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ABSTRACT

In this paper, the local isotropic compliance property is investigated in the Special
Euclidean Group SE(2). The relation between the generalized force applied to the
end-effector and its consequent generalized displacement is evaluated considering the
planar parallel 3RRR manipulator. A proper control action is defined in order to
decouple the effects of forces and moments on the end-effector displacement and
rotation, and to guarantee the condition of parallelism between force and displacement
vectors. A numerical example is presented and the proposed approach is verified by
performing several multi-body simulations.

Keywords: Isotropic compliance, Stiffness matrix, Active stiffness regulation, Screw
theory

1 INTRODUCTION

Parallel manipulators received considerable attention in the last decades because of their consid-
erable advantages with respect to their open-chain counterparts. Avoiding the pyramidal effect
of serial robots, they guarantee high speed, rigidity, accuracy, stability, load capability and low
inertia [1, 2, 3]. These manipulators have been implemented in many engineering fields, for in-
dustrial, space and medical applications [4]. Among parallel manipulators, planar ones have been
considered for precision positioning applications, semiconductor manufacturing, automatic micro-
assembly [5, 6]. In particular, the 3RRR manipulator assures three degrees of freedom with an
architecture composed of three legs connecting the frame to the moving platform. Each leg is a
serial chain with two passive revolute joints and an active one. Generally, the actuator is linked to
the frame in order to reduce the inertia of the moving parts [7].

However, despite the numerous advantages, 3RRR manipulators present typical drawbacks of par-
allel robots: limited workspace and complex singularities. To reduce these disadvantages, many
investigations focused on mathematical modeling aspects [8], synthesis procedures [9], kinematics
performance [10] and singularity [11] analyses, path planning [12], or motion reliability [13].

Other investigations applied different control techniques to reduce these disadvantages or, more in
general, to improve the performance of these manipulators. For example, proportional-derivative
plus gravity compensation was implemented to compensate the positioning error caused by grav-
ity force or dynamic disturbances [14, 15]. A real-time computed-torque control algorithm was



implemented to the Delta robot [16], whereas nonlinear adaptive control was considered in the
Hexaglide for the minimization of the tracking error [17].

Focusing on the 3RRR, the extended computed torque control scheme, based on the use of extra
sensors in the passive joints, was proposed to increase accuracy and precision [18]. A dynamic
filtered path tracking control scheme was considered for reducing the positioning errors caused by
backlash, system nonlinearities, and unknown disturbances [19]. In Ref [20], a visual servoing
resolved acceleration control scheme was implemented to reduce the computational loads of the
control loop and the tracking errors of the end-effector.

In recent investigations, a proportional controller has be implemented to achieve a particular kine-
tostatic condition in the Euclidean Group E(3), called isotropic compliance. Considering 3-DoF
manipulators, isotropic compliance holds for a specific manipulator posture when the displace-
ment of the end-effector is parallel to the external applied force [21]. This condition is achievable
if the compliance matrix of the manipulator in the task space, regulated by means of the controller
action, becomes a scalar matrix. The extension of the isotropic compliance property to the Special
Euclidean Group SE(3), in case of 6-DoF [22] and redundant [23] serial manipulators, lead to the
definition of two different cases: local isotropic compliance and screw isotropic compliance. In
the first case, the force vector is parallel to the displacement vector and, at the same time, the
torque axis is parallel to the rotation axis. The second case refers to the condition of parallelism
between the wrench and twist screw axes.

In this investigation, the isotropic compliance condition is analyzed in the Special Euclidean Group
SE(2) by considering a 3RRR planar parallel manipulator in a generic posture. The proposed con-
trol scheme decouples the effects of the applied force and moment on the end-effector displace-
ment and rotation, ensuring the condition of parallelism between force and displacement vectors.
A numerical example is presented and multibody simulations are performed to verify the effec-
tiveness of the control system.

2 ISOTROPIC COMPLIANCE IN SE(3)

With reference to Fig. 1, point P represents the interaction point between the end-effector and the
external environment. The generic system of applied loads can be reduced to a force q)j, whose
line of action passes through P, and to a torque pii. The unit vector k, belonging to the plane
defined by j and W, is perpendicular to j with the same sense of the component of @ perpendicular
to j From the definition of 3 and K, it follows that i :j x k. The reference frame Rp = {P.x,y,z}
has origin in P and axes x, y, and z, defined by the unit vectors i, j, and k, respectively.

By resorting to the screw formulation, it is possible to introduce the wrench

¢ j
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where A is the wrench pitch and the vector p = pi defines the position of the point O belonging to
the wrench axis O. The planes & and ¢ are normal to the unit vectors k and @, respectively.

The wrench w is energetically conjugated [24] to the twist

A®Gh h
t= r=AOQ L )
APV vh+rxh

where v is the twist pitch and h,perpendicular to the plane , is the unit vector of the twist screw
axis, H. The vector r defines the position of point H and represents the minimum distance between
H and P. The vectors A®h and AP¥ represent the magnitudes of the end-effector displacement and
rotation, respectively.
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Figure 1. Wrench w and consequent twist t in the general case.

In general kinetostatic conditions, the manipulator posture and its dynamic characteristics deter-
mine the final pose of the end-effector. As a consequence, there are no specific relations between
the unit vectors j and ¥, that represent the directions of the applied force and the end-effector dis-
placement, respectively. Analogously, there are no particular relations between the direction of the
unit vectors @ and h, that represent the torque axis and the end-effector rotation axis, respectively.

The study presented in Ref. [21], focused on the Euclidean Group E(3), analyzed the relation
between j and ¥ and defined the condition of parallelism between the two unit vectors as isotropic
compliance in E(3).

Subsequent studies [23, 22] considered the Special Euclidean Group SE(3) and, analyzing also the
relations between the unit vectors i and h, defined the following conditions.

* Local isotropic compliance: condition of parallelism between the unit vectors j and ¥, and
between the unit vectors @ and h. The displacement of the end-effector is parallel to the line
of action of the applied force and its rotation axis is parallel to the axis of the applied torque.

* Screw isotropic compliance: condition of parallelism between the unit vectors j and h. The
screw axis of the twist is parallel to the screw axis of the applied wrench.

In the next Sections, the local isotropic compliance property is examined considering the planar
parallel 3RRR manipulator.

3 LOCAL ISOTROPIC COMPLIANCE

According to the definition of local isotropic compliance in SE(3), the direction of the end-effector
displacement must be parallel to the line of action of applied force, therefore

v=J. (3)
Furthermore, the rotation axis of the end-effector must be to the axis of the applied torque:

h
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Figure 2. Local isotropic compliance. Wrench w and consequent twist t, with j = ¥ and
a=h

From eqgs. (1) and (2) it follows

APY /9], (5)
AGh / put, (6)
and
A® (vh+rxh) / 6], (7)
ABh ) ¢ (Aj+Px]) . (8)

The local isotropic compliance condition is illustrated in Fig. 2. The conditions of parallelism in
section 3 and section 3 can be formulates as

APY = c 0] 9)

and
A®h = ¢ i , (10)

respectively, where c; and ¢, are scalars. In matrix form, eqgs. (9) and (10) can be rearranged as

AS = Cw (1D
with
CdI 0
C= (12)
0 ¢l
and
AS =Tt (13)

where I and I? are the 3 x 3 identity and anti-diagonal identity matrices, respectively.



Equation 11 expresses a relationship between displacements and forces, and between rotations and
torques. From a physical point of view, C is a compliance matrix and the scalars c¢; and ¢, take
the role of translational and rotational compliance coefficients, with units of mN~! and (N-m)~!,

respectively.

On the other hand, the compliance matrix of a robotic manipulator is defined in the task space as
c=Jk'J . (14)
In the previous relation, J is the manipulator jacobian defined as
AS = JAq, (15)

where Aq represents the variation of the joint coordinates vector. The matrix k is the manipulator
stiffness matrix, defined in the joint space. Since J is posture-dependent and C depends both on J
and k, the compliance matrix obtained by means of eq. (14) is generally different from the matrix
defined in eq. (12).

However, the stiffness matrix k generally depends on the mechanical characteristics of the ma-
nipulator, represented by the passive stiffness matrix K, and on the action exerted by the control
system, represented by the control matrix k.. In case of active stiffness regulation acting in parallel
to the passive stiffness of the joints, k can be calculated as [21]

k =Kk, +Kk. (16)

Therefore, the control matrix k. can be exploited to transform the compliance matrix of the ma-
nipulator in the scalar-like matrix in eq. (12) that guarantees the achievement of the local isotropic
compliance property.

4 CONTROL ACTION DETERMINATION

Local isotropic compliance can be achieved by considering a control strategy based on active

stiffness regulation. Considering only the contribution of the passive stiffness, the compliance

matrix in the task space, obtained by means of eq. (14), can be partitioned as

C A D] 17)
|pT B|’

The passive stiffness matrix in the task space, that is the inverse of Cp,, can be calculated as

E G
K, = 6" m| (18)

where
E=(A-DB'D") ', (19)
G=-(A-DB'D")"'DB', (20)
H=(B-D'A"'D)'. (1)

By resorting to the spectral decomposition, the passive stiffness matrix can be written as

B UpXpUgT G

— , 22
P GT UpZyUyT 22)

where the columns of Ug, Uy form a set of orthonormal eigenvectors of E and H, respectively,
and X, Xy are diagonal matrices with the eigenvalues of E and H, respectively.



To achieve local isotropic compliance, the control system must exert a generalized force in the task
space that must satisfy two requirements. The first one is decoupling the the effects of the applied
force and torque on the end-effector displacement and rotation. The second one is obtaining the
parallelism condition between force and displacement and between torque axis and rotation axis.
By focusing on the stiffness matrix, the first requirement is satisfied by zeroing out the elements of
the off-diagonal blocks, whereas the second requirement is satisfied by transforming the diagonal
blocks in scalar submatrices. By setting the generalized control force as

f. AE —G| [ APY
= T I (23)
m, —GT AH| | AGh
with . |
AE = Ug <I—ZE> Us', AH = Uy (1—2H> Un',
Cq Cr

where c; and ¢, are the desired translational and rotational compliance coefficients. Therefore, by
considering eq. (22) and

o e (24)
©|-GT AH|’
the overall stiffness matrix in the task space becomes
1
—I 0
K=K, +K.= |9 | |. (25)
0 —I

Cr

By calculating the inverse matrix of K, the overall compliance matrix defined in eq. (12) is ob-
tained, and the manipulator satisfies the local isotropic compliance condition in the considered
posture. It is worth noting that the control stiffness matrix in eq. (24), defined in the task space,
can be mapped into the joint space as

ke =J'K.J. (26)

S EXAMPLE IN SE(2): THE 3RRR PARALLEL MANIPULATOR

chain 3

Figure 3. 3RRR robot: nomenclature.

With reference to Fig. 3, the posture of the planar manipulator is defined by the joint coor-
dinates vector q = [91,62,93]T, whereas the end-effector pose in the task space is defined by
X = [xg,VE, (j)]T. The regulation is exerted by the active joints connecting the manipulator to the



frame. Each actuated joint embed also the stiffness of the system, therefore the passive stiffness
matrix of the manipulator is diagonal and defined as

k, = diag{kp, ,kp, . kp, } (27)
The relation between the variation of the task and joint coordinates can be expressed as
Ax = JAq, (28)
where
b1y by cixbiy —ciybiy] [aixbiy —aiybix 0 0
J=J"Jg=|bae Doy caboy—coybac 0 azbyy — azybyy 0
b3y b3y c3cb3y—c3yb3, 0 0 azybzy — azybzy
(29)

is the robot jacobian matrix. The values of the joint coordinates in the assigned posture q,, that
must not correspond to a kinematic singularity, are reported in Table 1. The table lists also the
stiffness coefficients and link lengths of the manipulator under study.

Table 1. Values of the kinetostatic parameters of the manipulator.

6; (rad) | k,, (N-m) | a; (m) | b; (m) | ¢; (m)
1| 065 800 V2 1 1
2| 1.23 880 V2 1 1
3] 223 710 V2 1 1

To achieve the isotropic compliance condition in g, the first step is to assign the desired compli-
ance coefficients,
cg=2E-3m-N! = ¢ =2E-3(N-m)"!.

The second step consists of evaluating the jacobian matrix, that is
—0.909  0.1933  0.6911
J(g.)=| —0.8112 —-0.1724  —-0.616 | (30)
—0.3827 —0.6628 —0.6628

and the compliance matrix in the task space. By substituting eqs. (27) and (30) in eq. (14), it

follows
8.094E —4 —7.476E —4 2.802E — 4

C,= —7.476E — 4 9.562E—3 —4.679E—3 | . 31)
2.802E—4 —4.679E—3 3.272E—-3

The third step consists of calculating, according to eq. (18), the stiffness matrix K;, in the task
space. Then, the submatrices E, G, and H can be determined by means of eq. (19), eq. (20), and
eq. (21), respectively. Finally, the control stiffness matrices are evaluated. In the task space, from
eq. (24) it follows

—844.92 —-162.49 —117.18

K.— | —16249 13200 —512.33 | (32)
—117.18 —51233 —528.22

whereas in the joint space, considering eq. (26), it follows
—101.55 —844.81 848.89

k.= | —844.81 142274 —-2067.89 | . (33)
848.89 —2067.89 1655.70
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Figure 4. End effector disturbance force and moment.
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Figure 5. End effector displacement and rotation, system with no control.

6 MULTIBODY SIMULATION

The response of the system was simulated using MBDyn!, a free general-purpose multibody solver
developed at Politecnico di Milano [25, 26, 27]. The manipulator model, whose kinematic is
constrained on the x — y plane, consists of seven rigid bodies and nine revolute joints. Each joint
has a nominal torsional stiffness k, (Table 1); an additional very small damping term, equal to
2-1074. kp N-m-s- rad~!, is added in order to stabilize the analysis. The inertia properties of the
links are not relevant in this context since the loads have been applied in quasi-static condition.

A sequence of two independent disturbance forces and a moment, shown in Fig. 4, is applied
to the end-effector. The two forces are directed along the coordinate axes of the plane, whereas
the moment is about an axis perpendicular to the plane. The magnitude of each force is 0.2 N,
whereas the moment magnitude is 0.2 N-m. These values have been chosen so that the corre-
sponding configuration change is small enough to make kinematic nonlinearities in the perturbed
solution negligible. Each force and moment is slowly increased following a regular (1 — cos(z))
pattern, then kept constant, and subsequently brought back to zero following the reverse pattern

Thttp://www.mbdyn. org/, last accessed March 2023.
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Figure 6. End effector displacement and rotation, controlled system.

(cos(t) — 1). The small applied loads induce correspondingly small configuration changes; thus,
the feedback gain matrix, eq. (26), can be kept constant.

The results presented in Figs. 5 and 6 show the two components of displacement, # and v, and
the finite rotation, @, of the end effector, respectively computed with and without the control
action. They clearly show how the system response is coupled without feedback action, while the
feedback allow to achieve an almost ideal isotropic compliance. This is the case both for when the
end-effector is loaded with a force and when it is loaded with a moment; both type of loading lead
to the qualitatively identical responses.

7 CONCLUSIONS

In this paper, the local isotropic compliance property has been studied in SE(2) by considering
a planar parallel 3RRR manipulator in a generic posture. A proper control strategy has been
developed to decouple the effects of the external actions on the end-effector displacement and
rotation. The manipulator behavior has been simulated by means of the MB-Dyn software, by
considering different load cases. For each case, the results show the effectiveness of the control
action in determining an isotropic compliant response.
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