially ordered state at zero field will no longer remain in
this state, but rather relax to the disordered equilibrium. Thus in the h →
0 limit, the reversal transition becomes a disordering transition. We expect
nevertheless that the metastable lifetime associated with the limit h→ 0 of the
reversal transition, and that associated with the h = 0 disordering transition,
will coincide. This is the case we focus on in this section. When defects are
introduced, the system is expected to escape from the ordered state in finite
time even without an external field. Expression (10) for the free-energy barrier
confirms the above expectations. Indeed, ∆Fbarr increases when external field
h is lowered. Nevertheless, in the presence of defects it does not diverge as h→
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0+. Quantitatively, from eqs. (13) and (14), the metastable lifetime depends
exponentially on the free energy barrier, while eq. (10) gives an expression for
the free energy barrier. It follows that ∆Fbarr increases when external field h is
lowered, but for f > 0, it does not diverge as h→ 0.

For large enough systems (i.e., systems in the MD regime) we can obtain a
theoretical prediction for the metastable lifetime of the disordering transition
by substituting eq. (10) into (14) and setting h = 0, to obtain:

τ(f, 0) ∼ exp

(
πσ

12kBTµλν(f)

)
. (15a)

For each value of the defect fraction f , we carried out simulations of the
h = 0 disordering process in 400 different systems, each containing 100 × 100
spins. In each case the system is prepared in a perfectly ordered state. Results
for the metastable lifetime τ , as a function of f and T , including error bars, are
presented in the top panel of Fig. 6.

We also make a comparison between the simulation results and the prediction
of eq. (15a). This can be written in separable form as:

ln τ(f, 0) ∼
(

πσ

12kBTµλν(f)

)
≈ A(T )B(f). (15b)

Equivalently, the functional form means that in principle, the curves, both as a
function of µ and as a function of T , should collapse onto a universal curves. The
quantity A(T )B(f) follows approximately from the explicit formula as follows.

We first discuss A(T ). Although in principle, the surface tension σ should
include both f and T dependence, but we shall suppose that the principal
dependence is on temperature, and the zero f value can be taken for small f .
Our simulations suggest that the other primarily T -dependent quantity is the
geometric factor λ.

We now turn to B(f). The droplets to be considered here are initially
critical, but have grown by a significant factor, so that they are considered
when m = 0.7, which is our criterion for an ‘established’ droplet. Within these
droplets, we find computationally that the imbalance parameter µ ≈ 0.5 and is
insensitive to either T or f . The droplets are much larger than critical, for which
eq. (8) gives ν(f) ∼ f0.5. But they are much much smaller than macroscopic
droplets, for which eq. (4b) dictates that ν(f) ∼ f . Thus we might expect that
in our results, ν(f) ∼ fα with α somewhere between 0.5 and 1.

By evaluating the factors required to approximately collapse the f dependent
curves onto each other, the temperature dependence of the effective σ(T ) can
be obtained by combining the simulations and eq. (15b). This is shown in the
lower panel of Fig. 6. The same plot also compares the effective σ with the
defect-free computations of σ(T ) by Shneidman and coworkers [35], displaying
impressive agreement, and justifying ex post facto our theoretical treatment. A
best fit of the low f form of ν(f) using the same set of curves yields α ≈ 0.75,
i.e ν(f) ∼ f0.75. This is of the expected form and in the expected range.
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Figure 6: Upper Panel: Metastable lifetime as a function of the defect fraction for the
displayed values of the temperature, at zero external field. For each point, we considered 400
different defect realizations for a 100× 100 square system.
Lower Panel: Temperature dependence of the estimated surface tension, as compared with
the theoretical prediction [35].

20



We note also that the surface tension vanishes as the critical temperature is
approached. This property can be used in complex lattice models to derive the
critical temperature in absence of a theoretical exact value [36]. Our estimated
data for the surface tension – albeit estimated from results from a defected
model – are qualitatively consistent with an intersection with the temperature
axis close to the value predicted by Onsager’s exact solution for the pure Ising
model.

4.4. Spinodal Line

We now study the crossover between the SD and MD regimes for magnetisa-
tion reversal [7, 31, 32], extending our discussions in §1 and 4.1. In pure systems
(i.e., f = 0) this phenomenon has been studied by Rikvold et al. [7], who label
the crossover as the “spinodal line”. Here we extend this study to include de-
fected systems. A key finding in [7] was that there is both a microscopic and
a macroscopic distinction between the SD and the MD regimes. We shall find
that this classification is qualitatively, although not quantitatively, robust with
respect to the introduction of defects.

The microscopic distinction has been addressed in §4.1 and involves the
mechanism whereby the magnetic reversal takes place. The SD regime obtains
when a single nucleated droplet invades the whole system. In pure systems,
this is the low L, low h regime. The opposite MD regime is dominated by
droplet coalescence, and applies for higher L and/or h. Keeping account of
which is which in a simulation involves very detailed observations. Luckily
there is another way.

The macroscopic distinction involves the statistical distribution of reversal
times over repeated simulations of systems with the same control parameters.
In the SD regime, the limiting time is that required for the creation of the
nucleating droplet, given by the JMAK theory [3–6]. This is a Poisson process,
giving rise to an Exponential distribution with a standard deviation equal to
the mean time, given by eq. (13). In the MD regime, by contrast, the limiting
time is the time for coalescence of neighbouring droplets, given by eq. (14). This
is a Gaussian process, with a standard deviation considerably smaller than the
mean reversal time. In the limit of a very large system it can be regarded as
essentially deterministic.

The ratio ρ of the standard deviation to the mean metastable lifetime enables
one to distinguish between the Exponential and Gaussian distributions. In fact,
the distinction is not completely sharp. Rather than a crossover line, there is in
fact a fuzzy crossover region as one moves through (L, H, f) space, over which
ρ reduces from unity (in the SD regime) to values much smaller than unity (in
the MD regime). In their studies of analogous undefected systems, Rikvold et
al. in [7] adopted as an operational criterion for the spinodal line that ρc = 0.5.
Then for ρ < 0.5, they define the system to be in the MD regime, while for
ρ > 0.5, it is in the SD regime. In our studies, we adopt the same criterion.

Illustrative examples of how this works in practice are shown in Fig. 7.
In this figure, three of the four panels exhibit a Gaussian-like structure and
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Figure 7: Distribution of metastable lifetimes τ for some example systems. System size L,
defect fraction f and external field h shown above each subfigure. Simulation temperature:
T = 0.8 Tc with Tc the Curie temperature for the defect-free system.

correspond to MD reversal. By contrast the top left hand panel clearly possesses
a Poissonian-like structure, and corresponds to SD reversal.

It is useful to carry out a pairwise comparison between the top left and
each other panel in Fig. 7. Comparing the top left and bottom left panels, h
increases. Comparing the top left and top right panels, f increases. Comparing
the top left and bottom right panels, L increases. In each case, increasing a
single control parameter, while keeping other parameters constant, shifts the
system from the SD to the MD regime, and significantly accelerates the reversal
process.

We draw the reader’s attention to two further features of the distributions
shown in Fig. 7. Firstly, the kurtosis in the shape of the distribution in the top
right panel illustrates the actual fuzziness of the transition. Here the transition
from Poissonian to Gaussian is almost but not quite complete. By the ρc = 0.5
criterion, however, this case falls clearly into the MD regime.

Secondly, we look now not at the distribution shapes, but merely at the mag-
nitudes involved. Comparing the top left panel with either the top right panel
(involving an increase in f) or the bottom left panel (involving an increase in h)
shows a dramatic reduction in the metastable lifetime. By contrast, comparing
the top left and the bottom right panel (involving only an increase in system
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dimension L), the mean metastable lifetime is left largely unchanged. Although
there is insufficient evidence from these figures alone, it looks as though the be-
haviour of the system is in some sense saturating as the system size is increased.
This remark is confirmed also by the data reported in Fig. 5, which show a re-
markable reduction in the metastable lifetime when we move from small (SD) to
medium (MD) systems, but a much minor effect when the system size is further
increased (compare the data for systems with L = 100 and L = 300).

We now turn our attention to the SD-MD transition in the h = 0 case for
finite f . Some features of this have already been discussed in §4.3, in which
we varied the temperature T and defect fraction f , at constant system size
L = 100. In this next set of simulations, we keep T = 0.8Tc constant and allow
f and L to vary. The quantities of interest are the mean metastable lifetime τ ,
and the ratio of the standard deviation to the mean of the metastable lifetime
distribution ρ. Key elements of these results are shown in Fig. 8.

The upper panel of Fig. 8 presents the dependence of the mean metastable
lifetime τ as a function of L for different values of f . At constant f , τ is rather
insensitive to changes in L. In the lower panel, we plot the dependence of ρ(L).
Here, by contrast, the system size effects are strong. The dotted line indicates
ρc = 0.5, the SD-MD transition. The critical size Lc(f) is a decreasing function
of f ; for f = 0.03, this transition occurs at Lc ≈ 160, while by f = 0.07, the
critical size has reduced to Lc ≈ 40. Thus as the defect fraction f decreases,
larger systems are required for an essentially deterministic transition to occur.

The JMAK theory allows us again to draw a theoretical prediction about
the system sizes at which the nucleation process is expected to enter the MD
regime. The nucleation rate I (that is, the number of droplets of the critical
size nucleated per unit time in the system) is inversely proportional to the
exponential factor in Eq. (13). The average distance R0 between such critical
droplets is inversely proportional to I, and thus in turn proportional to the
exponential factor in Eq. (13). The phase transition can be expected to be a SD
or a MD process when respectively R0 � L, or R0 � L. It is therefore natural to
expect that the location of the spinodal line defined above qualitatively coincides
with the condition R0 ≈ L, so that in view of Eq. (13) we put forward the
theoretical prediction

LSL ∼ exp

(
∆Fbarr(f, h)

3kBT

)
, (16)

where again we are dropping possible algebraic pre-factors to capture the dom-
inant free-energy and temperature contribution.

The height of the free-energy barrier in Eq. (16) decreases when either the
external field or the defect fraction increases. For this motivation, we again
focus first on the h = 0 case, which provides a limiting value for LSL, that
is a critical system size below which the disordering transition will certainly
occur in the SD regime, at any finite value of the external field. Figure 9 shows
how LSL

∣∣
h=0

depends on f . The dotted line shows the fit to eq. (16), which

provides a p of about 0.15 for the χ2 goodness of the fit test with 3 degrees of
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Figure 8: Metastable lifetime τ (upper panel) and relative standard deviation ρ (lower panel)
as a function of system size for several values of defect fraction f . h = 0, T = 0.8Tc. Legend
(both plots): top to bottom f = 0.03 (blue), f = 0.04 (red) f = 0.05 (orange), f = 0.06
(purple) f = 0.07 (green).
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Figure 9: Critical system size LSL at the spinodal line as a function of the defect fraction in
the absence of external field. Error bars are obtained from standard error propagation theory
as explained in the text. The fit is obtained through Eq. (16) with ν(f) ∼ f0.75 as discussed
in §4.3.

freedom. The errors in the measured values are obtained from standard error
propagation theory, starting from the estimation errors of the precise value at
which the curve ρ(L) crosses the threshold value 0.5. The simulation points are
displayed only for f ≥ 3%, as lower values require extremely large systems to
find the transition to the MD regime in the absence of magnetic field. To make
a specific example, for f = 1%, the expected value is LSL

∣∣
h=0
' 106.

Figure 10 summarizes the results we obtained for the spinodal line in the
presence of both an external field, and quenched defects. For the reported
values of the system size L and defect fraction f , we varied the external field
h while monitoring the ratio ρ between the standard deviation and the mean
value of the metastable lifetime τ̄(L, f, h). The critical (spinodal) value of the
external field was then identified as the value such that the ratio ρ crossed the
critical value ρc = 0.5. To derive a reliable estimate of the critical magnetic
field, several replicas of the system were built up (with defects initialized in
different positions), and the error bars in Fig. 10 report the standard deviation
of the critical value of h obtained for different replicas. Due to sample to sample
fluctuations, systems with more quenched defects require averaging over more
replicas to obtain reliable estimates. In order to fix the number of replicas
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Figure 10: Phase diagram summarizing the location of the spinodal line, as a function of the
system size L and the magnetic field h, for different values of the defect fraction f . Each color
represents a value of the defect fraction f , as specified in the inset. For each defect fraction
and each value of the system size L we have located the value of the critical h at which the
spinodal parameter ρ crosses the threshold value ρc = 0.5. The critical values of h are reported
with horizontal error bars, as different realizations of the same defect fraction undergo the
transition at somewhat different values of the external field. For each value of f we also
report the limiting asymptote, which represents the system size at which the transition occurs
for h = 0. These asymptotic values and error intervals coincide with those reported in Fig-
ure 9. The left-most series of data corresponds to a defect-free simulation, and agrees with [7].
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required for a stable average, we set a threshold for the error bars in Fig. 10, and
in particular we request that errors must not exceed the 20% of the estimated
value for the reported spinodal point. As an example, for the larger defect
fraction reported (f = 5%) up to 16.000 different defect realizations were to
be analysed. Only exception to this rule regards the systems with L ≥ 200
for which, due to a rather long computer simulation time, a lower amount of
replicas were considered: 200 for f = 1%, and 1000 for f = 2%. The bars
displayed in the right part of Fig. 10 report the knowledge (derived from Fig. 9)
of the low-h behavior of LSL, with the width of the bands reporting the error
bars in Fig. 9.

The information drawn from Figs. 9 and 10 confirm that the location of
the spinodal line (that is, the size at which the system is sufficiently large to
exhibit deterministic response) depends strongly on the defect density. All data
evidence a linear dependence of LSL on 1/h for large values of the external field
(left part of the plot). In the absence of defects (light blue circles, coherent with
data reported in [7]) the linear regime extends also to intermediate and low
values of h. On the contrary, the presence of defects gives rise to a saturation
LSL(f) such that the system behaves deterministically as long as L > LSL(f),
whatever the external field.

5. Discussion and Conclusions

We have analyzed the time dependence of magnetic relaxation in a two-
dimensional Ising system. The extra feature of work as compared to previous
work is the variable fraction of defects quenched into the system. The specific
focus of interest is the manner in which an initially aligned system escapes from
a metastable aligned state either when it is subject to an opposite external field,
or alternatively in zero field when the defects cause the equilibrium state to be
disordered.

Previous studies have determined that for undefected Ising systems, the clas-
sical JMAK theory is an excellent starting point to derive theoretical predic-
tions for the free energy barriers and the related metastable lifetime of decaying
phases. Our work shows that this remains true, even when defects are intro-
duced into the system. In Section 2.1 we make theoretical predictions for the
dependence of the critical droplet area and the related free energy barrier on the
quenched disorder properties (see eqs. (9), (10)). These predictions depend on
a number of factors, including the defect imbalance, the total number of defects
enclosed within the droplet, and its geometrical shape.

Then, in order to reduce the number of fitting parameters before comparing
the theoretical predictions with the simulation outcomes, we use a probabilistic
argument to identify the defect structure within the location where the nucle-
ating droplet is most probably located, as shown in Fig. 2. This leaves the
aspect ratio of the nucleating droplet as a unique fitting parameter. Finally, to
complete the theoretical derivation, we adapt the Allen-Cahn approximation to
predict the growth velocity of each individual droplet, either above or below the
critical size, noting that below-critical droplets have a negative growth velocity.
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The results of a detailed set of simulations, shown in the lower plot in Fig. 3,
confirm that the critical nucleating area depends on the defect fraction in the
manner predicted by our theory.

The single fitting parameter for our theory is the geometrical droplet factor
λ of the nucleating droplet, corresponding to its aspect ratio. For the range of f
for which we have performed simulations, we find that λ takes a value of about
0.6. Some caution is associated with this value, however. In a pure system,
f = 0, subject to thermal fluctuations, it might be expected that a nucleating
droplet would be circular, i.e. λ = 1. The square lattice anisotropy replaces the
circle by a square, with λ = π/4 ≈ 0.79. The presence of defects thus reduces
λ further. Intuitively, some reduction is not unexpected, and follows from the
randomness in the defect locations. We postpone further investigation of this
phenomenon to a later study.

The JMAK theory also provides a framework within which we are able to
make theoretical predictions concerning the average lifetime τ of the metastable
phases. In Section 4 we test those predictions against the simulation results. We
confirm the theoretical expectation that the presence of quenched randomness
strongly reduces the so-called metastable lifetime, as shown in Figure 6. An
important result, which is derived theoretically and confirmed computationally,
is that in the presence of defects, by contrast with the zero-defect case, the
metastable lifetime in the absence of a field remains finite. These findings could
potentially be of relevance to experimental research in fast switching devices,
as noted in recent articles [37, 38]. These devices are of major importance in
magnetic recording technologies, where magnetic systems with high sensitivity
to external fields, and able to change their magnetized state rapidly, are a
necessity for fast recording devices.

A detailed computational study in §4.3 of the dependence of the metastable
lifetime associated with the disordering transition (i.e. h = 0), varying both
temperature T and defect fraction f has been performed. The dependence on
both f and T fall on universal curves with suitable scaling. The theory also
predicts this universality. The temperature dependence given by theory and
simulations is in good agreement, and is related to the temperature dependence
of the surface tension associated with boundaries between regions of opposite
orientation. However, the defect fraction dependence presents a puzzle which
we have not so far been able to resolve.

In Section 4.4 we focus on the character of the reversal transition, and specif-
ically the transition between single droplet (SD) and multi-droplet (MD) rever-
sal behaviour. In the former case the transition is nucleated by a single droplet
which grows to invade the whole system. In the latter case, the more or less
simultaneous nucleation of many droplets is followed by droplet coalescence in
such a way that the system is invaded by the new phase. The separation line
– the so-called “spinodal” – is system size dependent, but the critical size de-
pends on T, h and f . A signature of this transition is the statistical behaviour
of the distribution of metastable lifetimes when the same system is reproduced
many times. The SD case presents a Poisson distribution, while the MD case is
Gaussian. In this latter case, the ratio of the standard deviation to the mean
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tends to zero for large systems, indicating a process which for large systems is
essentially deterministic. Fig. 10 summarizes the information we derive to posi-
tion the spinodal line in the presence of both quenched disorder and an external
magnetic field.

The results presented in this work can be extended in several directions.
Firstly, a study of spin reversal in similar random-bond and random-field Ising
models enables the statistical properties of Barkhausen noise to be reproduced
[39]. An obvious question is whether the present system too mimics the Barkhausen
effect. Secondly, it might be possible to introduce Monte-Carlo moves involv-
ing spin swapping. This would enable a relaxation of the postulate of fixed
quenched defects.

Alternatively spin swapping, rather than spin reversal, would enable the
modelling of a phase separating lattice gas. This system would exhibit coarsen-
ing, rather than phase invasion, and so the introduction of defects might mimic
two-component phase separation in a porous network. An extension of this
modified model might also allow 0-spin defects, much in the spirit of some re-
cent works [29]. Finally we might reasonably ask to what extent our results are
robust with respect to increasing the system dimension. For example in higher
dimensions, what kind of internal structure in the defect spins is not only quan-
titatively important, but qualitatively changes the reversal properties?
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Appendix. Probability of finding defects in domains

This appendix calculates some quantities of relevance in §3.2. We consider
a domain composed of A spin sites. Each site has an equal probability f/2
of hosting a negative or a positive defect. The probability of finding (n+, n−)
defects in the domain is given by the multinomial expression:

P1(A, f, n+, n−) =
A!

n+!n−! (A− n+ − n−)!

(
f

2

)n++n−

(1− f)A−n
+−n−

.

(A.1)
Then define P2 to be the probability of finding a specific number nT = n++n− of
defects, and P3 to be the probability of finding a specific imbalance ∆n = n−−
n+ in this domain. P2, P3 are then calculated by summing over the probabilities
P1 subject to the relevant constraints:

P2(A, f, nT) =

nT∑
j=−nT

P1

(
A, f, 1

2 (nT + j), 1
2 (nT − j)

)
; (A.2a)

P3(A, f,∆n) =

A∑
j=∆n

P1

(
A, f, 1

2 (j −∆n), 1
2 (j + ∆n)

)
. (A.2b)
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We now consider that the domain could be placed in K different independent
locations. In an available total area of L2 spins, we can choose K = L2/A
different possible independent locations for the nucleating droplet. We aim at
tracing the choice (among the K possible ones) which has the largest value of
∆n. In such optimal choice the surface cost to start a reversal process (estimated
in eq. (5)) is minimized. Therefore, that domain identifies the optimal location
to place the droplet to originate the reversal process. We first compute the
probability P4 of finding am imbalance smaller than ∆n in a domain of A spins

P4(A, f,∆n) =

∆n−1∑
j=−A

P3(A, f, j). (A.3)

Now, the probability that, among K independent possible droplet locations, the
optimal one (in terms of ∆n) has a defect imbalance precisely equal to ∆n is
given by

P5(A, f,K,∆n) = P4(A, f,∆n+ 1)K − P4(A, f,∆n)K . (A.4)

The above calculations allows us to compute the expected value ∆nexp of the
random variable ∆nopt, obtained as the optimal (maximum) ∆n value among
K realizations of a domain in which both positive and negative defects have a
probability f/2 to occur. This is given by

∆n
∣∣
exp

=

A∑
∆n=−A

∆nP5(A, f,K,∆n). (A.5)

Finally, it is also possible to compute what is the expected value of the to-
tal number of defects in the domain realization which optimizes ∆n. This is
obtained through the Bayesian probability

P6(A, f, nT |∆n) =
Prob (∆n |nT) P2(A, f, nT)

P3(A, f,∆n)
=

1

2nT

(
nT

nT+∆n
2

)
P2(A, f, nT)

P3(A, f,∆n)
.

(A.6)
Figure 2 in the main text illustrates the results of the calculations performed

with the parameter values (A and K) extracted from the simulations in the main
text. In them different (yet typically small) defect fractions f are considered.
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