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Abstract

The computation of analytic and numerical beam based quantities are derived
for full 3D representation of the quadrupoles magnetic field, which can be com-
puted by finite element code or measured. The impact of this more accurate
description of the non homogeneity of the field is estimated on beam based
observables and non linear correctors strengths, and compared with the less
accurate models in the case of HL-LHC.
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1. Introduction
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Figure 1: Normal longitudinal harmonics sampled at ∆z = 2mm for the prototype of HL-LHC
Inner Triplet quadrupole. Courtesy of E. Todesco and S. Izquierdo Bermudez.

Email addresses: thomas.pugnat@cea.fr (T. Pugnat), barbara.dalena@cea.fr
(B. Dalena)

Preprint submitted to Elsevier July 7, 2020

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0168900220307476
Manuscript_1fb1840386c616d425e5acb2bd9ed37c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0168900220307476


This paper presents the computation of beam based quantities (such as am-
plitude detuning and dynamic aperture) based on a 3D representation of the non
homogeneity’s of the quadrupole field, studying, in particular, the final focus
quadrupoles of the high luminosity upgrade of LHC (HL-LHC [1]).5

In general, allowed non linearities are stronger in the extremities than in the
body of a magnet, as can be seen in Fig. 1, where the longitudinal profile of the
harmonics from a short prototype of the large aperture (150 mm) final focus
quadrupoles of HL-LHC project is shown. The presence of connectors on one
side of the magnet has also been considered since they break the longitudinal10

symmetry of the field. In this paper, the orientation of the magnet follow the
power scheme for HL-LHC shown in Fig. 2.
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Figure 2: Single aperture elements in the HL-LHC insertion regions. The three (splitted)
quadrupoles composing each inner triplet (Q1, Q2 and Q3) are in blue, blue dots represent
the position of the quadrupoles connectors, the first separation dipole is in yellow and the
non-linear correctors are in purple (top panel). The horizontal and vertical β functions are
shown in the bottom panel.

The possibility to study the impact of magnet fringe fields on non-linear
beam dynamics dates back to around the 90’s [2, 3]. More recently, analyt-
ical functions have been used to fit magnetic field data, computed with finite15

element codes or measured, with application to different projects [4, 5]. General-
ized Gradients based methods are also able to include magnetic data, measured
or computed, in the non-linear transfer maps [6, 7]. Its application to a photon
source [8] have shown agreement of tracking simulations using magnetic field
maps with tracking using machine optics model. Here, we fully link the Gener-20

alised Gradient technique to beam based observables, to study the impact of the
3 dimensional distribution of the field on the ring performance. We consider the
case of HL LHC inner triplet where the gradient of the betatronic (β) function
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in a single quadrupole is not so small and the β function is very big. Therefore,
beam based quantities like Amplitude Detuning and Dynamic Aperture, are25

dominated by the errors in these elements.
Combining the variation of this high β function in the same quadrupole and

a non-uniform longitudinal distribution of the harmonic alongside the magnet
can have a non-negligible weight on the model prediction and explain eventual
discrepancy with beam based observables. In particular, this study quantifies30

the level of detail in the description of the field that has significant effect on
commonly used beam based quantities, such as amplitude detuning, dynamic
aperture and non linear correctors evaluations. An analytical calculations of the
impact of the extremities of the inner triplet magnets of HL-LHC on detuning
with amplitude, using first order Hamiltonian perturbation theory can be found35

in [9]. In this paper, we derived it for the first time in terms of generalized
gradients of the magnetic field, including also the dodecapole harmonics, and
extend it to the numerical estimates of the same quantities studied in the previ-
ous paper and of the dynamic aperture, comparing it to more simplified models
for the non-linear transfer maps.40

Section 2 describes the analytical calculation for the variation of the phase-
space transverse angular velocity with the amplitude of the particle (Amplitude
Detuning) in terms of Generalized Gradients of the quadrupole. This beam
dynamic quantity is widely used to define the performance and the non-linear
correction in circular accelerators [10]. Beam based measurements of amplitude45

detuning are essential for the LHC commissioning [11].
Section 3 introduces the symplectic and efficient (mandatory for application

to large hadron storage rings) non-linear transfer maps based on Generalized
Gradients and compares it to the approximated models: the classical one, in
which the non-linearities of the field are integrated along the magnet and uni-50

formly distributed, and a first approximation of the longitudinal distribution
of the high order harmonics, which splits the quadrupole into three parts (i.e.
the body and the two extremities). The proposed 3D non-linear transfer map,
called Lie2 since is derived using Lie Algebra techniques, consists of numerical
integration of the two extremities using smaller steps. It has the advantage55

(with respect to the approximate models) to be able to take into account the
derivatives of the field gradients, that are also sources of non-linearites.

Section 4 compares the analytical estimates of Amplitude Detuning (AD)
with the tracking simulations using the three different transfer maps, corre-
sponding to the models described in the previous section. This beam-based60

observable refers to the variation of the transverse Phase-Space angular fre-
quency (i.e. the tune) with respect to the amplitude of the particle and it is the
most direct measurement of beam non-linearities. The impact of the model on
the correctors strength expected to correct this AD, is also quantified and com-
pared to present strength specifications. Those correctors are used to correct65

locally non-linearities (i.e. reduce the beam Resonance Driving Terms (RDTs),
Ref. [12]).

Section 5 repeats the comparison of the models on another beam dynamic
quantity that is the Dynamic Aperture. It defines the region of stable mo-
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tion of the particles against magnet non-linearities and is often used to define70

tolerances on magnets conception in the design phase of circular accelerators.
Unlike Amplitude Detuning, there is no analytic calculation of Dynamic Aper-
ture including field errors and corrections. Its computation relies on tracking
simulations therefore an accurate, symplectic and efficient non linear transfer
map is necessary for large hadrons storage rings, as the LHC.75

2. Expression of the Amplitude Detuning with generalized gradients

Following Ref. [13], the Amplitude and Cross Detuning as a function of the
normalized amplitude 2Ju (u ∈ {x, y}) is given by:

∆Qu =
1

2π

∮
∂ 〈Hp〉
∂Ju

di (1)

with 〈Hp〉 the perturbative part of the Hamiltonian, describing the non-homogeneity’s
of the field, and i the position along the ring. In this paper, the kinematic and80

second order terms will be neglected. Following Ref. [13], the equations for the
Direct and Cross Amplitude Detuning for the harmonics b4 and b6 are:
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where the bn indicates that the relative high order field harmonics are averaged
for the positions i belonging to the same element and are kept constant over
the length of the magnet. They can be computed with finite element codes or85

measured with rotating coils. Using expression (14) of the Generalized Gradient
and Hp = −az−axpx−aypy being the perturbative Hamiltonian with the vector
potential defined in Eq. 15, the previous equations can be extended to consider
the gradient derivatives and different values for the field harmonics along the
same element:90
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From these equations, it appears clearly that the non-linearities act on am-
plitude detuning as weighted sum of the multipolar strengths with the Twiss
parameters as weight powers. In regions where those weights can vary inside one
magnet and/or have big values, not taking into consideration the longitudinal95

distribution of the non-linear harmonics can bias the prediction for the detuning
with Amplitude. The same holds for the RDTs with also additional dependence
on the phases advances.

3. The Lie2 non-linear transfer map

In order to describe the motion of the particles in a magnetic system, the100

transfer map of the system is required and in the case of multi-turn simulations
in the large hadron collider, this map needs also to be symplectic. Using Lie
Algebra formalism, a non-linear and symplectic transfer map takes the following
expression:

M(∆σ) = exp(−L : K :) (6)

where L and K are respectively the length and the Hamiltonian of the system.105

In order to have the explicit dependence on z in the Hamiltonian, we consider
the 8 dimensions Hamiltonian reported in appendix A. Since the expression of
the Hamiltonian contains the terms of the type (px,y − ax,y)2, the system is not
exactly solvable, so we use a transfer map approximated to the second order
(that we call Lie2):110
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whereK1 = pz−δ,K2 = az ,K3 = (px−ax)2

2(1+δ) ,K4 =
(py−ay)2

2(1+δ) , : K : f =< K, f >

is the Lie operator defined by the Poisson brackets [14], and we have used the
generating function given in [15] to simplify the terms K3 and K4. To op-
timize the computational speed this Lie2 transfer map is applied only at the
two extremities of the quadrupoles magnet (which are the same of the magnet115

prototype). The central part of the quadrupole (called body) is treated in the
hard hedge approximation since all the harmonics are expected to be constant
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(Ref. [16, 17, 18]). As specified in Ref. [19], this model also allows to consider the
derivatives of the gradient in the simulation, another source of non-linearities
which is not included in the hard edge approximation of the kicks. In the fol-120

lowing, ND0 represents the case without derivatives of the field gradients, and
ND6 the case with the derivatives up to the 6th. The impact of the number of
derivatives (ND, derivative orders) is discussed in appendix B, while details of
the numerical implementation of the Lie2 transfer map and its integration in
the SixTrack tracking code are reported in appendix A.125

This new map is compared with classical kicks models using hard hedge ap-
proximation applied on one optics configuration of the HL-LHC project. The
goal is to verify if the harmonics longitudinal distribution have a measurable
impact on beam-based observable. A schematic view of these three models is130

shown in Fig. 3. As a matter of convention, we use the notation of the magnetic
length L and the normalized strength bn where n is the order of the harmonic
(2 for quadrupole, ...), etc, and indices T , CS, NC and B represent respectively
the whole magnet, the connector and non-connector side, and the body.

135

In the Hard Edge model, called HE, the harmonic longitudinal distribution
and their derivatives are neglected. The normalized integrated strength bn,TLT
is equally distributed on 16 multipolar kicks for each quadrupole.

In the model called HE+Heads, the normalized integrated strengths in the
extremity (Head) of the quadrupole (bn,CSLCS and bn,NCLNC) are estimated,140

respectively as LNC/CS =

∫
NC/CS

B2

B2,max
dz and bn,NC/CS =

∫
NC/CS

Bn
B2,maxLNC/CS

dz , us-

ing the two halves of the longitudinal profile of the magnet prototype (where the
Lie2 integration is also applied). The residual bn,BLB (body part) is computed
from the following equation and equally distributed on 16 multipolar kicks, as
in the HE method. No random integrated strength is considered in the Heads145

in this approach.

bn,BLB = bn,TLT − (bn,CSLCS + bn,NCLNC) (8)
LB = LT − (LCS + LNC) (9)

It is worth noticing that the integrated strength in each Head is the same
as in the Lie2 model and that the total integrated strength of the magnet is
preserved for all the three models, except for the derivatives of the gradient.

4. Amplitude detuning150

The Amplitude Detuning corresponds to the variation of the phase-space
angular velocity as a function of the Betatron Amplitude. In this paper, we
simulate the particles motion over 103 revolutions purely on the vertical or
horizontal plane, without the dodecapole correction. The initial positions are
set to be below the DA value (i.e. 0<2Ju ≤ 0.05µm for a normalized emittance155

6



Body 

Heads 

Lie2: 

HE+Heads: 

HE: 

Figure 3: Longitudinal representation of the Models.

of 2.5µm), and their initial momentum offset δ is 0. As a comparison, the
maximum measured amplitude reached in the LHC is of the order of 0.3µm for
a β∗ of 25 cm (see Ref. [20, 21, 11]).

For the sake of the graphic visibility, the b4 multipole error components have
been removed from the simulation. And the linear amplitude detuning from the160

main sextupole second order has been subtracted in the AD using the linear
coefficient C1 (about 1.8 ± 0.1× 10−2 µm−1 and 1.75 ± 0.1× 10−2 µm−1, in
the x and y-planes respectively) compatible with the 1st order anharmonicity
given by MADX PTC (Ref. [22]).

4.1. Amplitude detuning with all the harmonics165

Figure 4 shows the simulated Amplitude Detuning in both planes with all
the non-linear errors (except for b4) for all the models. The horizontal error bars
correspond to the minimum and maximum amplitude over the 103 revolutions
and are centered on the initial amplitude. The vertical error bars correspond
to the uncertainty of the correction for linear detuning due to second order170

effects from main sextupoles. Table 1 shows the fitted values with respect to the
predicted ones. For each model, the simulated AD is compared to the theoretical
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Figure 4: Amplitude detuning for the horizontal (left) and the vertical plane (right).

AD from equations (4) and (5). The simulated detuning with amplitude is fitted
with a 4th order polynomial (motivated by using smallest degree for the best
score, and its robustness over fitting procedures).175

It appears clearly in Fig. 4 and Tab. 1 that the Amplitude Detuning is
sensible to the longitudinal distribution of the harmonics in the magnet, i.e. the
model. This is also confirmed by the fact that the simulations agree well with
the prediction up to an amplitude of ∼ 3.0× 10−2 µm.

The good agreement between the HE+Heads and the Lie2 ND0 model shows180

that one additional kick in each of the extremity gives a good approximation of
the longitudinal distribution of the expected non-linearities. Nevertheless, the
Lie2 model yields the best representation, if accuracy is more important than
computational cost.

The discrepancy between the Lie2 models with and without derivatives (ND0185

and ND6, respectively) shows an additional linear detuning generated by the
1st and 2nd derivatives of the b2 harmonics, as expected from equations (4)
and (5). We just note that this effect is of the same order as the effect due to
the 2nd-order Sextupoles for the ATS optics [23] with 15 cm β∗, foreseen for
HL-LHC project.190

Table 1: Amplitude detuning coefficients from Fig. 4 fitted with a 4th-order polynomial and
for an Amplitude in µm.

Analytic Theory
Case ∂Qx/∂(2Jx) ∂2Qx/∂(2Jx)2 ∂Qx/∂(2Jx) ∂2Qx/∂(2Jx)2

HE (0.1± 0.3)× 10−3 0.08± 0.03 0 0.11
HE+Heads (0.1± 0.4)× 10−3 0.38± 0.03 0 0.39
Lie2 ND0 (0.9± 0.4)× 10−3 0.22± 0.03 0 0.33
Lie2 ND6 (9.2± 0.4)× 10−3 0.25± 0.03 10.9× 10−3 0.33

Case ∂Qy/∂(2Jy) ∂2Qy/∂(2Jy)2 ∂Qy/∂(2Jy) ∂2Qy/∂(2Jy)2

HE (0.2± 0.4)× 10−3 −0.98± 0.05 0 −0.90
HE+Heads (0.0± 0.4)× 10−3 −0.63± 0.05 0 −0.62
Lie2 ND0 (0.4± 0.5)× 10−3 −0.79± 0.06 0 −0.67
Lie2 ND6 (10.7± 0.4)× 10−3 −0.67± 0.05 10.9× 10−3 −0.67
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4.2. Amplitude detuning for only the b6 harmonics
In order to understand the origin of the discrepancy for amplitude higher

than 3.0× 10−2 µm in Fig. 4, the same analysis is repeated considering only the
b6 harmonics error in the final focus quadrupoles. Since the error are generated
using random number as explained in 3, the second order AD will be different195

from the previous section. The results are shown in Fig. 5 and Tab. 2.
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Figure 5: Amplitude detuning for the horizontal plane (left) and the vertical plane (right).

In this case, there is no discrepancy between the theory and the simulation
for all the models. This comforts us in the idea that the previous discrepancy
comes from higher order harmonics that are not taken into consideration in the
analytic calculation.200

Table 2: Amplitude detuning coefficients from Fig. 5 fitted with a 4th-order polynomial and
for an Amplitude in µm.

Analytic Theory
Case ∂Qx/∂(2Jx) ∂2Qx/∂(2Jx)2 ∂Qx/∂(2Jx) ∂2Qx/∂(2Jx)2

HE (0.8± 0.3)× 10−3 −0.64± 0.03 0 −0.58
HE+Heads (0.6± 0.3)× 10−3 0.38± 0.03 0 0.39
Lie2 ND0 (0.7± 0.4)× 10−3 0.28± 0.03 0 0.33
Lie2 ND6 (11.4± 0.4)× 10−3 0.34± 0.04 10.9× 10−3 0.33

Case ∂Qy/∂(2Jy) ∂2Qy/∂(2Jy)2 ∂Qy/∂(2Jy) ∂2Qy/∂(2Jy)2

HE (−0.2± 0.5)× 10−3 −1.64± 0.07 0 −1.59
HE+Heads (−0.5± 0.5)× 10−3 −0.59± 0.06 0 −0.62
Lie2 ND0 (−0.3± 0.5)× 10−3 −0.74± 0.07 0 −0.67
Lie2 ND6 (11.0± 0.4)× 10−3 −0.80± 0.05 10.9× 10−3 −0.67

4.3. Correction of the non-linearities
As mentioned in the previous section, the Detuning with Amplitude and

similarly all the RDTs are sensitive to the longitudinal distribution of the high
order field harmonics. Since the non-linear corrections are computed in order
to cancel the main RDTs, as a result, the correctors strength used to correct205

them is also sensitive to the longitudinal distribution of the non-linearities.
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In HL-LHC, there is one corrector on each side of each IP and their strength
is computed using (Ref. [12]):

(
Kn,LeftL
Kn,RightL

)
=

(
β
n/2
x,Left β

n/2
x,Right

β
n/2
y,Left β

n/2
y,Right

)−1 ∑
s∈IP

bn,sKr,sLs

(
β
n/2
x,s

β
n/2
y,s

)
(10)

As the exact values of the strength of each of the magnets errors are not
known yet, the strength of the octupole and dodecapole correctors are computed210

for 60 different seeds, in which the uncertainty and random component of the
errors for each magnets can vary according to Eq. 11.

bn = bnS
+
ξU
1.5

bnU
+ ξRbnR

(11)

It represents the sum of a systematic part bnS
and two random parts bnU

and
bnR

, normalized with respect to the reference magnet strength [24]. ξU and
ξR denote random variables with Gaussian distribution truncated at 1.5 and215

3σ, respectively. In particular, the ξU is kept constant for all the inner triplet
magnets of the same type (to account for systematic errors coming from different
production chains), while ξR changes for each magnet (to describe differences
between each magnets).

Figure 6 shows the correlation of the non-linear correctors strength at both220

sides of the high luminosity IPs for these 60 seeds. Since only the systematic
component of the error as a longitudinal distribution (while the uncertainty
and random component are equally distributed), it results in a systematic shift
between the HE model and the others.

The octupole-like generated by b′2 and b′′2 produces a systematic shift in225

the octupole corrector strength of about 4% with respect to the b4 corrector
specification given in Ref. [12]. In the case of b6 correction, the systematic shift
is around 13%, always with respect to the present corrector specification.
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Figure 6: Integrated strength of the b4 (called KCOX, left) and b6 (called KCTX right)
corrector computed for different models in IR1 and IR5, with 60 seeds.

The shift stays within the correctors specification also for the dodecapole
corrector. The difference between the shift for the HE+Heads and the Lie2230
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models, as well as the effect of the gradients derivatives, is negligible in this
case.

It is worth noticing that only the longitudinal distribution of the systematic
part of the errors is studied in this paper. The random part of the harmonics is
considered equally distributed in the magnet, since this random component is235

computed using 2D Monte Carlo simulations. Therefore, measurements of the
longitudinal profile for all the harmonics (above all the ones that do not have a
systematic component) is essential to be able to model them accurately in the
calculation of the correction.

5. Dynamic aperture240

Dynamic aperture (DA) is a quantity often used to define the performance
of an accelerator against magnets imperfections. It is defined as the area of
the stable phase-space region spanned by a particle in an accelerator and it
is evaluated using particle tracking simulations [25] or measured by different
techniques [26].245

In this part, we study the impact of the three different models described in
section 3 on the computation of DA, focusing in particular on the effect of the
b6 correctors. The DA is computed simulating the particles motion over 104

revolutions with initial conditions distributed on a polar grid, so as to have 30
pairs of particles (different initial conditions) for each interval of 2 sigma (beam250

size) from 0 to 28. Eleven angles in the x-y phase space are scanned, where x
and y are in units of linear beam dimensions. The initial momentum offset δ is
set to 27.e−5 (which is equivalent to 2/3 of the LHC RF bucket design). The
DA values are defined as the initial amplitudes (in number of beam size σ) of
particles lost in 104 turns. This procedure for the DA simulations is the same255

used for LHC DA studies [27] and it was found to provide a precision of about
0.5 beam σ at 105 turns [28]. Since in the machine configurations we study in
this paper the DA converges very quickly to its asymptotic value, we expect the
same type of precision in the DA results of this comparison between models.
The tracking simulations in the Lie2 case are performed considering up to two260

derivatives of the generalised gradient, since there is no significant difference
in the tracking with two, four or six number of derivatives of the generalized
gradients, see appendix B.

5.1. DA as a function of angles in the x-y phase space
The DA values for the eleven phase space angles scanned in the simulations265

are shown in Fig. 7 for one configuration of the machine. The cases without
and with b6 correction are compared. DA without b6 correction is pretty similar
for all the model in the x and y plane, while it can differ up to 3 σ at around
40◦. The impact of b6 correction is different according to the model considered.
There is no improvement in DA for the HE+heads model while can be significant270

for the HE or Lie2, according to the angle.
The statistics of all the 60 different configurations of the machine simulated

is shown in Fig. 8. Dots represent the values corresponding to the 60 seeds,
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Figure 7: DA at 104 as a function of phase space angles with b6 correctors OFF (left), and
with b6 correctors ON (right) for one configuration of the machine. The HE+Heads model
has been used to compute correction of b6 in the case of Lie2 ND2 tracking.
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Figure 8: DA at 104 as a function of phase space angles with b6 correctors OFF (left), and
with b6 correctors ON (right). Dots represents the 60 different configurations of the machine
according to random component of the magnets errors.

while the continuous line joins the minimum DA values for each angle. All
high order fields errors are considered and correction for b3, b4, b5, a3, a4, a5275

of the inner triplets, as well as b3, b4, b5 of the arc dipole, are applied. The
b6 correction is included in the results shown in the right panel of Fig. 8. Its
effect on DA is slightly different according to the angle and the model. A major
positive impact of b6 correction is visible towards the horizontal plane for the
HE model. When the HE+ Heads model is considered the gain in DA is smaller,280

and in particular the correction does not improve DA for angles around 40◦. In
the case of the Lie2 model the correction gives a positive impact toward the
vertical plane. Averaging over the angles the impact of the b6 correction is of
0σ for the HE+Heads model, 1σ for the HE model and 2σ for the Lie2 model.
Finally, a difference between Lie2 model and the two others is visible at 40◦285

when looking at all machine configurations.

5.2. DA as a function of turn
Starting from the ensemble of initial amplitude of particles lost in the x-y

phase space, which define the DA shown in the previous section, a normalized
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Figure 9: DA as a function of particle revolutions (turns) with b6 correctors OFF (left), and
with b6 correctors ON (right) for one machine configuration. The HE+Heads model is used
to compute the correction in the Lie2 ND2 case.

area of stable motion can be defined following [26]:290

DA(N) =
2

π

∫ π/2

0

rs(θ;N)dθ (12)

where N is the number of revolutions of the particle in the accelerator (called
turns), rs is the last stable particle (disregarding stability islands non-connected
to the origin) and θ is the angle in the x-y phase space. Thus, a value of DA
can be calculated for each turn, which is shown in Fig. 9 for one configuration
of the machine. In this configuration of the machine (seed), the Lie2 model295

maintains a higher DA value for longer numbers of turns (above 2000). The
impact of the b6 correction varies according to the model as in the case of the
DA vs angle. Once again when the b6 correction is applied no improvement in
the DA evolution is visible for the HE+Heads model.

Figure 10 shows statistics from the 60 different machine configurations. As300

for the case DA at 104 revolutions as a function of the angle, the random part of
the errors dominates over the systematic part, resulting in much less difference
between the models when looking at their mean values. The only significant
difference seems to be on the spread between the minimum and maximum DA
values, which is reduced in the Lie2 model, as one can also glimpse in Fig. 8.305

6. Conclusion

An analytic expression for Amplitude Detuning and an accurate, symplectic
and efficient non linear transfer map are derived, using the generalized gradients
representation of the quadrupole vector potential. It allows to quantify the
impact of 3D field distribution of the quadrupoles on machine performance,310

taking into account magnetic field detailed data.
Applied in the case of HL-LHC project, this impact is not negligible and has

to be taken into account, especially when comparing computed with beam based
measured values. The impact on the b6 corrector strength can be up to about
13% with respect to the present corrector specification. The impact of the first315
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Figure 10: DA as a function of particle revolutions (turns) with b6 correctors OFF (left), and
with b6 correctors ON (right). The minimum and maximum (dashed lines) together with the
mean values (full lines) over 60 different configurations of the machine according to random
component of the magnets errors are shown for each model.

and second derivatives of the quadrupole field (octupole-like) accounts for 4%
of present octupole corrector specification. The modification to the corrector
strength is in the present design specification, so no big impact is expected from
the design point of view. Nevertheless, the accurate knowledge of the main field
and field errors distribution of the final focus magnets is important to be able to320

reproduce the long term stability of the machine and the beam based observables
in numerical simulations. In particular, being able to reproduce accurately the
longitudinal profile of each of the harmonics of the final focus magnets is more
important than higher order derivatives. The impact on the computation of
dynamic aperture of the b6 correction can be negligible or amount of about 2σ325

at 104 turns according to the model considered.
This impact, being weighted by the values of the betatronic function at the

place where the field errors are located, is expected to be also important in the
case of future hadronic circular colliders, such as FCC-hh [29] or more generally
when the betatronic function vary a lot inside a magnet.Similarly, the impact330

of the longitudinal distribution of the field on feed-down effect due to crossing
angle or magnet displacement, should also be studied in the future.
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Appendices
A. The Lie2 Model and its interface with SixTrack

A.1. The Symplectic map
The Lie2 model developed for this study is derived from the approximated340

Hamiltonian (Eq. 13) of Ref. [15].

K = pz − az − δ +
(px − ax)2 + (py − ay)2

2(1 + δ)
(13)

The vector potential is computed using the Generalised Gradient given by
the following equation:

C
[ND]
n,∗ (z) =

iND

2nn!

1√
2π

∫ +∞

−∞

kn+ND+1

I ′n(Rk)
B̂n,∗(R, k)eikzdk (14)

where the indices s and c correspond to the normal and skew harmonics, re-
spectively. Using this formalism, the normalised vector potential, with respect345

to the charge q and the total momentum p0 of the particle, is given by:

ax(x, y, z) =
q

p0c
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az(x, y, z) =
−q
p0c

∞∑
n

∞∑
l

(−1)l(n− 1)!(2l + n)

22ll!(l + n)!

n/2∑
p=0

l∑
q=0

( n
2p

)(l
q

)
(−1)

p
x
n+2(l−p−q)

y
2(p+q)+1

C
[2l]
n,s(z)

−
(n−1)/2∑

p=0

l∑
q=0

( n

2p+ 1

)(l
q

)
(−1)

p
x
n+2(l−p−q)−1

y
2(p+q)

C
[2l]
n,c(z)


Following the technique proposed by H. Yoshida in Ref. [30], a 4D Lie map
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(Eq. 16) of second order, that we call Lie2, has been developed.
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=
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
With this form, the Vector Potential can be computed by slices in z and saved
in files, as Horner polynomial coefficients for each step i [19]. These files are350

then read by the SixTrack code once per simulation Ref. [31, 32].
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Figure 11: Comparison of the Lie2 model (for ND6) with the referential model (Gauss6) from
Ref. [19] on the Amplitude Detuning for two different step sizes in z. The right plot is a zoom
over the high amplitude. For each step size, the value for the model are superposed.

In Ref. [19] the accuracy and efficiency of different integration and interpo-
lation methods were studied and compared, including the Lie2 model presented
here. In this paper, we compare the tracking using the Lie2 transfer map with
the reference model from [19], a 6th order Gauss method, using AD as figure of355

merit. Figure 11 shows the impact on the AD for the two integration methods
and two step sizes. A small difference of about 10−5 appears when going at
amplitude higher than 0.02µm, which is due to the step size in z. The two inte-
gration methods reproduce the same detuning with amplitude for a non-linear
transfer map of 2 cm step size. In Fig. 12, two interpolation methods (mean and360

spline) are compared for two step sizes. The mean interpolation method seems
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Figure 12: Comparison of the Lie2 model (for ND6) with the referential model (Gauss6) from
Ref. [19] on the Amplitude Detuning for dz =2 cm (top) and 4 cm (bottom). The right plot
is a zoom over the high amplitude. All the points for dz =2 cm and the mean points for
dz =4 cm are superposed.

more stable, with an error of the order of 10−5 which is also the precision of
frequency analysis. We conclude that the step size in z has more impact on the
precision of the model than the integration or the interpolation method chosen,
which is also consistent with the results published in Ref. [19].365

A.2. The interface of the Lie2 map with Sixtrack
The Head is the region of the magnet in which the harmonics vary along the

magnetic axis z. On the contrary the body is the region of constant field (main
and higher order harmonics) along z. In other terms the Heads are defined
as {z ∈ R : Bz(x, y, z) 6= 0, ∀ x, y ∈ R}, i.e. {z ∈ R : Ax(x, y, z) 6=370

0 or Ay(x, y, z) 6= 0, ∀ x, y ∈ R}. With this definition, an equivalent magnetic
length is computed for each Head. In Fig. 3, this length is called Lq,∗ (with ∗
being "in" and "out" for each extremity of the magnet, respectively).

As mentioned previously, the Lie2 model has been implemented in SixTrack
(Ref. [32]). In order to add only the non-linear effects of the Fringe Field, and375

to leave the modelization of the linear part to SixTrack, the first step consists in
identifying the beginning of the Hard-Edge quadrupole ("in" in Fig. 3). From
this position, the particle are tracked back with an anti-Drift of length LD,in =
Lf,in−Lq,in, where Lf,∗ is the total length in z of the Vector Potential Files for
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the first extremity ((1) in Fig. 3). The forward tracking is then done using the380

Lie2 map and the Horner coefficient from the first Vector Potential Files ((2) in
Fig. 3). At the end of the Lie2 tracking, the linear part has to be removed by
using an Half-Kick/Drift/Half-Kick anti quadrupole matrix for each step i ((3)
in Fig. 3). The particle is back to the beginning of the Vector Potential File, a
Drift of length LD,in returns it to the beginning of the Hard-Edge quadrupole385

((4) in Fig. 3). SixTrack takes care of the tracking in the body of the magnet.
At the end of the quadrupole, the sequence is reversed (from (6) to (9) in Fig. 3)
with the second Vector Potential Files.

As the tracking takes a lot of time (small step size, number of harmonics,
number of gradients derivatives, etc), the speed of the routine is a major factor in390

the choice of the integrator. From [19], two integrators show a low computational
time. Since the 4th Runge-Kutta is not symplectic, the Lie2 model is chosen
for the SixTrack. A lot of improvements have been made in the optimization
of the subroutine. In particular, since storage matrix for the vector potential
coefficient (with Horner exponent as coordinate) are relatively sparse, they were395

saved as a Matrix Market Exchange format (Ref. [33]) also known as COO
format (Ref. [34, 35]). This reduces the memory size and increases the speed
of Horner polynomial subroutines. Similarly, the power of the horizontal and
vertical coordinates are computed beforehand in order to not repeat the same
operation during tracking. This allows to multiply the speed of the tracking by400

a factor of two.

B. The impact of the derivatives
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Figure 13: DA as a function of phase space angles (with b6 correction) for different numbers
of gradients derivatives considered in the Lie2 model. All the 60 seeds simulated are shown
on the left, while the comparison for one configuration of the machine is shown on the right.

As discussed in section 3, in the case of Lie2 the numbers of gradients deriva-
tives (derivative orders) can be specified in the reconstruction of the vector po-
tential used for the tracking. Figure 13 shows the impact of different number of405

derivatives on DA. All 60 seeds and the line joining the minimum value for each
angle are shown on the left panel, while the comparison for one configuration
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Figure 14: Horizontal (left) and vertical (Right) Amplitude Detuning for different numbers
of gradients derivatives considered in the Lie2 model. The Vector Potential is computed with
the Horizontal Free Coulomb gauge (see Ref. [19]).

of the machine is shown on the right. All derivatives above the second do not
change DA, meaning that only the first two derivatives can be used.

Figure 14 shows a similar comparison for the Amplitude Detuning. It ap-410

pears that the 1st derivative generates half of the 1st-order Amplitude Detuning.
This is not observed for the Horizontal plane because of the Gauge used. In
order to further speed-up tracking the horizontal-free Coulomb gauge is cho-
sen, which requires in general between 20% and 25% less coefficients evaluation
of the vector potential in Eq. 15 with respect to the azimuthal-free gauge [19].415

Nevertheless for even number of derivatives (ND) all the gauges produce exactly
the same magnetic field by definition, and as a consequence will result in the
same amplitude detuning. It is also important to note that no significant dis-
crepancy can be observed for a number of derivatives (derivative orders) higher
than 2, as in the DA case.420
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