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Abstract

We study the Markov evolutions associated to the expected Markov

processes.
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4 2�parameter Markov semi�groups in quantum theory 23

1 Introduction

In classical (or expected quantum see ([9])) Markov processes, conditioning
of the future on the past is equivalent to conditioning on the present. From
this one deduces that these processes are canonically associated to Markov
evolutions, i.e. completely positive identity preserving maps
P (t, s) : At → As satisfying P (s, r)P (t, s) = P (t, r) (r < s < t) , where
Ar (r ∈ R) is the algebra at time r of the process. Conversely the Markov
evolution (P (t, s))s<t allows to reconstruct all the conditional expectations
of the process.
Restricted to 1 dimension, the Nelson Markov property (NMP) (see Subsec-
tion 3.4) states that if s′ < s < t < t′, conditioning the algebra A(s,t) on the
algebra A(s,t)c ((s, t)c := complement of (s, t)) (in�out conditioning) is the
same as conditioning on A{s′,t′} - the algebra associated to the boundary of
(s′, t′)c). The out�in conditioning is the symmetric one, namely conditioning
A(s,t)c on A(s,t).
Since both the in�out and out�in conditioning can also be de�ned for usual
Markov processes, it is natural to compare the result of these conditioning
with the corresponding NMP. It turns out that, for the out�in conditioning,
usual Markov processes satisfy the NMP in a stronger form (see Theorem
1). However the converse is not true, i.e. the NMP does not imply the usual
Markov property.
This suggests the idea that, for processes satis�ng the NMP, the Markov evo-
lution (P (t, s))s<t should be replaced by a 2�parameter Markov evolution
P(t′,s′),(t,s) : A(s,t) → A(s′,t′) satisfying

P(t′′,s′′),(t′,s′)P(t′,s′),(t,s) = P(t′′,s′′),(t,s) , s′′ < s′ < s < t < t′ < t′′ (1.1)

and that this evolution should allow to reconstruct the process. In Theorem
2 it is proved that this is indeed the case whenever the local σ�algebras are
generated by the σ�algebras at �xed times.
This shows that the structure of the special class of Nelson Markov processes,
discussed in Theorem 2, is fully analogous to the structure of usual non�time�
homogeneous Markov processes with the only di�erence that usual Markov
evolutions are replaced by 2�parameter Markov evolutions of the form (1.1).
This raises the problem to characterize the generators of these evolutions.
A natural conjecture is that it should be similar to the structure of Gorini�
Kossakowski�Sudarshan�Lindblad (GKSL) generators, but this is an open
problem.
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In the case of usual (i.e. 1�parameter) evolution the condition of time�
homogeneity, i.e. Pt+r,s+r = Pt,s (0 ≤ s ≤ t, r ∈ R+), reduces the 1�
parameter evolution (Pt,s)s≤t becomes a 1�parameter Markov semi�group.
One would expect a similar behaviour from the 2�parameter Markov pro-
cesses. To formulate more precisely this conjecture, one has to de�ne a
notion of time�homogeneity for such processes. This is done in Section 3.4.2.
In Section 3.5 we prove that, under the 2�parameter time�homogeneity con-
dition, the evolution (1.1) takes the form

P̂τM (−t′, s′)P̂τM (−t, s) = P̂τM (−(t′ + t),−(t− s′)) (1.2)

where P̂τM is de�ned by (3.56) and the variables t, s, t′, s′ are subject to the
constraints s, t, t′ > 0, s′ > s + t (see (3.54), (3.55) below). It is clear that
equation (1.2) is reminiscent, but de�nitely di�erent from the 2�parameter
Markov semi�group equation

P (a′, b′)P (a, b) = P (a′ + a, b′ + b) ; a, b, a′, b′ ∈ R+ (1.3)

In particular, the constraint s′ > s+ t shows that we are still in the domain
of evolution equations and not of semi�group laws.
Notice that a two�parameter family (P (a, b)) satisfying (1.3) has the form

P (a, b)
a′=b=0
= P (0 + a, b′ + 0)

(1.3)
= P (0, b′)P (a, 0)

P (a′, b)
a=b′=0
= P (a′ + 0, 0 + b)

(1.3)
= P (a′, 0)P (b, 0)

and, since a, b, a′, b′ are arbitrary, the above identities imply

P (0, b)P (a, 0) = P (a, 0)P (b, 0)

i.e. P (a, b) is a product of two commuting one�parameter Markov semi�
groups. There is no such factorization for general 2�parameter Markov evo-
lution of the form (1.1). However, if in such evolution one chooses (as always
possible) s′′ = s′ = s, (1.1) becomes

P(t′′,s),(t′,s)P(t′,s),(t,s) = P(t′′,s),(t,s) , s < t < t′ < t′′ (1.4)

which, introducing the notation

P2;s(t
′, t) := P(t′,s),(t,s) (1.5)

is reduced to the usual 1�parameter Markov evolution

P2;s(t
′′, t′)P2;s(t

′, t) = P2;s(t
′′, t) , s < t < t′ < t′′ (1.6)
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This suggests a condition of time shift�covariance di�erent from the one used
in this paper, which is the usual one for stochastic processes, namely: the
�xed time algebras are all isomorphic to a single algebra B and there exists a
Markov semi�group Qt : B → B such that, for any choice of s < t < t′, Qt−t′

2

is identi�ed with P2;s(t
′, t). Moreover the same is required, possibly with a

di�erent semi�group Qt−t′

1 , for the evolutions (P1;t(s
′, s)) obtained from (1.5)

with the replacements 2 → 1, s → t, t → s, t′ → s′, t′′ → s′′.
This would produce a 2�parameter Markov evolution with two naturally asso-
ciated 1�parameter Markov evolutions and the problem to �nd the relations
between the in�nitesimal generators of these 2 evolutions is de�nitively of in-
terest and will be discussed elsewhere. In Section 4 we show that 2�parameter
Markov semi�groups arise naturally in quantum theory.

2 Projective families of Markov conditional ex-

pectations: 1�dimensional case

De�nition 1 Let T be a set, I a family of sub�sets of T and A a ∗�algebra.
A family (AI)I∈I of sub�∗�algebras of A satisfying

I ⊆ J ⇒ AI ⊆ AJ , ∀I, J ∈ I

is called a localization on A based on T (a W ∗�localization (resp. C∗�
localization) if the AI are W ∗�algebras (resp. C∗�algebras)). In this case,
we also say that the pair {A, (AI)I∈I} is a family of local algebras.

De�nition 2 A triple {A, (AI)I∈I , φ} where {A, (AI)} is a family of local
algebras and φ is a state on A will be called a stochastic process localized
on I (a quantum stochastic process if A is not abelian).

Let I be a family of Borel sub�sets of R. In the following the notation
{I−, I ′, I+} means that I−, I ′, I+ ∈ I and sup I− < inf I ′ ≤ sup I ′ < inf I+.
We will use the notations

EI′ ≡ ER,I′

L∞(I) := L∞(FI) := L∞(Ω,FI , P )

2.1 Translations on R (R+)

In the following we will discuss the case in which T = R or R+ and we shall
assume that there is an action

t ∈ T 7→ ut ∈ End (A)
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of T on A by ∗�endomorphisms which satis�es:

utAI = AI+t (covariance) (2.1)

ut has a left inverse denoted u∗
t (u∗

t is the inverse of ut if T = R) (2.2)

utus = ut+s (2.3)

A projective family (EI) of conditional expectations is called covariant if

utEI = EI+tut (2.4)

this is equivalent to

utEIu
∗
t

∣∣∣
A[t,+∞)

= EI+t

∣∣∣
A[t,+∞)

(2.5)

3 Markovianity and semi�groups

Let {A, (AI)I∈I} be a family of local algebras localized on R (or R+) and let
be given a projective family EI : A → AI (I ∈ I) of conditional expectations.
To avoid circumlocutions, we adopt the convention that, if T = R+, the
symbols

Et] := E(−∞,t] , E[t := E[t,+∞), At] := A(−∞,t], At := A{t} , . . .

stand respectively for

E[0,t], E[t , A[0,t], . . .

De�nition 3 The family (EI) is said to be Markovian if ∀ t ∈ T

E(−∞,t](A[t,+∞)) ⊆ At (3.1)

The properties of the conditional expectations easily imply that (3.1) is equiv-
alent to

E(−∞,t](a) = E{t}(a) ; ∀ a ∈ A[t,+∞) (3.2)

There are many equivalent ways of formulating the Markov property. The
formulation (3.1) (and its multi�dimensional analogues, see [9]) underlines
the locality aspect of the Markov property and is particularly well suited for
the quantum generalization.
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Proposition 1 In the above notations, let (EI) be a projective, covariant,
markovian family of conditional expectations, and de�ne

P t = E(−∞,0]ut

∣∣∣
A0

; t ≥ 0 (3.3)

then P t is a 1�parameter, completely positive semi�group A0 → A0 such
that

P t(1) = 1 ; t ≥ 0 (3.4)

Proof. P t is positivity preserving and P t(1) = 1 since E(−∞,0] and ut have
this properties; because of the Markov property

P t = E{0}ut

hence
P tA0 ⊆ A0

and

P tP s = E{0}utE{0}us = E{0}E{t}ut+s = E{0}E(−∞,t]ut+s = E{0}ut+s = P t+s

hence P t is a semi�group. □

A completely positive 1�parameter semi�group P t : A0 → A0 such that
P t(1) = 1, is called a Markov semi�group (on A0). The relation (3.1)
can be called the forward Markov property (the past conditioning the
future). The backward Markov property (the future conditioning the
past) is expressed by

E[t,+∞)(A(−∞,t]) ⊆ At (3.5)

Reasoning as in the proof of Proposition 1 one veri�es that, if (EI) is back-
ward Markovian, covariant, projective, then

P t = u∗
tE[t,+∞)

∣∣∣
A0

; t ≥ 0 (3.6)

is a Markov semi�group on A0.

If T = R and the system {A, (AI), (EI)(ut)} admits a re�ection, then it is
easy to verify that the two de�nitions coincide.

Remark 1. The proof of the semi�group property makes use only of co-
variance and projectivity, and the fact that P t maps A0 into itself follows
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from the Markov property. Thus the construction above holds for any covari-
ant, projective, markovian, normalized family (E(−∞,t]) of completely positive
maps.

Remark 2. The relation (3.3) shows the deep connection between stationary
(or, more generally, covariant) Markov processes and the theory of unitary
dilations of semi�groups. We refer to [12] for a discussion of this topic and
bibliographic references.

3.1 Semi�groups and markovianity

In section 3 we have seen that every covariant stochastic process, as de�ned
in section 2.1, determines a Markov semi�group P t. If the process has an ini-
tial distribution w0 (resp. is stationary with invariant distribution w0), then
the pair {w0, P

t} uniquely determines the stochastic equivalence class of the
process. It is important to note that the equivalence class of the process is
meant here with respect to the localization given by the �nite subsets of
the index set T ⊆ R. Without this clari�cation the above assertion is in gen-
eral false (this is the case, for example, for Markov �elds � i.e. generalized
processes � on the real line, for which the natural equivalence relation is not
based on the �nite subsets of R but on the open intervals).
In the following we shall use the term process to imply that the localization
is based on the �nite subsets if the set of indices, and the term �eld for the
more general situation.
There is a well known procedure which allows to associate a stochastic process
(resp. stationary stochastic process) with initial (resp. stationary) distribu-
tion w0, uniquely determined up to equivalence, to a pair {w0, P

t}, where
w0 is a probability distribution on a measurable space (S,B), and P t is a
Markov semi�group acting on some subspace of L∞(S,B) with appropriate
continuity properties (cf. [10], [11], for example). The equivalence class of
the process, i.e. the joint expectations, are determined by:

µ0,t1,...,tn((f0 ◦ x0) · (f1 ◦Xt1) · · · · · (fn ◦Xtn)) =

= w0(f0 · [P t1 [f1 · [P t2−t1 · · · · · [P tn−tn−1ftn ]]] . . . ])

where f0, . . . , fn ∈ L∞(S,B), (xt) are the random variables of the process,
0 < t1 < · · · < tn, n ∈ R and the dot denotes point�wise multiplication.
Thus all classical covariant Markov process are determined up to the initial
(resp. stationary) distribution and up to stochastic equivalence, by a Markov
semi�group. As shown in [2], [3], [4], the situation in the quantum case is
more delicate; in particular, the extrapolation of the above assertion to the
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quantum case is wrong.

3.2 The Nelson Markov property

From now on we only discuss classical stochastic processes, i.e. the algebra
A is commutative.

De�nition 4 Let I be a Boolean algebra of subsets of R containing all of
intervals and their boundaries. A projective family of conditional expecta-
tions

EG,F : AG → AF ; F ⊂ G; F,G ∈ I (3.7)

is said to enjoy the in�out Nelson Markov property (in�out NMP)
with respect to the interval localization, if for any open interval (r, t),
one has:

E(r,t)c(f[r,t]) = E{r,t}(f[r,t]) = E∂(r,t)(f[r,t]) (3.8)

The family (3.7) is said to enjoy the out�in Nelson Markov property
(out�in NMP) with respect to the same localization if, in the above nota-
tions

E[r,t](f(r,t)c) = E{r,t}(f(r,t)c) = E∂(r,t)(f(r,t)c) (3.9)

Remark. The standard formulation of the NMP is:

ESc(fS) = E∂S(fS) (3.10)

where S is a bounded open set in Rd.
In the general case there is an important di�erence between the NMP for
bounded or unbounded sets. The term global Markov property was
coined to denote the NMP when S is an open half�space and the exten-
sion from the Markov property to the global Markov property turned out to
be a non�trivial problem. In [7] it was shown that the root of the problem
was in the de�nition of the σ�algebras associated to an half�space and that,
de�ning it as the intersection of the σ�algebras associated to the open sets
with bounded boundary whose complement contains S, one can naturally
deduce the global Markov property from the local one.

Remark. Even if under very general conditions, the in�out and the out�in
Markov properties are equivalent, their probabilistic and physical interpre-
tations are quite di�erent.
In the statistical mechanics interpretation one thinks of a gas localized
on the points of a 1�dimensional space, identi�ed with R and interpreted
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as space, and the points of the sample space are its con�gurations. In this
case the in�out conditioning means that the con�guration inside the �nite
volume [s, t] (up to boundary) is conditioned by the con�guration outside
the same volume (on the boundary in the Markov case).
The out�in conditioning means that the con�guration outside the volume
[s, t] is conditioned by the con�guration inside the same volume (up to bound-
ary).

In the probabilistic (or open system) interpretation one thinks of the evo-
lution of a system in time, identi�ed with a one�sided lattice, typically
R∗

+ ≡ (0,+∞) or a subset of it and the points of the sample space are its tra-
jectories. The point 0 is excluded becauseA0 is usually introduced as an alge-
bra algebraically independent of A(0,+∞) in the sense that A = A0 ⊗A(0,+∞)

and A0 interpreted as algebra of observables of the system in the open sys-
tem interpretation and as as algebra of the initial data in the probabilistic
interpretation. In this case the �nite volume (0, t] is the past and it condi-
tions the future (the outside). Its boundary {t} is the present. This justi�es
the term in�out conditioning which becomes backward in the probabilistic
interpretation. The term forward used for the time reversed process. In this
case the algebra A0 is often taken to be 1�dimensional, A0 = C ≡ Cχ{x}, cor-
responding to the fact that the state of the system at time 0 is the δ�function
at x ∈ R.

3.3 Deduction of the out�in Nelson Markov property

from standard Markovianity in the 1�dimensional

case

We have seen that the general Nelson Markov property (3.10) in the 1�
dimensional case and with the choice S = [r, t] (so that ∂S = {r, t}), be-
comes (3.9). In this section we deal with the 1�dimensional case and prove
that the usual Markov property implies a stronger version of the
out�in Nelson Markov property. The idea of the proof is to use the
fact that a classical processes is forward Markov if and only if it is backward
Markov (see [9]), to project forward the functions localized in the past of a
given set S and backward those localized in the future of S.
The in�out NMP is more delicate and will be discussed in section 3.4.
The usual backward Markov property is de�ned, for the projective fam-
ily (Et]) ≡ (E(−∞,t]), by

Et](f[t) = E{t}(f[t) ∈ A{t} (3.11)
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and the usual forward Markov property is de�ned, for the projective
family (E[t) ≡ (E[t,+∞)), by

E[t(ft]) = E{t}(ft]) ∈ A{t} (3.12)

Lemma 1 Suppose that the families (Et]) and (E[s) satisfy conditions (3.12)
and (3.11) respectively and that A is linearly generated by the products of
the form

fs]f[s,t]f[t (3.13)

where fs] ∈ As], f[s,t] ∈ A[s,t], f[t ∈ A[t. Then for any fs], f[s,t], f[t as before,
one has:

E[s,t](fs]f[s,t]f[t) = E{s}(fs])f[s,t]E{t}(f[t) (3.14)

In particular
E[s,t](fs]f[t) = E{s}(fs])E{t}(f[t) (3.15)

E[s,t](A(s,t)c) ⊂ A{s,t} = A∂[s,t] (3.16)

Proof. In the notations of the statement, one has

E[s,t](fs]f[s,t]f[t)
projectivity

= Et](fs]f[s,t]f[t) = E[s,t](fs]f[s,t]Et](f[t))

(3.11)
= E[s,t](fs]f[s,t]E{t}(f[t)) = E[s,t](fs]f[s,t])E{t}(f[t)

projectivity
= E[s,t]E[s(fs]f[s,t])E{t}(f[t) = E[s,t](E[s(fs])f[s,t])E{t}(f[t)

= E[s,t](E{s}(fs])f[s,t])E{t}(f[t)
(3.12)
= E{s}(fs])E[s,t](f[s,t])E{t}(f[t)

= E{s}(fs])f[s,t]E{t}(f[t)

□
Remark. If algebras localized on disjoint sets commute, (3.14) and (3.15)
are equivalent.
Remark. Note that (3.15) is strictly stronger than (3.16) (i.e. (3.9)) even
in the case one assumes that A{s,t} is generated by A{s} and A{t}. In fact,
even in this case, an element of A{s,t} will be a sum of products of the form
g{s}g{t} with g{s} ∈ A{s}, g{t} ∈ A{t} or a limit thereof while the right hand
side of (3.15) involves a single product. A similar totality argument can
be repeated for the products of the form (3.13).

Corollary 1 Any classical Markov process satis�es the out�in NMP in the
stronger form (3.14).

Proof. We know that, for a classical process (Et])�Markovianity and (E[s)�
Markovianity are equivalent and that linear combinations of products of the
form (3.13) are dense in A = L∞(Ω,F , P ). The thesis then follows from
Lemma 1. □
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3.3.1 The out�in Markov property for �nite point localizations

Let Ifin be the family of �nite sub�sets of R with their natural order. We
write equivalently

F = {t1, . . . , tn} = {t1 < · · · < tn} ∈ Ifin

In many stochastic processes (but de�nitively not all) the main objects asso-
ciated to the process (measure, conditional expectations, . . . ) are completely
determined by their restrictions on the elements of the form ft1 . . . ftn with
fti ∈ Ati (i = 1, . . . , n), t1 < · · · < tn, i.e. on the algebras localized on �nite
sets. We will use the notation

A{t1,...,tn} := At1 ∨ · · · ∨ Atn (3.17)

Theorem 1 Let (EG,F ) be a family of projective Markovian conditional ex-
pectation localized on �nite sets. Then, the two families of operators respec-
tively de�ned for s < t by:

E−
t,s := Es]

∣∣∣
At

: At → As ; s < t (3.18)

E+
s,t := E[t

∣∣∣
As

: As → At ; s < t (3.19)

satisfy the following relations:

E−
t,s and E+

s,t are completely positive maps (3.20)

E−
t,s(1) = E+

s,t(1) = 1 (3.21)

E−
s,rE

−
t,s = E−

t,r ; E+
s,tE

+
r,s = E+

r,t , r < s < t (3.22)

Conversely, if the local algebras are of tensor product type, two fam-
ilies of completely positive operators (E−

t,s)s<t, (E+
s,t)s<t, satisfying (3.20),

(3.21), (3.22), determine a unique family of projective conditional expecta-
tions (EG,F ) localized on �nite sets through the equality:

E{t1,t2,...,tk−1,tk,...,tk+m,tk+m+1,...tn},{tk,...,tk+m}

(
ft1 · · · ftk−1

ftk · · · ftk+m
ftk+m+1

· · · ftn
)

(3.23)

= E+
tk−1,tk

(
E+

tk−2,tk−1

(
· · ·E+

t2,t3
(E+

t1,t2
(ft1)ft2)ft3 · · ·

)
ftk−1

)
ftk · · · ftk+m

·

·E−
tk+m+1,tk+m

(
ftk+m+1

E−
tk+m+2,tk+m+1

· · · ftn−3E
−
tn−2,tn−1

(ftn−2E
−
tn−1,tn

(ftn) · · · )
)

for any t1 < t2 < · · · < tk−1 < tk < · · · < tk+m < tk+m+1 < . . . tn and
ftj ∈ Atj (j = 1, . . . , n). Moreover the family constructed in this way satis�es
the stronger version of the out�in NMP (3.15).
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Proof. Using (3.14) with [s, t] → [tk, tk+m], fs] → ft1 · · · ftk−1
, f[s,t] →

ftk · · · ftk+m
and f[t → ftk+m+1

· · · ftn one obtains

E[tk,tk+m](ft1 · · · ftk−1
ftk · · · ftk+m

ftk+m+1
· · · ftn)

= E{tk}(ft1 · · · ftk−1
)ftk · · · ftk+m

E{tk+m}(ftk+m+1
· · · ftn) (3.24)

and, by the forward and backward Markov property the right hand side of
(3.24) is equal to

E[tk(ft1 · · · ftk−1
)ftk · · · ftk+m

Etk+m](ftk+m+1
· · · ftn)

= E[tkE[t2(ft1 · · · ftk−1
) ftk · · · ftk+m

Etk+m]Etn−1](ftk+m+1
· · · ftn)

= E[tk

(
E[t2(ft1)ft2 · · · ftk−1

)
ftk · · · ftk+m

Etk+m]

(
ftk+m+1

· · · ftn−1Etn−1](ftn)
)

= E[tk

(
E[t3(E[t2(ft1)ft2)ft3 · · · ftk−1

)
ftk · · · ftk+m

Etk+m]

(
ftk+m+1

· · · ftn−3Etn−2](ftn−2Etn−1](ftn))
)

= E[tk

(
E[tk−1

(
· · ·E[t3(E[t2(ft1)ft2)ft3 · · ·

)
ftk−1

)
ftk · · · ftk+m

Etk+m]

(
ftk+m+1

Etk+m+2]

(
· · · ftn−3Etn−2](ftn−2Etn−1](ftn)) · · ·

))
= E+

tk−1,tk

(
E+

tk−2,tk−1

(
· · ·E+

t2,t3
(E+

t1,t2
(ft1)ft2)ft3 · · ·

)
ftk−1

)
ftk · · · ftk+m

·

·E−
tk+m+1,tk+m

(
ftk+m+1

E−
tk+m+2,tk+m+1

(
· · · ftn−3E

−
tn−2,tn−1

(ftn−2E
−
tn−1,tn

(ftn)) · · ·
) )

where the families (E−
t,s) and (E+

s,t) are de�ned respectively by (3.18) and
(3.19). Finally conditon (3.19) follows from Markovianity, (3.21) is normal-
ization of conditional expectations and (3.22) follows from projectivity.

Conversely, suppose that algebras localized on disjoint sets are of tensor
product type and let be given two families of operators (E−

t,s)s<t, (E
+
s,t)s<t,

satisfying (3.20), (3.21), (3.22). De�ne

E{S−,S,S+},S := E{t1,t2,...,tk−1,tk,...,tk+m,tk+m+1,...tn},{tk,...,tk+m}

through the right hand side of (3.23).
Because of (3.20), (3.21) the families (E−

t,s)s<t, (E
+
s,t)s<t are conditional ex-

pectations, hence completely positive. Therefore, since algebras localized on
disjoint sets commute and their intersection is C · 1, the right hand side of
(3.23) de�nes a completely positive norm 1 projection onto AS, hence by
Tomiyama's Theorem, a conditional expectation that, by construction, sat-
is�es the out�in NMP. The projectivity of the family constructed in this way
follows from (3.21) and (3.22). □
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3.4 The in�out NMP: 1�dimensional case

We suppose that (3.13) is satis�ed, i.e. that A is linearly generated by the
products of the form

fs]f[s,t]f[t (3.25)

where fs] ∈ As], f[s,t] ∈ A[s,t], f[t ∈ A[t. This implies that, if I1, I2, I3 ⊆ R are
mutually disjoint intervals such that

I1 ∪ I2 ∪ I3 = R

then
AI1

∨ AI2 ∨ AI3 = A

Let (E(s,t)c) be a projective family of Umegaki conditional expectations sat-
isfying the NMP. Then

E(s,t)c(fs]f(s,t)f[t) = fs]E{s,t}(f(s,t))f[t

Thus E(s,t)c is uniquely determined by the expectation values of the form
E{s,t}(f(s,t)).

3.4.1 The in�out NMP for �nite point localizations

Suppose that

A =
∨
t∈R

At (3.26)

In this case condition (3.25) is replaced by the requirement that A is linearly
generated by the products of the form

fs1fs2 · · · fsn−1fsn , s < s1 < · · · < sn < t ⊂ R , fsj ∈ Asj , ∀j (3.27)

Theorem 2 Let (EI)I∈I be a projective family of Umegaki conditional ex-
pectations satisfying the in�out NMP. With the natural identi�cation
{s′, s′} ≡ {s′}, denote, for s < s′ ≤ t′ < t

P̃(s′,t′),(s,t) := E{s,t}

∣∣∣
A{s′,t′}

= E(s,t)c

∣∣∣
A{s′,t′}

: A{s′,t′} → A{s,t} (3.28)

The family (P̃(s′,t′),(s,t)) uniquely determines the projective family (E(s,t)c)
through the identity

E(s,t)c(fs1fs2 · · · fsn−1fsn) = P̃(s1,sn),(s,t)(fs1P̃(s2,sn−1),(s1,sn)(fs2 ·

·P̃(s3,sn−2),(s2,sn−1)(· · · P̃(sp,sp+1),(sp−1,sp+2)(fspfsp+1) · · · )fsn−1)fsn) (3.29)
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if n = 2p and, if n = 2p+ 1:

E(s,t)c(fs1fs2 · · · fsn−1fsn) = P̃(s1,sn),(s,t)(fs1P̃(s2,sn−1)(s1,sn)(fs2·

·P̃(s3,sn−2),(s2,sn−1)(· · · P̃(sp+1,sp+1),(sp,sp+2)(fsp+1) · · · )fsn−1)fsn) (3.30)

for any n ∈ N, s < s1 < · · · < sn < t and fsj ∈ Asj for j ∈ {1, . . . , n}.
Moreover:

(i) For each s < s′ < t′ < t, P̃(s′,t′),(s,t) : A{s′,t′} → A{s,t} is a completely
positive linear map.

(ii) Each P̃(s′,t′),(s,t) is identity preserving:

P̃(s′,t′),(s,t)(1{s′,t′}) = 1{s,t} ; P̃(s′,s′),(s,t)(1{s′}) = 1{s,t}

(iii) The family (P̃(s′,t′),(s,t)) is a 2�parameter evolution, i.e., for
s′′ < s < s′ < t′ < t < t′′, one has

P̃(s,t),(s′′,t′′)P̃(s′,t′),(s,t) = P̃(s′,t′),(s′′,t′′) (3.31)

Conversely, if the local algebras are of tensor product type, a 2�
parameter family (P̃(s′,t′),(s,t))s<s′≤t′<t satisfying conditions (i), (ii), (iii) above
uniquely de�nes a projective family of Umegaki conditional expectations

E(s,t)c : A ≡ As] ⊗A(s,t) ⊗A[t → A(s,t)c ≡ As] ⊗ 1(s,t) ⊗A[t

which satis�es the in�out NMP.

Proof. For s < s1 < · · · < sn < t, consider the expectation values of the
form

E(s1,s2,...sn−1,sn)c(fs1fs2 · · · fsn−1fsn) (3.32)

:= E(s,t)c(fs1fs2 · · · fsn−1fsn)

= E(s,t)c(fs1E(s1,sn)c(fs2 · · · fsn−1)fsn)

= E(s,t)c(fs1E(s1,sn)c(fs2E(s2,sn−1)c(fs3 · · · fsn−2))fsn−1)fsn)

= E{s,t}(fs1E{s1,sn}(fs2E(s2,sn−1)c(fs3 · · · fsn−2))fsn−1)fsn)

Iterating this procedure one �nds, if n = 2p:

E(s,t)c(fs1E(s1,sn)c(fs2E(s2,sn−1)c(· · ·E(sp−1,sp+2)c(fspfsp+1) · · · )fsn−1)fsn)

= E{s,t}(fs1E{s1,sn}(fs2E{s2,sn−1}(· · ·E{sp−1,sp+2}(fspfsp+1) · · · )fsn−1)fsn)
(3.33)
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If n = 2p+ 1, writing

E(s,t)c(fs1fs2 · · · fsn−1fsn) = E(s,t)c(1sfs1fs2 · · · fsn−1fsn)

= E(s,t)c(fs1fs2 · · · fsn−1fsn1t)

one can always suppose that, in (3.32), n is even. In the following we always
consider the case of even n.

E(s1,s2,...sn−1,s2n)c(fs1fs2 · · · fsn−1fs2n) (3.34)

= E{s,t}(fs1E{s1,s2n}(fs2E{s2,sn−1}(· · ·
· · · fsn−1E{sn−1,sn+2}(fsnfsn+1)fsn+2 · · · )fs2n−1)fs2n)

Since fsn−1E{sn−1,sn+2}(fsnfsn+1)fsn+2 ∈ Asn−1 ∨ Asn+2 , the expression
E{sn−2,sn+3}(fsn−1E{sn−1,sn+2}(fsnfsn+1)fsn+2) is well de�ned and one has

E(s1,s2,...sn−1,s2n)c(fs1fs2 · · · fsn−1fs2n) (3.35)

= P̃(s1,s2n),(s,t)(fs1P̃(s2,s2n−1),(s1,s2n)(fs2(· · ·
· · · fsn−1P̃(sn,sn+1),(sn−1,sn+2)(fsnfsn+1)fsn+2 · · · )fs2n−1)fs2n)

where P̃(s′,t′),(s,t) is de�ned by (3.28). Then (i) and (ii) hold because, due to

(3.28), P̃(s′,t′),(s,t) is obtained from E{s,t} by restriction to a sub-algebra with
identity and any such restriction of a completely positive identity preserving
map enjoys these properties. Moreover the NMP and projectivity imply that,
for each gs′,t′ ∈ A{s′,t′}, one has

P̃(s,t),(s′′,t′′)P̃(s′,t′),(s,t)(gs′,t′) = E{s′′,t′′}E{s,t}(gs′,t′)

= E(s′′,t′′)cE(s,t)c(gs′,t′)

= E(s′′,t′′)c(gs′,t′)

= E{s′′,t′′}(gs′,t′)

= P̃(s′,t′),(s′′,t′′)(gs′,t′)

i.e. (iii) holds.

Conversely let be given a 2�parameter evolution

P̃(s′,t′),(s,t) : A{s′,t′} → A{s,t} ; s < s′ ≤ t′ < t

of completely positive identity preserving maps. By assumption

As1,...,s2n ∼ As1 ⊗ · · · ⊗ As2n

∼ (As1 ⊗Asn)⊗ (As2 ⊗Asn−1)⊗ (As3 ⊗Asn−2)⊗ · · · ⊗ (Asn ⊗Asn+1)
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∼
n⊗

j=0

(Asj ⊗Asn−j+1
)

By condition (i) the map

E{s<s1<···<sn<t},{s,t} : As) ⊗A{s<s1<···<sn<t} ⊗A(t → A(s,t)c

de�ned by

E{s<s1<···<sn<t},{s,t}(fs] ⊗ fs1 ⊗ fs2 ⊗ · · · ⊗ fsn−1 ⊗ fsn ⊗ f[t)

:= fs]P̃(s1,sn),(s,t)(fs1P̃(s2,sn−1),(s1,sn)(fs2 ·
·P̃(s3,sn−2),(s2,sn−1)(· · · P̃(sp,sp+1),(sp−1,sp+2)(fspfsp+1) · · · )fsn−1)fsn)f[t

if n = 2p and, if n = 2p+ 1:

E{s<s1<···<sn<t},{s,t}(fs] ⊗ fs1 ⊗ fs2 ⊗ · · · ⊗ fsn−1 ⊗ fsn ⊗ f[t)

:= fs]P̃(s1,sn),(s,t)(fs1P̃(s2,sn−1)(s1,sn)(fs2 ·
·P̃(s3,sn−2),(s2,sn−1)(· · · P̃(sp+1,s′p+1),(sp,sp+2)(fsp+1) · · · )fsn−1)fsn)f[t

is completely positive.

For any s < t, the family F(s,t),fin,even, of �nite subsets of (s, t) of the form
{s < s1 < · · · < s2n < t} is an increasing net for the partial order de�ned by:
{s < s1 < · · · < s2n < t} ≺ {s < s′1 < · · · < s′2p < t} if and only if
(i) S := {s1, . . . , s2n} ⊆ S ′ := {s′1, . . . , s′2p},
(ii) for each j ∈ {0, . . . , 2n+ 1}, denoting s0 := s and s2n+1 := t, there is an
even number of elements of S ′ \ S between sj and sj+1.
By de�nition of local algebras, one has

A(s,t) =
⋃

S∈F(s,t)

AS

Using conditions (ii) and (iii) one veri�es that the family of maps de�ned
above is projective in the sense that, if {s < s1 < · · · < s2n < t} ≺
{s < s′1 < · · · < s′2p < t}, then one has

E{s<s′1<···s′2p<t}(fs] ⊗ fs′1 ⊗ · · · ⊗ · · · ⊗ fs′2p ⊗ f[t)

= E{s<s1<···<sn<t}(fs] ⊗ fs1 ⊗ · · · ⊗ fsn ⊗ f[t)

Therefore condition (3.26) and projectivity implies that the limit

lim
{s<s1<···<sj<···<s2n<t}

E{s<s1<···<sj<···<sn<t},{s,t} =: E(s,t)c
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exists in the strongly �nite sense on A and de�nes an Umegaki conditional
expectation

E(s,t)c : A ≡ As] ⊗A(s,t) ⊗A[t → A(s,t)c

which, by construction satis�es the in�out NMP. The projectivity of the fam-
ily (E{s<s1<···<sj<···<sn<t},{s,t}) implies the projectivity of the family (E(s,t)c).

□

De�nition 5 A family (P̃(s′,t′),(s,t))s<s′<t′<t satisfying conditions (i), (ii), (iii)
of Theorem 2 is called a 2�parameter Markov evolution.

3.4.2 The homogeneous case

De�nition 6 The family of local algebras (At) is called:

(i) homogeneous if there exists a ∗�algebra B and injective embeddings

jt : B → A , t ∈ R

such that for each t ∈ R
jt(B) = At

(ii) of tensor product type if

A{s,t} := A{s} ∨ A{t} ∼ As ⊗At ∼ B ⊗ B

Remark. In the tensor product case the existence of the family of ∗�
isomorphisms jt : B → A can be easily proved. However there other in-
teresting cases is which such a family exists (e.g. the Fermi case). In this
case, since by assumption each jt has a left inverse, denoted j−1

t , the same
is true for each js ⊗ jt := js,t (s < t) and

(js ⊗ jt)
−1 = j−1

s ⊗ j−1
t : A{s,t} := A{s} ∨ A{t} → B ⊗ B

is a ∗�isomorphism. Therefore the family of maps

P 0
(s′,t′),(s,t) := j−1

s,t P̃(s′,t′),(s,t)js′,t′ : B ⊗ B → B ⊗ B (3.36)

with s < s′ ≤ t′ < t, is a 2�parameter evolution on B ⊗ B, i.e. if:
s′′ < s < s′ ≤ t′ < t < t′′, then

P 0
(s,t),(s′′,t′′)P

0
(s′,t′),(s,t) = P 0

(s′,t′),(s′′,t′′) (3.37)
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De�nition 7 Suppose that the family of local algebras (At) is knemati-
cally homogeneous and admits a 2�parameter family of ∗�isomorphisms as
in (3.36). A 2�parameter evolution

P̃(s′,t′),(s,t) : A{s′,t′} → A{s,t} ; s < s′ ≤ t′ < t (3.38)

is called translation covariant if

urP̃(s′,t′),(s,t) = P̃(s′+r,t′+r),(s+r,t+r)ur , ∀r ∈ R (3.39)

where ur satis�es (2.1).

Lemma 2 The identity (3.39) is equivalent to

P 0
(s′,t′),(s,t) = P 0

(u′,v′),(u,v) (3.40)

whenever s < s′ ≤ t′ < t and u < u′ ≤ v′ < v are such that:

s′ − s = u′ − u ; t− t′ = v − v′ ; t− s = v − u (3.41)

Proof. For s < s′ ≤ t′ < t and u < u′ ≤ v′ < v satisfying condition (3.41),
de�ne
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0 < τL := s′ − s = u′ − u ; 0 < τR := t− t′ = v − v′ (3.42)

0 < τM := t′ − s′ = v′ − u′ (3.43)

τ := u− s ∈ R (3.44)

and notice that, in the notations above,

t− s = (t− t′) + (t′ − s′) + (s′ − s) = v − u = (v − v′) + (v′ − u′) + (u′ − u)

= τR + (t′ − s′) + τL = τR + (v′ − u′) + τL ⇐⇒ t′ − s′ = v′ − u′

Therefore τM is well de�ned by (3.43) and from these one obtains

u′ (3.42)
= u+ τL

(3.44)
= s+ τ + τL

(3.42)
= s′ + τ

v′
(3.43)
= u′ + τM = u′ − τL + τL + τM

(3.42)
= u+ τL + τM

(3.42)
= u+ s′ − s+ τM

(3.44)
= τ + s′ + τM

(3.43)
= τ + t′

u
(3.44)
= s+ τ

v
(3.42)
= v′ + τR = t′ + τ + τR

(3.42)
= t+ τ

Using these identities, (3.40) becomes

P 0
(s′,t′),(s,t) = P 0

(s′+τ,t′+τ),(s+τ,t+τ) : B ⊗ B → B ⊗ B , ∀τ ∈ R (3.45)

Now, identity (3.39) is equivalent to

uτ P̃(s′,t′),(s,t)u
−1
τ = P̃(s′+τ,t′+τ),(s+τ,t+τ) , ∀τ ∈ R

which is equivalent to

j−1
s,t P̃(s′,t′),(s,t)js′,t′ = j−1

s,t u
−1
τ P̃(s′+τ,t′+τ),(s+τ,t+τ)uτjs′,t′

= j−1
s+τ,t+τ P̃(s′+τ,t′+τ),(s+τ,t+τ)js′+τ,t′+τ

which is (3.45) □
The following proposition justi�es the terminology introduced in De�nition
7.

Proposition 2 The following statements are equivalent:
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(i) The family {E{s,t}}s<t, constructed from the 2�parameter evolution

(P̃(s′,t′),(s,t)) as in the second part of Theorem 2, is translation covariant
in the sense that

urE{s,t} = E{s+r,t+r}ur (3.46)

where ur satis�es (2.1).

(ii) The 2�parameter evolution P̃(s′,t′),(s,t) (s < s′ ≤ t′ < t), de�ned in
Theorem 2, is translation covariant in the sense of De�nition 7.

Proof. Suppose that (ii) holds. Denote (E(s,t)c) the projective family of
Markov conditional expectations associated to the 2�parameter evolution
(P̃(s′,t′),(s,t)) as in Theorem 2. Identity (3.28) implies that, for s < s′ ≤ t′ < t,

P̃(s′,t′),(s,t)(js′ ⊗ jt′) = E{s,t}

∣∣∣
A{s′,t′}

(js′ ⊗ jt′) = E{s,t}(js′ ⊗ jt′) (3.47)

It follows that from Lemma 2 and (3.47)

urE{s,t}(js′ ⊗ jt′) = urP̃(s′,t′),(s,t)(js′ ⊗ jt′)

= P̃(s′+r,t′+r),(s+r,t+r)(js+r ⊗ jt+r)

= E{s+r,t+r}(js′+r ⊗ jt′+r)

= E{s+r,t+r}ur(js′ ⊗ jt′)

Thus (i) holds.
Conversely, suppose that (i) holds. We have

P̃(s′+r,t′+r),(s+r,t+r)js′+r ⊗ jt′+r = E{s+r,t+r}js′+r ⊗ jt′+r

= E{s+r,t+r}ur(js′ ⊗ jt′)

= urE{s,t}(js′ ⊗ jt′)

(3.47)
= urP̃(s′,t′),(s,t)(js′ ⊗ jt′)

= urP̃(s′,t′),(s,t)u
−1
r js′+r ⊗ jt′+r

which proves the statement (ii). □

3.5 Standard forms

Every 1�parameter translation invariant evolution (Ps,t)s<t on B, de�nes in
a standard way a unique semi�group (P0,t)0<t, using the identities:

Ps,t = Ps+τ,t+τ
τ=−s
= P0,t−s
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Pt,t′′Ps,t = P0,t′′−tP0,t−s = Ps,t′′ = P0,t′′−s

In this section, we adapt this strategy in the case of 2�parameter translation
invariant evolutions (P 0

(s′,t′),(s,t))(s′,t′)⊂(s,t) on B ⊗ B.
To this goal, we exploit the translation invariance condition (3.45) which, in
the notations (3.42), (3.43), (3.44), gives

P 0
(s′,t′),(s,t) = P 0

(s′+τ,t′+τ),(s+τ,t+τ)

τ=−s′
= P 0

(0,t′−s′),(s−s′,t−s′) = P 0
(0,τM ),(−τL,τR+τM )

τ=−s
= P 0

(τL,τL+τM ),(0,τL+τM+τR) (3.48)

We will use the following notations:

P 0
(0,τM ),(−τL,τR+τM ) =: standard form of �rst kind of P 0

(s′,t′),(s,t)

P 0
(τL,τL+τM ),(0,τL+τM+τR) =: standard form of second kind of P 0

(s′,t′),(s,t)

In conclusion: up to translation invariance, the pair ((s′, t′), (s, t)) is equiv-
alent to the pair ((0, t′ − s′), (s− s′, t− s′)) and this latter pair, in terms of
the τ�parameters, can be represented as ((0, τM), (−τL, τR + τM)).

Lemma 3 In terms of standard forms of the �rst kind and for
s′′ < s < s′ < t′ < t < t′′, the evolution equation

P 0
(s,t),(s′′,t′′)P

0
(s′,t′),(s,t) = P 0

(s′,t′),(s′′,t′′) (3.49)

on B ⊗ B becomes

P 0
(0,τM ),(−τ ′′L ,τM+τR+τL+τ ′′R)P

0
(0,τM ),(−τL,τM+τR) = P 0

(0,τM ),(−τ ′′L−τL,τM+τR+τ ′′R) (3.50)

where
τ ′′L = s− s′′ ≥ 0 ; τ ′′R = t′′ − t ≥ 0

Proof. The standard form of the �rst kind of P 0
(s′,t′),(s′′,t′′) is:

P 0
(s′,t′),(s′′,t′′) = P 0

(s′+τ,t′+τ),(s′′+τ,t′′+τ)
τ=−s′
= P 0

(0,t′−s′),(s′′−s′,t′′−s′)

(3.43)
= P 0

(0,τM ),(−τ ′′L−τL,τM+τR+τ ′′R)

The standard form of the �rst kind of P 0
(s,t),(s′′,t′′) is:

P 0
(s,t),(s′′,t′′) = P 0

(s+τ,t+τ),(s′′+τ,t′′+τ)

τ=−s
= P 0

(0,t−s),(s′′−s,t′′−s)

(3.42)
= P 0

(0,τM ),(−τ ′′L ,τL+τR+τ ′′R+τM ) (3.51)
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Thus, using the standard form of �rst kind of P 0
(s′,t′),(s,t) given by (3.48), one

obtains

P 0
(0,τM ),(−τ ′′L ,τL+τR+τ ′′R+τM )P

0
(0,τM ),(−τL,τR+τM ) = P 0

(0,τM ),(−τ ′′L−τL,τM+τR+τ ′′R) (3.52)

which is (3.50). □

Lemma 4 The evolution equation

P 0
(s,t),(s′′,t′′)P

0
(s′,t′),(s,t) = P 0

(s′,t′),(s′′,t′′) (3.53)

on B ⊗ B can be equivalently written in the form

P̂τM (−t′, s′)P̂τM (−t, s) = P̂τM (−(t′ + t),−(t− s′)) (3.54)

where the variables t, s, t′, s′ are subject to the constraints

s > 0 ; t > 0 ; s′ > s+ t ; t′ > 0 (3.55)

Proof. Introducing the variable

σ := τM + τR > 0

and the notation

P̂τM (x, y) := P 0
(0,τM ),(x,y) ; x ≤ y (3.56)

(3.50) becomes

P̂τM (−τ ′′L, σ + τL + τ ′′R)P̂τM (−τL, σ) = P̂τM (−τ ′′L − τL, σ + τ ′′R) (3.57)

Introducing the new variables

s := σ > 0 ; t := τL > 0 ; t′ := τ ′′L > 0 ; u := τ ′′R > 0 (3.58)

(3.50) becomes

P̂τM (−t′, s+ t+ u)P̂τM (−t, s) = P̂τM (−t′ − t, s+ u) (3.59)

= P̂τM (−t′ − t, (s+ t+ u)− t)

Therefore, introducing the new variable

s+ t+ u := s′ ≥ s+ t (3.60)

(3.50) becomes

P̂τM (−t′, s′)P̂τM (−t, s) = P̂τM (−t′ − t, s′ − t) (3.61)

The constraints on the new variables are:

s
(3.58)
> 0 ; t

(3.58)
> 0 ; s′

(3.60)

≥ s+ t ; t′
(3.58)
> 0 (3.62)

and this proves (3.55) □
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4 2�parameter Markov semi�groups in quan-

tum theory

The previous discussion of 2�parameter Markov semi�groups concerned the
classical case. Here we outline the construction of examples of such semi�
groups in the quantum case.

De�nition 8 Let I be a localization on R. A family (AI)I∈I of local ∗�
algebras is called factorizable if, for any I ∈ I and any partition I = I1∪ I2
with I1, I2 ∈ I, there is a ∗�isomorphism

uI;I1,I2 : AI → AI1 ⊗AI2 (4.1)

where ⊗ denotes algebraic tensor product.

Classical examples of factorizable families of local W ∗�algebras are provided
by the local algebras of independent increment classical real valued stochastic
process X indexed by R. In this case I is the family of all intervals in R,

A := L∞
C (X) := algebra of bounded measurable functions of the process X

and, for I ∈ I, AI is the sub�algebra of A generated by the functions of the
increments Xt−Xs with (s, t) ⊆ I. A non�commutative example is provided
by the algebra of bounded operators on Γ(L2(R;H)), the Fock space over
L2(R;H) (square integrable H�valued functions, H Hilbert space) and, for
I ∈ I, AI is the sub�algebra of A generated by the Weyl operators with test
functions having support in I. In the former case the expectation value with
respect to the constant function equal to 1 gives a state on A, in the latter
a state is given by the vacuum expectation value. In both cases we denote φ
the state and Φ the Hilbert space vector implementing it.
Both states are factorizable in the sense that, denoting φI the restriction of
φ to AI , one has

φI ◦ u−1
I;I1,I2

= φI1 ⊗ φI2 (4.2)

This implies that in both cases for each I ∈ I there exists a conditional
expectation EI : A → AI characterized by the property

EI(aIaIc) = aIφ(aIc) ; aI ∈ AI , aIc ∈ AIc

and that the family (EI) of conditional expectations is factorizable in the
sense that, for any pair of disjoint sub�sets I1, I2 ∈ I one has

EI1∪I2 = EI1EI2 = EI2EI1
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In particular
E(s,t)c = Es]E[t = E[tEs] (4.3)

Using this and Markov cocycles constructed with stochastic calculus, one can
construct examples of multi�parameter Markov semigroups as described in
the following.

Recall the random walk scheme, where one couples tensorially an algebra B0

(initial or system algebra) to a factorizable family (A, (AI)) of local algebras
thus producing a new family of local algebras

Ã := B0 ⊗A

Ã[−s,t] := B0 ⊗A[−s,t] ; Ã[−s,t]c := 1B0 ⊗A−s) ⊗A(t ; s, t ≥ 0

One also introduces a new family of conditional expectations

Ẽ(−s,t)c := idB0 ⊗ E(−s,t)c
(4.3)
= idB0 ⊗ (E−s)E(t) = idB0 ⊗ (E(tE−s))

Let ( ; ) be a shift�covariant localized right multiplicative functional (Markov
cocycle)

U[s,t]U[r,s] = U[r,t] ; r < s < t ; U[s,t] ∈ A[s,t]

It is known that in the factorizable case one can associate to it various Markov
semi�groups

P t
−(x0) := E0(U

∗
[0,t]x0U[0,t]) = E0](U

∗
[0,t]x0U[0,t])

P s
+(x0) := E0(U

∗
[−s,0]x0U[−s,0]) = E0](U

∗
[−s,0]x0U[−s,0])

Qt
− := E0(U[0,t]) = E0](U[0,t]) ; Qs

+ := E0(U[−s,0]) = E[0(U[−s,0])

Example 1: If −s < −s′ < 0 < t′ < t, one has

E(s,t)c(U
∗
[−s′,0]x0U[0,t′]) = Es]E[t(U

∗
[−s′,0]x0U[0,t′]) = Es](E[t(U

∗
[−s′,0])x0U[0,t′]))

= Es](E[t(U[−s′,0])
∗x0U[0,t′])) = Es](E[0(U[−s′,0])

∗x0U[0,t′])) = Es]((Q
s′

+)
∗x0U[0,t′])

= Es]((Q
s′

+)
∗x0U[0,t′]) = (Qs′

+)
∗x0Es](U[0,t′]) = (Qs′

+)
∗x0Q

t′

−

which is a 2�parameter semi-group. In this example there is no dependence
on (s, t) unless (s, t) = (s′, t′) .

Example 2: If −s < −s′ < 0 < t′ < t, one has

P 0
(s′,t′),(s,t)(x0) := E(−s,t)c(U

∗
[−s′,t′]x0U[−s′,t′]) = E(−s,t)c(u

0
s′(U[0,t′−s′])

∗x0u
0
s′(U[0,t′−s′]))
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= E−s]E[t(u
0
s′(U

∗
[0,t′−s′]x0U[0,t′−s′])) = E−s]u

0
s′(E[t−s′(U

∗
[0,t′−s′]x0U[0,t′−s′]))

= E0(U
∗
[0,t′−s′]x0U[0,t′−s′]) = P t′−s′

− (x0)

and the evolution becomes

P 0
(s,t),(s′′,t′′)P

0
(s′,t′),(s,t)(x0) = P 0

(s,t),(s′′,t′′)(P
t′−s′

− (x0)) = P t−s
− (P t′−s′

− (x0))

= (P
(t−s)+(t′−s′)
− (x0))

Thus in this case
P 0
(s,t),(0,0) = P t−s

−

and the 2�parameter evolution becomes equivalent to a single Markov semi�
group. Example 2 is the usual semi�group deduced from the quantum
Feynman�Kac formula [5].
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