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I. Introduction9

Electric propulsion has become a viable option for interplanetary missions [1]. The gravity assist rotates the10

direction and alters the magnitude of the spacecraft’s heliocentric speed vector when passing near the planet [2]. The11

combination of electric propulsion and gravity-assist technique reduces the overall fuel expenditure [3]. In addition,12

low-thrust trajectories can be used to flyby (encounter asteroids with the same position, but different velocity) or to13

rendezvous (encounter asteroids with both the same position and velocity) asteroids to provide useful scientific return14

[4]. Yet, optimizing low-thrust trajectories with flybys, rendezvous, and gravity assists is a difficult task, due to the15

extreme sensitivity to the initial guess and the large extent of the search space. It is therefore desirable to elaborate16

efficient techniques to solve these demanding problems.17

With a given sequence of bodies to visit, the low-thrust trajectory optimization with flybys, rendezvous, and gravity18

assists is a nonlinear optimal control problem (NOCP) with time-dependent, multi-dimensional interior-point constraints.19

Direct or indirect methods are commonly used to solve the NOCP. Direct methods discretize the NOCP into a nonlinear20

programming problem, and a solution fulfilling the Karush-Kuhn-Tucker conditions is then searched [5]. Indirect21

methods solve the NOCP by transforming it into a multi-point boundary value problem (MPBVP) that results from the22

Pontryagin Minimum Principle (PMP) [5]. Although several advanced tools have been developed in literature using23

direct methods [3, 6–8], indirect methods provide accurate solutions that satisfy first-order necessary conditions of24

optimality, yet the initial guess of costates is often nonintuitive [5]. In [9], a normalized low-thrust optimization problem25

with one gravity assist was formulated by embedding a positive unknown factor into the performance index, which eases26

the search of unknown costates and multipliers by restricting them on a unit hypersphere. Indirect methods are the focus27

of this work, and they are becoming increasingly practical with the development of methods such as adjoint scaling28
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technique [10], optimality-preserving transformation [11], and the composite smooth control method [12].29

The numerical performance of most optimization methods is highly dependent on the accuracy of the gradient30

information. Finite difference (FD) methods [13] are easy to implement, yet they are inapproximate for low-thrust31

trajectory optimization with flybys, rendezvous, and gravity assists because 1) the accuracy of FD methods depends on the32

step size, which is difficult to tune [14] (Discontinuities produced by interior-point constraints and the bang-bang control33

further complicate the step selection); 2) The dimension of the search space increases rapidly as more interior-point34

constraints are involved, and so does the computational burden of FD methods. Analytic gradients obtain gradients by35

applying the state transition matrix (STM) and the chain rule [15]. Unlike FD methods, analytic gradients do not need a36

FD step [16]. The benefits of analytic gradients on direct methods with Sims-Flanagan transcription were explored in37

[8] through a comet sample return mission. For indirect methods, analytic gradients for asteroid rendezvous missions38

were studied in [4], where both state and costate at each interior-point time were treated as unknowns. The Jacobian39

matrix of this formulation is sparse and simplified, provided that one has to solve for more unknowns. In [17, 18], the40

optimal low-thrust gravity-assist trajectory was solved with analytic gradients, which is developed in this work with a41

more comprehensive analysis on the recursive computation and the derivatives with respect to the interior-point time.42

In this Note, analytic gradients are presented for normalized low-thrust trajectory optimization with interior-point43

constraints. Specifically, the time domain is partitioned into multiple phases with interior-point, initial, and terminal time44

as boundaries. The integration flowchart in [19] that involves switching detection is applied to the integration within one45

phase. The chain rule is developed to extend derivatives of constraints from one phase to the whole time domain. The46

contributions are mainly two-fold: 1) analytic gradients for the normalized low-thrust trajectory optimization problem47

are derived, including the derivatives with respect to the normalizing factor; 2) recursive formulae to calculate analytic48

gradients, especially the derivatives with respect to the interior-point time, are developed. The method to generate the49

initial guess for the energy-optimal problem is not discussed since it is outside the scope of this work. Readers can refer50

to [9, 20] about generating initial guesses that employ the normalization. The computational framework established51

in this work combines energy-to-fuel-optimal continuation, switching detection, and analytic gradients, so enabling52

fuel-optimal bang-bang solutions and their accurate gradients. Two numerical examples are simulated to show the53

benefits of analytic gradients.54

The remainder of the paper is structured as follows. Sec. II introduces the problem statement of low-thrust trajectory55

optimization with flybys, rendezvous, and gravity assists. Sec. III derives the analytic gradients. Sec. IV presents56

numerical simulations. Final remarks are given in Conclusions.57
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II. Problem Statement58

A. Fuel-Optimal Problem59

The heliocentric phase of an interplanetary transfer subject to the gravitational attraction of the Sun is considered.60

The equations of motion for the spacecraft are61

9𝒙 “ 𝒇 p𝒙, 𝑢,𝜶q ñ
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9𝒓 “ 𝒗

9𝒗 “ ´
𝜇

𝑟3 𝒓 ` 𝑢
𝑇max
𝑚

𝜶

9𝑚 “ ´𝑢
𝑇max
𝐼sp 𝑔0

(1)

where 𝒓, 𝒗, and 𝑚 are the position vector, the velocity vector, and the mass of the spacecraft; 𝒙 B r𝒓, 𝒗, 𝑚s is the state62

vector, 𝑢 P r0, 1s is the thrust throttle factor, 𝜶 is the thrust pointing unit vector, 𝑇max is the maximum thrust magnitude,63

𝐼sp is the specific impulse, and 𝑔0 is the gravitational acceleration at sea level. Both 𝑇max and 𝐼sp are assumed constant.64

With the initial time 𝑡0 and the terminal time 𝑡 𝑓 given, the fuel-optimal problem is to minimize65

𝐽 𝑓 “ 𝜆0
𝑇max
𝑐

ż 𝑡 𝑓

𝑡0

𝑢 d𝑡 (2)

with boundary conditions66

𝒓p𝑡0q ´ 𝒓0 “ 0, 𝒗p𝑡0q ´ 𝒗0 “ 0, 𝑚p𝑡0q ´ 𝑚0 “ 0 (3)

𝒓p𝑡 𝑓 q ´ 𝒓Tp𝑡 𝑓 q “ 0, 𝒗p𝑡 𝑓 q ´ 𝒗Tp𝑡 𝑓 q “ 0 (4)

where 𝒓Tp𝑡 𝑓 q and 𝒗Tp𝑡 𝑓 q are the position and velocity vectors of the final target body at 𝑡 𝑓 , respectively, and 𝑐 “ 𝐼sp 𝑔0.67

The positive factor 𝜆0 does not inherently change the NOCP [9] (See Remark 3 for more explanations).68

Since the optimal thrust throttle 𝑢˚ is a discontinuous bang-bang control, the convergence radius is small for69

zero-finding methods such as Newton’s method [21]. Thus, the energy-to-fuel-optimal continuation that approaches the70

discontinuous control by a series of continuous controls is employed with the performance index as [21]71

𝐽𝜀 “ 𝜆0
𝑇max
𝑐

ż 𝑡 𝑓

𝑡0

r𝑢 ´ 𝜀𝑢p1 ´ 𝑢qs d𝑡 (5)

where 𝜀 is the embedded continuation parameter. The fuel-optimal problem (𝜀 “ 0) is reached by gradually reducing 𝜀72

from the energy-optimal problem (𝜀 “ 1).73
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The Hamiltonian function of the energy-to-fuel-optimal problem is74

𝐻𝜀 “ 𝝀𝑟 ¨ 𝒗 ` 𝝀𝑣 ¨

ˆ

´
𝜇

𝑟3 𝒓 ` 𝑢
𝑇max
𝑚

𝜶

˙

` 𝜆𝑚

ˆ

´𝑢
𝑇max
𝑐

˙

` 𝜆0
𝑇max
𝑐

r𝑢 ´ 𝜀𝑢p1 ´ 𝑢qs (6)

where 𝝀 B r𝝀𝑟 , 𝝀𝑣 , 𝜆𝑚s is the costate vector associated to 𝒙. According to PMP [22], the optimal thrust pointing unit75

vector 𝜶˚ satisfies76

𝜶˚ “ ´
𝝀𝑣
𝜆𝑣

(7)

Substituting Eq. (7) into Eq. (6) yields77

𝐻𝜀 “ 𝝀𝑟 ¨ 𝒗 ´
𝜇

𝑟3 𝒓 ¨ 𝝀𝑣 ` 𝜆0
𝑇max
𝑐

𝑢 p𝑆 ´ 𝜀 ` 𝜀𝑢q (8)

where the throttle switching function 𝑆 is78

𝑆 “ 1 ´
𝜆𝑚

𝜆0
´

𝑐

𝑚 𝜆0
𝜆𝑣 (9)

The 𝑢˚ is stated in terms of 𝑆 and 𝜀 as79

𝑢˚ “

$
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%

0 𝑆 ą 𝜀

1 𝑆 ă ´𝜀

𝜀 ´ 𝑆

2𝜀
|𝑆| ď 𝜀

(10)

Remark 1 It is assumed that singular arcs where 𝑆 “ 0 in the fuel-optimal problem (𝜀 “ 0) are absent over finite time80

intervals.81

The equations of costate dynamics are82

9𝝀 “ ´

ˆ

B𝐻𝜀p𝒙, 𝝀, 𝑢, 𝛼q

B𝒙

˙J

(11)

Since the terminal mass is free and the augmented terminal cost does not explicitly depend on the mass, the transversality83

condition for the free terminal mass is84

𝜆𝑚p𝑡 𝑓 q “ 0 (12)
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The motion of the spacecraft is determined by integrating the following state-costate dynamics85

9𝒚 “ 𝑭p𝒚q ñ
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(13)

where 𝒚 B r𝒙, 𝝀s P R14, and 𝜶˚ in Eq. (7) and 𝑢˚ in Eq. (10) are already embedded into Eq. (13).86

B. Interior-Point Constraints87

Let 𝒙 be partitioned as 𝒙 “ r𝒙𝑐, 𝒙𝑑 , 𝒙̃s where 𝒙𝑐 and 𝒙𝑑 are the continuous and the discontinuous state component88

involved in the interior-point constraints at the interior-point time 𝑡 𝑗 , 𝑗 “ 1, 2, ¨ ¨ ¨ , 𝑤, respectively, 𝒙̃ is the remaining89

part of the state, and 𝑤 is the total number of the interior-point time. The bold vector notation 𝒙̃ is used even though it90

may be a scalar variable in specific applications. The equality interior-point constraints at 𝑡 𝑗 are denoted as91

𝒉 𝑗p𝑡 𝑗 , 𝒙𝑐p𝑡 𝑗qq “ 0, 𝒉 𝑗 P R𝑝 𝑗 (14)

92

𝜙 𝑗p𝑡 𝑗 , 𝒙𝑑p𝑡´
𝑗

q, 𝒙𝑑p𝑡`
𝑗

qq “ 0 (15)

The inequality interior-point constraint at 𝑡 𝑗 is denoted as93

𝜎𝑗p𝑡 𝑗 , 𝒙𝑑p𝑡´
𝑗

q, 𝒙𝑑p𝑡`
𝑗

qq ď 0 (16)

where 𝜙 𝑗 in Eq. (15) and 𝜎𝑗 in Eq. (16) are scalar constraints. Let 𝝀𝑐, 𝝀𝑑 and 𝝀̃ be the costate vectors associated to 𝒙𝑐,94

𝒙𝑑 and 𝒙̃, respectively. Here below we specialize Eqs. (14)-(16) for two categories:95

1. Interplanetary transfer with flybys and rendezvous96

1) Intermediate flyby. In this case, 𝒙𝑐 B 𝒓, 𝒙̃ B r𝒗, 𝑚s, 𝝀𝑐 B 𝝀𝑟 , 𝝀̃ B r𝝀𝑣 , 𝜆𝑚s, then97

𝒉 𝑗p𝑡 𝑗 , 𝒙𝑐p𝑡 𝑗qq “ 𝒓p𝑡 𝑗q ´ 𝒓T, 𝑗p𝑡 𝑗q, 𝑝 𝑗 “ 3 (17)

where 𝒓T, 𝑗p𝑡 𝑗q is the position vector of 𝑗 th body in the sequence at 𝑡 𝑗 .98
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2) Intermediate rendezvous. In this case, 𝒙𝑐 B r𝒓, 𝒗s, 𝒙̃ B 𝑚, 𝝀𝑐 B r𝝀𝑟 , 𝝀𝑣s, 𝝀̃ B 𝜆𝑚, then99

𝒉 𝑗p𝑡 𝑗 , 𝒙𝑐p𝑡 𝑗qq “ r𝒓p𝑡 𝑗q ´ 𝒓T, 𝑗p𝑡 𝑗q, 𝒗p𝑡 𝑗q ´ 𝒗T, 𝑗p𝑡 𝑗qs, 𝑝 𝑗 “ 6 (18)

where 𝒗T, 𝑗p𝑡 𝑗q is the velocity vector of 𝑗 th body in the sequence at 𝑡 𝑗 .100

In this category, there are no constraints expressed by 𝜙 𝑗 and 𝜎𝑗 . The necessary conditions of optimality for interior-point101

constraints at 𝑡 𝑗 are [22]102

𝝌J
𝑗

B𝒉 𝑗

B𝑡 𝑗
` 𝐻𝜀p𝒚p𝑡´

𝑗
q, 𝜆0q ´ 𝐻𝜀p𝒚p𝑡`

𝑗
q, 𝜆0q “ 0 (19)

103

𝝌J
𝑗

B𝒉 𝑗

B𝒙𝑐
´ 𝝀J

𝑐 p𝑡´
𝑗

q ` 𝝀J
𝑐 p𝑡`

𝑗
q “ 0J (20)

where 𝝌 𝑗 P R𝑝 𝑗 is the multiplier vector associated to the constraint 𝒉 𝑗 .104

2. Interplanetary transfer with gravity assists The unpowered gravity-assist transfer [9] is considered. Let 𝑟𝑝 be105

the radius of gravity-assist maneuver and 𝚤p𝑡˘
𝑗

q B 𝒗˘
8{𝑣˘

8 where 𝑣˘
8 “ }𝒗˘

8} and 𝒗˘
8 “ 𝒗p𝑡˘

𝑗
q ´ 𝒗T, 𝑗p𝑡 𝑗q, then 𝑟𝑝 is106

computed as [9]107

cos 𝜃 “ 𝚤p𝑡´
𝑗

q ¨ 𝚤p𝑡`
𝑗

q (21)
108

𝑟𝑝 “
𝜇 𝑗

𝑣´
8𝑣`

8

ˆ

1
sinp𝜃{2q ´ 1

˙

(22)

where 𝜃 is the deflection angle and 𝜇 𝑗 is the gravity parameter of the gravity-assist planet.109

In this case, 𝒙𝑐 B 𝒓, 𝒙𝑑 B 𝒗, 𝒙̃ B 𝑚, 𝝀𝑐 B 𝝀𝑟 , 𝝀𝑑 B 𝝀𝑣 , 𝝀̃ B 𝜆𝑚, and110

𝒉 𝑗p𝑡 𝑗 , 𝒙𝑐p𝑡 𝑗qq “ 𝒓p𝑡 𝑗q ´ 𝒓T, 𝑗p𝑡 𝑗q, 𝑝 𝑗 “ 3 (23)

111

𝜙 𝑗p𝑡 𝑗 , 𝒙𝑑p𝑡´
𝑗

q, 𝒙𝑑p𝑡`
𝑗

qq “ 𝑣´
8 ´ 𝑣`

8 (24)
112

𝜎𝑗p𝑡 𝑗 , 𝒙𝑑p𝑡´
𝑗

q, 𝒙𝑑p𝑡`
𝑗

qq “ 1 ´ 𝑟𝑝{𝑟min ď 0 (25)

where 𝑟min is the minimum radius required to perform the gravity assist.113

The slack variable 𝛼 𝑗 is introduced to transform the inequality constraint Eq. (25) into the equality constraint, as [23]114

𝜎𝑗p𝑡 𝑗 , 𝒙𝑑p𝑡´
𝑗

q, 𝒙𝑑p𝑡`
𝑗

qq ` 𝛼2
𝑗 “ 0 (26)

Suppose that the corresponding multiplier is 𝜅 𝑗 , it must satisfy115

𝜅 𝑗𝛼 𝑗 “ 0 (27)
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The method to cope with the inequality constraint of Eq. (25) is different from the work in [9] where conditions116

𝜅 𝑗𝜎𝑗 “ 0 and 𝜅 𝑗 ě 0 are applied. The advantage of Eqs. (26) and (27) is that it is unnecessary to judge the sign of 𝜅 𝑗 ,117

but the drawback is the addition of one unknown variable 𝛼 𝑗 . Equations (26) and (27) are used, yet analytic gradients118

derived in this work can be easily adjusted when 𝜅 𝑗𝜎𝑗 “ 0 is applied.119

The necessary conditions of optimality for interior-point constraints at 𝑡 𝑗 are120

𝝌J
𝑗

„

B𝒉 𝑗

B𝑡 𝑗
,

B𝜙 𝑗

B𝑡 𝑗

ȷ

` 𝜅 𝑗
B𝜎𝑗

B𝑡 𝑗
` 𝐻𝜀, 𝑗p𝒚p𝑡´

𝑗
q, 𝜆0q ´ 𝐻𝜀, 𝑗p𝒚p𝑡`

𝑗
q, 𝜆0q “ 0 (28)

121

𝝌J
𝑐, 𝑗

B𝒉 𝑗

B𝒙𝑐
´ 𝝀J

𝑐 p𝑡´
𝑗

q ` 𝝀J
𝑐 p𝑡`

𝑗
q “ 0J (29)

122

𝜒𝑑, 𝑗
B𝜙 𝑗

B𝒙𝑑p𝑡´
𝑗

q
´ 𝝀J

𝑑 p𝑡´
𝑗

q ` 𝜅 𝑗
B𝜎𝑗

B𝒙𝑑p𝑡´
𝑗

q
“ 0J (30)

123

𝜒𝑑, 𝑗
B𝜙 𝑗

B𝒙𝑑p𝑡`
𝑗

q
` 𝝀J

𝑑 p𝑡`
𝑗

q ` 𝜅 𝑗
B𝜎𝑗

B𝒙𝑑p𝑡`
𝑗

q
“ 0J (31)

where 𝝌 𝑗 “ r𝝌J
𝑐, 𝑗

, 𝜒𝑑, 𝑗s
J P R𝑝 𝑗`1 is the multiplier vector associated to Eqs. (23) and (24).124

Remark 2 Let 𝒚p𝑡q “ 𝝋𝜀p𝒚𝑖 , 𝜆0, 𝑡0, 𝑡q be the solution flow of Eq. (13) from the initial time 𝑡0 to the terminal time125

𝑡 𝑓 , using 𝒚𝑖 at 𝑡0, 𝜆0, 𝝀𝑐p𝑡`𝑛 q in Eq. (20) at flyby or rendezvous time 𝑡𝑛 (𝑛 “ 1, ¨ ¨ ¨ , 𝑤̂), 𝝀𝑐p𝑡`
𝑗

q in Eq. (29) and126

𝝀𝑑p𝑡`
𝑗

q in Eq. (31) at gravity-assist time 𝑡 𝑗 ( 𝑗 “ 𝑤̂ ` 1, ¨ ¨ ¨ , 𝑤), the energy-to-fuel-optimal problem is to find127

r𝜆0, 𝝀𝑖 , 𝝌𝑛, 𝑡𝑛, 𝝌 𝑗 , 𝒙𝑑p𝑡`
𝑗

q, 𝛼 𝑗 , 𝜅 𝑗 , 𝑡 𝑗s such that 𝒚p𝑡q satisfies (4), (12) at 𝑡 𝑓 , (17) (for flyby), (18) (for rendezvous), (19)128

at 𝑡𝑛, (23), (24), (26), (27), (28), (30) at 𝑡 𝑗 , and the normalization condition as129

g

f

f

e𝜆2
0 ` 𝝀J

𝑖 𝝀𝑖 `

𝑤̂
ÿ

𝑛“1
𝝌J
𝑛 𝝌𝑛 `

𝑤
ÿ

𝑗“𝑤̂`1
p𝝌J

𝑗
𝝌 𝑗 ` 𝜅2

𝑗
q ´ 1 “ 0 (32)

Remark 3 Since the equations mentioned in Remark 2, as well as the Hamiltonian function Eq. (8) and the switching130

function Eq. (9), that formulate the MPBVP are all homogeneous to 𝜆0, 𝝀𝑖 , 𝝌 𝑗 , 𝜅 𝑗 , and 𝝌𝑛, multiplying them by a131

positive factor does not change the problem. The value of 𝜆0 should be positive, otherwise the problem is changed to132

maximize the fuel consumption. Let 𝝀all be the collection of multipliers and initial costates, then 𝝀̂all “ 𝝀all{}𝝀all} would133

lead to the same result. Let 𝝀̂all be the desired solution, then the normalization condition in Eq. (32) is introduced.134

Remark 4 The value of 𝜆0 should be fixed for a given 𝜀, and can be varied as 𝜀 varies during the energy-to-fuel-optimal135

continuation. In [9], the value of 𝜆0 remains fixed during the continuation. Here, we allow varying 𝜆0 during the136

continuation to search the solution in a higher dimension of the search space. In addition, the procedure to calculate137

derivatives of constraints with respect to 𝜆0 in Sec. III is general and can be applied to computing derivatives with138

respect to other parameters, such as 𝑇max or 𝐼sp. In this case, our method can provide the information about how139
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constraints vary as 𝑇max or 𝐼sp varies.140

III. Indirect Method141

A. State Transition Matrix142

The STM gives the linear relationship of small displacements of state and costate between different time instants143

along a continuous trajectory [15]. However, a variety of discontinuities exist in the problem. The bang-bang control is144

produced by Eq. (10) for the fuel-optimal problem. The costate discontinuity in Eqs. (20), (29) and (31) occurs at the145

interior-point time, and the spacecraft’s velocity is discontinues across the gravity-assist time. Thus, the analysis of STM146

across the discontinuity should be performed, as well as the derivative of 𝒚 with respect to 𝜆0. Since discontinuities147

caused by interior-point constraints only exist at the interior-point time, the time domain is partitioned into multiple148

phases. With reference to Fig. 1, 𝑡𝑘 denotes the generic interior-point time 𝑡 𝑗 if 𝑘 “ 1, ¨ ¨ ¨ , 𝑤, and denotes the initial149

time 𝑡0 if 𝑘 “ 0. The STM is computed by sweeping each phase consecutively, with interior-point time 𝑡 𝑗 , initial time150

𝑡0, and terminal time 𝑡 𝑓 as boundaries. Within the p𝑘 ` 1qth phase, the STM is subject to the variational equation151

9Φp𝑡, 𝑡`
𝑘

q “ 𝐷𝑦𝑭Φp𝑡, 𝑡`
𝑘

q, 𝑘 “ 0, 1, ¨ ¨ ¨ , 𝑤 (33)

where 𝑡 P r𝑡`
𝑘
, 𝑡´

𝑘`1s, 𝑡`0 B 𝑡0, 𝑡´
𝑤`1 B 𝑡 𝑓 , Φp𝑡`

𝑘
, 𝑡`

𝑘
q “ 𝐼14ˆ14, and 𝐷𝑦𝑭 B B𝑭{B𝒚 is the Jacobian matrix of Eq. (13).152

Two different expressions of 𝐷𝑦𝑭 exist based on whether 𝑢˚ is constant or not [19]. For simplicity of notations, a153

general variable 𝒙p𝑡˘
𝑘

q is simplified as 𝒙˘

𝑘
in the following, unless otherwise specified.154

Considering that the value of 𝒚`

𝑘
is affected by perturbing 𝜆0, the full derivative 𝜻 “ d𝒚{d𝜆0 is used and 𝜻 can be155

expressed as156

𝜻 “
B𝒚

B𝜆0
`

B𝒚

B𝒚`

𝑘

d𝒚`

𝑘

d𝜆0
(34)

The time derivative of 𝜻 satisfies157

9𝜻 “ 𝐷𝑦𝑭 𝜻 `
B𝑭

B𝜆0
(35)

where B𝑭{B𝜆0 is non-zero if 𝑢˚ “ p𝜀 ´ 𝑆q{p2𝜀q, and 𝜻p𝑡0q “ 014ˆ1 at 𝑡0.158

Let 𝒛 “ r𝒚, vecpΦq, 𝜻s P R224 where ‘vec’ maps Φ to a column vector, then159

9𝒛 “ 𝑮p𝒛q ñ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9𝒚 “ 𝑭p𝒚q

vecp 9Φq “ vecp𝐷𝑦𝑭Φq

9𝜻 “ 𝐷𝑦𝑭 𝜻 `
B𝑭

B𝜆0

(36)

with 𝒛`

𝑘
“ r𝒚`

𝑘
, vecp𝐼14ˆ14q, 𝜻`

𝑘
s as the initial value to integrate Eq. (36) from 𝑡`

𝑘
to 𝑡´

𝑘`1.160
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0t 1t


1t


kt


kt


1kt


 1kt


 wt


wt


ft 

Phase 1 Phase k+1 Phase w+1

kt


1kt



Integration from     to

Fig. 1 Integration is performed on each phase consecutively.

At the switching time 𝑡𝑠 P p𝑡`
𝑘
, 𝑡´

𝑘`1q where 𝑆p𝑡𝑠q “ 𝜀 or 𝑆p𝑡𝑠q “ ´𝜀, the STM across 𝑡𝑠 is calculated as [24]161

Ψp𝑡𝑠q “
B𝒚`

𝑠

B𝒚´
𝑠

“ 𝐼14ˆ14 `
`

9𝒚`
𝑠 ´ 9𝒚´

𝑠

˘ 1
9𝑆

B𝑆

B𝒚
(37)

Also, we can obtain162
d𝒚`

𝑠

d𝜆0
“

d𝒚´
𝑠

d𝜆0
`

`

9𝒚`
𝑠 ´ 9𝒚´

𝑠

˘ 1
9𝑆

ˆ

B𝑆

B𝒚

d𝒚´
𝑠

d𝜆0
`

B𝑆

B𝜆0

˙

(38)

where 9𝑆 “ p𝑐𝝀𝑟 ¨ 𝝀𝑣q { p𝑚𝜆0𝜆𝑣q.163

Suppose that the epochs of the switching time are located at 𝑡𝑠,1, 𝑡𝑠,2, ¨ ¨ ¨ , 𝑡𝑠,𝑁 P p𝑡`
𝑘
, 𝑡´

𝑘`1q, Φp𝑡´
𝑘`1, 𝑡

`

𝑘
q is calculated164

using the chain rule as165

Φp𝑡´
𝑘`1, 𝑡

`

𝑘
q “ Φp𝑡´

𝑘`1, 𝑡
`

𝑠,𝑁
qΨp𝑡𝑠,𝑁 qΦp𝑡´

𝑠,𝑁
, 𝑡`

𝑠,𝑁´1qΨp𝑡𝑠,𝑁´1q ¨ ¨ ¨Φp𝑡´
𝑠,2, 𝑡

`

𝑠,1qΨp𝑡𝑠,1qΦp𝑡´
𝑠,1, 𝑡

`

𝑘
q (39)

Then Φp𝑡 𝑓 , 𝑡0q is computed as166

Φp𝑡 𝑓 , 𝑡0q “ Φp𝑡 𝑓 , 𝑡
`
𝑤q

B𝒚`
𝑤

B𝒚´
𝑤

Φp𝑡´𝑤 , 𝑡
`

𝑤´1q ¨ ¨ ¨
B𝒚`

𝑘`1

B𝒚´

𝑘`1
Φp𝑡´

𝑘`1, 𝑡
`

𝑘
q ¨ ¨ ¨

B𝒚`

1

B𝒚´

1
Φp𝑡´1 , 𝑡0q

“ Φp𝑡 𝑓 , 𝑡
`
𝑤qΦp𝑡`𝑤 , 𝑡

`

𝑤´1q ¨ ¨ ¨Φp𝑡`
𝑘`1, 𝑡

`

𝑘
q ¨ ¨ ¨Φp𝑡`1 , 𝑡0q

(40)

where Φp𝑡`
𝑘`1, 𝑡

`

𝑘
q B B𝒚`

𝑘`1{B𝒚`

𝑘
“ B𝒚`

𝑘`1{B𝒚´

𝑘`1Φp𝑡´
𝑘`1, 𝑡

`

𝑘
q.167

Meanwhile, 𝜻´

𝑘`1 is obtained by integrating Eq. (35) with 𝜻`
𝑠 determined by Eq. (38), and 𝜻`

𝑘`1 satisfies168

𝜻`

𝑘`1 “
B𝒚`

𝑘`1

B𝒚´

𝑘`1
𝜻´

𝑘`1 (41)

It can be seen from Eq. (40) that the interior-point time should be provided to accurately calculate Φp𝑡 𝑓 , 𝑡0q. In this169

work, the interior-point time is provided by the guess solution. In addition, the common integration algorithm with170

a variable step has the issue of inaccuracy because of the discontinuous right-hand side of Eq. (36) [21]. Thus, it is171

essential to combine a variable-step integrator with the switching detection. In this aspect, the integration flowchart in172

[19] that combines the 7/8th-order Runge-Kutta scheme with the switching detection is employed to integrate Eq. (36).173
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The 𝑡𝑠 is located by dichotomy such that 𝑆p𝑡𝑠q “ 𝜀 or 𝑆p𝑡𝑠q “ ´𝜀 when 𝑆 crosses 𝜀 or ´𝜀 values.174

B. Derivatives of State and Costate175

The differential of 𝒚`

𝑘
at the interior-point time, i.e., 𝒚`

𝑗
, as well as 𝒚p𝑡 𝑓 q, for two categories of applications are176

depicted. Derivatives obtained in this section are necessary to specialize Φp𝑡`
𝑘`1, 𝑡

`

𝑘
q in Eq. (40) and 𝜻`

𝑘`1 in Eq. (41).177

1. Interplanetary transfer with flybys and rendezvous The differential of 𝒚`

𝑗
is178

d𝒚`

𝑗
“ Φp𝑡`

𝑗
, 𝑡`

𝑗´1qd𝒚`

𝑗´1 `
B𝒚`

𝑗

B𝝌 𝑗

d𝝌 𝑗 `
B𝒚`

𝑗

B𝜆0
d𝜆0 `

d𝒚`

𝑗

d𝑡 𝑗
d𝑡 𝑗 `

𝑗´1
ÿ

𝑞“1

B𝒚`

𝑗

B𝑡𝑞
d𝑡𝑞 (42)

where179

Φp𝑡`
𝑗
, 𝑡`

𝑗´1q “
B𝒚´

𝑗

B𝒚`

𝑗´1
,

B𝒚`

𝑗

B𝝌 𝑗

“

»

—

—

—

—

—

—

–

07ˆ𝑝 𝑗

´𝒉J
𝑐, 𝑗

0p7´𝑝 𝑗qˆ𝑝 𝑗

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
B𝒚`

𝑗

B𝜆0
“

B𝒚´

𝑗

B𝜆0
(43)

and180
d𝒚`

𝑗

d𝑡 𝑗
“ p𝒚`

𝑡 , 𝑗 ` q𝒚`

𝑡 , 𝑗 (44)

with 𝒉𝑐, 𝑗 “ B𝒉 𝑗{B𝒙𝑐 being a constant matrix. In this category, since B𝒚`

𝑗
{B𝒚´

𝑗
“ 𝐼14ˆ14, 𝑦`

𝑗
and 𝑦´

𝑗
are interchangeable181

for derivatives such as Φp𝑡`
𝑗
, 𝑡`

𝑗´1q. In Eq. (44), p𝒚`

𝑡 , 𝑗 B
´

B𝒚`

𝑗
{B𝒚´

𝑗

¯

9𝒚´

𝑗
“ 9𝒚´

𝑗
and q𝒚`

𝑡 , 𝑗 B B𝒚`

𝑗
{B𝑡 𝑗 “ 014ˆ1 are terms182

that implicitly and explicitly depend on 𝑡 𝑗 , respectively. The last term in Eq. (42), as well as terms related to d𝑡𝑞 in the183

following, will be discussed in Sec. III.C.184

The 𝜻`

𝑗
satisfies185

𝜻`

𝑗
“ 𝜻´

𝑗
(45)

The vectors 𝒚`

𝑗
“ r𝒙´

𝑗
, 𝝀´

𝑐, 𝑗
´ 𝒉J

𝑐, 𝑗 𝝌 𝑗 , 𝝀̃
´

𝑗 s and 𝜻`

𝑗
in Eq. (45) are used to integrate Eq. (36) within r𝑡`

𝑗
, 𝑡´

𝑗`1s.186

2. Interplanetary transfer with gravity assists The differential of 𝒚`

𝑗
is187

d𝒚`

𝑗
“ Φp𝑡`

𝑗
, 𝑡`

𝑗´1qd𝒚`

𝑗´1 `
B𝒚`

𝑗

B𝒙`

𝑑, 𝑗

d𝒙`

𝑑, 𝑗
`

B𝒚`

𝑗

B𝝌 𝑗

d𝝌 𝑗 `
B𝒚`

𝑗

B𝜅 𝑗
d𝜅 𝑗 `

d𝒚`

𝑗

d𝑡 𝑗
d𝑡 𝑗 `

B𝒚`

𝑗

B𝜆0
d𝜆0 `

𝑗´1
ÿ

𝑞“1

B𝒚`

𝑗

B𝑡𝑞
d𝑡𝑞 (46)
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where188

Φp𝑡
`
𝑗
, 𝑡

`

𝑗´1q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

B𝒙´
𝑐, 𝑗

B𝒚`

𝑘´1

03ˆ14

B𝒙̃´
𝑗

B𝒚`

𝑗´1
B𝝀´

𝑐, 𝑗

B𝒚`

𝑗´1
B𝝀`

𝑑, 𝑗

B𝒚`

𝑗´1
B𝝀̃

´
𝑗

B𝒚`

𝑗´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
B𝒚`

𝑗

B𝒙`

𝑑, 𝑗

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

03ˆ3

𝑰3ˆ3

04ˆ3

B𝝀`

𝑑, 𝑗

B𝒙`

𝑑, 𝑗

01ˆ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
B𝒚`

𝑗

B𝝌 𝑗

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

07ˆ4

B𝝀`
𝑐, 𝑗

B𝝌 𝑗

B𝝀`

𝑑, 𝑗

B𝝌 𝑗

01ˆ4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
B𝒚`

𝑗

B𝜅 𝑗
“

»

—

—

—

—

—

—

—

–

010ˆ1

B𝝀`

𝑑, 𝑗

B𝜅 𝑗

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
B𝒚`

𝑗

B𝜆0
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

B𝒙´
𝑐, 𝑗

B𝜆0

03ˆ1

B𝒙̃´
𝑗

B𝜆0
B𝝀´

𝑐, 𝑗

B𝜆0
B𝝀`

𝑑, 𝑗

B𝜆0
B𝝀̃

´
𝑗

B𝜆0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(47)

and189
d𝒚`

𝑗

d𝑡 𝑗
“ p𝒚`

𝑡 , 𝑗 ` q𝒚`

𝑡 , 𝑗 (48)

with190

p𝒚`

𝑡 , 𝑗 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

9𝒙´

𝑐, 𝑗

03ˆ1

9̃𝒙´

𝑗

9𝝀
´

𝑐, 𝑗

´
B𝝈J

𝑑, 𝑗`
𝜅 𝑗

B𝒙´

𝑑, 𝑗

9𝒙´

𝑑, 𝑗

9̃𝝀´

𝑗

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q𝒚`

𝑡 , 𝑗 “

»

—

—

—

—

—

—

—

–

010ˆ1

´

˜

B𝝓J
𝑑, 𝑗`

𝜒𝑑, 𝑗

B𝑡 𝑗
`

B𝝈J
𝑑, 𝑗`

𝜅 𝑗

B𝑡 𝑗

¸

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(49)

Here, q𝒚`

𝑡 , 𝑗 is a non-zero vector.191

The 𝜻`

𝑗
satisfies192

𝜻`

𝑗
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

𝑰3ˆ3

03ˆ3

1

𝑰3ˆ3

´
B𝝈J

𝑑, 𝑗`
𝜅

B𝒙´

𝑑, 𝑗

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

𝜻´

𝑗
(50)

where 𝝈𝑑, 𝑗`p𝑡, 𝒙´

𝑑, 𝑗
, 𝒙`

𝑑, 𝑗
q “ B𝜎𝑗{B𝒙`

𝑑, 𝑗
and 𝝓𝑑, 𝑗`p𝑡, 𝒙`

𝑑, 𝑗
q “ B𝜙 𝑗{B𝒙`

𝑑, 𝑗
. The vector 𝒚`

𝑗
“ r𝒙´

𝑐, 𝑗
, 𝒙`

𝑑, 𝑗
, 𝒙̃´

𝑗
, 𝝀´

𝑐, 𝑗
´193

𝒉J
𝑐, 𝑗 𝝌𝑐, 𝑗 ,´𝝓J

𝑑, 𝑗`
𝜒𝑑, 𝑗 ´ 𝝈J

𝑑, 𝑗`
𝜅 𝑗 , 𝝀̃

´

𝑗 s and 𝜻`

𝑘
in Eq. (50) are used to integrate Eq. (36) within r𝑡`

𝑗
, 𝑡´

𝑗`1s.194
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The differential of 𝒚p𝑡 𝑓 q is the same for both categories, as195

d𝒚p𝑡 𝑓 q “
B𝒚p𝑡 𝑓 q

B𝒚`
𝑤

d𝒚`
𝑤 `

B𝒚p𝑡 𝑓 q

B𝜆0
d𝜆0 `

𝑤
ÿ

𝑞“1

B𝒚p𝑡 𝑓 q

B𝑡𝑞
d𝑡𝑞 (51)

where the term related to d𝑡 𝑓 does not exist, since 𝑡 𝑓 is fixed.196

C. Derivatives of Constraints and the Chain Rule197

Once derivatives in Sec. III.A and Sec. III.B are obtained, gradients of constraints at 𝑡 𝑗 can be computed via two198

steps: the derivation of constraints with respect to decision variables at 𝑡 𝑗 , and the application of the chain rule to199

calculate derivatives of constraints with respect to decision variables at 𝑡 𝑗´𝑞 , 𝑞 ě 1. For the first step, the differential of200

a general constraint 𝒩𝑗p𝑡 𝑗 , 𝜆0, 𝒚
´

𝑗
, 𝒚`

𝑗
, 𝝌 𝑗 , 𝜿 𝑗 , 𝛼 𝑗q is201

d𝒩𝑗 “
B𝒩𝑗

B𝒚`

𝑗´1
d𝒚`

𝑗´1 `
B𝒩𝑗

B𝒙`

𝑑, 𝑗

d𝒙`

𝑑, 𝑗
`

B𝒩𝑗

B𝜒 𝑗

d𝝌 𝑗 `
B𝒩𝑗

B𝜿 𝑗

d𝜿 𝑗 `
B𝒩𝑗

B𝛼 𝑗

d𝛼 𝑗 `
d𝒩𝑗

d𝑡 𝑗
d𝑡 𝑗

`

˜

B𝒩𝑗

B𝒚´

𝑗

B𝒚´

𝑗

B𝜆0
`

B𝒩𝑗

B𝒚`

𝑗

B𝒚`

𝑗

B𝜆0
`

B𝒩𝑗

B𝜆0

¸

d𝜆0 `

𝑗´1
ÿ

𝑞“1

B𝒩𝑗

B𝑡𝑞
d𝑡𝑞

(52)

where202
B𝒩𝑗

B𝒚`

𝑗´1
“

B𝒩𝑗

B𝒚´

𝑗

B𝒚´

𝑗

B𝒚`

𝑗´1
`

B𝒩𝑗

B𝒚`

𝑗

B𝒚`

𝑗

B𝒚`

𝑗´1
(53)

203
d𝒩𝑗

d𝑡 𝑗
“ x𝒩𝑡 , 𝑗 ` |𝒩𝑡 , 𝑗 , x𝒩𝑡 , 𝑗 “

B𝒩𝑗

B𝒚´

𝑗

9𝒚´

𝑗
`

B𝒩𝑗

B𝒚`

𝑗

p𝒚`

𝑡 , 𝑗 ,
|𝒩𝑡 , 𝑗 “

B𝒩𝑗

B𝑡 𝑗
`

B𝒩𝑗

B𝒚`

𝑗

q𝒚`

𝑡 , 𝑗 (54)

Then d𝒩𝑗{d𝜆0 is204
d𝒩𝑗

d𝜆0
“

B𝒩𝑗

B𝒚´

𝑗

𝜻´

𝑗
`

B𝒩𝑗

B𝒚`

𝑗

𝜻`

𝑗
`

B𝒩𝑗

B𝜆0
(55)

The terms related to d𝒙`

𝑑, 𝑗
, d𝜅 𝑗 and d𝛼 𝑗 do not appear in flyby and rendezvous cases. Note that variables 𝝀`

𝑐, 𝑗
and 𝝀`

𝑑, 𝑗
205

in 𝒩𝑗 should be expressed based on Eqs. (20), (29), and (31) accordingly before deriving B𝒩𝑗{B𝒙`

𝑑, 𝑗
, B𝒩𝑗{B𝜒 𝑗 , and206

B𝒩𝑗{B𝜿 𝑗 .207

Two equality constraints are taken as examples, i.e., 𝒉 𝑗 in Eqs. (17) and (18) that only involves continuous state208

component, and 𝜙 𝑗 in Eq. (24) that involves both continuous and discontinuous state component. The differential of 𝒉 𝑗209

is210

d𝒉 𝑗 “
B𝒉 𝑗

B𝒙𝑐, 𝑗

B𝒙𝑐, 𝑗

B𝒚`

𝑗´1
d𝒚`

𝑗´1 `
d𝒉 𝑗

d𝑡 𝑗
d𝑡 𝑗 `

B𝒉 𝑗

B𝒙𝑐, 𝑗

B𝒙𝑐, 𝑗

B𝜆0
d𝜆0 `

𝑗´1
ÿ

𝑞“1

B𝒉 𝑗

B𝑡𝑞
d𝑡𝑞 (56)

where211
d𝒉 𝑗

d𝑡 𝑗
“ p𝒉𝑡 , 𝑗 ` q𝒉𝑡 , 𝑗 , p𝒉𝑡 , 𝑗 “ 𝒗 𝑗 , q𝒉𝑡 , 𝑗 “ ´𝒗𝑇, 𝑗 (57)
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Then d𝒉 𝑗{d𝜆0 is212
d𝒉 𝑗

d𝜆0
“

B𝒉 𝑗

B𝒙𝑐, 𝑗

d𝒙𝑐, 𝑗
d𝜆0

(58)

The values of B𝒙𝑐, 𝑗{B𝒚`

𝑗´1 and d𝒙𝑐, 𝑗{d𝜆0 are extracted from Φp𝑡´
𝑗
, 𝑡`

𝑗´1q and 𝜻´

𝑗
, respectively.213

The differential of 𝜙 𝑗 is214

d𝜙 𝑗 “
B𝜙 𝑗

B𝒙´

𝑑, 𝑗

B𝒙´

𝑑, 𝑗

B𝒚`

𝑗´1
d𝒚`

𝑗´1 `
B𝜙 𝑗

B𝒙`

𝑑, 𝑗

d𝒙`

𝑑, 𝑗
`

d𝜙 𝑗

d𝑡 𝑗
d𝑡 𝑗 `

B𝜙 𝑗

B𝒙´

𝑑, 𝑗

B𝒙´

𝑑, 𝑗

B𝜆0
d𝜆0 `

𝑗´1
ÿ

𝑞“1

B𝜙 𝑗

B𝑡𝑞
d𝑡𝑞 (59)

where215
d𝜙 𝑗

d𝑡 𝑗
“ p𝜙𝑡 , 𝑗 ` q𝜙𝑡 , 𝑗 , p𝜙𝑡 , 𝑗 “

B𝜙 𝑗

B𝒙´

𝑑, 𝑗

9𝒙´

𝑑, 𝑗
, q𝜙𝑡 , 𝑗 “

B𝜙 𝑗

B𝑡 𝑗
(60)

Then d𝜙 𝑗{d𝜆0 is216
d𝜙 𝑗

d𝜆0
“

B𝜙 𝑗

B𝒙´

𝑑, 𝑗

d𝒙´

𝑑, 𝑗

d𝜆0
(61)

In Eqs. (59-61), B𝜙 𝑗{B𝒙´

𝑑, 𝑗
“

`

𝒗´
8

˘J
{𝑣´

8, B𝜙 𝑗{B𝒙`

𝑑, 𝑗
“ ´

`

𝒗`
8

˘J
{𝑣`

8, B𝜙 𝑗{B𝑡 𝑗 “ ´𝒂J
T, 𝑗𝒗

´
8{𝑣´

8 ` 𝒂J
T, 𝑗𝒗

`
8{𝑣`

8, and217

𝒂T, 𝑗 “ ´𝜇 𝑗 𝒓T, 𝑗{}𝒓T, 𝑗}
3. Besides, the inequality constraint in Eq. (25) is handled as the equality constraint in Eq.218

(26) by using the slack variable. The differential of Eq. (26) can be carried out by referring to the differential of 𝜙 𝑗 .219

The derivation of d𝒚`

𝑗
in Sec. III.B and differentials of all constraints are provided as the external material∗. These220

derivatives can be implemented with much less efforts by using MATLAB symbolic tools.221

For the second step, the derivative formulae are different based on whether the decision variable is the time or not.222

For variables 𝝌 𝑗´𝑞 , 𝒙`

𝑑, 𝑗´𝑞
, 𝛼 𝑗´𝑞 or 𝜅 𝑗´𝑞 , the process to calculate the derivative of 𝒩𝑗 is the same. Take B𝒩𝑗{B𝝌 𝑗´𝑞223

as an example. When 𝑞 “ 1, there exists224
B𝒩𝑗

B𝝌 𝑗´1
“

B𝒩𝑗

B𝒚`

𝑗´1

B𝒚`

𝑗´1

B𝝌 𝑗´1
(62)

The value of B𝒩𝑗{B𝝌 𝑗´𝑞 (𝑞 ą 1) is determined by using the chain rule as225

B𝒩𝑗

B𝝌 𝑗´𝑞

“
B𝒩𝑗

B𝒚`

𝑗´1

B𝒚`

𝑗´1

B𝒚`

𝑗´2
¨ ¨ ¨

B𝒚`

𝑗´𝑞`1

B𝒚`

𝑗´𝑞

B𝒚`

𝑗´𝑞

B𝝌 𝑗´𝑞

(63)

If the decision variable is the interior-point time, the calculation of d𝒩𝑗{d𝑡 𝑗´1 is divided into two parts, i.e.,226

d𝒩𝑗

d𝑡 𝑗´1
“

B𝒩𝑗

B𝒚`

𝑗´1

d𝒚`

𝑗´1

d𝑡 𝑗´1
`

B𝒩𝑗

B𝑡 𝑗´1
(64)

∗See http://dx.doi.org/10.13140/RG.2.2.25674.54724/1
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where227
B𝒩𝑗

B𝑡 𝑗´1
“ ´ x𝒩𝑡 , 𝑗 (65)

The term |𝒩𝑡 , 𝑗 is not involved in Eq. (65) since 𝑡 𝑗 is assumed unaltered at derivation.228

Applying the chain rule, d𝒩𝑗{d𝑡 𝑗´𝑞 (𝑞 ě 2) can be computed as229

d𝒩𝑗

d𝑡 𝑗´𝑞

“
B𝒩𝑗

B𝒚`

𝑗´1

B𝒚`

𝑗´1

B𝒚`

𝑗´2
¨ ¨ ¨

B𝒚`

𝑗´𝑞`1

B𝒚`

𝑗´𝑞

d𝒚`

𝑗´𝑞

d𝑡 𝑗´𝑞

`
B𝒩𝑗

B𝑡 𝑗´𝑞

(66)

where230

B𝒩𝑗

B𝑡 𝑗´𝑞

“

$

’

’

’

’

&

’

’

’

’

%

´
B𝒩𝑗

B𝒚`

𝑗´1
p𝒚`

𝑡 , 𝑗´1 𝑞 “ 2

´
B𝒩𝑗

B𝒚`

𝑗´1

B𝒚`

𝑗´1

B𝒚`

𝑗´2
¨ ¨ ¨

B𝒚`

𝑗´𝑞`2

B𝒚`

𝑗´𝑞`1
p𝒚`

𝑡 , 𝑗´𝑞`1 𝑞 ě 3
(67)

In [17, 18], only the first term in Eq. (64) is considered. However, the second term is also necessary to produce231

accurate gradients in our applications (See Sec. IV.A). Eqs. (63), (64) and (66) can be used to compute derivatives of232

𝒩𝑗 . However, the computational burden would be high if every term is computed from scratch at 𝑡 𝑗 , thus it is necessary233

to recursively calculate them. First, the matrix 𝐵 𝑗´1 is defined as234

𝐵 𝑗´1 “
B𝒩𝑗

B𝒚`

𝑗´1
(68)

Next, 𝐵𝑙 , 𝑙 “ 𝑗 ´ 𝑞, ¨ ¨ ¨ , 𝑗 ´ 2 is computed as235

𝐵𝑙 “ 𝐵𝑙`1
B𝒚`

𝑙`1

B𝒚`

𝑙

(69)

then236
B𝒩𝑗

B𝝌 𝑗´𝑞

“ 𝐵 𝑗´𝑞

B𝒚`

𝑗´𝑞

B𝝌 𝑗´𝑞

, 𝑞 ě 1 (70)

and237
d𝒩𝑗

d𝑡 𝑗´𝑞

“ 𝐵 𝑗´𝑞

d𝒚`

𝑗´𝑞

d𝑡 𝑗´𝑞

´ 𝐵 𝑗´𝑞`1p𝒚`

𝑡 , 𝑗´𝑞`1, 𝑞 ě 2 (71)

The algorithm to recursively calculate derivatives of 𝒩𝑗 is shown in Algorithm 1. Note in Algorithm 1 that the term238

related to d𝜆0 in the differential such as Eq. (46) is unnecessary to compute but 𝜻`

𝑗
such as Eq. (50) is required to239

compute.240
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Algorithm 1 Calculate 𝒩𝑗 and its analytic gradients.
1: for 𝑘 “ 0 : 𝑤 do{Loop each phase}
2: Integrate Eq. (36) from 𝑡

`

𝑘
to 𝑡

´

𝑘`1 with 𝒛`

𝑘
.

3: Extract Φp𝑡
`

𝑘`1, 𝑡
´

𝑘
q, 𝒚´

𝑘`1, and 𝜻´

𝑘`1 from 𝒛´

𝑘`1.
4: if 𝑘 ď 𝑤 ´ 1 then {Interior-point time is 𝑡𝑘`1.}
5: 𝑗 “ 𝑘 ` 1.
6: if 𝒩𝑗 is a flyby or rendezvous constraint then
7: Compute 𝝀`

𝑐, 𝑗
from Eq. (20).

8: Compute derivatives of 𝒚`
𝑗

in Eqs. (43)-(45).
9: else

10: Compute 𝝀`
𝑐, 𝑗

from Eq. (29) and 𝝀`

𝑑, 𝑗
from Eq. (31).

11: Compute derivatives of 𝒚`
𝑗

in Eqs. (47)-(50).
12: end if
13: Formulate 𝒛`

𝑗
and compute 𝒩𝑗 .

14: Compute derivatives of 𝒩𝑗 in Eq. (52)-(54).
15: Compute d𝒩𝑗{d𝜆0 in Eq. (55).
16: Compute 𝐵 𝑗´1 in Eq. (68).
17: for 𝑙 “ 𝑗 ´ 1 : ´1 : 1 do
18: if 𝑙 ` 1 “ 𝑗 then
19: Compute d𝒩𝑗{d𝑡𝑙 in Eq. (64).
20: else
21: Compute d𝒩𝑗{d𝑡𝑙 in Eq. (71).
22: end if
23: Compute B𝒩𝑗{B𝝌𝑙 in Eq. (70).
24: Compute B𝒩𝑗{B𝒙`

𝑑,𝑙
, B𝒩𝑗{B𝛼𝑙 , and B𝒩𝑗{B𝜅𝑙 if required.

25: 𝐵𝑙´1 is updated using Eq. (69).
26: end for
27: Extract B𝒩𝑗{B𝝀𝑖 from 𝐵0.
28: end if
29: end for

IV. Simulations241

Two simulation examples of interplanetary transfers are presented. All simulations are performed under an Intel242

Core i7-9750H, CPU@2.6 GHz, Windows 10 system with MATLAB R2019a. The code for integrating Eq. (36) is243

converted to MEX (MATLAB Executable) file to speed up simulations. Table 1 provides the physical constants used244

in all examples. MATLAB function fsolve is employed to solve the shooting problem, with the maximal iteration245

number as 70. The initial increment of 𝜀 is Δ𝜀 “ 0.05. When the solution for current 𝜀 succeeds, a slightly larger Δ𝜀 is246

awarded, as Δ𝜀 Ð 1.05 ˆ Δ𝜀, otherwise half of Δ𝜀 is used, as Δ𝜀 Ð 0.5 ˆ Δ𝜀. The guess of unknowns for the 𝑖th step247

(𝑖 ě 0) of the continuation process is denoted 𝒑𝑖,𝑔𝑢𝑒𝑠𝑠, and the optimal solution for the 𝑖th step as 𝒑𝑖 . For 𝑖 “ 1, the248

guess solution is set as 𝒑1,𝑔𝑢𝑒𝑠𝑠 “ 𝒑0 with 𝒑0 as the energy-optimal solution. For 𝑖 ě 2, the guess solution is generated249

by using the linear interpolation, as250

𝒑𝑖,𝑔𝑢𝑒𝑠𝑠 “
𝒑𝑖´1 ´ 𝒑𝑖´2

𝜀𝑖´1 ´ 𝜀𝑖´2
p𝜀𝑖 ´ 𝜀𝑖´1q ` 𝒑𝑖´1 (72)
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In addition, the position and velocity of planets and asteroids are calculated based on [25] and using orbital elements251

from Minor Planet Center †, respectively.252

Table 1 Gravitational parameters and scaling units.

Physical constant Value

Sun mass parameter, 𝜇𝑠 1.327124 ˆ 1011 km3{s2

Gravitational field, 𝑔0 9.80665 m{s2

Astronomical unit, AU 1.495979 ˆ 108 km
Time unit, TU 5.022643 ˆ 106 s
Velocity unit, VU 29.784692 km{s

A. Earth-Jupiter Transfer via Mars Gravity Assist253

The example of fuel-optimal Earth-Mars-Jupiter (EMJ) transfer with Mars gravity assist from [9] is reproduced,254

with the transfer duration as 2201 days. The spacecraft parameters, Mars parameters and boundary conditions are given255

in Table 2, where the initial and terminal heliocentric position and velocity of the spacecraft are set to coincide with256

those of the Earth and Jupiter, respectively.257

The unknowns are r𝜆0, 𝝀𝑖 , 𝝌1, 𝒙
`

𝑑,1, 𝛼1, 𝜅1, 𝑡1s P R18, with 𝝀𝑖 P R7, 𝝌1 P R4 and 𝒙`

𝑑,1 P R3. Both energy- and258

fuel-optimal solutions are summarized in Table 3, where the fuel-optimal final mass of the spacecraft is 16027.3 kg. The259

fuel-optimal trajectory is shown in Fig. 2, involving four thrust segments and three coast segments. The corresponding260

fuel-optimal variations of 𝑢, 𝑆, 𝑚 are shown in Fig. 3, where red solid line and blue dashed line coincide with Fig. 2,261

and blue dotted line labels the discontinuity. The boundary conditions are slightly different from [9], but their impact on262

the fuel-optimal solution is negligible. This can be seen from the facts that the bang-bang control profile coincides with263

each other, and the difference on the final mass (16022 kg in [9]) is admissible (0.13% of the fuel consumption). Also,264

the difference of final mass between our result and the result from [26] (16026 kg) is very small.265

Regarding the computational time, the continuation using the presented method takes about 20 s, while the266

continuation with the FD method inherently embedded in MATLAB takes about 40 s. Note that only Eq. (13), instead267

of Eq. (36), is used for dynamical integration in the FD method. The computational efficiency of our method is superior268

than the FD method by a factor of 2. The computational time for both analytic gradients and the FD method is much269

less than the work in [9] (about 3 mins), which is executed using the solution of the 𝑖th step as the guess solution of the270

p𝑖 ` 1qth step under Microsoft Visual C++ 6.0 with 4th-order Runge–Kutta integrator.271

To verify that the derivatives with respect to the gravity-assist time require the second term in Eq. (64), the272

comparison between the FD method and analytic gradients on the derivative of terminal conditions in Eq. (4) with273

†See https://minorplanetcenter.net/
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respect to the gravity-assist time is executed. The central FD method is used, as [13]274

𝑓 1p𝑥q “
´ 𝑓 p𝑥 ` 2𝜂q ` 8 𝑓 p𝑥 ` 𝜂q ´ 8 𝑓 p𝑥 ´ 𝜂q ` 𝑓 p𝑥 ´ 2𝜂q

12𝜂
(73)

where 𝜂 “ 1 ˆ 10´6 is the step size. Denote the derivatives obtained by Eq. (73) and analytic gradients as 𝐽FD P R6 and275

𝐽AG P R6. Since there is only one interior-point constraint, and the control of the energy-optimal solution is continuous276

except at the interior-point time, the gradients calculated based on the energy-optimal solution from the FD method277

can be used as the reference. The relative error max𝑖“1,2,¨¨¨ ,6 |p𝐽FDp𝑖q ´ 𝐽AGp𝑖qq{𝐽FDp𝑖q| is calculated to represent the278

gradient accuracy. The relative error is about 3.3 ˆ 10´5 when Eq. (64) is applied, while about 4.3 ˆ 10´3 is obtained279

when only the first term of Eq. (64) is used, indicating that the second term of Eq. (64) is indeed required for the280

accuracy of analytic gradients.281

Table 2 Parameters for EMJ transfer.

Physical constant Value

𝐼sp, s 6000
𝑇max, N 2.26
Initial mass, kg 20000.0
Mars mass parameter, km3{s2 42828.3
Mars 𝑟min, km 3889.9
Mars radius, km 3389.9
Initial time 16-Nov-2021, 00:00:00
Flight time, days 2201.0
Initial position, AU [0.587638, 0.795476, ´3.953062 ˆ 10´5]
Initial velocity, VU [-0.820718, 0.590502, ´2.934460 ˆ 10´5]
terminal position, AU [-5.205108, 1.491385, 0.110274]
terminal velocity, VU [-0.126219, -0.401428, 4.494423 ˆ 10´3]

B. Earth-Earth Transfer via Venus gravity assist, asteroids flyby and Rendezvous282

The fuel-optimal Earth-Venus-2014 YD-2000 SG344-Earth (EVYSE) transfer, involving Venus gravity assist, 2014283

YD flyby and 2000 SG344 rendezvous, is solved. These asteroids are selected from the preliminary result of asteroid284

screening for the Miniaturised Asteroid Remote Geophysical Observer (M-ARGO) in [27]. Orbital elements of the285

asteroids are listed in Table 4. Spacecraft parameters and boundary conditions are shown in Table 5, where the initial286

and terminal heliocentric position and velocity of the spacecraft are set to coincide with those of the Earth. The287

unknowns to solve are r𝜆0, 𝝀𝑖 , 𝝌1, 𝒙
`

𝑑.1, 𝛼1, 𝜅1, 𝑡1, 𝝌2, 𝑡2, 𝝌3, 𝑡3s P R29, with 𝝌1 P R4, 𝝌2 P R3 and 𝝌3 P R6. Energy-288

and fuel-optimal solutions are given in Table 6. The fuel-optimal trajectory is shown in Fig. 4, consisting of 7 thrust289

arcs and 6 coast arcs. The corresponding 𝑢, 𝑆 and 𝑚 are illustrated in Fig. 5. The variations of costates are shown in290
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Table 3 Energy- and fuel-optimal solutions for the EMJ transfer.

Terms Energy-optimal solution Fuel-optimal solution

𝜆0 0.615841 0.819085
𝝀𝑟𝑖 [-0.278574, -0.459643, -0.053818] [-0.211713, -0.293487, -0.031748]
𝝀𝑣𝑖 [0.362598, -0.334005, -0.055783] [0.279598, -0.208178, -0.085726]
𝝀𝑚𝑖 0.176741 0.177985
𝝌1 [-0.007492, -0.103902, 0.062598, -0.191078] [0.026271, -0.058226, 0.077165, -0.161649]
𝒙`

𝑑,1, VU [0.912146, 0.285078, -0.004974] [0.820778, 0.514477, -0.003464]
𝜅1 0.017362 0.020703
𝛼1 0 0
GA date 𝑡1 19 Feb 2024 19 Mar 2024
GA 𝑣8, km/s 3.189 3.602
GA altitude, km 500 500
Final mass, kg 15742.7 16027.3

Fig. 2 Fuel-optimal trajectory for the EMJ trajectory.

Fig. 6, where the costate discontinuities across the interior-point time are illustrated.291

The computational time of energy-to-fuel-optimal continuation for the presented method is about 14.6 mins, which292

takes longer time than the EMJ trajectory, because the increased sensitivity requires smaller Δ𝜀 during the continuation.293

When the FD method is employed, the continuation fails and terminates at 𝜀 « 0.045 since Δ𝜀 is smaller than the294

threshold (Δ𝜀 ď 1.0 ˆ 10´6) after about 3.2 hours of computation. A comparison with the solution from the General295

Purpose Optimal Control Software (GPOPS) [28] is performed, see Table 6 and Fig. 7. It is clear that the GPOPS296
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Fig. 3 Fuel-optimal variations of 𝑢, 𝑆, and 𝑚 for the EMJ trajectory.

solution coincides with the solution obtained by using the presented method. Compared to the GPOPS solution, our297

method enables to obtain the fuel-optimal bang-bang solution featuring with accurate switching time. On the other hand,298

our tests indicate that it is difficult to find a solution that satisfies the optimality tolerance lower than 1.0 ˆ 10´5 by299

using GPOPS. Also, since much fewer unknowns are required to solve for the indirect method, evolutionary algorithms300

can be applied to broadly searching initial guesses of the energy-optimal problem with a small number of unknowns [9].301

Evolutionary algorithms do not require accurate gradients in general, and the outcome is a guess solution that does302

not accurately satisfy the necessary conditions of optimality. Once a guess solution is found, the analytic gradients303

developed in this work can be used to further determine the accurate energy- and fuel-optimal solutions. We believe that304

a hybrid algorithm that combines an evolutionary algorithm and analytic gradients would improve effectiveness and305

efficiency on obtaining a convergent solution. However, the proof of this conjecture is unnecessary for this Note.306

Table 4 Orbital elements of 2014 YD and 2000 SG344.

Terms 2014 YD 2000 SG344

Semimajor axis (AU) 1.072142 0.9774614
Eccentricity 0.0866205 0.0669332
Inclination (deg) 1.73575 0.11213
Longitude of ascending node (deg) 117.64009 191.95995
Argument of perihelion (deg) 34.11615 275.30264
Mean anomaly at epoch (deg) 278.1406 347.71212
Epoch 27 May 2019 27 May 2019
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Table 5 Parameters for the EVYSE trajectory.

Physical constant Value

𝐼sp, s 2300
𝑇max, N 0.75
Initial mass, kg 1300
Venus mass parameter, km3{𝑠2 324858.592
Venus 𝑟min, km 21051.8
Venus radius, km 6051.8
Launch date 13 Apr 2015, 00:00:00
Arrival date 01 Nov 2017, 00:00:00
Initial position, AU [-0.925875, -0.384412, 1.337409 ˆ 10´5]
Initial velocity, VU [0.367225, -0.927443, 3.226668 ˆ 10´5]
terminal position, AU [0.776680, 0.618052, ´2.507007 ˆ 10´5]
terminal velocity, VU [-0.639034, 0.778835, ´3.159191 ˆ 10´5]

Table 6 Energy-optimal, fuel-optimal and GPOPS solutions for the EVYSE transfer.

Terms Energy-optimal solution Fuel-optimal solution GPOPS solution

𝜆0 0.614541 0.532128 -
𝝀𝑟𝑖 [-0.128983, -0.002532, -0.116029] [0.101367, 0.103705, -0.087083] -
𝝀𝑣𝑖 [0.207334, -0.270715, -0.007851] [0.179221, -0.045626, 0.006821] -
𝝀𝑚𝑖 0.467548 0.446129 -
𝝌1 [0.265046, 0.197794, 0.162365, -0.070416] [0.364608, 0.127974, 0.137367, -0.029487] -
𝜅1 0.008614 0.011356 -
𝛼1 0 0 0
𝒙`

𝑑,1, VU [-0.523540, 1.223757, 0.011536] [-0.193133, 1.321951, 0.009115] [-0.194831, 1.321486, 0.008853]
GA date 𝑡1 23 Sept 2015 13 Sept 2015 13 Sept 2015
GA 𝑣8, km/s 4.8075 4.9393 4.9344
GA altitude, km 15000 15000 15000
𝝌2 [0.048014, -0.032200, -0.014900] [0.046725, -0.046363, -0.014239] -
Flyby date 𝑡2 05 May 2016 21 Apr 2016 21 Apr 2016
𝝌3 [-0.110824, -0.180728, 0.019802 [-0.278104, -0.213831, 0.040000 -

-0.233212, 0.114268, 0.013552] -0.227530, 0.323050, 0.020738] -
Rendezvous date 𝑡3 26 Nov 2016 01 Nov 2016 02 Nov 2016
Final mass, kg 193.02 339.82 340.14

Conclusions307

Gradient accuracy is significant when solving low-thrust trajectories with flybys, rendezvous, and gravity assists,308

due to the discontinuities produced by the bang-bang control and the time-dependent interior-point constraints. This309

work investigates the benefits of analytic gradients on solving this problem. The formulation of the normalized310

low-thrust optimization is employed, since it allows searching multipliers and initial costates by restricting them on311

a unit hypersphere. Gradients are strictly analyzed and their analytical expressions are obtained, although gradients312

are discontinuous at epochs of the interior point and bang-bang controls. The recursive formulae of the chain rule313
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Fig. 4 Fuel-optimal trajectory for the EVYSE trajectory.
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Fig. 5 Fuel-optimal variations of 𝑢, 𝑆, and 𝑚 for the EVYSE trajectory.

to calculate gradients are developed, which can be commonly applied to other problems that involve interior-point314

constraints. The outcome is a computational framework that incorporates analytic gradients, energy-to-fuel-optimal315

continuation, and the integration flowchart embedded with the switching detection, which has the advantage of offering316

the desired fuel-optimal bang-bang solutions and their gradients.317

Two numerical examples of interplanetary transfers are simulated, and the obtained solutions are verified against318

either the existing solution in literature or the solution from the direct method. The comparison with the finite319

difference method is executed, verifying the formulae developed in this work that calculates gradients with respect to the320
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Fig. 6 Fuel-optimal variations of costates for the EVYSE trajectory.
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Fig. 7 Comparison of fuel-optimal thrust throttle profile to the GPOPS solution.

interior-point time, and indicating that the presented method enables to enhance effectively both the solver execution321

speed and its convergence performance compared to the finite difference method.322
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