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Abstract
We study the Markov evolutions associated to the expected Markov
processes.
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4 2—parameter Markov semi—groups in quantum theory 23

1 Introduction

In classical (or expected quantum see (|9])) Markov processes, conditioning
of the future on the past is equivalent to conditioning on the present. From
this one deduces that these processes are canonically associated to Markov
evolutions, i.e. completely positive identity preserving maps

P(t,s): Ay — A satistying P(s,r)P(t,s) = P(t,r) (r < s < t), where
A, (r € R) is the algebra at time r of the process. Conversely the Markov
evolution (P(t,s))s<; allows to reconstruct all the conditional expectations
of the process.

Restricted to 1 dimension, the Nelson Markov property (NMP) (see Subsec-
tion 3.4) states that if s’ < s <t < ', conditioning the algebra A on the
algebra A ((s,t)¢ := complement of (s,t)) (in—out conditioning) is the
same as conditioning on Ay 4 - the algebra associated to the boundary of
(s',t")¢). The out—in conditioning is the symmetric one, namely conditioning
A(s’t)c on .,4(5715).

Since both the in—out and out-in conditioning can also be defined for usual
Markov processes, it is natural to compare the result of these conditioning
with the corresponding NMP. It turns out that, for the out-in conditioning,
usual Markov processes satisfy the NMP in a stronger form (see Theorem
1). However the converse is not true, i.e. the NMP does not imply the usual
Markov property.

This suggests the idea that, for processes satisfing the NMP, the Markov evo-
lution (P(t, s))s<: should be replaced by a 2-parameter Markov evolution
Py oy t,5) 0 As,p) — A(sr ) satistying

P(t”,s”),(t’,s’)P(t’7s/)7(t,s) = P(t”7s”)7(t,s) , s'<sd<s<t<t <t’ (1.1)

and that this evolution should allow to reconstruct the process. In Theorem
2 it is proved that this is indeed the case whenever the local o-algebras are
generated by the o—algebras at fixed times.

This shows that the structure of the special class of Nelson Markov processes,
discussed in Theorem 2, is fully analogous to the structure of usual non—time—
homogeneous Markov processes with the only difference that usual Markov
evolutions are replaced by 2-parameter Markov evolutions of the form (1.1).
This raises the problem to characterize the generators of these evolutions.
A natural conjecture is that it should be similar to the structure of Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) generators, but this is an open
problem.



In the case of usual (i.e. 1-parameter) evolution the condition of time-
homogeneity, i.e. Piprsir = Pis (0 < s < ¢, r € Ry), reduces the 1-
parameter evolution (P;;)s<; becomes a 1-parameter Markov semi-group.
One would expect a similar behaviour from the 2-parameter Markov pro-
cesses. To formulate more precisely this conjecture, one has to define a
notion of time-homogeneity for such processes. This is done in Section 3.4.2.
In Section 3.5 we prove that, under the 2—parameter time—homogeneity con-
dition, the evolution (1.1) takes the form

~ ~

PTM(_tlv S/)PTJVI(_t7 5) = pTM(_(t, + t)? _(t - S/)) (1'2)

where pTM is defined by (3.56) and the variables t, s, ¢/, s’ are subject to the

constraints s,t,t' > 0, s > s+t (see (3.54), (3.55) below). It is clear that
equation (1.2) is reminiscent, but definitely different from the 2-parameter
Markov semi—group equation

P(d,V)P(a,b) = P(d' +a,b/ +b) ; a,bd, b eR, (1.3)

In particular, the constraint s’ > s + t shows that we are still in the domain
of evolution equations and not of semi—group laws.
Notice that a two—parameter family (P(a, b)) satisfying (1.3) has the form

P(a,b) “Z P(0+ a1 +0) "2 P(0,1)P(a, 0)
P, b) "L P’ +0,0 + 5) ) P(a’,0)P(b,0)
and, since a, b, a’, b’ are arbitrary, the above identities imply

P(0,b)P(a,0) = P(a,0)P(b,0)

i.e. P(a,b) is a product of two commuting one-parameter Markov semi-
groups. There is no such factorization for general 2-parameter Markov evo-
lution of the form (1.1). However, if in such evolution one chooses (as always
possible) s” = ¢ = s, (1.1) becomes

Pyn sy P ) ts) = Py ts) » s<t<t <t’ (1.4)
which, introducing the notation
Pos(t',t) := Pl s),(t.9) (1.5)
is reduced to the usual 1-parameter Markov evolution

Poo(t" 1) Pos(t', 1) = Pos(t",1) , s<t<t <t (1.6)
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This suggests a condition of time shift—covariance different from the one used
in this paper, which is the usual one for stochastic processes, namely: the
fixed time algebras are all isomorphic to a single algebra B and there exists a
Markov semi-group Q': B — B such that, for any choice of s < ¢t < ¢/, Q4"
is identified with Py4(#',t). Moreover the same is required, possibly with a
different semi-group Q4" for the evolutions (Py,(s’, s)) obtained from (1.5)
with the replacements 2 -1, s - t, t = s, t' — s, t" — §".

This would produce a 2—parameter Markov evolution with two naturally asso-
ciated 1-parameter Markov evolutions and the problem to find the relations
between the infinitesimal generators of these 2 evolutions is definitively of in-
terest and will be discussed elsewhere. In Section 4 we show that 2-parameter
Markov semi—groups arise naturally in quantum theory.

2 Projective families of Markov conditional ex-
pectations: 1-dimensional case

Definition 1 Let T be a set, Z a family of sub—sets of 7" and A a x—algebra.
A family (Aj)ser of sub—x-algebras of A satisfying

I1CJ = AiCA; , VI, JeT

is called a localization on A based on T (a W*-localization (resp. C*-
localization) if the A; are W*-algebras (resp. C*-algebras)). In this case,
we also say that the pair {A, (A;)rez} is a family of local algebras.

Definition 2 A triple {A, (Aj)ez, ¢} where {A, (A7)} is a family of local
algebras and ¢ is a state on A will be called a stochastic process localized
on Z (a quantum stochastic process if A is not abelian).

Let Z be a family of Borel sub—sets of R. In the following the notation
{I=,I',I7} means that =, I' It € Z and supI~ < inf I’ < sup !’ < infIt.
We will use the notations

E]/ = ER,I’

LOO(I) = LOO(./_"]) = LOO(Q,.F[,P)

2.1 Translations on R (R,)

In the following we will discuss the case in which 7" =R or R, and we shall
assume that there is an action

teT —u € End (A)
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of T' on A by x—endomorphisms which satisfies:
uw A = Aryy (covariance) (2.1)

u; has a left inverse denoted u; (u; is the inverse of u, if T =R) (2.2)

UtUs = Utys (23)
A projective family (E}) of conditional expectations is called covariant if

utE] = E]+tut (24)

this is equivalent to

U,tE]'UJ;k = E1+t (25)

At 400) At 4-00)

3 Markovianity and semi—groups

Let {A, (Ar)rez} be a family of local algebras localized on R (or R, ) and let
be given a projective family E; : A — A; (I € Z) of conditional expectations.
To avoid circumlocutions, we adopt the convention that, if 7" = R, the
symbols

Ey=FE_wy » Ep=FEiix), Aj=Acsy, A=Ay, ...
stand respectively for
Eoyg, Ep , Apg,---
Definition 3 The family (E) is said to be Markovian if V¢ € T
B oo (At ro0)) © Ar (3.1)

The properties of the conditional expectations easily imply that (3.1) is equiv-
alent to
Esp(a) = Egy(a) ; Va e Ay o) (3.2)

There are many equivalent ways of formulating the Markov property. The
formulation (3.1) (and its multi-dimensional analogues, see [9]) underlines
the locality aspect of the Markov property and is particularly well suited for
the quantum generalization.



Proposition 1 In the above notations, let (E;) be a projective, covariant,
markovian family of conditional expectations, and define

P' = E_ s N t>0 (3.3)

0

then P! is a 1-parameter, completely positive semi—group Ay — Ay such
that
P'(1)=1; t>0 (3.4)

Proof. P! is positivity preserving and P*(1) = 1 since E(_q and u; have
this properties; because of the Markov property

Pt = E{o}ut
hence

P'Ay C A,

and
P'P* = Egyw Eoyus = Eqoy Egpyters = EoyE(—so gtirss = Epoyuss = P
hence P! is a semi—group. O

A completely positive 1-parameter semi-group P! : Ay — Ay such that
Pi(1) = 1, is called a Markov semi—group (on Ag). The relation (3.1)
can be called the forward Markov property (the past conditioning the
future). The backward Markov property (the future conditioning the
past) is expressed by

Bt t00) (A(=o0,) € A (3.5)

Reasoning as in the proof of Proposition 1 one verifies that, if (E;) is back-
ward Markovian, covariant, projective, then

Pt = u:E[t,—&—oo) it >0 (3.6)
Ao

is a Markov semi-group on Ag.

If T'= R and the system {A, (A;), (Er)(us)} admits a reflection, then it is
easy to verify that the two definitions coincide.

Remark 1. The proof of the semi—group property makes use only of co-
variance and projectivity, and the fact that P! maps Ay into itself follows



from the Markov property. Thus the construction above holds for any covari-
ant, projective, markovian, normalized family (E(_ ) of completely positive
maps.

Remark 2. The relation (3.3) shows the deep connection between stationary
(or, more generally, covariant) Markov processes and the theory of unitary
dilations of semi-groups. We refer to [12| for a discussion of this topic and
bibliographic references.

3.1 Semi-groups and markovianity

In section 3 we have seen that every covariant stochastic process, as defined
in section 2.1, determines a Markov semi—group P*. If the process has an ini-
tial distribution wq (resp. is stationary with invariant distribution wy), then
the pair {wg, P'} uniquely determines the stochastic equivalence class of the
process. It is important to note that the equivalence class of the process is
meant here with respect to the localization given by the finite subsets of
the index set T C R. Without this clarification the above assertion is in gen-
eral false (this is the case, for example, for Markov fields — i.e. generalized
processes — on the real line, for which the natural equivalence relation is not
based on the finite subsets of R but on the open intervals).

In the following we shall use the term process to imply that the localization
is based on the finite subsets if the set of indices, and the term field for the
more general situation.

There is a well known procedure which allows to associate a stochastic process
(resp. stationary stochastic process) with initial (resp. stationary) distribu-
tion wp, uniquely determined up to equivalence, to a pair {wg, P'}, where
wp is a probability distribution on a measurable space (5,B), and P is a
Markov semi-group acting on some subspace of L>°(S,B) with appropriate
continuity properties (cf. [10], [11], for example). The equivalence class of
the process, i.e. the joint expectations, are determined by:

MO,tl,..‘,tn((fO oxg) - (froXy) - (faoXy,)) =

=wo(fo - [P"[fr-[P=7" - [Pt f 00 ))

where fo,..., fn € L®(S,B), (x;) are the random variables of the process,
0<t; <---<t,, néeR and the dot denotes point—wise multiplication.

Thus all classical covariant Markov process are determined up to the initial
(resp. stationary) distribution and up to stochastic equivalence, by a Markov
semi—group. As shown in [2], [3], [4], the situation in the quantum case is
more delicate; in particular, the extrapolation of the above assertion to the
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quantum case is wrong.

3.2 The Nelson Markov property

From now on we only discuss classical stochastic processes, i.e. the algebra
A is commutative.

Definition 4 Let Z be a Boolean algebra of subsets of R containing all of
intervals and their boundaries. A projective family of conditional expecta-
tions

Ecr:Ac—Ar ; FCG, FGeZ (3.7)

is said to enjoy the in—out Nelson Markov property (in—out NMP)
with respect to the interval localization, if for any open interval (r, 1),
one has:

Ewne(firg) = Epn(firg) = Lo (firg) (3.8)

The family (3.7) is said to enjoy the out—in Nelson Markov property
(out—in NMP) with respect to the same localization if, in the above nota-
tions

Eng(fope) = Ega(fene) = Lo (ferp)e) (3.9)
Remark. The standard formulation of the NMP is:
Ese(fs) = Eas(fs) (3.10)

where S is a bounded open set in R¢.

In the general case there is an important difference between the NMP for
bounded or unbounded sets. The term global Markov property was
coined to denote the NMP when S is an open half-space and the exten-
sion from the Markov property to the global Markov property turned out to
be a non—trivial problem. In [7] it was shown that the root of the problem
was in the definition of the o—algebras associated to an half-space and that,
defining it as the intersection of the o—algebras associated to the open sets
with bounded boundary whose complement contains S, one can naturally
deduce the global Markov property from the local one.

Remark. Even if under very general conditions, the in—out and the out-in
Markov properties are equivalent, their probabilistic and physical interpre-
tations are quite different.

In the statistical mechanics interpretation one thinks of a gas localized
on the points of a 1-dimensional space, identified with R and interpreted



as space, and the points of the sample space are its configurations. In this
case the in—out conditioning means that the configuration inside the finite
volume [s,t] (up to boundary) is conditioned by the configuration outside
the same volume (on the boundary in the Markov case).

The out—in conditioning means that the configuration outside the volume
[s,t] is conditioned by the configuration inside the same volume (up to bound-

ary).

In the probabilistic (or open system) interpretation one thinks of the evo-
lution of a system in time, identified with a one-sided lattice, typically
R% = (0,4+00) or a subset of it and the points of the sample space are its tra-
jectories. The point 0 is excluded because Ay is usually introduced as an alge-
bra algebraically independent of A 4o in the sense that A = Ay ® A 4oo)
and A, interpreted as algebra of observables of the system in the open sys-
tem interpretation and as as algebra of the initial data in the probabilistic
interpretation. In this case the finite volume (0,¢] is the past and it condi-
tions the future (the outside). Its boundary {¢} is the present. This justifies
the term in—out conditioning which becomes backward in the probabilistic
interpretation. The term forward used for the time reversed process. In this
case the algebra A is often taken to be 1-dimensional, Ay = C = Cyy,, cor-
responding to the fact that the state of the system at time 0 is the d—function
at x € R.

3.3 Deduction of the out—in Nelson Markov property
from standard Markovianity in the 1-dimensional
case

We have seen that the general Nelson Markov property (3.10) in the 1-
dimensional case and with the choice S = [r,t] (so that 9S = {r,t}), be-
comes (3.9). In this section we deal with the 1-dimensional case and prove
that the usual Markov property implies a stronger version of the
out—in Nelson Markov property. The idea of the proof is to use the
fact that a classical processes is forward Markov if and only if it is backward
Markov (see [9]), to project forward the functions localized in the past of a
given set S and backward those localized in the future of S.

The in—out NMP is more delicate and will be discussed in section 3.4.

The usual backward Markov property is defined, for the projective fam-

11y (Eﬂ) = (E(—oo,t])a by

Ey(fr) = Ewy(fi) € Ay (3.11)



and the usual forward Markov property is defined, for the projective
family (E) = (Ejt400)), by

Eu(fy) = Ew(fy) € A (3.12)

Lemma 1 Suppose that the families (Ey) and (EJ) satisfy conditions (3.12)
and (3.11) respectively and that A is linearly generated by the products of
the form

T fisnfre (3.13)

where fg € Ay, fis) € Aisgs fir € Ap. Then for any fy, fs4, fir as before,
one has:

Eso(fafisnfi) = Esy(f9) fisn By (fi) (3.14)

In particular
Eisn(fafit) = E (fa) Ey (fir) (3.15)
Eisg(Aspye) C Ay = Adps (3.16)

Proof. In the notations of the statement, one has

rojectivit
B (fafnfe) " =" Eg(fafisnf) = Esa(fafisaBy(fe)
(3.11)
=" Esg(fafsaB(fir) = Esg(fofis0) By (i)
rojectivit
PIEY B Es(fa fsn) B (fir) = Epsg(Bis(f9) fis) By (fr)

BBy (F4) fiu) Eeny () (3.12) Esy (f9) Bl (f1s.0) By (fi)
= By (o) fisn By (fr)

O

Remark. If algebras localized on disjoint sets commute, (3.14) and (3.15)
are equivalent.

Remark. Note that (3.15) is strictly stronger than (3.16) (i.e. (3.9)) even
in the case one assumes that Ay, is generated by Ay, and Agy. In fact,
even in this case, an element of Ay, will be a sum of products of the form
91916y With gy € Agsy, 9qy € Agy or a limit thereof while the right hand
side of (3.15) involves a single product. A similar totality argument can
be repeated for the products of the form (3.13).

Corollary 1 Any classical Markov process satisfies the out—in NMP in the
stronger form (3.14).

Proof. We know that, for a classical process (£;)-Markovianity and (£,)-
Markovianity are equivalent and that linear combinations of products of the
form (3.13) are dense in A = L*(Q, F, P). The thesis then follows from
Lemma 1. UJ
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3.3.1 The out—in Markov property for finite point localizations

Let Zy;, be the family of finite sub-sets of R with their natural order. We
write equivalently

F:{t17atn}:{tl<<tn}€1—fzn

In many stochastic processes (but definitively not all) the main objects asso-
ciated to the process (measure, conditional expectations, ...) are completely
determined by their restrictions on the elements of the form f;, ... f;, with
fi, € Ay, (i=1,...,n), t; <--- <ty,, ie. on the algebras localized on finite
sets. We will use the notation

Attytny = Ay Voo VA, (3.17)

Theorem 1 Let (Eg ) be a family of projective Markovian conditional ex-
pectation localized on finite sets. Then, the two families of operators respec-
tively defined for s < t by:

E, = Ey . Ao A s<t (3.18)
El, = Ey A — A s<t (3.19)

satisfy the following relations: S
E;, and Ef, are completely positive maps (3.20)
E(1)=Ef(1)=1 (3.21)
E,E,=E, ; ELEL =FE, r<s<t (3.22)

Conversely, if the local algebras are of tensor product type, two fam-
ilies of completely positive operators (E;,)s<i, (E)s<t, satisfying (3.20),
(3.21), (3.22), determine a unique family of projective conditional expecta-
tions (Eg r) localized on finite sets through the equality:

Etty o, bt trtigmotisms1otn o {otism ) (ft1 oSSt St St fm)
(3.23)
= E{:,Ltk (Et%;,z,tkfl (. o Ett,t:), (Ett,t2<ft1)ft2)ft3 o .>ftk71) ftk T ftk+m.

'Et_k+m+1,tk+m <ftk+m+1 Et_k+m+2,tk+m+1 e ftn—3Et71727tn71(ftn—QEt:l717t7L (ftn) e ))

for any t; < to < - < tp1 < tp < -0 < tprm < tgamer < ...t, and
[, € Ay, (7 = 1,...,n). Moreover the family constructed in this way satisfies
the stronger version of the out-in NMP (3.15).
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Proof. Using (3.14) with [s,t] — [tp,liemls fo — fu - fosr flog —
foo - frosn and fig = fi,,,.., - fi, one obtains

E[tkvtk-s-m](ftl U ftkflftk T ftk+mftk+m+1 T ftn)
= Eugy(foo o foo ) foe o Frpm Blteim) Ftigmen ) (3.24)

and, by the forward and backward Markov property the right hand side of
(3.24) is equal to

E[tk (ft1 T ftk—l)ftk T ftk+mEtk+m](ftk+m+l T ftn>

= B B, (fro - fos) Joo o Sirm Bt Bta ) (s Son)
= By (B, (fe) fra - foos) oo Fooim Brapn) (Fonimis * frus B (i)
= By, (Bits (B (fe) f) fis -+ fus) oo foim
Evp o) P Fros B o) (fro 2 B ) ()
= By, (Bl (+ Bta (Bpeo () fe) o) Jus) S Firn
Eipin] Frismir Briomia) (- fru s By o) (fn o By (1)) )

- Et—;—lvtk (E:I;—%tk—l ( o E?;g7t:5<E;7t2<ft1)ft2)ft3 o ) ftlwl) ftk U ftk+m'

‘Et_k+m+17tk+m (ftk+m+1 Et_k+m+27tk+m+l (. o ftn—:iEt:zf%tnfl (ft”—QEtjmflvtn (ft”l)> U ) )

where the families (E;,) and (E;,) are defined respectively by (3.18) and

(3.19). Finally conditon (3.19) follows from Markovianity, (3.21) is normal-
ization of conditional expectations and (3.22) follows from projectivity.

Conversely, suppose that algebras localized on disjoint sets are of tensor
product type and let be given two families of operators (E;,)s<t, (Eyy)s<t,
satisfying (3.20), (3.21), (3.22). Define

E{S—,S75+}7S = E{n,tg,...,tkfl,tk,.'.,tmm,t“m“,.'.tn},{tk ,,,,, titm }

through the right hand side of (3.23).

Because of (3.20), (3.21) the families (E;,)s, (F{;)s<: are conditional ex-
pectations, hence completely positive. Therefore, since algebras localized on
disjoint sets commute and their intersection is C - 1, the right hand side of
(3.23) defines a completely positive norm 1 projection onto Ag, hence by
Tomiyama’s Theorem, a conditional expectation that, by construction, sat-
isfies the out—in NMP. The projectivity of the family constructed in this way
follows from (3.21) and (3.22). O
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3.4 The in—out NMP: 1-dimensional case

We suppose that (3.13) is satisfied, i.e. that A is linearly generated by the
products of the form

fafsafr (3.25)

where fq € Ay, fisq € Ais), fit € Ap. This implies that, if 11, I, I3 € R are
mutually disjoint intervals such that

71 UTQ Ujg = R
then
A71 \/.A[2 \/./4]3 =A

Let (E(s)<) be a projective family of Umegaki conditional expectations sat-
isfying the NMP. Then

E(s,t)c (fs} f(s,t) f[t) - fs] E{s,t} (f(s,t))f[t

Thus E, ) is uniquely determined by the expectation values of the form
E{srt} (f(svt))‘

3.4.1 The in—out NMP for finite point localizations

Suppose that
A=\ A (3.26)
teR
In this case condition (3.25) is replaced by the requirement that A4 is linearly
generated by the products of the form

Jsifss o fonifsn » s5<s1<--<s, <tCR, f,, €A, , Vj (3.27)

Theorem 2 Let (E;)rer be a projective family of Umegaki conditional ex-
pectations satisfying the in-out NMP. With the natural identification
{s',s'} = {s'}, denote, for s < s’ <t <t

Ps ), (s.) = Efsty = B, DA = Ay (3.28)
{S,,t/} {S’,tl}

The family (}5(5/7t/),(57t)) uniquely determines the projective family (E(sqe)
through the identity

E(s,t)c(f81f52 T fsn—l fsn) - P(shsn),(&t)<f5115(52,8n71),(31,sn)(fsz'

.P(3375n—2)7(52,3n—1)(‘ o p(3p33p+1)7(3p—175p+2)(fspf5p+1) e )fSn—l)fsn) (329)
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if n=2pand, if n=2p+ 1:
E t)c(f81f82 ' fSn 1fsn) - sl sn),( st)(fsl (s2, snfl)(sl,sn)<f32'

'P(5375n—2)7(5275n—1)<. o P(Sp+175p+1)7(3p75p+2)(f5p+1) e )fsnfl)fsn) (330)
for any n € N, s < sy < --- < s, <tand f,, € A, for j € {1,...,n}.
Moreover:

(i) For each s < & <t < t, p(s/ﬁt/)’(&t) c Ago vy — Ay is a completely
positive linear map.
(ii) Each ]5(3/,15/)7(571&) is identity preserving:

PoysnLsey) =L 3 Poseo(lisy) = Lsn

(iii) The family (P ) (ss) is & 2-parameter evolution, i.e., for
s"<s<s <t <t<t’ onehas

Pisy (s Plsr ), s8) = Pls ) (s,07) (3.31)

Conversely, if the local algebras are of tensor product type, a 2-
parameter family (Py y) (s.))s<s'<t'<¢ Satisfying conditions (i), (ii), (iii) above
uniquely defines a projective family of Umegaki conditional expectations

Espe t A= Ag @ As iy @ Ay = As e = Ay @ Ly @ Ay
which satisfies the in—out NMP.

Proof. For s < s; < --- < s, < t, consider the expectation values of the
form

By snmsnvisn)e (for for = Fonr fan) (3.32)
= Egpye(for fso foni fsn)

= Elapye(for Blor,sn)e(for - foni) fon)

= Eloye (fs1 Es1 ) (fss Els,snr)e (fss =+ fons)) fonos) fon)

= Etoy(for Egsy sm) (fsa Bsasn_)e (fss o+ fono)) foni) fs0)

Iterating this procedure one finds, if n = 2p:

E t)c(f81E(S1,Sn)C(fszE(Sz,Sn—l)c(' o E(Sp—1,5p+2)c(f8pf8p+1) o )fsn—1)f8n)

= E{S,t}(fs1E{S1,sn}(fSQE{Sz,sn—l}(' o E{sp—1,sp+2}(fspfsp+1) T )fan)fSn)
(3.33)
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If n =2p+ 1, writing

E(s,t)c(fmfsg T fsn,1fsn) = E(S,t)c(lsfS:[fSQ te fsn,lfsn)
= E(s,t)c(fs1fsz T fsn_lfsnlt)

one can always suppose that, in (3.32), n is even. In the following we always
consider the case of even n.

E(517527~~5n—1752n)e(fslfSQ e fsnflfSQn) (334)
= E{S,t} (fsl E{51752n}(fs2E{5215n71}<' e
e fsn—lE{Snflys'rH»Q}(fSnfSn+l)f5n+2 U )f52n—1)f52n)

Since fs, Ersn 1 snia} (fsnSonii) fsnse € Asy V As,,, the expression
B s snist (Fsn1 Esn1ismiot (fsn fsnir) fonso) 15 well defined and one has

E(517527---5n—1752n)c(f51f52 T fsnfl f52n) (3'35)
= P(51,32n)y(37t)(f51P(32,52n—1)7(51752n)(f52(. o
T fsn—lP(Sn,sn+1)7(3n71’sn+2)(fsnf5n+1)f5n+2 T )fSZn—l)fSQn)

where Py 1) (51 is defined by (3.28). Then (i) and (i) hold because, due to
(3.28), p(s’,t’),(s,t) is obtained from Ey, 4 by restriction to a sub-algebra with
identity and any such restriction of a completely positive identity preserving
map enjoys these properties. Moreover the NMP and projectivity imply that,
for each gy € Afy py, one has

Pl s an Pt insn(9s) = EryEsn(gsv)
= B pmeEs e (g5 1)
= E(rme(gs )

= By pm(gew)

= Pl (gse)

i.e. (iii) holds.

Conversely let be given a 2-parameter evolution
P(s’,t’),(s,t) : A{s’,t’} — A{s,t} ;s < s <t <t
of completely positive identity preserving maps. By assumption

As1,...,52n ~ AS1 & Q& ‘A52n
~ (As1 ® Asn) ® (-Asz ® Asn_1) ® (ASJ & Asn—z) - ® (Asn ® A8n+1)
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n

~ ®(-’48¢ ® A5n7j+1)

J=0

By condition (i) the map

E{S<51<“'<Sn<t},{57t} : As) ® A{s<s1<~~-<sn<t} ® A(t — A(s,t)c
defined by

E{s<s1<-~~<8n<t},{s,t} (fs] ® fS1 ® f82 X fsnfl ® fsn & f[t)
= fs}P(sLsn),(S,t)(fS1P(52,sn—1),(S1,sn)(fsz )
Plsg,sna)(s2,5n 1) Plspspin)sprospen) Fsp fopin) ) Foui) fsu) S

if n=2pand, if n=2p+ 1:

E{s<51<---<sn<t},{s,t}(fs} & fs1 ® fSQ X fsn_l & fsn ® f[t)
= fS]P(5175n)7(37t)(fslp(52ysn71)(5113n)(f32 )
'P(83,Sn—2)7(82,sn—1)(' o P(sp+1,s;+1),(sp,sp+2)(fsp+1> T )fan)fSn)f[t

is completely positive.

For any s < t, the family F(s ;) fin cven, Of finite subsets of (s,t) of the form
{s < 81 <+ < 89, < t}is an increasing net for the partial order defined by:
{s<s1 < <sgn <t} <{s<s) < - <sh, <t}ifand only if

(i) S:={s1,---,8m) © S 1= {s],...,85,},

(ii) for each j € {0,...,2n + 1}, denoting s¢ := s and sg,,41 := ¢, there is an
even number of elements of S”\ S between s; and s;41.

By definition of local algebras, one has

Aoy = U As

Se]'—(s,t)

Using conditions (ii) and (iii) one verifies that the family of maps defined
above is projective in the sense that, if {s < s; < -+ < s9, <t} <
{s <8y <--- < sy, <t}, then one has

Elocsi<sy <t}([ @ fo, @ - ® - @ fo, @ fir)

= E{s<s1<~~~<sn<t}(fs] ® f51 DR fsn ® f[t)
Therefore condition (3.26) and projectivity implies that the limit

lim Elscsi<csj<csn<ty sty = s
{s<51< <8< <san <t}
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exists in the strongly finite sense on A and defines an Umegaki conditional

expectation
Epe : A= Ag @ Ay ® App = A p)e

which, by construction satisfies the in—out NMP. The projectivity of the fam-
ily (E{s<s;<..<sj<--<sa<t},{s,}) implies the projectivity of the family (E()-).
!

Definition 5 A family (P(S/il),(s’t))s<5/<t/<t satisfying conditions (i), (ii), (iii)
of Theorem 2 is called a 2—parameter Markov evolution.

3.4.2 The homogeneous case

Definition 6 The family of local algebras (A;) is called:
(i) homogeneous if there exists a *—algebra B and injective embeddings
jt : B — A 5 te R

such that for each t € R
jr(B) = A;

(ii) of tensor product type if

Ay = Ag VA ~ A9 A~ BB

Remark. In the tensor product case the existence of the family of x—
isomorphisms j; : B — A can be easily proved. However there other in-
teresting cases is which such a family exists (e.g. the Fermi case). In this
case, since by assumption each j; has a left inverse, denoted j; ' , the same
is true for each js ® j; := js¢ (s < t) and

Gs®i) ' =47 @4 Ay = A VA > Be B
is a x—isomorphism. Therefore the family of maps
P((lf,t/),(s,t) = js_,tlﬁ(s’,t’),(s,t)js’,t’ BeB—B®B (3.36)

with s < ¢ <t < t, is a 2-parameter evolution on B ® B, i.e. if:
"< s< s <t <t<t’ then

0 0 _ po0
P(s,t),(s”,t”)P(s’,t’),(s,t) = P(s’,t’),(s”,t”) (337)
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Definition 7 Suppose that the family of local algebras (A;) is knemati-
cally homogeneous and admits a 2—parameter family of x—isomorphisms as
in (3.36). A 2-parameter evolution

P(s/,t’),(s,t) : A{s’,t/} — A{s7t} os<s<t<t (3.38)
is called translation covariant if
urp(s’,t/),(s,t) = P(s/—i-r,t’—i-r),(s—i-r,t—i—r)ur ) Vr e R (339)
where w,. satisfies (2.1).
Lemma 2 The identity (3.39) is equivalent to
0 _ po
Ploriny sty = Pl ) (uw) (3.40)
whenever s < s/ <t <t and u < v <o’ < v are such that:
sS—s=u—-u ; t—t'=v-1 ; t—s=v—u (3.41)

Proof. For s < ¢ <t <t and u <« <o < v satisfying condition (3.41),
define

18



O<tpi=8—s=u—-u ; 0<7tpi=t—t =v—1 (3.42)
O<7y =t —§s=v—-u (3.43)
Ti=u—s€eR (3.44)
and notice that, in the notations above,
t—s=0t—t+{t' -+ —s)=v—u=(v—-0)+ @ —u)+ (v —u)
=+ {t' =)+ =mr+ (W )+, = =0 -
Therefore 7, is well defined by (3.43) and from these one obtains

u’ (3.42) u+ 7L (344 s+7T4+ 711 (3.42) sS+T

.43) o (3.42)
vo="U+Ty=U =TT+ T = UFTL Ty

=u+s —s+Ty (3é4)7'+5’+7'M N

U (3é4) S+ T

TR A
Using these identities, (3.40) becomes
P(OS’,t’),(s,t) = P&’+T,t’+7),(s+7,t+7): B & B—B & B s VreR (345)
Now, identity (3.39) is equivalent to
uﬂ'ﬁ)(s’,t’),(s,t)uﬁTl = P(s’+7,t’+7),(s+T,t+T) ) Vr eR

which is equivalent to

15 . -1 -1 D .

jsﬂj P(s’,t’),(s,t)]s’,t’ - ]s7t U, P(s’+T,t’+T),(5+T,t+T)u’r]s’,t’
= Joirir P tmtren) (st tbr) I b tir

which is (3.45) O
The following proposition justifies the terminology introduced in Definition
7.

Proposition 2 The following statements are equivalent:
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(i) The family {Ey4}s<s, constructed from the 2-parameter evolution

(P (s',t'),(s,t)) as in the second part of Theorem 2, is translation covariant
in the sense that
Ur Bty = Efstritryr (3.46)

where u, satisfies (2.1).

(ii) The 2-parameter evolution Py ) s (s < s’ < ' < t), defined in
Theorem 2, is translation covariant in the sense of Definition 7.

Proof. Suppose that (ii) holds. Denote (E( <) the projective family of
Markov conditional expectations associated to the 2-parameter evolution
(Pls #),(s,1)) s in Theorem 2. Identity (3.28) implies that, for s < &' <’ <t,

Py s)(Js @ Jv) = Ersny M (Js ® jv) = Esn(Js @ jv) (3.47)
(/17

It follows that from Lemma 2 and (3.47)

U By (49 @ Jv) = e Proany s (Js @ Jv)
p(s’+r,t'+r),(s+r,t+r) (Jstr @ Jer)
Etsirpiry(Us+r ® Jotr)
= Epprinte(Js @ jr)

Thus (i) holds.
Conversely, suppose that (i) holds. We have

p(sl-‘r’/‘,t'-‘rT),(S-‘r’l‘,t—&-r)js’—&-w @ Jergr = E{S_A'_T’t_)'_r}jsl_jl_y. & Jerar
= E{s+r,t+r}ur (js/ (%9 jt/)
= By ® Jv)
(3.47) ~ . .
=" U Pl s (Js @ Jv)
= U Pl ()l Jsttr @ Jurtr

which proves the statement (ii). O

3.5 Standard forms

Every 1-parameter translation invariant evolution (Ps;)s<; on B, defines in
a standard way a unique semi-group (Fy;)o<t, using the identities:

T=—s5
ps,t = Ps+T,t+T = PO,t—s
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Pt,t”Ps,t = PO,t”ftPO,tfs = Ps,t” = PO,t”fs
In this section, we adapt this strategy in the case of 2-parameter translation
invariant evolutions (P(Os, )5 t))(sr,t/)c(&t) on B® B.

To this goal, we exploit the translation invariance condition (3.45) which, in
the notations (3.42), (3.43), (3.44), gives

0 0
P(s’,t’),(s,t) - P(s’+7,t’+7—),(s+r,t+7)

T==5 0 0
- P(U:t'*S/L(S*S',t*S/) - P(O:Tkl)y(*TL,TR+T1\/I)

=" P (3.48)

(tL,7+7a1),(0, 7, +Tar +7R)

We will use the following notations:

PP =: standard form of first kind of P°

(0,701),(=7TL,TR+T1) (s'5t"),(s,t)

((JTL,TL+TA4),(O,TL+TM+TR) =: standard form of second kind of P&,}t,%(&t)

In conclusion: up to translation invariance, the pair ((s',t), (s,t)) is equiv-
alent to the pair ((0,t' — '), (s — §',t — §’)) and this latter pair, in terms of
the 7—parameters, can be represented as ((0,7ar), (=77, Tr + Tar))-

Lemma 3 In terms of standard forms of the first kind and for
" <s< s <t <t<t' the evolution equation

0 0 _ 0
By (s Pt ) (s, = Bt ), 7,1 (3.49)
on B ® B becomes

0 0 _ 0
P(O»T]w),(*TgyTAI+TR+TL+TI/4)P(OvTJVI)»(_TLﬂ']\/I'i‘TR) - P(O,TM)y(*T/L/*TL,TM+TR+T§) (3‘50)

where
=s5—5">0 ; Th=1"—t>0

Proof. The standard form of the first kind of P&,7t,)7(s,/7t,,) is:

0 _ po T=—s 0
Blowsmmy = Plotrpinrineny = Pog—s)sr—s )
(343) o

0,7a1), (=7 =70, TM+TR+TH)
The standard form of the first kind of Py, ;) . ) is:
0 0
B (s,0),(s",") B (847t+47), (8" +7,1" +7)
T=—8 0
- P(O,t—8)7(s”—s,t”—s)

(342) g

= P (3.51)

0,7a1), (=7 ;7L +TRHTHATar)
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Thus, using the standard form of first kind of P([?s’,t’),(s,t) given by (3.48), one

obtains
0 0 0

(O»TM)7(*vaTL+TR+T§+TM)P(OvTM)»(—TLJR-FTM) - P(OyTM)a(*T/L/*TL77'M+TR+7'1/4,)

which is (3.50). O
Lemma 4 The evolution equation

0 0 _ po0
P(s,t),(s”,t”)P(s’,t’),(s,t) = P(s’,t’),(s”,t”)

on B ® B can be equivalently written in the form

~ ~ A

Pry (=1, ) Pry (=t 8) = Pry (=t + 1), =(t — &)
where the variables t, s, t/, s’ are subject to the constraints
s>0 ; t>0 ; §>s+t ; >0
Proof. Introducing the variable
o =7y +7Tr >0

and the notation

A

P (z,y) = P(%,TM),(Q;,y) ;o <y
(3.50) becomes

A A

P (=1l 0+ 1+ 18P, (—11,0) = P (=71 — 71,0 + 7
Introducing the new variables

s=0>0 ; t=7,>0 ; t'=7/>0 ; w=715>0
(3.50) becomes

P, (—t' s +t+u)P,, (—t,s) = Py, (—t' —t,5+u)
=P (=t —t,(s+t+u)—1t)
Therefore, introducing the new variable
s+t+u:=5>s+t

(3.50) becomes

P, (=t P, (—t,s) = P, (—t' —t, s —t)

The constraints on the new variables are:

(3.58) (3.58) (3.60) (3.58)
s >0 ; t >0 ; §& > s+t ; t >0

and this proves (3.55) O
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4 2-parameter Markov semi—groups in quan-
tum theory

The previous discussion of 2-parameter Markov semi-groups concerned the
classical case. Here we outline the construction of examples of such semi-
groups in the quantum case.

Definition 8 Let Z be a localization on R. A family (Aj)sez of local *—
algebras is called factorizable if, for any I € 7 and any partition I = [ U,
with Iy, I, € Z, there is a *—isomorphism

urn.n 2 Ar — A @ Ag, (4.1)
where ® denotes algebraic tensor product.

Classical examples of factorizable families of local W *-algebras are provided
by the local algebras of independent increment classical real valued stochastic
process X indexed by R. In this case Z is the family of all intervals in R,

A = LF(X) := algebra of bounded measurable functions of the process X

and, for I € Z, A; is the sub—algebra of A generated by the functions of the
increments X; — X with (s,¢) C I. A non—commutative example is provided
by the algebra of bounded operators on T'(L?(R;H)), the Fock space over
L*(R;H) (square integrable H—valued functions, H Hilbert space) and, for
I € 7, A; is the sub—algebra of A generated by the Weyl operators with test
functions having support in I. In the former case the expectation value with
respect to the constant function equal to 1 gives a state on A, in the latter
a state is given by the vacuum expectation value. In both cases we denote ¢
the state and ® the Hilbert space vector implementing it.

Both states are factorizable in the sense that, denoting ¢; the restriction of
¢ to Ay, one has

proury, 1, = n, ® ¢, (4.2)

This implies that in both cases for each I € Z there exists a conditional
expectation Fy: A — A; characterized by the property

Er(ajaze) = arp(age) : ar € Ay, are € Aje

and that the family (E}) of conditional expectations is factorizable in the
sense that, for any pair of disjoint sub—sets I, Iy € Z one has

E11U12 = EIlEIQ = EIQEfl
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In particular
E(S,t)c — ES]E[t - E[tEs] (43)

Using this and Markov cocycles constructed with stochastic calculus, one can
construct examples of multi-parameter Markov semigroups as described in
the following.

Recall the random walk scheme, where one couples tensorially an algebra B,
(initial or system algebra) to a factorizable family (A, (A;)) of local algebras
thus producing a new family of local algebras

Aizlgo@fl

Al =Bo®@ AlLany i Apage =15, 0 Ay @ Ag ; 5,620
One also introduces a new family of conditional expectations

. 4.3
E(,&t)c = Zdlgo & E(—s,t)c (:)

2.dlf"o ® (Efs)E(t) = idBO ® (E(tE,S))

Let ( ; ) beashift—covariant localized right multiplicative functional (Markov
cocycle)
UsgUp,s) = Uy 5 7 <s<t ; Upsy € Apy

It is known that in the factorizable case one can associate to it various Markov
semi—groups

PE (ZL’Q) = EO(U[B,t]IOU[O,t]) = EO}(UFE),t}‘/L‘OU[O,t])
Pj_(l’o) = EQ(U[*_S’O]ZE()U[,&()]) = Eo}(U[*_S’O}ZL'()U[,s,o])
Q" = Ey(Upy) = Eo)(Up.y) ; QL = Eo(U—s0)) = Ejp(Uj—s )

Example 1: If —s < —s' <0 <t <t, one has
E(S,t)c(U[is’70}x0U[0,t’]> = ES]E[t(UEK_S/,O]ZU()U[QJ/}) = Es](E[t(UF_sQO])xOU[OJ’]))

= Eg(Bp(Us0) 20Ups)) = Eg(Eo(Ui_y g) t0Upe)) = Eq((Q%) 20Uz
= Fy((Q%) xoUjo.) = (Q%) 20Eq(Ups) = (Q%) x0Q"

which is a 2—parameter semi-group. In this example there is no dependence
on (s,t) unless (s,t) = (s',t') .

Example 2: If —s < —s' <0 <t <t, one has
P((l’,t’),(s,t) (l’o) = E(fs,t)c(Ufk_sl7t/]$0U[fs/,t’]) = E(,&t)c (US/(U[()’t/,S/])*IEQUS/(U[O’t/,S/]))
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= E_.;]E[t( 8/(U[B’t/is/]xOU[o’t/_S/])) = E_S]ug/<E[t_sl(U[Byt/is/]xoU[()’t/_sl]))
(o)

/

= EO(U[B,t/—s/]xOU[O,t’—s’]) = Pilfs

and the evolution becomes

Py 50y Pl ) s, (£0) = Plagy (s, (PL™* (20)) = PL*(PL™ ()

= (P70 )

Thus in this case

0 __ pt—s
P(s,t),(O,O) - Pf

and the 2—parameter evolution becomes equivalent to a single Markov semi—
group. Example 2 is the usual semi—group deduced from the quantum
Feynman-Kac formula [5].
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