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ABSTRACT Aircraft control surfaces are subjected to uncertain design parameters and time–varying
external disturbances related to aerodynamic loads. This paper presents a control formulation for their
positioning based on a velocity/position dual loop, embedding an arbitrary order of integral actions
determined through a simple linear design. The adoption of an appropriate high order integration aims
to compensate for external disturbances, modeling uncertainties and the impact of some nonlinearities.
Relevant design and implementation issues were also described, including windup mitigation and the use of
an observer to compensate for out–of–band disturbances. After a numerical model validation comprising a
Monte Carlo assessment of the combined uncertainties, the controller was verified experimentally. The test
bench was made up of the aileron of a wind tunnel model, driven by an electric motor through a mildly
tensioned timing belt transmission. The results of a significant test set are provided to demonstrate the
effectiveness of such a controller against noteworthy design uncertainties, such as sliding friction, sensor
failure, free play due to inadequate belt tension, and approximate design parameters.

INDEX TERMS Design uncertainty, disturbance rejection, high order integration, nonlinearity, real–time
control, servo controller.

NOMENCLATURE
1t sampling time.
ω motor velocity (rad s−1).
ω0, f0 generic design bandwidths (rad s−1, Hz).
ωc commanded control surface velocity (rad s−1).
ωf control surface velocity feed–forward (rad s−1).
ωi current drive bandwidth (rad s−1).
ωr reference motor velocity (rad s−1).
ωs control surface velocity (rad s−1).
τ toothed belt transmission ratio θ/θs.
θ motor rotation (rad).
θc commanded control surface rotation (rad).
θr reference control surface reference rotation (rad).
θs control surface rotation (rad).
C motor damping (Nm s).
J total inertia (kgm2).
Ja control surface inertia (kgm2).

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosario Pecora .

Jm motor inertia (kgm2).
K motor stiffness (Nm).
kpP proportional gain of the position loop, equal to kpI ,0.

kvP proportional gain of the velocity loop, equal to kvI ,0.

kpI ,i i–th order integral gain of the position loop.

kvI ,i i–th order integral gain of the velocity loop.

m maximum integration order for the velocity loop.
n maximum integration order for the position loop.
s Laplace variable.
sf dividing scale factor to achieve a 3 dB bandwidth

at ω0.
t time (s).
Tc commanded motor torque (Nm).
Td torque disturbances, as reduced to the motor shaft

(Nm).
Tf torque feed–forward (Nm).
Ti current drive output torque (Nm).
Tm resulting motor torque command (Nm).
u generic control output.
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y, ẏ generic sensed feedback input and its time rate.
yc generic command input.
‘‘motor’’ designation used for the motor + harmonic

speed reducer.

I. INTRODUCTION
Feedback control systems used to command aircraft control
surfaces operate under highly variable flight conditions.
Furthermore, they must withstand a wide range of
static and dynamic loads owing to flight maneuvers and
gusts/turbulence [1], [2], whereas control surfaces are
required to change position while remaining insensitive to
any load variation. Moreover, regardless of their driving
physics, they are subject to multiple saturations, that is,
position, velocity, and force/torque stall. All these must be
duly scaled in wind tunnel models, whereas an actuating
device can differ from its full–scale counterpart. This is the
case when electro–hydraulic actuators (EHAs) cannot be
adequately miniaturized or the required hydraulic power is
not easily available. Therefore, they must be replaced by
miniature electrical motors, as is the case in this study.

Within this framework, single loop proportional–integral–
derivative (PID) controllers [3], [4] are easily designed, but
cannot satisfy the velocity constraints and incorporate poor
capabilities to compensate for more than piecewise constant
external disturbances; therefore, they can be effective only
over a limited range of scaled flight conditions and might
require some gain scheduling. Nonetheless, once a working
initial design setup is available, it is often possible to
improve its performance through a variety of on–site auto–
tuning methods commonly adopted in industrial applications
[5], [6]. Furthermore, as can be seen in the literature, there
is a persisting interest in their use and continued work
aimed at getting the most out of them by adopting more
effective design approaches such as citing only a few:
adaptive [7], [8], [9], [10], optimal robust [11], [12], [13],
fuzzy [14], [15], neural net–based [16], [17], [18], and online
optimization [19], [20].

Because this paper presents the idea of extending the PID
terms with integrals of order greater than one in positioning
controllers, it should be interesting to note that the transfer
function from a position, say y, to the motor drive input,
say u, of many existing dual loop PID–PID controllers,
adopting a single integration in each loop, is already an
often unnoticed outcome equivalent to single loop PI2Ds and
PI2s controllers, adopting a double integration (I2). To verify
such a matching, the following terms for the single loop
PI2D are defined: derivative gain kd , proportional gain kp,
single ki1 and double ki2 integral gains, whereas kpD, for the
derivative of y, has to be added to the terms already available
in the dual loop PImPIn nomenclature. Then, combining a
PI speed loop with a PID position loop, after assuming that
the two loops are commanded only through their integral
terms, the resulting PI–PID controller will provide u =

−

(
kvP + kvI ,1/s

)
· ẏ−kvI ,1/s

(
kpDs+ kpP + kpI ,1/s

)
·y, such that,

being ẏ = s y, u = −(kvPs
3

+ kvI ,1
(
1 + kpD

)
s2 + kvI ,1k

p
Ps +

kvI ,1 k
p
I ,1)/s

2
·y, which is clearly amatch of its single loop PI2D

counterpart, that is, u = −(kd s + kp + ki1/s + ki2/s2) · y =

−(kd s3 + kps2 + ki1s+ ki2)/s2 · y.
Then, after remarking that a plainer PI–PI formulation, that

is, with kpD = 0, will provide a transfer function with the same
structure, the correspondence for a somewhat simpler single
loop PI2 scheme will follow by merely setting kv0 = kd = 0.

What has just been addressed above, mated to the available
tools for a highly effective design and fine tuning of any single
loop PID, has likely shadowed the need to use truly high order
integrals, so that adoption has been rarer.

Nonetheless, in the literature, it is possible to find instances
of the use of up to double integrals, either in the form of
a dual loop PI2D controller [21] or as a single loop PI2

controller [22].
In relation to Linear Quadratic Tracking (LQT) problems,

[23] reported a classification of possible improved solutions
based on arbitrary order PImDn-1 controllers implemented
through both single and dual loop schemes, with explicit
formulae up to I2 terms.

There are also instances of PI2 industrial controllers. For
example, [24] features a single loop speed control that can be
cast as Gp (1+�stop/s)2, Gp being a user–assigned loop gain
and �stop the so–called integration stop frequency.

It is worth noting that among the above referenced papers,
only [22] explicitly considers possible windups through
the conditional sliding mode integration of [25]. However,
considering that the use of high order integrators may
significantly worsen the effects of saturated controls, the
adoption of windup mitigation should be unevoidable.

The use of a dual loopwithmore than two per–loop integral
terms is considered here as a possible alternative to the dual
loop PID controllers based on an unfalsified and Quantitative
Feedback Theory (QFT) formulation [26], [27], previously
installed on wind tunnel models, with the objective of
obtaining equal/better performances through a significantly
simpler design method. Such a commitment aims to make
it possible to safely redesign at varying dynamic pressures
on the fly and within any sampled control cycle, possibly
avoiding them altogether. A solution that was not viable with
the previously mentioned formulations requiring interpolated
scheduling over a set of off–line designs parameterized
against the dynamic pressure.

Consequently, the proposed dual loop architecture consists
of an inner loop acting on the rotational velocity of the
motor and an outer loop acting on the position of the control
surface. Both the inner and outer loops are structured as a
proportional term plus the sum of m and n integral terms,
respectively, addressed by the notation PIm and PIn, simply
synthesized as PImPIn in the following, wherem and n are the
number of integrals and the maximum order of integration in
each loop, respectively. Within such a framework, an anti–
windup scheme and out–of–band disturbance compensation
are unified in the formulation of simply designed observers,
thus leading to a system capable of effectively mimicking the

VOLUME 12, 2024 56121



A. De Gaspari, P. Mantegazza: Dual Loop PImPIn Control for an Aileron Positioning

scaled technological limitations related to actual EHAs and
electro–mechanical actuators (EMAs) [28].

Then, high order integrals combined with an appropriate
set of closed loop poles can ensure proper shaping of the
open loop transfer function, making it possible to guarantee
adequate margins against design uncertainties and a strong
rejection of time–varying external disturbances, for example,
dynamic pressure–dependent aerodynamic loads. That being
so, and adopting an appropriate pole assignment for the
previously mentioned observers, the entire controller design
will be carried out using simple algebraic formulae and the
sole knowledge of the inertia of the motor–transmission–
aileron, thus making it viable any needed on the fly
rescheduling hinted at before. Nonetheless, because of the
discarded significant harmonicmotor sliding stiction/friction,
compliance, and free–play in the slightly tensioned toothed
belt transmission to be described later, the above design
procedure will be first validated through a nonlinear, middle–
fidelity model and an extensive set of tests. The ability to
tolerate the above nonlinearities is of key importance because
they are difficult to quantify and can vary significantly during
their operational life [29].

The aforementioned experimental validation of the pro-
posed control strategy and related design approach was
carried out by applying the proposed controller to the
positioning servo of the aileron of an aeroservoelastic wind
tunnel model, previously servoed with [26] and [27]. Such a
model is related to research on an advanced Green Regional
Aircraft (GRA), which was based at the Department of
Aerospace Science and Technology of Politecnico di Milano,
within the cooperative EU funded project namedGLAMOUR
(Gust Load Alleviation techniques assessment on wind
tUnnel MOdel of advanced Regional aircraft), a framework
of the Clean Sky Joint Technology Initiative [30].

This article summarizes the theoretical and practical
aspects aimed at developing a new controller design method,
a description of its digital implementation and the numerical
and experimental results obtained during the test campaign.
The reminder of this paper is organized as follows. The servo
controller formulation, detailed in Section II, leads to the
proposed design equations (subsection II-C), implementation
of the complete dual loop controller (subsections II-D
and II-E), and their digital conversion (subsection II-F).
Section III describes the selected aileron test bench and the
controller design applied to it, and Section IV introduces the
hardware and real–time environment of the test rig setup.
Finally, Section V describes the two main phases of the
numerical and experimental tests. The first phase consists of
the study of the uncertainty propagation throughMonte Carlo
simulations (subsection V-A), followed by numerical model
tuning (subsection V-B) and numerical/experimental corre-
lations (subsection V-C). The second phase presents some
experimental results obtained by varying the integration order
and for different backlash values induced by the mechanical
transmission, with a specific focus on the importance of
using a disturbance observer in combination with high order

integrators (subsection V-D). The last subsection (V-E) was
used to assess the controller performance against significant
changes in the experimental test setup.

II. PImPIn SERVO–CONTROL SYSTEMS
The positioning controller developed in this study is related
to the aileron test bench described in Section III. As hinted
at in the introduction its newness content is related to the
adoption of a PIm(ω)–PIn(θ ) dual loop structure based on
high order integrals, up to m and n respectively, as depicted
in Fig. 1.

FIGURE 1. Simplified dual loop design scheme.

The servo is designed using a dual loop velocity–rotation
control owing to the need to independently consider the
constraint imposed on Tc, ω and θ , for example, their
saturations required to emulate the technological limitations
of actual fully electric or electro–hydraulic actuators installed
on aircraft.

First, the motor–control surface set–up was modeled as
a single rigid degree–of–freedom system, assuming that
the mechanical transmission connecting the motor to the
control surface was sufficiently stiff to ensure an acceptable
separation of its lowest vibration mode frequency with
respect to any foreseeable control bandwidth. This equivalent
single–degree–of–freedom system is simply dubbed the
motor, whose state

{
θ ω

}T , is related to the output shaft of
the harmonic speed reducer. This simplification is exploited
to define a simple continuous–time design procedure.
In Section V, through an improved simulation model and
some experimental tests, it is shown that this simply designed
controller can provide good performance, despite being
designed on the basis of partial knowledge of its mechanical
properties and neglecting significant nonlinearities, such as
saturations, sliding friction, and free–plays.

Therefore, the simplified equations of motion of the motor
can be expressed in the Laplace transform domain as follows:(

Js+ C +
K
s

)
ω = Tc + Td (1a)(

Js2 + Cs+ K
)

θ = Tc + Td (1b)

where ω = sθ and, lumping the transmission mass to
the motor and aileron, J is the equivalent total moment of
inertia, including both the motor inertia Jm and controlled
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surface inertia Ja, according to the transport equation
J = Jm + Ja/τ 2. It should be noted that J , C , K
can also comprise contributions related to a quasi steady
aerodynamic approximation of the control surface hinge
moment associated with the flow, thus depending on the
free–stream dynamic pressure. As shown in (2), Tc is first
servoed to the reference velocity ωr in the inner loop, which
is then commanded by the position error (θr−θ ) coming from
the outer loop. The velocity loopwas based onm integrals and
a proportional term, whereas the position loop was based on
n integrals and a proportional term.

The related equations are:

Tc =
kvI ,m
sm

(ωr − ω) −

m−1∑
i=0

kvI ,i
si

ω + Tf (2a)

=
kvI ,m
sm

ωr −

m∑
i=0

kvI ,i
si

ω + Tf =
kvI ,m
sm

ωr − PIm(ω) + Tf

(2b)

ωr =
kpI ,n
sn

(θr − θ ) −

n−1∑
j=0

kpI ,j
sj

θ + ωf (2c)

=
kpI ,n
sn

θr −

n∑
j=0

kpI ,j
sj

θ + ωf =
kpI ,n
sn

θr − PIn(θ ) + ωf

(2d)

where, trivial but helpful remark, the index 0 implies:

kpI ,0 = kpP and kvI ,0 = kvP, (3)

that is, a proportional–only control is the one with m and/or
n equal to 0. The sensed variable, through an incremental
encoder, is θ , ω being obtained by numerical differentiation
with a time step varying in relation to the motor rotational
speed. Furthermore, ωf provides a velocity feed–forward

aimed at expediting θr tracking. The terms kvP and
kvI ,1
s are

the usually defined proportional and integral gains for the
velocity loop, respectively, which are coupled to any linear
damping and stiffness reduced to the motor shaft. The desired
velocity ωr actuates only the highest order m of the integral
gains in (2a), thus providing a closed loop transfer function
without zeros. Similarly, the desired rotation θr affects only
the highest integral gain n in (2c) [31]. It is additionally
assumed that the bandwidth of the torque controller, that is
the current drive loop, will be in the kHz range and requires
no modeling, thus making it possible to write the simplified
closed loop response equations detailed in the following
sections.

A. VELOCITY LOOP
After substituting (2a) into (1a), we have:[

Jsm+1
+

(
C + kvP

)
sm + (K + kvI ,1)s

m−1

+

m∑
i=2

kvI ,is
m−i

]
ω = kvI ,mωr + Tf sm + Td sm (4)

Exploiting the values of θr , ωf and ω̇f , to be provided by an
input shaping filter, the optional feed–forward Tf is defined as
Tf = Tfc+Jf ω̇f +Cf ωf +Kf θr , where Tfc is a constant feed–
forward, Jf , Cf and Kf are the design parameters. Hence,
(4) provides a picture of how the velocity loop operates,
as highlighted by the following comments:

• Tf contains a contribution of the type −(Jf s2 + Cf s +

Kf s) to the left–hand side of (4), which affects the
high–frequency response by decreasing the inertia,
damping, and elastic forces. In fact, in the ideal case
of exact knowledge of their true values, they would
be cancelled, thus expediting the transient tracking
response.
Even if it is anticipated that it will not be used in this
work, a feed–forward with Jf , Cf , and Kf determined
according to a quasi–steady aerodynamic approximation
of a control surface hinge moment, could provide an
effective adaptation against changing flight conditions,
without affecting system stability. From this perspective,
it is worth remarking that this feed–forward could be
a simpler and effective substitute for the previously
mentioned possible addition of Jf , Cf , and Kf to J , C ,
and K .

• The transfer function ω/ωr has no zeros; therefore,
through an appropriate design, the actual velocity track-
ing overshoots should be close to zero or maintained as
small as possible.

• The integral terms can cancel time–varying piece-
wise polynomial disturbances, whose frequency con-
tents are within the velocity bandwidth up to time
order tm−1.

• With corresponding reasoning, it can be seen that the
low frequency part of the velocity transfer function up
to sm−2 does not depend on the system parameters for
non–null C and K . Independence increases to sm if they
are null. Thus, the higher the value of m the lower the
low–frequency sensitivity of the closed loop response to
J ,C,K uncertainties. In particular, m = 2 is required
to achieve steady–state velocity in the face of piecewise
constant disturbances. Nonetheless, because of the Bode
Integral theorem [32], the higher the desensitization, the
higher the sensitivity to out–of–band disturbance. This
fact poses a constraint on the corresponding achievable
bandwidth for growing m [33], [34].

B. POSITION LOOP
The substitution of (2c) into (4) leads to:(

Jsm+1
+ (C + kvP)s

m
+ (K + kvI ,1)s

m−1

+

m∑
i=2

kvI ,is
m−i

)
snω + kvI ,m ·

 n∑
j=0

kpI ,j

 θ

=
(
kvI ,mωf + Tf sm

)
sn + kvI ,mk

p
I ,nθr + Td sm+n (5)
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so that, being snω = sn+1θ , one has:[
Jsn+m+2

+ (C + kvP)s
n+m+1

+ (K + kvI ,1)s
n+m

+

m∑
i=2

kvI ,is
n+m+1−i

+ kvI ,m ·

 n∑
j=0

kpI ,js
n−j

 θ

= kvI ,m
(
kpI ,nθr + ωf sn

)
+ Td sn+m + Tf sn+m (6)

representing the operational form of the controlled system
response, which is driven only by the reference rotation
command θr multiplied by the two highest order integral
gains kvI ,m and kpI ,n.
It is therefore possible to remark that:
• For ωf = 0, owing to the already mentioned feature
of commanding just through the highest order integral,
or proportional terms at most, no derivative of ωc and θr
appears; that is, there is no controller zero in the closed
loop transfer function. This is an important property of
a nominal design model based on the assignment of a
prototype closed loop transfer function.

• If some derivatives of the reference commands are
deemed useful, for example, to expedite the closed loop
response, they can be applied using ωf and/or the torque
feed–forward scheme of the velocity loop. The related
gains and derivative calculations can be optimized for
the required performances in a fully independent manner
from the implementation of the prototyped closed loop
transfer function.

• The higher the order of the integral terms, the more
independent the system parameters will be in the
low–frequency response. Therefore, the last comment
associated with the velocity loop can be applied to the
n integrations position loop.

• At the rotation level, the order of the time–varying
piecewise polynomial disturbances that can be cancelled
is increased by n.

C. DESIGN EQUATIONS
Because the two loops are driven simply by applying the
position/velocity errors to the highest order integral, after
omitting the feed–forward and disturbance terms, the nominal
closed loop transfer function, Hc(s), associated with a 3 dB
attenuation at the low–pass bandwidth ω0 and without any
zero, can be derived from (6) and written as:

Hc(s) =
θ

θr
=

Nc
Dc(s)

(7)

where Nc = kvI ,mk
p
I ,nθr and Dc(s) is the left–hand side

in square brackets of (6). Consequently, Dc(s) and Nc can
be abstracted as Dc(s) =

∑m+n+2
j=0 aj(ω0/sf )jsm+n+2−j and

Nc = am+n+2ω
m+n+2
0 , where ais are the coefficients of a

chosen prototype transfer function, normalized for ω0 = 1,
sf is a possible scale factor required to satisfy the 3 dB
constraint at ω0 = 1. Therefore, the design of the controller
can be based on assigning its (n + m + 2) gains to match

the desired transfer function prototype with no commanded
position overshoots. Such a choice aims to avoid bumps
against end of run hard points and should further be coupled
to negligible violations of any possible velocity constraint,
related either to the current drive or to the need to emulate
an actuator of different kinds. Assuming precise knowledge
of the parameters in (1), two denominator prototypes apt
to satisfy the previously cited design features are binomial
power and Bessel–Thomson filters. Owing to its somewhat
better gain and phase margins, the former is the preferred
choice. Regardless the chosen pole prototype, the related
assignment solution is based on matching each coefficient of
Dc(s) with its corresponding left–hand term in (6), leading to
the following trivial gain calculations:

velocity loop



kvP = a1 · ω0 · J−C
kvI ,1 = a2 · ω2

0 · J−K
...

kvI ,i = ai+1 · ωi+1
0 · J

...

kvI ,m = am+1 · ωm+1
0 · J

(8a)

with the constraint m ≥ 1, so to reduce the sensitivity
imprecisely known C and K and:

position loop



kpP = am+2 · ωm+2
0 · J/kvI ,m

kpI ,1 = am+3 · ωm+3
0 · J/kvI ,m

...

kpI ,i = am+i+2 · ωm+i+2
0 · J/kvI ,m

...

kpI ,n = am+n+2 · ωm+n+2
0 · J/kvI ,m

(8b)

The above list of gain formulae clearly confirms what was
previously stated, that is, that all the control gains, except kvP
and kvI ,1, do not depend on the design parameters C,K , mak-
ing the formulation somewhat insensitive to possible model
uncertainties. This feature, combined with the capability of
compensating piecewise bounded polynomial disturbances
of a relatively high order, might make it unnecessary to
schedule servo gains against significant unmodeled external
loads owing to the changing aerodynamic forces applied to
the control surfaces.
As previously stated, a simple binomial polynomial

structure nominally satisfying the aforementioned design
goal is of the type (s + ω0/sf )m+n+2

= 0, with the range
of the sf scaling factors of interest for this study given in
Table 1.

TABLE 1. Pass band scaling for (s +
ω0
sf

)k .
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FIGURE 2. Implemented dual loop controller scheme.

D. DUAL SENSOR IMPLEMENTATION AND ANTI–WINDUP
COMPENSATION
Although an almost rigid connection between the motor
and the control surface was assumed for the design of the
controller described in the previous section, the actual imple-
mentation was based on two independent sensors, as shown
in Fig. 2. Torque saturation and high sliding friction apart,
owing to the adoption of a harmonic motor drive with no
free–play and well defined parameters, such a choice allows
the implementation of a velocity loop that is linear, with neg-
ligible uncertainties and fairly close to its design assumptions.
Moreover, it comes with an encoder with three times the
resolution of the one attached to the ailerons, thus providing
better values for deriving the motor velocity. In such a view,
(2) is recast in the following input–output equations:

snωr = kpI ,n · (θr − θs) −

n−1∑
j=0

kpI ,js
n−jθs + snωf (9a)

ωc = τ ωr (9b)

smTc = kvI ,m · (ωc − ω) −

m−1∑
i=0

kvI ,is
m−iω + smTf (9c)

where θs is the control surface rotation, and it is evident that
the errors (θr − θs) and (ωc − ω) are applied only to the
highest order integral or, when no integration is used, to the
proportional term.

Then, form and n > 0, they can be unified in the following
scheme: 

sxI ,1 = xI ,2 − kI ,1y
sxI ,2 = xI ,3 − kI ,2y
...

sxI ,l−1 = xI ,l − kI ,l−1y
sxI ,l = kI ,l · (yc−y)

(10)

u = xI ,1 − kI ,0y+ uf (11)

with:

• kI ,... = kvI ,... | kpI ,..., l = m | n;
• y = θs | ω;

• yc = θr | ωc;
• uf = ωf | Tf ;
• u = ωc | Tc

calling | the logical ‘‘or’’, which allows the same formulation
to be used for both the position and velocity loop.

The above equations readily lead to the following
state–space representation of the PImPIn controllers:

ẋI ,1
ẋI ,2
...

ẋI ,l−1
ẋI ,l


=


0 1 0 0 0
0 0 1 0 0
...

...
. . .

...
...

0 0 0 0 1
0 0 0 0 0





xI ,1
xI ,2
...

xI ,l−1
xI ,l


+


−kI ,1 0 0
−kI ,2 0 0

...
...

...

−kI ,l−1 0 0
−kI ,l kI ,l 0



y
yc
uf

 (12)

u =
[
1 0 0 . . . 0

]


xI ,1
xI ,2
...

xI ,l−1
xI ,l


+

[
−kI ,0 0 1

] 
y
yc
uf

 (13)

Defining xl =
{
xI ,1 xI ,2 . . . xI ,l−1 xI ,l

}T and y =
{
y yc uf

}T ,
the above equation can be synthesized as a standard linear
time–invariant system in the form

ẋI = AxI + By
u = CxI + Dy (14)

and the observer–like anti–windup formulation of [35]
and [36] can be easily adapted to (14), that is, from [35]

ẋI = AIxI + BIy + L u
v = CxI + Dy
u = sat (v) (15)
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with:

sat(v) =


Vlow v ≤ Vlow
v Vlow < v < Vhigh
Vhigh v ≥ Vhigh

(16)

Vlow |Vhigh being either�c,low = τ �s,low |�c,high = τ �s,high
or Tc,low | Tc,high, with AI = A−LC, BI = B−LD and L an
appropriate observer gain matrix that will be designed trough
a pole placement scheme. According to the notation of the
generic value v, �s,low and �s,high are the highest and lowest
values of velocity ωs. It is further trivially remarked that
θr = sat(θc), with Vlow = 2s,low and Vhigh = 2s,high, being
2s,low and 2s,high the allowed highest and lowest values of
the rotation θs.

Hence, if AI is in a cascaded integrator form, the matrix L
will simply be

L =
[
a1ω0 a2ω2

0 . . . aiωi
0 . . . alωl

0

]T (17)

where ω0 is the desired low–pass band of the resulting
anti–windup observer, and the ais are the coefficients of
the prototype design polynomials Pi(s) =

∑n
0 aiω

i
0s
n−i,

of the low–pass Butterworth type in this work, normalized for
ω0 = 1. The definition used for Pi refers to easily found
normalized Butterworth polynomials [37], for which sf = 1.
In relation to the more modern integrated designs of

controllers embedding an anti–windup scheme [38], the
approach adopted here was chosen because of its simple
design and adequate performance.

When m or n is null, the trivial control to be applied is
simply

u = sat(kI ,0(yc − y) + uf ) (18)

without any windup action to be cared of.

E. DISTURBANCE OBSERVER
Disturbance observers [39] can be used as a substitute for
integral control [40] and are the basis for the disturbance
accomodating controls (DAC) proposed by [41] and [42],
as well as an essential component of active Disturbance
Rejection Controls (ADRC) found in [43] and [44].
Following [41] and [42], we adopt the DAC–like scheme

depicted in Fig. 2. Nonetheless, the way it is used will
lead to a specialized kind of disturbance rejection. In fact,
for relatively slow piecewise polynomial disturbances, that
is, varying within the PImPIn bandwidth, the type of DAC
observer to be used would end in monitoring the same
disturbances already identified and suppressed by the integral
terms of our controller, thus ending in being of little use.
Therefore, the observer will be designed to do something
more and differently, that is, to suppress the relatively higher
frequency content of the observed disturbances, that is, the
out–of–band disturbances that are not suppressed by the
integral terms. Observers for bounded piecewise polynomial
disturbances of order up to t2 can be expressed in the

following state space representation:
θ̇

θ̈

Ṫd
T̈d...
T d

 =


0 1 0 0 0

−K/J −C/J 1/J 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




θ

θ̇

Td
Ṫd
T̈d


+


0

1/J
0
0
0

Tm (19)

y =
[
1 0 0 0 0

]


θ

θ̇

Td
Ṫd
T̈d

 (20)

Therefore, defining xf =
{
θ θ̇ Td Ṫd T̈d

}T , the observer can
be defined through:

ẋf = Af xf + Bf · Tm + L · y

y = Cxf (21)

where Af = A−LC, Bf = B and L is the observer gain
matrix, once more designed through a pole placement scheme
based on Butterworth filter prototypes, denoted as Po(s) =∑n

0 aiω
i
0s
n−i, so that L is given by

L1 = ((a1 · ω0 · J−C) /J

L2 =

(
a2 · ω2

0 · J−C · L1−K
)

/J

L3 = a3 · ω3
0 · J

L4 = a4 · ω4
0 · J

L5 = a5 · ω5
0 · J

(22)

The above equation can be used for Td and any order of
its derivatives, including the extension of the observer order
to dkTd

dtk with k > 2, for which Lk+3 = ak+3 ωk+3
0 J .

Nonetheless, as discussed in Section II and previously
pointed out again, it should be noted that the PImPIn controller
disturbance compensation is limited by its bandwidth,
whereas the disturbance observer can be designed with a
higher bandwidth. Even so, its compensating contribution
proved negligible, while a minor observer–based feedback
loop, described in the next section, has been effective against
the mentioned out–of–band disturbances.

F. DIGITAL CONVERSION
Saturation apart, which remains as in (16) at each controller
sampling, (15) and (21) have the same observer–like
structure, here unified as:

ẋo = Aoxo + Bouo + Lyo
yo = Cxo + Duo (23)

To digitally implement the above unifying continuous time
form, (23) is discretized using the standard zero–order hold
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state transformation, leading to the following prediction
form [40]:

xo(k + 1) = 8xo(k) + 0Buo(k) + 0Lyo(k)

yo(k) = Cxo(k) + Duo(k) (24)

with 8 = eAo1t , 0B =
∫ 1t
0 eAoτBo dτ and 0L =∫ 1t

0 eAoτL dτ , where 1t is the sampling time and k is used
to define the k–th time step. The choice of the sampling time
1t depends on both the sampling frequency (1t = 1/fs),
which requires satisfying the needs listed later in this section,
and the specific controller design, as will be discussed
in subsection III-C for the test case considered in this
work.

Then, using any standard and, especially for relatively high
m and n, a well–conditioned pole assignment method [45],
it is possible to design 0L using either (23) or (24). Given
the simple closed form solutions already available for the
continuous form, anticipating the adoption of an adequate
sampling rate, the former approach was chosen.

The previously hinted idea of a special form for accounting
for external disturbances beyond the capability already
embedded in a PImPIn controller, is based on the conjecture
that this disturbance compensation could be made more
effective by correcting the control torque Tc with the resulting
torque Td + Tc. Therefore, instead of the usual setting
Tm = Tc, the following discrete form is used:

Tm(k) = Tc(k) − µ(Td (k) + Tm(k − 1)) (25)

where Td (k) is the disturbance predicted from Tm(k − 1)
and θ (k − 1) at the end of the k − 1 step and µ is a
possible tuning parameter, which is maintained as µ = 1.
Thus, the observer can provide additional feedback on the
motor torque command, which improves the suppression of
high frequency disturbances. The complete scheme of the
modified disturbance observer, including both observers (21)
and the additional feedback, is shown in Fig. 3. A justification
for this conjecture is given shortly, based on a sample of
measured data.

The criteria for an adequate choice of the discretizing
sampling frequency fs should consider the following:

• avoid causing unacceptable delays to active controllers
commanding the control surfaces without unduly con-
straining their own sampling time and/or any synchro-
nization with the surface servo sampling;

• adequately discretizes the PIm velocity loop, which has
bandwidth approximately three times higher than that of
the position loop;

• provide an adequate discretization of the disturbance
observer so that it is possible to estimate disturbances at
frequencies higher than the bandwidths of the position
and velocity loops;

• mitigate the aliasing associated with the position
encoders, the unknown delay related to the current drive,
and the delay (1t/2) of the–zero order hold controller
output;

FIGURE 3. Modified disturbance observer scheme.

• for better numerical conditioning, (24) implements
discretized continuous designs using the so called
δ–Operator approach [36], [46].

The above needs can be satisfied with a sufficiently high
sampling frequency, which is assumed to be on the order
of 50 times the velocity bandwidth. It is noted that we
will eventually incur constraints, similar to those mentioned
above, when our torque command, Tc, is passed to the
Digital Signal Processing in charge of the current drive, likely
running in the range of a few kHz.

It is worth noting that the velocity used for the internal
loop is not the one provided by the disturbance observer
but is instead obtained after acquiring the input of the two
encoders, at the very beginning of each sampling instant. The
problem of adequately deriving both fast and slow velocities
associated with encoder position measurements has a large
body of literature. An interesting instance was presented
in [47], whereas a commonly used industrial approach can
be found in the reference manual [48]. Our solution is based
only on the latter approach, which is simply based on keeping
a record of the most recently measured positions, from which
one can compute the velocity using: ω(k) = (θ (k) −

θ (k − d))/(t(k) − t(k − d)), where d is the closest to k
backward time offset of the previously measured values for
which (θ (k) − θ (k − d)) ≥ 12, 12 being assigned on
the basis of the encoder resolution. A possible analysis of
the error incurred using this approach, with a criterion for
assigning d in relation to a given 12, is proposed by [49].
Although trivial, it must be noted that this approach embeds
a moving average low–pass filter whose length is inversely
proportional to the velocity, thus providing a natural adaptive
filter delay without causing instabilities.

III. CONTROLLER DESIGN
The controller described in the previous section was applied
to the inner aileron of the GLAMOUR wind tunnel demon-
strator [30]. This aileron is shown in Fig. 4, where it is
possible to see how a belt drive allows housing the actuation
system inside the wing trailing edge thickness of the inner
and outer ailerons, the former being used here as the test
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FIGURE 4. Double aileron wing configuration of the wind tunnel
demonstrator.

FIGURE 5. Dual encoder servo actuation system installed on the aileron
test bench.

bench. The two–sensor actuation system installed on the test
bench is shown in Fig. 5, where the aileron is indirectly driven
by a Harmonic Drive® RSF–5B supermini brushless motor
coupled to a harmonic speed reducer.

Harmonic Drive® was selected because of the high
performance of its gearing technology, which guarantees
zero backlash and high torque in a compact device. A large
pulley diameter was selected to perfectly fit the external wing
shape, whereas the belt width and length were chosen to not
exceed the maximum allowable tension. Once these design
parameters are established, the motor gear ratio and small
pulley diameter are defined to achieve the torque requirement,
considering an appropriate safety margin. The design require-
ments in terms of maximum torque and bandwidth were
computed by several aeroservoelastic simulations that went
through as many design phases as the wind tunnel model [26].

The motor, transmission, and aileron data of interest are as
follows:

• maximum torque at the output shaft: TM = 0.9Nm,
to be used as torque saturation value;

• harmonic speed reduction: 50;
• expected stiction at the output shaft of 0.288Nm (from
the motor manual [50]);

• nonlinear transmission stiffness at the output shaft
ranging from 110Nm to 170Nm, with an angular
hysteresis of up to 0.1 deg;

• belt drive transmission ratio: τ = θ/θs = 22/14;
• allowed maximum output shaft angular speed:
540 deg s−1;

• allowed maximum radial load on the output shaft: 90N;
• motor encoder: 500 pulses per revolution, multiplied by
4 through quad sampling, resolution at the output shaft:
0.0036 deg;

• Scancon 2RMHF aileron encoder: 7500 pulses per
revolution, multiplied by 4 through quad sampling,
resolution: 0.012 deg;

• allowed maximum aileron angular speed of 350 deg s−1,
that is, the actual saturation to be imposed at the output
motor shaft is 550 deg s−1;

• estimated maximum control surface hing moment: Ts =

1.4Nm, matching the maximum torque at the motor
output shaft.

A. PImPIn BASE DESIGN
Continuous–time designs were carried out using the ana-
lytical approach described in subsection II-C. The selected
prototype transfer function is:

(s+ ω0/sf )m+n+2
= 0

with ω0 = f0/2π . The wind tunnel demonstrator described
above was designed based on an iso–frequency scaling
strategy; that is, the frequencies of the most relevant vibration
modes of the demonstrator were equal to those of the
full–scale GRA. This scaling also dictated the servo actuator
bandwidth which was required to be f0 = 10Hz. The
controller gains are computed using (8), where the motor
inertia is obtained from the motor manual, and the control
surface inertia is calculated using its CAD model. The
designs are based only on the data shown in Table 2, that
is, with C and K set to zero. This allows a first–hand
assessment of the insensitivity of the chosen pole assignment
to uncertain design parameters on the basis of both the usual
Phase and Gain Margins (PM and GM) and the bounds
derived from their conservative peak counterparts (pPM and
pGM), as obtained from the sensitivity and complementary
sensitivity functions [51], [52].

TABLE 2. Aileron and belt drive data.
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TABLE 3. Phase and Gain Margins for the position loop (upper value) and the velocity loop design (lower value), as a function of m.

Several designs were evaluated, simulated, and tested, but
it is impractical to analyze all possible m/n combinations.
Thus, Table 3 displays only the results of the design
eventually chosen for the wind tunnel tests, that is, with
n = 0 for a simple proportional position feedback and
m = 3 : 5 for the PI velocity loops. In this table, for each m,
the upper row refers to the rotation loop, the lower row refers
to the velocity loop, f0 is the corresponding−3 dB bandwidth.
The reason for such a final design choice is that for the same
m + n order of the closed loop position transfer function,
allowing the velocity loop to have the maximum possible
order provides the best results in the validation test results.
In fact, from the introduction, it is possible to verify that a
simple PID, that is, u = −(kd s2 + kps + ki1)/s · y, can
be implemented in a dual loop form by setting: kvP = kd ,
kvI ,1 = kp and kpP = ki1/kp. From Table 3, it can be seen
that from the point of view of linear margins, a simpler PID
seems to be better than the schemes aimed at replacing it.
Nonetheless, even if the margins of Table 3 still provide a
valuable indication of the insensitivity to uncertain design
parameters, for thorough validation, there remains a need for
stricter validation against nonlinear issues. These aspects will
be verified further using a more accurate numerical model,
followed by an extensive set of experimental tests.

B. DISTURBANCE OBSERVER AND ANTI–WINDUP
COMPENSATOR DESIGN
Similar to the controller design, the disturbance observer
was designed through pole assignment in continuous time
and then discretized. The chosen Butterworth pole prototype
bandwidth was equal to the passband of the associated PImPIn

controller velocity loop.
Through a series of simulations, it was verified that

the bandwidth of the third order observer described in
subsection II-E adequately estimated the modeled friction
and random disturbances as piecewise varying constants.
Therefore, regardless of the coupled PImPIn controller, only
this structured disturbance observer was used in the numerical
and experimental tests, which will be discussed later in this
paper.

The anti–windup compensators were designed along the
same lines, with a bandwidth equal to that of its loop.

C. SAMPLING FREQUENCY
Because of the aforementioned iso–frequency scaling and the
need to emulate a full–scale EMA solution for the actuating
systems, during the various phases of the GLAMOUR
project [30] and one of its extensions [53], the bandwidth of
the actuators has always been maintained at 10Hz. On the
other hand, in order to follow the sampling rate guide
lines listed in subsection II-F, the actual rate values for the
actuators had to vary in relation to the sampling frequencies
of the diverse gust controllers under test, as dictated by their
designers. Because one of the last and most demanding active
gust controllers required a 400Hz rate with an acceptable
delay of no more than one–third of its period, the actuator
sampling rate was set at 1500Hz. Therefore, because it
satisfies the mentioned guide lines, it remains the sampling
rate used for what was reported in the following.

IV. EXPERIMENTAL TEST RIG SETUP
The experimental setup, in terms of hardware and real–time
environment, consists of a system developed at the Depart-
ment of Aerospace Science and Technology, Politecnico
di Milano, to provide standardized support for managing
wind tunnel models of active aeroelastic control systems.
It was designed to be a modular, small, and weight system
to be installed on board different models. It is capable of
completely managing control tasks and Input/Output (I/O)
signals. It consists of three separate parts, the first two being
shown in Fig. 6:

• a PC-104 equipped with: a 4 core INTEL-ATOM-
E3845 1.9 GHz; PCI boards for managing: 32-16bits
analog input, 4-16bits analog output, 8-24bits encoders,
24 TTL digital I/O, 16-24V industrial digital I/O, used
to supervise the motor drives;

• a drive box for up to threeHarmonic Drive®1G motors;
An out–of–board power box supplies all that is onboard.
The support for all digital control systems is provided by a
Real–Time Application Interface (RTAI), a hard–real–time
extension for Linux, developed in–house. RTAI is in charge
of both the actuator controllers described here, coded in C,
and the active gust/flutter controllers, generated byMATLAB
Simulink–RTW (Real TimeWorkshop) toolboxes. The entire
system is then remotely and interactively supervised through
an RTAI extension called QRTAILab [54].
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FIGURE 6. Modular system consisting of the PC–104 embedding I/O
system (bottom of the picture) connected to the motor drives (top of the
picture).

The working test rig was obtained by connecting the
modular system to the aileron test bench, as shown in
Fig. 5. The setup was then completed by applying tension
to the belt. Somewhat troubling condition because of the
constraint imposed by the maximum allowable radial load
applicable to the motor shaft is exceeded by simply applying
a symmetric tension corresponding to the force that generates
only half of the maximum allowed motor torque. For a
reasonable long–term service, the inevitable compromise is
to apply a pretension of approximately one–third of the
admissible radial load. This condition was roughly verified
by measuring the deflection at the middle span owing to
the applied transverse load. This is a common yet imprecise
method suggested for many timing belt manuals. Assuming
a negligible belt bending stiffness, the trivial string–like
relation required for the approximated verification of a proper
tensioning is P = 4(T/L)f , where P is the required mid–span
transverse load, T is the per span tension, L is the per span
belt length, and f is the middle span transverse displacement.
After roughly achieving the established tension setup, the
transmission was verified against possible residual free–play.
For this purpose the aileron was repeatedly driven to softly hit
the aileron end of the run stops by commanding motor torque
in the open loop. Subsequently, a reversed torque value was
applied, and the measures of the motor and aileron encoder
were registered. The processing of the acquired data provided
a free–play of 0.5 ± 0.1 deg. The feasibility of dynamically
working with this combination of pretension and free–play
was eventually verified by applying open loop sinusoidal
motor torques up to half of the maximum torque at 7Hz.

Eventually, using the same procedure, a lower pretension
associated with a measured free–play of approximately
1.5 deg was verified to produce no belt ratcheting (tooth
jumping) under smoothly driven motor torques.

Repraising a short remark of the introduction, it is worth
recalling that the PID used before the adoption of the design
approach presented in this paper, that is, [26] and [27], did
not care for the mentioned radial load constraint and applied
a substantially backlash free higher tensioning, which led to
the loss of one motor while damaging a still usable another
one.

V. NUMERICAL AND EXPERIMENTAL TEST RESULTS
Numerical simulations were only loosely addressed in the
previous sections of this paper. The related model used
during the validation phase, described here, considers linear
and nonlinear aspects that have been intentionally neglected
in the controller design, as anticipated at the end of
subsection III-A. Because some significant simulated results
are now going to be presented, there is clearly the need to
show what is behind them, that is,

Ṫi = −ωi · Ti + ωi · Tm (26a)

Jsθ̈s = Nb · rs − Cb(θ̇s · rs − θ̇ · rm)

+ Tae − Kaeθs − Caeθ̇s + Tsf + Trs (26b)

Jmθ̈ = −Nb · rm − Cb(θ̇ · rm − θ̇s · rs)

+ D · Ti + Tmf + Trm (26c)

Nb = Nb(Kb, θfp, θs · rs, θ · rm) (26d)

where Ti and ωi are the output torque and bandwidth of the
current drive, Js = Ja + Jae is the total aileron moment of
inertia, which is the sum of Ja and Jae the incompressible
aerodynamic mass moment, Nb is the nonlinear belt tension,
Kb is the belt stiffness, θfp is the free–play at the aileron
pulley, rs and rm are the radii of the aileron and motor pulleys,
Cb is the viscous belt damping, Tsf and Tmf are the Coulomb
friction at the aileron and motor, Tae is the trim hinge
moment to which the commanded position is superimposed,
Kae and Cae are the quasi–steady approximations of the aero-
dynamic hinge moment stiffness and damping, respectively,
Trs and Trm are the random torque disturbances applied to
the aileron and motor, D is a multiplicative factor taking into
account a possible imprecise scaling of the commands to
the motor drive. Even if these equations are still a type of
medium–fidelity model, they highlight the most significant
terms affecting the performance of the system at hand.

To account for the nonlinearities associated with free–play
and sliding friction, model (26) is integrated using
explicit second order Runge–Kutta methods, chosen among
the Runge–Kutta–Heun, Runge–Kutta–Heun–Ralston, and
mid–point approximations. Their integration can be carried
out either in true or to expedite simulations and false real
time. If required, numerical stability and improved precision
could be achieved by sub–stepping within each control
sample.
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FIGURE 7. Uncertainty propagation of a step response for the PID controller (left) compared with the PI5PI0 controller (right).

A. MONTE CARLO EVALUATION OF DESIGN
UNCERTAINTIES
The standard PM and GM shown in subsection III-A,
supported by their mated conservative pPMand pGMbounds,
could already be an indication of robustness. Nonetheless,
they are associated with a very sketchy model, discarding
many significant terms modeled in (26). However, keeping
as a firm point out the need for a simple design method
to be trusted at the face of basing it on just a very few
and reasonably known parameters, there remains a need
for a more thorough validation against the uncertainties
associated with the above equations. For this purpose, the
chosen approachwas a fairly detailedMonte Carlo simulation
[55], [56]. Nonetheless, it must be remarked, at once, and in
relation to the more rigorous content of the cited references,
that the way this validation has been conducted is restricted
to a simplified approach, carried out over a large number of
sampled designs. Their side effects are shown in terms of the
worst cases, enveloping the response to the step commands,
as shown in Fig. 7. Each design is defined by generating every
sampled model parameter from uniform distributions, whose
variation bounds, term by term, are

Js between −50% and 50% of the nominal value of
Table 2;

Kb between 75% and 125% of a nominal value of
4.5957 × 105 Nm−1;

θfp between 0 deg and 1 deg;
Cb conservatively set to zero;
Tsf between 0.02Nm and 0.07Nm;
Tae within ±0.25Nm;

Kae,Cae between −100% and 200% of their value
computed at the highest wind tunnel speed, that
is, 50m s−1. The lower negative bounds aim

at uncertainties against a possible aerodynamic
balance that is not considered in the adopted
simplified approximation;

Trs,Trm between 0Nm and 0.04Nm;
Jm between 90% and 110% of the nominal value of

Table 2;
ωi a conservative current drive bandwidth of 1.0 kHz;
D between 95% and 100%, to take into account the

possible uncertainty of commands passed to the
motor drives;

Tmf between 0.07Nm and the maximum value item-
ized in the controller design paragraph.

It should also be noted that Fig. 7 refers to 40000 simulations,
with the displayed nominal positions being not the simulated
but the measured ones. In fact, no noticeable change was
displayed with respect to sampling just 20000 designs. The
results obtained using the PI5PI0 controller are compared
with the worst cases enveloping the response of the standard
PID introduced in subsection III-A, which was obtained
by simply redesigning the same controller as a PI1PI0.
The comparison shows that the controller with high order
integrations provides a smaller aileron position uncertainty
band and more accurate position. The results presented here
are partially confirmed by the experimental results reported
in subsection V-E.

In addition, to avoid clogging the figures, only the lowest
and highest orders of the designed PImPI0s that will be
experimentally tested in the following are displayed.

B. PRELIMINARY NUMERICAL/EXPERIMENTAL TUNING
Before analyzing the response of the controlled system
to different command signals, preliminary tests were per-
formed to correlate the numerical model. First, contrary
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to previous experience [26], [27], there was no apparent
benefit from the use of a disturbance observer. Thus,
a series of fairly correlated experimental and simulated
sine tracking was carried out to understand the reason for
missing previously experienced improvements. The motor
friction approximately ranging from 0.1Nm to 0.15Nm.
Low frequency sine tracking also showed small jumps at the
rotation reversals of approximately 0.2 deg at the negative
peaks and 0.5 deg at their positive counterparts, which can
be related to the free–play recovery, thus confirming the
estimated setup value of up to 0.5 deg. Subsequently, based
on the numerical/experimental comparison, the conjecture at
the base of the chosen disturbance correction was derived.
For example, from the experimental tracking of a slow, 1Hz,
sine signal with an amplitude of 5 deg, as shown in Fig. 8,
it is possible to see a sample of the associated control torque
Tc and observed disturbance Td , with the resulting torque
1Torque= Tc+Td , all of which are related to a responsewith
no disturbance correction. While torque control is shown for
three m values of PImPI0, torque control and the 1Torque
are reported only for PI4PI0. The other two cases provide
similar results. The time histories clearly show that both the
PImPI0 controller and the disturbance observer identify the
same kind of disturbance, being it an averagemotor friction of
about 0.11Nm, so that the mere subtraction of the estimated
disturbance will end in just changing the level of Tc, with little
effect on 1Torque. Therefore, given the 10Hz bandwidth
of the PI4PI0 control and the almost tripled bandwidth of
the observer, it becomes plausible that what remains to
be compensated is the higher frequency of the displayed
resultant 1Torque. Clearly, this type of compensation can
be obtained directly by omitting the term Bo from (23).
Nonetheless, (25) has been preferred for the following
reasons. On one hand, the adoption of this disturbance

FIGURE 8. Motor torques and observed disturbances due to a 1 Hz, 5 deg
sine signal with 0.5 deg free–play, with disturbance correction turned off.

correction has never been counter–productive and is related
to both smooth and slow command, the recorded results
associated with a testing without any disturbance correction
are almost perfectly identical. On the other hand, while
it has provided negligible improvements with smoothly
commanded positions, this disturbance correction can be
essential in the case of an abrupt saturating command, as will
be shown later.

C. NUMERICAL/EXPERIMENTAL CORRELATION
After analyzing the slow response and verifying the free–play,
a 30 s long sweep excitation of 5 deg up to 15Hz was used to
identify the frequency response of the complete system and to
validate the numerical model. The purpose of this preparatory
phase was to understand its effect on the frequency response
of all the elements that are not considered in the controller
design, such as friction, free–play, and observer.

Referring only to a PI4PI0 design, Fig. 9 shows the effect of
accounting for the existing free–play and plausible friction or
the addition of available design options to the basic nominal
design, with their use all together. The individual curves are
described as follows:

• black: identification of the nominal design (−3 dB
bandwidth: 10Hz);

• light gray: nominal system response after continuous
design;

• medium gray: nominal system response after discrete
design;

• red: nominal design + disturbance observer + 0.1Nm
motor friction+ 0.5 deg free–play+ ωf = 0.25 θ̇r (3 dB
bandwidth: 14.4Hz), leading to a steeper attenuation;

• brown: nominal design + disturbance observer +

0.1Nm motor friction + 0.5 deg free–play (3 dB
bandwidth: 13Hz), leading to a steeper attenuation;

FIGURE 9. Transfer functions from numerical simulations with 0.5 deg
free–play.
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• blue: nominal design + disturbance observer (3 dB
bandwidth: 11.9Hz);

• green: nominal design + 0.1Nm motor friction +

0.5 deg free–play (3 dB bandwidth: 11.5Hz);
• cyan: nominal design + ωf = 0.25 θ̇r (3 dB bandwidth:
13.3Hz).

It can be seen that, while any of them results in a widening
of the pass–band, neither the existing free–play, nor a
plausible friction, nor the results of adding any available
single design option to the base nominal design, produce
an in–pass–band gain greater than one. A fact that instead
happens when all the design options are used together, with
a steeper attenuation. Overall, the velocity feed–forward is
quite effective in controlling the apparent pass–band, without
any further knowledge of the system parameters and without
affecting the margins of the nominal design. Furthermore,
Fig. 10 simulates the experimental identification of the
transfer functions associated with m = 3 : 5 and n = 0,
for a backlash of 0.5 deg. Its experimental counterpart is
shown on the left–hand side of Fig. 11. Although not an
exact match of the corresponding test results, it provides a
fairly acceptable validation of the low–fidelity mathematical
model used to anticipate the aileron test bench outcomes.
Nonetheless, it should be noted that the simulated transfer
function identifications related to a free–play of 1.5 deg
are roughly correlated with the right–hand side of Fig. 11,
suggesting that a more refined model would be needed for
this large free–play.

FIGURE 10. Transfer functions from numerical simulations for increasing
maximum integration order, with 0.5 deg free–play.

In general, the experimental results show that considering
the same design bandwidth, an increase in m leads to an
extension of the controller bandwidth in a manner quite
similar to the simulated predictions. Moreover, despite the
presence of a flexible belt and free–play, the bandwidth was
always greater than the design bandwidth. There is also

a small amplification of the response for larger value of
free–play (1.5 deg), but it is confined below 1 dB.

Although the related results are not reported in this article,
other tests were performed with different combinations of
m and n and different values of the design bandwidth. For
example, a maximum integration order of 4 was achieved by
setting either m = 4 and n = 0 or m = 3 and n = 1. Taking
into account (4) and (6), without considering the effects of
nonlinearities, the reason for choosing the integration order
m = 3, 4, 5, while setting n = 0, is the same as that
mentioned in subsection III-A: given the same maximum
integration order of the position loop, the ability of the
velocity loop to cancel time–varying piecewise polynomial
disturbances depends only on the order m. Furthermore, the
bandwidth of the velocity loop is generally higher than that
of the position loop. Instead, in the experimental tests, the
reason for the above choice is that the system has been
shown to achieve undesired vibrational behavior sooner when
increasing the integration order n instead of m. This is
probably owing to the presence of nonlinearities combined
with the higher bandwidth of the velocity loop. The design
bandwidth was also varied during the tests, which were
repeated for f0 = 15Hz and f0 = 20Hz. In general, it can be
stated that the system is not affected by all these changes, but
there appears to be a limit on the maximum integration order,
beyond which the system achieves undesired vibrational
behavior, depending on the value assigned to the design
bandwidth. In fact, when the maximum integration orders
are set to m = 5 and n = 0, the identified transfer
functions become somewhat more noisy than their lower m
counterparts, and a test cannot be completed for a design
bandwidth of 20Hz, because of the intervention of the current
drive thermal image protection. Further comments on these
points are provided in the next sub–section.

D. EXPERIMENTAL TESTS
Following what was reported in the previous sub–section,
other tests were performed with the disturbance observer
turned off and commanding a 0.5Hz square wave with an
amplitude of 10 deg. These tests were carried out to under-
stand from an experimental point of view the importance of
using the observer described in subsection II-E and its effects
on the system response. Without an observer, the related
step responses are rather smooth; however, some disturbances
appear in the response, as shown at the top of Fig. 12.
The controller could not compensate for disturbances at
frequencies higher than the design bandwidth. The amplitude
of these disturbances increases asm increases from 3 to 4 and
a further increment of m from 4 to 5 seems to make the
controller unstable. Analyzing the response of the rotation
rates, shown in the middle of Fig. 12, it can be noted that
the motor command velocity achieves its maximum value
and some oscillations appear around the reference signal in
the motor velocity response. For m = 3, the amplitude of
the oscillation is not relevant when compared with the peak
values. However, this issue becomes drastically worse for
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FIGURE 11. Experimental transfer function with 0.5 deg (left) and 1.5 deg (right) free–play.

higher values of m. Thus, for m = 4 the oscillations increase
in both amplitude and frequency, making the behavior of the
servo–actuator extremely jittery.

The results reported at the bottom of Fig. 12 show that
after turning off the observer, the motor torque contains
oscillations at the same frequency as the velocity signal.
However, the amplitude of the oscillations is greater than or
equal to one–quarter of the peak value for m = 3, drastically
worsening fromm = 3 tom = 4. Form = 4, themotor torque
reaches its saturation, 0.9Nm, and bounces from positive
to negative levels. Saturation does not lead to instability,
even in the long term. The related behavior is similar to that
of a bang–bang controller with an unacceptable chattering
response. Form = 5, the effect is the same but stronger, so the
current overload protection functions are embedded into the
drive trips after a few seconds, stopping the motor.

The same tests were repeated after the observer turned
off. They confirmed that the use of the disturbance observer
described in subsection II-E can significantly improve the
PI3PI0 and PI4PI0 controller responses, whereas it is essential
when the maximum integration order is greater than 4.
Analyzing the response in terms of the rotation rate and
torque, all cases from m = 3 to m = 5 do not show
response criticalities. Looking at the rotation rate, shown on
the left side of Fig. 13, it can be noted that although the
motor command velocity achieves its maximum value, the
controller compensates for the effects of the rate saturation
and no oscillation appears. The motor velocity signal was
clean and showed no signs of disturbances or noise. It can thus
be seen that the observer completely removes disturbances
at frequencies higher than the design bandwidth and at
increasing values of m. Moreover, the results reported on the
right side of Fig. 13 show that the motor torque response
is very clean and never reaches saturation. Therefore, the
comparison between the square wave response, with and

without the disturbance observer, supports the need to use this
correction in the case of abrupt commands and demonstrates
the correctness of the conjecture at the base of the chosen
disturbance correction, as mentioned in subsection V-B.

The same square wave was used to assess the response
of the working free–play of 0.5 deg against that close to the
ratcheting bound of 1.5 deg, as shown in Fig. 14. Looking
at the experimental response, it can be noted that the system
approached the reference position faster than a critically
damped system, almost completely limiting the overshoot
and, at the same time, accurately maintaining the desired
position. When m increases, the step response gradually
improves, and for m = 5, the already small overshoot
becomes almost entirely negligible. This improvement adds
to the ability of the proposed system to counteract external
disturbances and compensate for the perturbations in the
model parameters described in subsection V-A. Moreover,
these experimental results demonstrate that the closed loop
system seems quite insensitive to belt tension changes that
determine the free–play size, except for the small settling
oscillations of the (1.5 deg) free–play, because to the belt
slack side is close to causing tooth jumping.

The response using high order integrations is then com-
pared with the response using the simple dual loop PID
controller, which has already been adopted for comparison
purposes in subsection V-A. Based on what is explained
in subsection III-A, the PID was obtained by redesigning
the controller as a PI1PI0, which was tested in its standard
form, that is, with the same amount of feed–forward ωf ,
with a 0.5 deg free–play. Therefore, after using high order
controllers, the same tests were repeated under the same
conditions, withm = 1. The results show that the same target,
achieved using high order integrations, was not achieved
by the dual loop PID controller, except for oscillations of
amplitude corresponding to the 0.5 deg free–play around
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FIGURE 12. Experimental tracking of square wave signal after turning off the disturbance observer, with 0.5 deg free–play, for two maximum integration
order of the velocity loop: m = 3 (left) and m = 4 (right).
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FIGURE 13. Motor rotation rate (left) and torque (right) corresponding to the square wave signal tracking of Fig. 14, for increasing maximum
integration order of the velocity loop: m = 3, m = 4 and m = 5.

the reference position. This confirms the effectiveness of
the controller based on high order integrations, with the
additional 1.5 deg free–play being much higher than the
variations considered during the Monte Carlo simulations.

In conclusion, the only limitation of the proposedmethod is
the constraint on the maximum integration order as a function
of the design bandwidth. It is not possible to increase the
integration order equally for any system or design bandwidth
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FIGURE 14. Experimental tracking of square wave signal after turning on the disturbance observer, with 0.5 deg (left) and 1.5 deg (right) free–play.

value. In the specific case of this study, by increasing the
bandwidth from 10Hz to 20Hz, the controller response
worsens for m = 5, as when the observer is turned off.

E. TWO FURTHER TESTS AGAINST SIGNIFICANT
OFF–DESIGN CONDITIONS
A first further test was performed to evaluate the effect of
high order integration when using only the aileron encoder
and by setting θ = τ θs, instead of reading the motor
encoder and without changing anything else in the existing
dual sensor implementation. Clearly, the alternative method
of relying only on the motor encoder is of little use.
In fact, the substantial co–location of the encoder and torque
makes it easy to position the motor without recovering any
free–play and/or elastic displacement in the position loop.
Therefore, the previously used square wave command test
was repeated to verify the behavior associated with the use
of only the nonco–located aileron encoder. As shown in
Fig. 15, increasing the integration order allows the controller
to become better and better capable of compensating a
free–play–related limit cycle caused by abrupt commanded
position changes. Form = 3, the limit cycle has an amplitude
corresponding to full free–play. Then, by increasing the
integration order up to m = 4, the overshoot decreases,
and the response settles to the commanded position after
a smaller counter oscillation. Eventually, for m = 5, the
response further improves, becoming significantly similar to
that obtained using the two encoders. Despite the free–play
and reduced transmission stiffness due to the constrained
belt tension, the above result is aided by the separation of
the control pass band against the no–free–play motor–aileron
vibration mode.

FIGURE 15. Experimental tracking of square wave signal using only the
aileron encoder (with 0.5 deg free–play).

It should also be noted that, with just a 0.5 deg free–
play, the simple dual loop PID design, which provided an
acceptable response with two encoders, limited cycling with
free–play hunting oscillations.

Moreover, in contrast to the two encoder implementations,
all the above integration orders were unstable, with a free–
play of 1.5 deg. Therefore, even if sensing the position at
the load can provide a fairly acceptable solution with an
appropriate high order integration, the design freedom caused
by the use of two encoders should be preferred.
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Another test was conducted to further demonstrate the
tracking capability of the controller, after significantly
changing the operating conditions and test setup. A mass
of 100 g was added to the aileron by placing its center of
gravity at 8 cm from its hinge. The aileron was mounted in
an inverted pendulum configuration, which made it statically
unstable with a small right–plane pole. To make it easier
for a possible sustained instability compared to previous test
cases, the amplitude of the square wave was doubled to
amplify the effect of the sharp velocity–torque saturations
and the related windup recovery. The modified test bench
configuration is shown in Fig. 16. The aluminum mass added
at the trailing edge of the aileron makes its moment of
inertia Js = 7.19 × 10−4 kgm2, which is almost an order
of magnitude greater than its true value. The response to
the 20 deg square wave signal is shown in Fig. 17. Despite

FIGURE 16. Aileron test bench configuration with added mass.

FIGURE 17. Experimental tracking of square wave signal with added
mass, in the inverted pendulum configuration (0.5 deg free–play).

a 2.35 times change with respect to the nominal design
inertia J , combined with a slight open loop instability, the
controller is capable of accurately tracking sudden repeated
aileron commands. The initial oscillations are due to the loss
of damping caused by bringing the open loop velocity gain
close to its corresponding stability margin, which makes it
more difficult to recover a steady 20 deg free–play. No test
for a fifth order integral has been reported, because the few
attempts ended in sustained and dangerous belt ratcheting,
which could only be cured by lowering the design bandwidth.

VI. CONCLUSION
To improve the performance of a servo–actuation system
commanding the rotation of a control surface, this study
presented the formulation of a dual loop velocity/position
controller using arbitrary high order integrations. Owing
to the adoption of high order integrations, combined with
a simple yet effective anti windup compensation scheme,
the aforesaid controller was capable of tolerating uncertain
design parameters and time–varying disturbances. This
intrinsic capability allowes such a controller to be suitably
designed using a simple pole–placement method, where the
controller is associated with a simplified model of the system
to be controlled. This model does not require knowledge
of many significant terms, such as nonlinearities, satura-
tions, integrator windup, the use of two sensors, compliant
transmission with possible free–plays, and sliding friction.
A further rejection of higher–frequency disturbances, not
suppressed by the integral terms, was made possible by the
adoption of a specialized disturbance observer. Both the
high order integration controller, disturbance observer, and
anti–windup were cast and designed in a unified continuous
time state form and then digitized with a zero–order hold
conversion.

The design method was applied to the test bench of an
aileron installed on an aeroelastic wind tunnel model and
actuated by an electric motor through a toothed belt drive.
Because of the need to emulate the saturation constraints
of the corresponding full–scale actuation system, both the
aileron and motor are equipped with a position encoder that
makes the dual loop controller necessary.

After the design, the controller was connected to another
numerical model that was more detailed than the simplified
model used during the linear design, which allowed the
consideration of the most significant linear and nonlinear
terms affecting the performance of the system. The second
model was used to perform an uncertainty propagation
study based on Monte Carlo simulations over a very large
number of randomly sampled designs. This phase shows
the effectiveness and advantages of the proposed control
strategy against design uncertainties, external disturbances,
and model–reality mismatches compared to the same study
carried out on a traditional servo–controller adopting only one
integral term.

The simulations were followed by a numerical/
experimental correlation and several experimental tests on
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specific high order integration controllers. The experimental
tests demonstrated the need, and therefore, the effectiveness
of the proposed observer to be used in combination with high
order integration. The efficacy of the developed technique
was demonstrated by overall verification of the attainment
of good responses to basic step–like commands, which were
also compared with the behavior of the considered traditional
controller. More specific and successful tests showed the
controller’s ability to work despite significant changes to the
test rig configuration, such as free–plays owing to insufficient
belt tensioning and large mass changes, far greater than
the already large changes introduced during Monte Carlo
simulations. Moreover, the controller has shown that it can
work even using only encoders mounted on the aileron
side. The results of this test are significant because they
directly show that increasing the integration order improves
the accuracy of the controller response.

Future work will focus on the application of high order
integration controllers to the control ofmorphing aeronautical
structures in which the superposition of aerodynamic shape
variations and the elastic forces due to the commanded
deformation require large changes in the control effort; the
control of free–play induced Limit Cycle Oscillations (LCO)
of control surfaces installed on the T–tail of an aeroelastic
wind tunnel model.
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