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The Maryland model was introduced more than 30 years ago as an integrable model of localization by
aperiodic order. Even though quite popular and rich of fascinating mathematical properties, this model
has so far remained quite artificial, as compared to other models displaying dynamical localization like the
periodically-kicked quantum rotator or the Aubry-Andre′ model. Here we suggest that light propagation in
a polygonal optical waveguide lattice provides a photonic realization of the Maryland model and enables to
observe a main prediction of this model, namely fragility of wave localization in the commensurate potential
limit. c© 2021 Optical Society of America

Introduction. Optical waveguide lattices with disorder
or aperiodic order have provided a fantastic platform
to observe with integrated photonics groundbreaking
physical phenomena like Anderson localization, metal-
insulator phase transitions and Anderson topological
phases [1–11], with potential applications to the design
of photonic and plasmonic devices [12–15]. Notably, ar-
rays of evanescently-coupled waveguides have been used
to emulate a popular model of aperiodic order in in-
teger quantum Hall systems, the Aubry-Andre′-Harper
model [2,3]. Another famous model of Anderson-like lo-
calization in one-dimensional incommensurate potentials
was introduced by Grempel, Fishman, and Prange [16] in
connection with the problem of quantum chaos and dy-
namical localization in periodically-kicked quantum sys-
tems [17–19]. This exactly-solvable model was dubbed
the Maryland model by Barry Simon [20,21], who stud-
ied in great details its mathematical properties revealing
fascinating and unusual features deeply rooted in num-
ber theory. In Ref. [22], it was shown that the Maryland
model represents a topological quantum phase transition
point in a class of corresponding two-dimensional lattice
models with integer quantum Hall topology, thus con-
necting the Maryland model to the broad area of topo-
logical phases of matter. While the periodically-kicked
quantum rotator model has been implemented in differ-
ent classical and quantum systems [23–29], the Mary-
land model has remained so far a rather artificial model.
The reason thereof is that, while in the quantum rota-
tor model the kinetic energy operator is represented by
the physical quadratic term of particle momentum, in
the Maryland model the kinetic energy term should de-
pend linearly on particle momentum, which has seemed
to be an artificial mathematical assumption to make the
model integrable.

In this Letter we suggest an optical system, based on
light propagation in a polygonal array of evanescently-
coupled optical waveguides, which realizes the Maryland
model and that should be of easy experimental imple-
mentation with current integrated photonic technologies.

Maryland model. Following the original paper by
Grempel, Fishman, and Prange [16], let us consider the
dynamics of a periodically-kicked quantum particle by
a spatially periodic potential, with a kinetic energy op-
erator which is a linear function of particle momentum.
The dynamics is described by the Schrödinger equation
in dimensionless form

i
∂Ψ

∂t
= K(p̂x)Ψ + V (x)

∑
n

δ(t− n)Ψ (1)

for the wave function Ψ = Ψ(x, t), where p̂x = −i∂x
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Fig. 1. (Color online) (a) Schematic of a polygonal
waveguide array. A lattice of optical guides with period
a is bent along a polygonal line s with a small tilt angle
θ every distance d = Rθ, with R � a. The radius R is
taken at the n = 0 reference waveguide in the lattice.
(b,c) Coupling constants between waveguides in the lat-
tice can be controlled by transverse geometric setting.
In the linear geometry of (b) the dominant term is the
nearest-neighbor hopping term ∆1, while in the zig-zag
geometry of (c) the nearest-neighbor hopping term ∆1

and next-to-the nearest-neighbor hopping term ∆2 are
comparable.

is the particle momentum operator, K(px) = 2παpx is
the linear dispersion relation of the kinetic energy, and
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V (x) = V (x+2π) is the external period potential with 2π
spatial period. Applying standard Floquet theory, after
setting Ψ(x, t) = u(x, t) exp(−iµt), where −π ≤ µ <
π is the quasi-energy and u(x, t + 1) = u(x, t) is the
periodic part of the wave function, the following equation
is readily found

exp(−iµ)u(x) = exp[−iV (x)] exp[−iK(p̂x)]u(x) (2)

for the function u(x) ≡ u(x, 0+). After setting ψ(x) =
u(x)/[1−iW (x)], with W (x) = tan[V (x)/2], from Eq.(2)
it readily follows that the Fourier coefficients ψn of ψ(x)
satisfy the spectral problem [16–18]∑

l 6=n

Wn−lψl + tan
(
παn− µ

2

)
ψn = Eψn (3)

where Wn are the Fourier coefficients of W (x), i.e.
W (x) =

∑
nWn exp(inx), and E = −W0. The spectral

problem defined by Eq.(3), dubbed the Maryland model
by B. Simon [20], is integrable [16, 20]. The general
result is that, for almost every irrational α, the energy
spectrum is pure point and the eigenfunctions are
exponentially localized. This means that any initially-
localized excitation does not spread in momentum
(Fourier) space and remains localized, an effect dubbed
dynamical localization. On the other hand, for rational
α the spectrum is absolutely continuous, formed by
many closely-spaced energy bands, the wave functions
are extended (Bloch-type), and dynamical localization
in momentum space is rather generally prevented.
Interestingly, in Ref. [16] it was predicted that, if
V (x) is of sinusoidal shape, i.e. its Fourier spectrum
is formed solely by the three harmonics V0,±1, then
even for α rational one observes localization owing to
band flattening. However, such a localization effect
for α rational is fragile, since even small higher-order
Fourier terms of the potential V (x) break exact band
flattening and enable wave diffusion in momentum space.

Polygonal waveguide lattice. The key observation
to implement the Maryland model in waveguide lattices
is to note that the Floquet spectral problem defined
by Eq.(2) can be likewise obtained from the modified
Schrödinger equation

i
∂Ψ

∂t
= K(p̂x)

∑
n

δ(t− n)Ψ + V (x)Ψ (4)

which differs from Eq.(1) because the kicks occur now
on the kinetic energy operator K(p̂x), rather than on
the potential V (x). In fact, applying standard Floquet
theory we set Ψ(x, t) = u(x, t) exp(−iµt) in Eq.(4), were
−π ≤ µ < π is the quasi-energy and u(x, t+ 1) = u(x, t)
is the periodic part of the wave function. Then it can
be readily shown that u(x) ≡ u(x, 1−) satisfies again the
spectral equation (2), and thus the dynamics described
by Eq.(4) displays in momentum space the same localiza-
tion/delocalization features than the Maryland model.

To emulate the periodically-kicked system described by
Eq.(4), let us consider propagation of monochromatic
light waves in a waveguide lattice with lattice period a
and with an optical axis s periodically bent by a small
angle θ at successive intervals, spaced by d = Rθ, to form
an open polygonal line of radius R� a, as schematically
shown in Fig.1(a). Light propagation in the waveguide
lattice, along the polygonal abscissa s, is governed by
the following coupled-mode equations for the modal field
amplitudes cn(s) in the various guides [5, 30,31]

i
dcn
ds

=
∑
l 6=n

∆n−lcl + 2παncn
∑
l

δ(s− ld) (5)

where ∆l = ∆−l is the coupling constant between waveg-
uides, distant by l lattice sites, and

α =
nsθa

λ
(6)

is the phase gradient introduced by the axis bent [31]. In
Eq.(6), λ is the wavelength (in vacuum) of the probing
light and ns the effective waveguide mode index. The
coupling constants ∆l largely depend on the geometrical
setting of waveguides in the transverse plane [32], with
almost nearest-neighbor couplings in the straight geome-
try of Fig.1(b) (∆l 6= 0 only for l = ±1) and controllable
next-to-nearest neighbor couplings in the zig-zag geom-
etry of Fig.1(c) (∆l = 0 for l 6= ±1,±2). We note that,
in the continuous limit θ, d → 0 with R = d/θ finite,
i.e. when the polygonal line becomes a circumference of
radius R � a and the discrete nature of periodic phase
kicks is smeared out, Eq.(5) describes Bloch oscillations
in circularly curved waveguide lattices, demonstrated in
previous works [33–35]. In this continuous limit localiza-
tion is always ensured by the formation of a Wannier-
Stark ladder energy spectrum, regardless the parameter
α is a rational or irrational number and for arbitrary
long-range hopping. Conversely, in the polygonal array
setup of Fig.1(a) with periodic phase gradient kicks, it
can be readily shown that light propagation reproduces
the Maryland model, and thus the rational/irrational
value of α makes the difference. In fact, after setting
t = s/d and Ψ(x, t) =

∑
n cn(t) exp(ixn), from Eq.(5) it

follows that Ψ(x, t) satisfies Eq.(4) with

V (x) = d
∑
l

∆l exp(ilx) (7)

and K(px) = 2παpx. The absence of dynamical local-
ization for rational α can be physically understood by
observing that the effect of each kick on a Bloch wave,
cn ∼ exp(iqn), is to shift the Bloch wave number from
q to q′ = q − 2πα. For α rational, there is a finite set of
Bloch wave numbers that are invariant under the change
q → q + 2πα, so that the eigenfunctions of the periodic
system can be formed by a suitable superposition of
such Bloch waves, resulting in extended wave functions
and thus delocalization.
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Fig. 2. (Color online) Dynamical localization in the
polygonal waveguide lattice in the incommensurate case
α = (

√
5 − 1)/2. The figure depicts the numerically-

computed light intensity distribution on a pseudo color
map in the waveguide lattice at subsequent kicks m =
s/d (left panels) and corresponding variance ∆n2 =∑

n n
2|cn|2 of the distribution (right panels). Light is ini-

tially injected into waveguide n = 0. In (a) we consider a
linear geometry with only nearest neighbor coupling ∆1,
while in (b) we consider a zig-zag geometry with next-to-
the-nearest neighbor coupling ∆2 = 0.2∆1. The spatial
distance d between two consecutive kicks is set equal to
d = 1/∆1.

Dynamical localization. According to the spectral
properties of the Maryland model [16, 20, 21], light
spreading in the waveguide lattice of Fig.1(a) is
suppressed for almost every irrational α (dynamical
localization), while rather generally wave spreading can
be observed for rational values of α. For an array with
nearest-neighbor couplings solely, dynamical localization
also arises due to band flattening [16] and the formation
of a Wannier-Stark ladder similar to what happens in
the Bloch oscillation problem with circularly-curved
waveguides. In fact, for ∆l = 0 when l 6= ±1, Eq.(5)
can be exactly solved using, for example, the method
described in [31]. In particular, let us assume that at
the input plane s = 0 the waveguide n = 0 is initially
excited, which corresponds to the simplest experimental
condition of array excitation. From the solution to
Eq.(5) with the initial condition cn(0) = δn,0, one
obtains the following expression for the light intensity
|cn(s = md)|2 at the n-th waveguide in the lattice and
at the m-th kick

|cn(s = md)|2 = J2
n

(
2∆1d

∣∣∣∣∣
m−1∑
l=0

exp(2πiαl)

∣∣∣∣∣
)

(8)

where Jn are the Bessel functions of first kind. Note
that, since the geometric progression

∑m−1
l=0 exp(2πiαl)

in the argument function on the right hand side of Eq.(8)
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Fig. 3. (Color online) Same as Fig.2 but for the commen-
surate case α = 1/2. Note that in this case delocalization
is observed in the zig-zag geometry [panel (b)].

remains bounded as the number of kicks m increases,
light diffusion in the lattice is prevented for any (either
rational or irrational) value of α. However, while for
almost every irrational α the dynamical localization is
a robust effect, it becomes fragile for α rational [16].
We have checked the predictions of the theoretical anal-
ysis by direct numerical simulations of coupled-mode
equations (5), considering two representative geomet-
rical settings: a linear array [Figs.1(b)], where the
coupling is almost limited to nearest-neighbor guides,
and a zig-zag array [Fig.1(c)], where second-order cou-
pling is non-negligible [32]. An example of dynamical

v
a

ri
a

n
c

e
  
Δ
n
2

number of kicks m

(a) γ=2.5

γ=4
γ=3

0 2 4 6 8 10 12
0

2

4

6

8

10

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5
(b)

number of kicks m

Fig. 4. (Color online) Behavior of light beam variance
∆n2 versus kick number m is a linear array with long-
range couplings ∆l = ∆1 exp(−γ|l|+γ) for a few increas-
ing values of γ. In (a) α = 1/2, in (b) α = (

√
5− 1)/2.

localization for incommensurate α = (
√

5−1)/2 ' 0.618
(the inverse of golden ratio) is shown in Fig.2. The
waveguide n = 0 in the array is excited at the input
plane s = 0, and the evolution of the discretized
light intensity is displayed at successive kicks, i.e.
at s = 0, d, 2d, 3d, .... Note that in both geometrical
settings wave spreading in the lattice is suppressed.
Figure 3 shows the same behavior for a rational α = 1/2.
Note that in this case dynamical localization is not
observed anymore in the zig-zag geometrical setting,
involving second-order couplings [Fig.3(b)]. It should
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Fig. 5. (Color online) Light intensity distribution at the
output plane of a L = 6-cm-long linear waveguide array
(waveguide spacing a = 16 µm), probed with red light
(λ = 633 nm) for (a) α = 0 (no phase gradients), (b)
α = 0.5, and (c) α = (

√
5− 1)/2. The distance between

two consecutive kicks is d = 7 mm. The arrow shows the
waveguide excited at the input plane.
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Fig. 6. (Color online) Same as Fig.5 but for a zig-zag
waveguide array. Waveguide spacings are a = 11 µm and
b = 12 µm.

be noted that in real waveguide arrays the coupling
constant between two waveguides is a nearly exponential
decaying function of waveguide spacing [30, 32], so that
strictly speaking the residual long-range couplings yield
delocalization for α rational also in the linear geometry
of Fig.1(b), However, since the decay of ∆l with |l|
is typically fast, delocalization is not visible for short
propagation distances (kick numbers) accessible in a
typical experiment. This is illustrated in Fig.4, which
shows the behavior of the variance ∆n2 versus kick
number m (up to 12 kicks) in a linear array with
long-range hopping ∆l = ∆1 exp(−γ|l| + γ) for a few
decreasing values of γ.
To check the validity of coupled-mode theory, we
numerically simulated light propagation in the waveg-
uide lattice by solving the three-dimensional optical
Schrödinger equation [5] using a standard pseudo
spectral split-step method. In the simulations, we
assumed a circular profile of the guide core with a
super-Gaussian profile of radius 2 µm, a peak refractive
index change ∆n = 0.0015, and a substrate refractive
index ns = 1.5 at the probing wavelength λ = 633
nm (red light). Such parameter values are typical of
waveguide arrays manufactures by the femtosecond (fs)
laser writing technique in fused silica [10, 30, 32, 34, 35].
A sample length L = 6 cm is assumed, with a sequence

of waveguide axis tilt (periodic phase kicks) spaced by
d = 7 mm, corresponding to a total number of 8 kicks.
Figures 5 and 6 show the light intensity distribution at
the output plane of the array, i.e. after a propagation
distance s = L = 6 cm, for the two geometrical settings
of linear array (Fig.5) and zig-zag array (Fig.6). The
numerical results clearly show that, while in the linear
array light remains trapped for both α rational and
irrational, in the zig-zag array dynamical localization
is fragile for α rational, resulting in a consistent beam
broadening [Fig.6(b)].

Conclusion. We suggested an integrated photonic
system, based on light propagation in a polygonal
waveguide lattice, which realizes a famous integrable
model of localization, the Maryland model. The setup
can reveal the fragility of dynamical localization in the
commensurate potential limit. Our results should be
feasible for an experimental observation with current
integrated-optic technology, and are expected to be of
relevance in different areas of physics beyond photonics.
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