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Abstract

With the tools and perspective of Object Oriented Spatial Statistics,
we analyze official daily data on mortality from all causes in the provinces
and municipalities of Italy for the year 2020, the first of the COVID-19
pandemic. By comparison with mortality data from 2011 to 2019, we assess
the local impact of the pandemic as perturbation factor of the natural
spatio-temporal death process. For each Italian province, mortality data
are represented by the densities of time of death in the year. Densities are
regarded as functional data belonging to the Bayes space B2 where we use
functional-on-functional linear models to predict the expected mortality in
2020, based on mortality in previous years, and we compare predictions
with actual observations to assess the impact of the pandemic. Through
spatial downscaling of the provincial data down to the municipality level,
we identify spatial clusters characterized by mortality densities anomalous
with respect to those predicted based on mortality data of the nearby areas.
This analysis pipeline could be extended to indexes different from death
counts, measured at a granular spatio-temporal scale, and used as proxies
for quantifying the local disruption generated by the pandemic.

Keywords: COVID-19, O2S2, Wasserstein distance, Bayes spaces, Functional
Data Analysis, Spatial downscaling
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1 Introduction

The year 2020 will be remembered as the first of the COVID-19 pandemic. The
worldwide diffusion of the virus caused massive disruptive effects in our societies,
both directly – the tragic toll of lives prematurely terminated by the disease –
and indirectly, as a consequence of the measures that states and communities
adopted to fight contagion and contain the spread of the virus. In 2021, we are
still in a transient state and we cannot yet assess the medium and long term
effects of the pandemic on our societies, on their health and welfare systems,
on their economies, on their education networks, on their working dynamics.
One key issue perceived by all analysts is however the heterogeneous impact,
both in time and in space, of the shock generated by the pandemic. Exploring
and quantifying this heterogeneity is a necessary step to build a quantitative
platform on which decision makers can devise precision policies for recovery,
and envision the new normal which will follow the pandemic. We believe that a
key index which could be used as a proxy for measuring the immediate impact of
the pandemic on Italian local communities, as well as those in other developed
societies, is the number of deaths from all causes. Death counts from all causes
are high-quality data, recorded at a fine granular scale over time and space,
and not affected by varying definitions, as it happens, for instance, for deaths
for which COVID-19 is recorded as the cause. Moreover death counts from all
causes integrate the direct and indirect effects of the pandemic shock, registering
also the undesirable consequences due to the containment policies designed to
fight the virus and the disruption at the local level of the health and welfare
systems overwhelmed by the struggle against COVID-19.

In this work we explore the official mortality data recorded and made publicly
available by the Italian Statistical Institute (ISTAT)1, considering deaths from
all causes, in different age classes and at different spatial scales, for the last ten
years. In particular, we focus on the densities of the distribution of time of death
in the year (hereinafter named mortality densities or death densities), observed
for each Italian province and also at the finer spatial resolution of municipalities.
The analysis of yearly death densities, rather than of death counts, allows for
a natural data standardization and enables us to bring into focus the temporal
variability of the phenomenon, capturing its different expression over space, due
to the different impact generated by the pandemic shock. We believe that the
analysis offers an interesting perspective on the spatio-temporal evolution of the
COVID-19 pandemic in 2020 in Italy.

Figure 1 shows daily death counts from all causes, for people aged 70 or more,
for each Italian province and over the last four years. Figure 2 displays the corre-
sponding empirical densities of the distribution of time of death, the main object
of our study. We first conduct a preliminary exploratory data analysis based on
the Moran Index Moran (1950); Anselin (1995), an indicator of local association,

1https://www.istat.it/it/archivio/240401
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to evaluate the spatial correlation of mortality in different years, and to capture
its perturbation in 2020. In each province and municipality, we also explore the
differences between yearly mortality distributions in different years by comput-
ing their Wasserstein distances Villani (2008). This preliminary analysis already
highlights the heterogeneous spatio-temporal impact of COVID-19 on Italian
mortality from all causes in 2020. We then move to a functional data analysis

Daily death counts, Italian provinces, 70+ years
2017 2018 2019 2020
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Figure 1: Daily death counts during the last four year, for the Italian provinces.
The plots refers to the elderly class (70+ years old). For each province, death
counts along the year are plotted in light grey: curves are overlaid one on top
of the other to visualize their variability. The black solid line is the weighted
mean number of deaths, where each province has a weight proportional to its
population. Death counts of four provinces are highlighted in color: Rome
(purple), Milan (green), Naples (blue), and Bergamo (red).

framework, where we look at the mortality densities as functional compositional
data Egozcue et al. (2006); van den Boogaart et al. (2010); Menafoglio et al.
(2014) with spatial dependence. Indeed, densities represent the functional coun-
terpart of compositional data Aitchison (1982, 1986); Filzmoser et al. (2018);
Pawlowsky-Glahn and Egozcue (2001); Pawlowsky-Glahn et al. (2015), namely,
vectors whose components represent parts (e.g., proportion or percentages) of a
given total, thus conveying only relative information. To set the background, we
recall that over the last decades considerable work has been done on extending
classical statistical methods to the case of data embedded in functional Hilbert
spaces (see, e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Horváth
and Kokoszka, 2012; Wang et al., 2016, and references therein). Moreover, an im-
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portant literature has focused on developing a consistent theoretical framework
for geostatistical modeling and spatial prediction for functional data, developing
the infinite-dimensional counterparts of techniques such as spatial variography
and Kriging Giraldo et al. (2010); Nerini et al. (2010); Giraldo et al. (2011);
Ruiz-Medina (2012); Menafoglio et al. (2013); Caballero et al. (2013); Ignaccolo
et al. (2014); Menafoglio and Petris (2015); Menafoglio et al. (2016b,a). Recent
works have specifically targeted the case of constrained functions and other ob-
ject data, in a literature that we refer to as Object Oriented Spatial Statistics
(O2S2) (Menafoglio and Secchi, 2017, and references therein). Functional com-
positional data are in fact a specific case of constrained functional data Mammen
et al. (2001); Feng et al. (2014); Canale and Vantini (2016). Their analysis is
not well formulated in the standard L2 space typically used in functional data
analysis. We hence embed the data in the so-called B2 space (Egozcue et al.,
2006; van den Boogaart et al., 2010; Pawlowsky-Glahn et al., 2014), which ap-
propriately comply with the constrained nature of these data, extending to the
functional setting the Aitchison’s geometry established for compositional data
Aitchison (1982); Pawlowsky-Glahn and Egozcue (2001). In this space, we for-
mulate a linear model that allows us to decouple the mortality densities within
provinces into a component that can be expected by looking at previous years,
and a term that instead is unpredictable. We argue that, in 2020, this term
precisely captures the impact of the pandemic shock. Through dimensional-
ity reduction of this term, and a spatial analysis in B2, we bring evidence and
insights on the deep perturbation caused by the pandemic shock at different
spatial scales. Spatial downscaling Kyriakidis (2004); Goovaerts (2008); Xiao
et al. (2018) of the provincial data, down to the municipality level, finally allows
us to identify hot-spots of local anomalies, associated with unexpected mortality
densities in 2020, with respect to nearby provinces.

The paper is organized as follows. Section 2 presents the data and their
preliminary exploration. In Section 3 we embed the data within the framework
of functional compositional data analysis, and we analyse the spatio-temporal
structure of the mortality densities over the last years. Section 4 focuses on
2020, and explores the perturbations in mortality patterns due to the pandemic
shock, identifying local anomalies at the level of municipalities through spatial
downscaling. Section 5 draws some conclusive remarks.

2 Data presentation and preliminary exploration

2.1 Official mortality data

ISTAT death data are collected with a very granular spatio-temporal scale.
Moreover data are recorded per age class, with a 5 years segmentation, resulting
in more than 20 classes. This subdivision is way too fine for our purposes, and
in the following we consider only three age classes: the first class is composed
by the youngest portion of the population, aged less than 49; the second class
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Empirical densities of daily mortality, provinces, 70+ years
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Figure 2: Empirical densities of daily mortality, for the elderly class, at the
provincial scale. For each province, the empirical density of the daily mortality
is plotted in light grey: densities are overlaid one on top of the other to visualize
their variability. The black solid line is the weighted mean density, where the
weight for each province has been set to be proportional to its population. Den-
sities corresponding to four provinces are highlighted in color: Rome (purple),
Milan (green), Naples (blue), and Bergamo (red).

groups middle aged people, from 50 to 69; while the last is for the elderly popula-
tion, aged 70 or more. This partition is particularly convenient when exploring
mortality during 2020, as the three population classes correspond to different
risk classes. In particular, the first class (0-49 years) corresponds to people who
are typically at low risk of death from COVID-19, the second (50-69 years) to
people who have a medium risk, whilst the last (70+ years) to people who are
at high risk. We carry out the analyses separately for the different age classes.
The main text focuses on the elderly class, while insights for the other two age
classes are given in the conclusive Discussion. In each age class, we denote death
counts data by diyt where:

i identifies the province or the municipality, among the 107 provinces or the
7903 municipalities existing in Italy in 2020, depending on whether the
analysis is carried out at the level of provinces or municipalities;

y refers to the year, from 2011 to 2020;

t refers to the day, within the year.
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These data are generally characterized by a high quality, since the collection of
information about daily deaths is an efficient and consolidated process, which is
carried out homogeneously among the different administrative units.

Figure 1 shows the death counts, for the elderly class, at the province spatial
scale. For each province, death counts along the year are plotted in light grey:
curves are overlaid one on top of the other to visualize their variability. The
black solid line is the weighted mean number of deaths, where each province
has a weight proportional to its population. Death counts of four provinces are
highlighted in color: Rome (purple), Milan (green), Naples (blue), and Bergamo
(red). A visual inspection of the years from 2017 to 2019 highlights that the
mortality in this age group has a typical seasonal behavior, with highest mor-
tality in colder months and lower mortality in warmer months, except for heat
waves during the summer, that may claim a big toll on elderly people, as clearly
visible for instance in 2017. The year 2020, on the other hand, clearly presents
a totally abnormal behaviour of the death process, in many provinces, due to
the dramatic effect of the COVID-19 pandemic. The province of Milan (green)
displays two sharp mortality peaks in correspondence of the two main waves of
the pandemic in 2020, in March-April and November-December. The province
of Naples (blue) appears instead relatively unaffected by the first wave, being
spared by the pandemic during the spring, as many other parts of Italy, mainly
thanks to the severe national lockdown that prevented the spread of the virus.
The most tragic toll during the first wave is paid by the province of Bergamo
(red), where the death counts surpass those of provinces with a population size
several times larger; the pandemic hits Bergamo so strongly during the first
wave, that the second wave is here almost imperceptible, presumably because
the population at high risk has already significantly shrunk, and survivors have
developed a natural immunity, due to the large circulation of the virus during
the first wave.

As anticipated in the Introduction, we do not directly study the mortality
counts diyt, but we are rather interested in the corresponding mortality densities.
In particular, we start from

piy(t) =
diyt∑
t diyt

, t = 1, ..., 365.

The piy can be seen as the empirical discrete probability density associated with
the absolutely continuous random variables Tiy, modeling the instant of death for
a person in the considered age class, living in area i, and passing away during year
y. Figure 2 shows these data for the elderly population at the provincial scale,
with the same color choices as in Figure 1. Similar considerations can be drawn,
with the difference that data are now normalized and no longer affected by the
variability due to the different population sizes of the provinces. This natural
alignment of amplitudes provides a better insight on the temporal structure of
the phenomenon, if compared to the death counts in Figure 1. For example,
the sharp increase in deaths during the heat wave of summer 2017 (the second
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hottest summer over the last hundred years, closely following 2003), is much
more visible. The same can be commented of the pandemic peaks, with the
empirical mortality density in the province of Bergamo appearing particularly
striking.

2.2 Spatial association analysis of the incidence of mortality

We enrich death data with the total population data (referring to January 1,
2020). Specifically, we denote by ri the total population in the considered age

class, in area i. These data enable us to compute the index miy =
∑
t diyt
ri

,
which can be interpreted as a proxy of the death incidence per area and year,
for the considered age class. Figure 3 shows the map of Italy, for the years from
2017 to 2020, where each Italian province is colored according to the index miy,
computed for the elderly population. The same figure also shows the results
of a spatial association analysis carried out on the miy, at both province and
municipality scale, based on the Moran Index Moran (1950); Anselin (1995).
This statistic is commonly used in the evaluation of spatial correlation (Getis
and Ord, 1992; Anselin et al., 2005; Anselin, 1995). In particular, we use the
Anselin’s Local Moran I statistic Anselin (1995): for an area (say province) i
and a given feature X ∈ R, the corresponding Local Moran statistic is defined
as

Ii =
xi − x
S2
i

∑
r 6=i

wir(xr − x),

where S2
i =

∑
r 6=i(xr−x)2

n−1 , n is the total number of areas in the Country, x is the
sample mean for the Country of the feature X, and wir are weights codifying
proximity between areas. We compute this statistics with xi := miy, for the
considered year y, and setting the proximity weights to wir = 1 if r is adjacent
to i, and wir = 0 otherwise. If the index Ii is significantly greater than 0, then
the feature X in area i has a value which deviates (positively or negatively) from
the overall mean in the same direction as the average behavior of the neighbors
of i: in this case, i is part of a spatial cluster. The case in which Ii is significantly
lower than 0 corresponds to the situation of spatial outliers, since in this case
the feature X in area i has a value which deviates from the overall mean in
opposite direction as the average behavior of the neighbors of i. Significance can
be assessed through tests and pseudo p-values as described in Anselin (1995),
and is here evaluated via the R package SPDEP Bivand et al. (2013), using a
significance level of 5%. This analysis highlights various spatial clusters, at
both province and municipality scales, as shown respectively in the central row
panels and bottom row panel of Figure 3; no spatial outlier is instead detected.
Clusters characterized by a significantly high mortality incidence are highlighted
in red, whilst clusters characterized by a significantly low mortality incidence are
highlighted in blue. The analysis identifies spatial association patterns which are
rather stable along all the years from 2011 up to 2019: this includes significantly

7



Incidence of mortality, 70+ years

Figure 3: First row: heat-maps of the incidence of mortality miy, for the el-
derly class. Central and bottom rows: corresponding spatial cluster, identified
using Anselin’s Local Moran Index, at the province and municipality scale, re-
spectively. The plots highlight a stationary spatial correlation structure of the
mortality up to 2019, whilst 2020 displays completely different mortality pat-
terns.
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high mortality incidences in Sicily, and significantly low mortality incidence in
the north-east of Italy and in Sardinia. On the other hand, the events of 2020
totally overturn such patterns: the large red cluster in the north-west of Italy
corresponds to the part of the Country with higher incidence of mortality during
2020, as highlighted by the heat map in the first row of the same figure; these
are the areas most interested by the first pandemic wave.

2.3 Exploration of the yearly variability of the empirical mor-
tality distributions using the Wasserstein distance

Wasserstein distances of mortality with respect to previous years

2017 2018 2019 2020

0 1 2 3log(dist)

70+ years

Figure 4: Heatmaps of quadratic Wasserstein distance between the mortality
density of the considered year and the average mortality density over the 4
preceding years, in logarithmic scale, for the elderly class, at the provincial
spatial scale.

We now explore the change over the years of the empirical mortality distri-
butions, piy, using the quadratic Wasserstein distance w2, a popular metric for
density functions Ambrosio et al. (2003); Villani (2003, 2008). This metric, that
is more generally defined for probability measures, has the interesting physical
interpretation of minimal cost necessary to re-arrange a mass distribution into
another Villani (2008). Distances are computed using the R package transport

Schuhmacher et al. (2020).
Figure 4 shows the distances computed between the density of mortality

in the considered year and the average density of mortality over the 4 pre-
ceding years, for the elderly population, at the province level. Specifically,
the figure shows the distances w2(piy, piy), for years y = 2017, ..., 2020, where

piy = 1
4

∑y−1
υ=y−4 piυ is the mean empirical density taken over the 4 years preced-
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ing y. Up to 2019, these distances are rather low, in most provinces, indicating
no major variability along time for the mortality process of the elderly popula-
tion. Among these years, 2017 shows slightly higher values, presumably due to
the unusually high mortality during the winter months, and the summer peak of
mortality caused by a very strong heat wave registered in that year. The picture
for 2020 is instead completely different: high values of w2 are observed across all
Italy, with few exceptions; particularly high are the distances in the provinces
of Bergamo, Lodi and Cremona, dramatically hit by the first pandemic wave.

Wasserstein distances over two-month windows in 2020

Lodi

R = 0.001

R = 0.2115

Bergamo

Cremona

R = 0.8989

R = 0.2926

R = 0.1167

R = 0.4258

Jul−Aug Sept−Oct Nov−Dec

Jan−Feb Mar−Apr May−Jun

−1 0 1 2
log(distance)

Figure 5: Heatmaps of w2(piyT , piT ), with y = 2020, in logarithmic scale, for
the elderly class, at province level. In each plot, the mortality density distribu-
tions are conditioned to be supported in the corresponding time window T , and
the corresponding Wasserstein distance is computed. The heatmaps faithfully
represents the spatio-temporal evolution of the pandemic. For each time win-
dow we also show the value of the correlation coefficient between the distances
w2(piyT , piT ) and the mortality indexes miyT .
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We then use the Wasserstein distance, at a finer temporal resolution, to
better explore the spatio-temporal pattern of the death anomalies in 2020, with
respect to all previous years. We achieve this by conditioning the empirical
distributions on sequential two-months time windows. Formally, given a time
window T , we compute w2(piyT , piT ), where pi = 1

9

∑2019
y=2011 piy is the mean

empirical density taken on all previous years, while piyT (t) =
piy(t)∑
τ∈T piy(τ) , t ∈ T

and piT (t) = pi(t)∑
τ∈T pi(τ) , t ∈ T, are the corresponding conditional distributions

on T . This distance, shown in Figure 5, neatly highlights the spatio-temporal
diffusion of the epidemic in Italy. In January-February, only one province has
an abnormal value of this distance: this is the province of Lodi, where the
municipality of Codogno is located, the first hot-spot in Italy, where the first
local case of COVID-19 is diagnosed. In March-April the epidemic spreads
across most of Northern Italy, with a particular tragic situation in the provinces
of Lodi and Bergamo. The central region Marche is also hit hard in this period.
Nevertheless, the epidemic still has a local character, with many regions of Italy
left untouched. In May-June the epidemic has regressed almost everywhere, as
an effect of the severe lockdown. The months of July and August do not present
noteworthy anomalies, whilst September and October mark a first upswing of the
epidemic. The second wave arrives in the months of November and December,
and it involves most of Italy, though some provinces are less affected. Among
the less affected areas, there are many provinces, especially in the North-East of
Italy and the region of Marche and Emilia Romagna, that were instead hardly hit
by the first epidemic wave. To further corroborate this interpretation, Figure 5
also displays, for each window T, the sample correlation coefficient between the
distances w2(piyT , piT ) and the corresponding mortality index in the window,

that is miyT :=
∑
t∈T diyt
ri

, showing them in the same figure. This correlation
coefficient is low during periods where the pandemic has low intensity; during
the same periods the mortality densities do not significantly differ from previous
years, as indicated by low Wasserstein distances. Instead, the correlation is high
during the pandemic waves, especially during first wave, highlighting that the
different temporal mortality during these periods is strongly associated with a
higher incidence of mortality.

3 Modeling death data as functional compositions

3.1 The appropriate functional space for functional composi-
tions

We now embed the mortality densities in a functional data analysis framework.
It is in fact natural to think of the piy’s presented in Section 2 as a discretiza-
tions, on the grid of days, of the family fiy : Θ→ R

+ of the continuous density
functions of the random variables Tiy, where Θ stands indeed for the contin-
uous time domain of the year. The crucial point here is the identification of
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an appropriate Hilbert space where these functional data should be embedded,
smoothly estimated and analyzed. In standard spatial data analysis this space
is usually chosen to be L2(Θ), the space of square-integrable functions (see, e.g.,
Ramsay and Silverman, 2005). However, it has been shown that L2 is not a
proper Hilbert embedding for the analysis of density functions, since its geome-
try is not coherent with the constrained nature of densities Egozcue et al. (2006);
van den Boogaart et al. (2010); Delicado (2011); Pawlowsky-Glahn et al. (2014);
Hron et al. (2016). On the other hand, almost all functional data analysis tech-
niques, formerly developed for the L2 case, can actually be extended, with some
effort, to any separable Hilbert space Horváth and Kokoszka (2012). In Section
2, we implicitly considered the real Wasserstein space W 2, defined as the set
W 2 := {µ prob. meas. onR s.t.

∫ +∞
−∞ x2 dµ(x) <∞}, equipped with the metric

w2. Although W 2 has been proved to be a very regular metric space (it is for
instance a complete geodesic metric space, see e.g., Villani (2008)), it is not a
vector space and it lacks an inner product. This makes it hard to perform typical
functional data analyses which rely on these elements, as for instance functional
principal component analysis and regression by linear models.

To understand what space is more appropriate, it is convenient to think at the
more classical setting of compositional data analysis Aitchison (1982), the area
of statistics that deals with data that are proportions, whose natural embedding
has been proved to be the Aitchison simplex, rather than the usual Euclidean
space Pearson (1897); Aitchison (1986); Barcelo-Vidal et al. (2001); Filzmoser
et al. (2018). The infinite dimensional analogue of the Aitchison simplex is the
Bayes Space B2(Θ). This is the set (of equivalence classes) of functions

B2(Θ) = {f : Θ→ R
+ s.t. f > 0, log(f) ∈ L2(Θ)}

where the equivalence relation in B2(Θ) is defined among proportional functions,
i.e., f =B2 g if f = αg for a constant α in R. In B2(Θ), the operations of sum
and external product are defined as

(f + g)(t) =B2 f(t)g(t) and (α · f)(t) =B2 f(t)α (1)

for t ∈ Θ, f, g in B2(Θ), and α in R. The space B2(Θ) defines a Hilbert space
when equipped with the generalization of the Aitchison inner product, defined
as

〈f, g〉B2 =
1

2|Θ|

∫
Θ

∫
Θ

log
f(t)

f(s)
log

g(t)

g(s)
dtds (2)

for f, g in B2(Θ), |Θ| being the length of the interval Θ. We refer the reader to
Egozcue et al. (2006); van den Boogaart et al. (2010); Pawlowsky-Glahn et al.
(2014) for a complete description of B2(Θ) and its Hilbert structure. From now
on, we always look at the fiy’s as realizations of a spatio-temporal functional
random process taking values in B2(Θ), and we develop our analyses consistently.
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Figure 6: Empirical mortality distributions piyt (black dots) and corresponding
smooth estimate of fiy (red lines), for the elderly class, in 2020, for the province
(left) and the municipality (right) of Bergamo.

3.2 Estimating smooth mortality densities

The estimation of the continuous densities fiy from their discretization piy cannot
be tackled with classical smoothing techniques, since the constrained nature of
density data must be taken into account during the smoothing phase (Machalová
et al., 2015). Several splines expansions have been proposed for the B2 case, like
the constrained B−splines described in Machalová et al. (2015), or the compo-
sitional spline basis introduced in Machalová et al. (2020). Here we consider the
procedure described in Machalová et al. (2015), and implemented in the R pack-
age robCompositions Templ et al. (2011), which is chosen for its simplicity and
solid implementation. We use cubic splines, with a penalization on the second
derivative of the estimate, and evenly spaced knots, one per week (52 internal
knots in total). Figure 6 shows an example of this smoothing, for the province
and for the municipality of Bergamo, respectively in the left and in the right
panel. Death processes at the municipality scale are much noisier than those at
the province scale. This leads to rougher estimates at the municipality level, as
exemplified by Figure 6. In particular, we favor here the ability to well capture
the sharp peak in the mortality, at the cost of obtaining a somewhat wiggly es-
timate. However, this less accurate reconstruction of the functional composition
at the municipality level is something that we take into account in subsequent
analyses. The smooth estimates obtained at the province level appear instead
very good, and capable to well describe the data and their sharp peaks, without
producing any artifacts. Figure 7 shows the estimates of fiy for the 107 different
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provinces, for the elderly population. The usual pattern of mortality is visible
till 2019, with higher mortality during the coldest months and during summer
heat waves, that may hit only some regions. The functional process is very
different in 2020, and dominated by the two pandemic waves, clearly captured
by the estimated densities: a first wave in March-April, that hits some regions
to a dramatic extent, and a second less dramatic wave in November-December,
which however involves all provinces.

Smooth estimates of the mortality densities, 70+ years
Provinces

2017 2018 2019 2020

Dec Mar Jun Sep Dec Dec Mar Jun Sep Dec Dec Mar Jun Sep Dec Dec Mar Jun Sep Dec

0.000

0.005

0.010

0.015

0.020

Figure 7: Smooth estimates of the mortality densities over the 107 Italian
provinces, for the elderly population. The usual pattern of mortality is visi-
ble till 2019, with higher mortality during the coldest months and during the
summer heat waves, that may hit only some regions. The functional process
is completely different in 2020, with the two pandemic waves clearly captured
by the estimated densities. The black thick lines represent the mean density,
computed in B2, with weights proportional to the population in each area.

3.3 Modeling the temporal variability of mortality densities

Starting from the smooth functional samples fiy, we then construct a functional
linear model in the B2 space Talská et al. (2018), in order to predict the mortal-
ity density in each province in one year, using as predictors the corresponding
mortality densities in previous years in the same province, in an attempt to
account for the variability associated with recurrent seasonal effects. For each
province i, we compute f iy = 1

4

∑y−1
r=y−4 fir, the B2 mean of the observed densi-

ties in the four years preceding year y, where summation and multiplication by
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a scalar should be intended in the B2 sense of equation (1). We then formulate
the following functional linear model in B2(Θ)

fiy(t) = β0y(t) + 〈βy(·, t), f iy〉B2 + εiy(t), i = 1, ...107, t ∈ Θ (3)

where the functional parameters β0y(t), βy(s, t) and residual terms εiy(t) are
defined in the B2 sense. In model (3), both β0y and εiy are probability den-
sities in B2(Θ), while βy is the kernel of a B2(Θ) linear operator, so that also
〈βy(·, t), f iy〉B2 is a probability density in B2(Θ). Model (3) is an extension to the
B2(Θ) space of the classical function-on-function regression models formulated
for the L2 case (e.g., Ramsay and Silverman, 2005). The functional parameters
β0y(t) and βy(s, t) can be estimated via ordinary or penalized least squares, us-
ing similar techniques, such as basis approximations. In the present work, we
use ordinary least squares, using the same constrained splines basis adopted in
the smoothing phase; see Section 3.2. Model fitting is assessed via the functional
regression routines implemented in the R package fda.usc Febrero-Bande and
Oviedo de la Fuente (2012). We obtain a family of estimated linear models, each
one defined by the estimates β̂0y, β̂y, y = 2015, ...2020, where y starts from 2015
since we need four previous years to fit the corresponding model. It is interesting
to look at the densities δiy defined by (sum and differences are again taken in
the B2 sense)

δiy(t) = fiy(t)− f̂iy(t) (4)

where
f̂iy(t) := β0y−1(t) + 〈βy−1(·, t), f iy〉B2 . (5)

The δiy represent the prediction errors of model (3) calibrated at year y−1, when
this is used to produce forecasts for the following year y. As such, unlike the
residuals of model (3), the prediction errors δiy(t) may have a non-null sample
mean. We then look at the δiy as a proxy of what happens in year y, that cannot
be predicted from the previous years y − 1, ..., y − 4.

Figure 8 shows the δiy for different years, at the provincial scale; these pre-
diction errors should be compared with the corresponding smooth densities in
Figure 7. We remark that the zero of the B2 space is the uniform distribution,
so that good predictions coincide with almost uniform errors. As already noted,
the linear model (3) can be seen as a way to filter out seasonal effects, which
can be predicted on the basis of previous years, so that the prediction errors
show to what extent a given year has unusual mortality patterns. If we look at
the prediction errors in 2017, it is clear that what happens during summer is to
a large extent unpredictable. This is reasonable, a posteriori, because 2017 is
characterized by the second hottest summer in the last century, closely following
2003, with clear effects on the elderly population. Regarding 2020, the charac-
teristic of the death process in March-April and in November-December appears
completely unpredictable from past years, leading us to conclude that the effect
of the COVID-19 pandemic is by far the most important factor in determining
the mortality during this year.
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Prediction errors, provinces, 70+ years
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Figure 8: Prediction errors δiy for the mortality densities of the elderly popula-
tion generated, in each province i and for a given year y, by the linear model (3)
fitted for the year y − 1 and applied to the average of the mortality densities of
the four years preceding y, in the same province. Visual inspection of 2017 iden-
tifies the sharp increases in mortality during winter and summer which could not
be predicted based on the mortality densities of the four previous years. Note
that the peak in mortality observed also during the summer of 2018 is correctly
predicted by the linear model (3) fitted for 2017, while mortality in winter is
slightly overestimated. It is visually evident that the dramatic patterns of the
2020 mortality densities cannot be predicted by the linear model (3) fitted on
the mortality densities of the previous years.

Figure 9 shows the maps of the B2 norm of the prediction errors for the same
years. The map for 2020 highlights the spatial diffusion of the pandemic, clearly
identifying those provinces where the death density process is highly perturbed
with respect to previous years. Figure 10 shows the results of a functional
K-means clustering Abraham et al. (2003) on the prediction errors, in the B2

space, with K = 3 centers, for the year 2020. It is interesting to note that
the norms of the prediction errors capture the effect of the pandemics in the
different areas, and that the clustering almost perfectly divides the provinces
among: provinces very hardly hit by the first wave but left mostly untouched
by the second wave (red cluster), provinces hit to a less dramatic extent by the
first wave but significantly affected also by the second wave (green cluster), and
provinces which only experience the second wave (blue cluster).
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Prediction error norms, provinces, 70+ years
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Figure 9: Heatmaps of the B2 norm of the prediction errors in Figure 8, in
logarithmic scale, for the elderly class. The map for 2020 highlights the spatial
characteristic of the pandemic diffusion, clearly identifying those provinces where
the death density process is highly perturbed with respect to previous years.

3.4 Analyzing the spatial correlation of the prediction errors

We now proceed to analyze the spatial dependence structure of the prediction er-
rors. We can model the δiy’s as realizations of a spatial random process {Xs}s∈D,
where D is the spatial domain identified by the Country, and Xs, for s ∈ D, takes
values in B2(Θ). We assume square integrability, that is E[‖Xs‖2B2 ] <∞ for all
s ∈ D. We can thus define the expectation ms of the process as ms := E[Xs], and
the trace-covariogram Menafoglio et al. (2013); Menafoglio and Petris (2015);
Menafoglio et al. (2016a) of the process as

C : D×D → R

where, for all (sk, sj) ∈ D×D,

C(sk, sj) := E[〈Xsk −msk , Xsj −msj 〉B2 ]

that is the infinite-dimensional analogue of the covariogram of a real-valued
process Cressie (1993). If we assume second-order stationarity and isotropy, the
trace-covariogram reduces to a function of a real non-negative variable, i.e.

C(h) = E[〈Xsk −msk , Xsj −msj 〉B2 ], for (sk, sj) ∈ D(h) (6)

where D(h) := {(sk, sj) ∈ D×D | d(sk, sj) = h} and d is the Euclidean distance.
The definition of the trace-covariogram in equation (6) allows for the definition
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Clustering of the 2020 prediction errors, 70+ years
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Figure 10: Functional K-means clustering (K = 3) of the prediction errors in
Figure 8, for 2020. The prediction errors appear rather good descriptors of the
pandemic development. The red cluster identifies the provinces that are very
hardly hit by the first wave but are left mostly untouched by the second wave;
the green cluster groups the provinces hit to a less dramatic extent by the first
wave but significantly affected also by the second wave; finally, the blue cluster
mostly collects provinces which only experience the second wave.

of the trace-semivariogram, which in this setting is defined as

γ(h) =
1

2
E[
∥∥Xsk −Xsj

∥∥2

B2 ], for (sk, sj) ∈ D(h) (7)

and linked to (6) by the relation γ(h) = C(0) − C(h), in analogy with the
scalar case Cressie (1993). In this simplified setting, classical geostatistical tasks
such as empirical variography, variogram estimation and Kriging prediction with
scalar weigths can be performed in a similar way to the finite-dimensional case
Menafoglio and Petris (2015). In particular, the definition of the B2 empirical
trace-semivariogram is extended from the Euclidean case Cressie (1993) as

γ̂(h) =
1

2N(h)

∑
(sk,sj)∈D(h)

∥∥Xsk −Xsj

∥∥2

B2 (8)

whereN(h) is the cardinality ofD(h). Classical fitting of theoretical (semi)variogram
models (e.g., exponential, spherical, Matérn models) Cressie (1993) can then be
applied to γ̂ without difficulties.

Figure 11 shows the empirical trace-semivariograms of the prediction er-
rors δiy, from 2017 to 2020, for the elderly population, at the provincial scale.
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Functional trace-semivariograms, provinces
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Figure 11: Empirical trace-semivariograms for the prediction errors δiy, in the
elderly population. The red lines are the corresponding fitted exponential mod-
els. Distances on the x-axes are expressed in meters. The last panel shows the
2020 severe perturbation of the spatial dependence structure of the process gen-
erating the prediction errors.

The empirical trace-semivariograms are computed with the R package fdagstat
Menafoglio and Grujic (2017) and all the fitted semivariograms are exponential
models with nugget Cressie (1993). It is interesting to note that up to 2019 the
stochastic processes generating the δiy’s are almost spatially uncorrelated. In
2020, the spatial dependence structure of the process generating the prediction
errors δiy is deeply perturbed; spatial correlation is now evident, with a sharp
increase of the partial sill with respect to previous years and, consequently, of
the total variance of the process. We interpret this as the effect of the pandemic,
which introduces spatial correlation, being a natural process with an intrinsic
spatial diffusive nature. In the next section, we further explore this conjecture,
by studying the main sources of variability in the δiy’s, and their associated
spatial structure. The subsequent dimensionality reduction will then allow us
to identify local anomalies in the 2020 mortality densities, likely associated with
COVID-19 pandemic, through a downscaling analysis of the provincial densities
at a municipality spatial scale.
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4 Studying the perturbation of mortality densities in
2020

4.1 Simplicial Functional Principal Component Analysis

From now on, we focus our analysis on 2020; we thus drop the index y, since all
quantities and functional objects refer to the same year. We study the variability
structure of the prediction errors δi’s, by decomposing them in their main modes
of variability. To this end, we use Simplicial Functional Principal Component
Analysis (SFPCA) Hron et al. (2016), which is an extension of functional princi-
pal component analysis Ramsay and Silverman (2005) to functional data in the
B2 space. In this setting, the prediction error δi is represented by its (truncated)
expansion on the principal components, namely

δ̃i = δ +

K∑
j=1

wij · ψj (9)

where operations are computed in B2(Θ), as defined in Section 3.1, K denotes
the chosen truncation order, δ is the B2 overall sample mean of the δi’s with
respect to all the considered areas, and ψ1, . . . , ψK are B2(Θ) functions repre-
senting the first K elements of the orthonormal principal component basis. For
j = 1, . . . ,K, the scalar wij is the score of the projection of δi on ψj . Note
that the total (empirical) variability of the prediction errors δi is precisely ob-
tained as the sum of the variability expressed by the scores along the principal
components, i.e.,

1

n

n∑
i=1

‖δi − δ‖2 =
1

n

∞∑
j=1

n∑
i=1

w2
ij =

∞∑
j=1

λj ,

λj being the (empirical) variance along the j-th Simplicial Functional Principal
Component (SFPC). An analogous result is obtained when looking at the spa-
tial variability, as represented by the trace-semivariogram (7) and its empirical
version (8). In this sense, studying the SFPCs allows us to interpret the sources
of variability within the δi’s and within their spatial dependence.

Figure 12 shows the results of the SFPCA applied to the δi’s for 2020, at
the province level. The top panels of this figure display in black the mean of the
prediction errors δ, and in color two additional curves obtained by perturbing
the mean in the direction of each principal component, for the first three SF-
PCs. Specifically, the blue curve is δ− 3

√
λjψj and the red curve is δ+ 3

√
λjψj

for j = 1, 2, 3, respectively in the top left, top center and top right panels of
Figure 12. By inspecting these plots, we notice that the first SFPC represents
a contrast between provinces severely hit by the first pandemic wave against
those provinces basically untouched by the first wave. Indeed, provinces with a
high positive score on the first component are characterized by a peak in death
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SFPCA, 2020, provinces, 70+ years
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Figure 12: Top: for the first three principal components (left, center and right),
the plot shows the mean δ of the prediction errors (black ) and its perturbations
along the direction of the corresponding principal component; the perturbation
is equal to plus (in red) or minus (in blue) three standard deviations of the
corresponding score. Bottom: scatterplot of the scores of the first two principal
components.
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density corresponding to the first wave of the pandemic, followed by a below-
average death density during the second wave. The second principal component
captures a time shift in the pandemic development; positive scores characterize
provinces where the pandemic starts later during the first wave and which are
strongly hit by the second wave. The scatterplot of the scores of the first two
principal components, in the bottom part of the same figure, confirms this inter-
pretation: provinces like Bergamo, Cremona, Piacenza and Lodi, characterized
by high positive scores along the first component and high negative scores along
the second, are in fact among those dramatically hit by the first pandemic wave,
and where the most at-risk segment of population has shrunk consistently by the
time of the second wave, because of death or acquired immunity. Similar consid-

Maps of SFPCA scores

−3 0 3 6

PC 1

−2−1 0 1 2

PC 2

Figure 13: Heatmap of the scores of the errors δi on the first (left) and second
(right) SFPC.

erations can be elicited for other provinces: for instance, we can see that Milano,
and other northern provinces like Sondrio and Torino, are represented among
those less severely hit by the first wave, but appear to also suffer heavy losses
during the second one. Figure 13 offers a global picture of the geographical be-
haviour of the first two SFPCs, representing the heatmaps of the corresponding
scores. Such maps, together with the interpretation of the principal components
highlighted by Figure 12, efficiently capture the spatio-temporal behavior of the
main pandemic waves, allowing to immediately visualize their characteristics in
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different areas.

4.2 The spatial structure of the SFPCA scores

The dimensionality reduction induced by the SFPCA procedure leads to a repre-
sentation of each δi through the corresponding K− dimensional vector wi ∈ RK

of scores. This representation allows us to express the spatial dependence struc-
ture of the spatial field generating the prediction errors through the multivariate
cross-variogram structure of the wi’s, as defined by their K (empirical) semivar-
iograms γ̂rr, for r = 1, . . . ,K, and K(K− 1)/2 (empirical) cross-semivariograms
γ̂rs, where r, s = 1, . . . ,K, with r < s. For a formal account, see, e.g., Menafoglio
et al. (2013); Menafoglio and Petris (2015). In particular, the spatial dependence
of the field generating the δi’s captured by the trace-semivariogram (7), and its
empirical version (8), can be expressed as the composition of the (empirical)
semivariograms of the wi’s, i.e., the γ̂rr. In this sense, studying the empirical
semivariograms γ̂rr enables us to further support the conjecture according to
which the perturbation observed in 2020 in the δi’s can indeed be interpreted
in terms of the COVID-19 pandemic, consistently with the observation that
the first two SFPCs can be precisely ascribed to the first and second pandemic
waves. Figure 14 shows the estimated semivariograms and cross-semivariograms
for the first three principal components. Here, blue symbols represent the empir-
ical estimates, while the blue lines represent the fitted model of coregionalization
(exponential model with nugget). It is clear that the first component, associated
with the first pandemic wave (as highlighted in Figure 12), is characterized by a
very strong spatial correlation. The spatial dependence in the other components
appears instead much weaker. This suggests that the first wave is the event
which mainly affects the change in spatial correlation within the δi in 2020, with
respect to previous years. The second component, associated with the second
pandemic wave, and to a time shift in the first one, still presents an appreciable
spatial correlation structure, although much less evident than the first SFPC.
The correlation structure becomes instead negligible when looking at the third
component (and to subsequent components, not shown here), corroborating the
hypothesis that the spatial structure within the δi’s is indeed associated with
the effects of the COVID-19 pandemic.

4.3 Analysing the mortality densities at a finer spatial scale
through spatial downscaling

We finally use the representation provided by SFPCA to obtain predictions of
the mortality densities at a municipality scale, through geostatistical downscal-
ing of the provincial mortality densities. The relevance of the analysis is twofold.
First, it allows us to gain robustness with respect to the direct consideration of
death counts at a municipality level, as these are affected by heavier noise than
province data, being related to areas with smaller population, as discussed in
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Figure 14: Empirical and fitted semivariograms and cross-semivariograms at
province level (blue lines and dots) and corresponding deconvoluted semivari-
ograms for prediction at municipality scale (red lines). The spatial correlation
of the functional process is almost completely explained by the action of the first
two components. Distances on the x-axes are expressed in meters.
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Section 3.2 and highlighted by Figure 7. Second, this analysis enables us to
identify municipalities which present anomalies with respect to the correspond-
ing provinces, in the sense that their death densities are dissimilar to those that
would be expected by ‘projecting’ the provincial mortality densities down to the
municipality spatial scale.

To avoid confusion, in this section we use the index i to refer to provinces
and the index ` to refer to municipalities. To provide a prediction f̂` of the
mortality density for the `-th municipality, we use the spatio-temporal infor-
mation embedded within the provincial sample fi, this being decomposed in its
time-repeatable (f̂i) and time-non-repeatable (δi) components. In fact, the cru-
cial point is to provide a (spatial) prediction δ̂` for the error term, so that the
corresponding death density is estimated as

f̂` = f̂i + δ̂` (10)

where f̂i represents the component of the mortality density in the province i
containing municipality `, predictable from the previous years, as from equa-
tion (5). The problem of obtaining predictions δ̂` from the δ̂i’s is a problem of
(functional) downscaling, requiring to change the spatial resolution of the data
from a provincial scale down to a municipality scale. We tackle this problem
by relying on the finite-dimensional representation (9) induced by SFPCA, thus
reducing the functional problem to a multivariate one. In this context, obtaining
δ̂` requires to produce predictions ŵ` by downscaling the province realizations
wi Kyriakidis (2004); Goovaerts (2008); Xiao et al. (2018), which is here done
via Area-to-Point Co-Kriging (ATPCoK), as implemented in the R packages
gstat Pebesma (2004) and atakrig Hu (2020). The main issue in ATPCoK is
the estimation of a family of semivariograms and cross-semivariogram models
ηr,s for the finer geographical scale (i.e., municipality) from the models γr,s es-
timated at the coarser scale (i.e., province). This problem is classically solved
via the so-called variogram deconvolution technique Goovaerts (2008). Figure 14
shows the deconvoluted semivariograms and cross-semivariograms ηr,s (red lines)
for the first three principal components, as estimated from the fitted provincial
semivariograms γr,s (blue lines). The ηr,s’s indeed have analogous interpreta-
tions as those at a provincial scale. Note that all the cross-semivariograms are
characterized by a negligible spatial structure, suggesting that different SFPCs
identify spatially uncorrelated components in the δi’s. Their cross-correlation is
thus neglected for prediction purposes.

The fitted deconvoluted semivariograms are then used to obtain ATPCoK
predictions ŵ` Goovaerts (2008), which in turn lead to predict the death density
for the `-th municipality as

f̂` = f̂i +

K∑
j=1

ŵ`jψj (11)
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where the ψj are the SFPCs appearing in equation (9), and K = 3. The pre-
dicted densities are shown in the first row of Figure 15, colored according to
the province-level clustering proposed in Figure 10. Note that the cluster infor-
mation is only proposed to ease interpretation, as it plays no role in producing
the predictions f̂`. These results suggest that the combination of dimensional-
ity reduction via SFPCA and downscaling allows us to obtain much smoother
estimates of the municipality densities than those produced directly from the
municipality death counts, reducing their wiggliness while preserving their key
features (e.g., the sharp peaks due to the pandemic). For example, the second
row of Figure 15 compares the predicted densities f̂` with the histograms of the
municipality death counts p`, for the municipalities of Bergamo (≈ 120000 in-
habitants), Lodi (≈ 45000 inhab.), and Clusone (≈ 8000 inhab., in the province
of Bergamo). Note that the predictions remain fairly reasonable even when the
interested area is scarcely populated (e.g., Clusone).

To identify municipalities characterized by an anomalous behaviour with re-
spect to nearby provinces, for each municipality ` we compute the quadratic
Wasserstein distance w2(f̂`y, p`y) between the downscaled predicted density and
the respective empirical distribution binned on a weekly basis. A high distance is
indicative of a municipality whose death distribution is anomalous with respect
what is expected considering the mortality densities of the nearby provinces.
Using the Local Moran Index, described in Section 2.2, we hence look for spa-
tial clusters of anomalous municipalities, which can be associated with areas
where local and unusual events cause a perturbation: indeed, these unusual
events, during 2020, could be related to local pandemic hot-spots. Figure 16
shows the result of a spatial association analysis carried out on the logarithms
of the Wasserstein distances, using the Local Moran Index. We only draw the
high-high spatial clusters, since they are associated with areas where downscaled
predictions are farther away from observed data. We also show a zoomed map
of northern Italy, which is characterized by the presence of several interesting
clusters: some significative provinces are indicated in purple, and some repre-
sentative municipalities in the spatial clusters are indicated black. The bottom
part of the same figure displays the comparison between downscaled predicted
densities and observations, for the highlighted municipalities. Several anomalous
areas are signaled. In province of Cuneo, for instance, the municipality of Mon-
dov̀ı (≈ 23000 inhab.) is the center of a cluster in which the impact of the first
wave is highly underestimated, while the second wave is delayed with respect
to predictions. At the border between the provinces of Alessandria and Pavia,
the red area containing Tortona (≈ 27000 inhab.) is hit harder and earlier than
expected by the first wave, while the second wave has a smaller impact than pre-
dicted. Another interesting case is Galbiate (≈ 9000 inhab., in the province of
Lecco), whose cluster is characterized by an evident delay of the first wave, that
has a much stronger effect with respect to the surrounding areas. On the other
hand, the pandemic hit sooner than expected, and harder, in some area of the
province of Bergamo, as for example the surroundings of San Pellegrino Terme
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Spatial downscaling predictions of mortality densities in
municipalities
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Figure 15: Top: densities f̂` predicted through spatial downscaling, and col-
ored according to the provincial clustering of Figure 10. Bottom: comparison
of downscaling predictions (red lines) with the actual observations (histograms
obtained aggregating the p` on a weekly basis) for the municipalities of Bergamo
(≈ 120000 inhab.), Lodi (≈ 45000 inhab.), and Clusone (≈ 8000 inhab., in the
province of Bergamo).
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Anomalous Municipalities
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Figure 16: Top: spatial clusters, identified using Anselin’s Local Moran In-
dex on the logarithm of the Wasserstein distance between the predicted down-
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servations (histograms obtained aggregating the p` on a weekly basis), for some
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(≈ 5000 inhab.). Similar anomalies are present also in the province of Brescia,
close to the border with the province of Trento, as in the case of municipality of
Edolo (≈ 5000 inhab.) and its neighbors. Finally, several anomalies are present
in the province of Bolzano, where several areas are hit by the first pandemic wave
with much greater magnitude than expected, as in the municipality of Ortisei
(≈ 5000 inhab.).

5 Discussion

Up to 2019, the Italian yearly mortality within the elderly class shows consol-
idated and almost stationary spatio-temporal patterns. These are completely
overturned in 2020, with a deep perturbation in the spatio-temportal structure
of the mortality process. While the link between this and the pandemic shock
can be conjectured when looking at the trace-variography of our model (Sec-
tion 3), the interpretative tools of SFPCA allow us to consistently attribute
such upheavals in the mortality to the COVID-19 pandemic, with particular
regard to its first wave of contagion (Section 4). Analyses performed on the
younger age classes, not reported here for brevity, lead to consistent results,
with some important differences. As reasonable, spatial patterns and pandemic
effects are reduced in the age class 50-69 with respect to the 70+ class, and
they become almost negligible in the class 0-49. The results of the analyses on
the younger classes are available at https://github.com/RiccardoScimone/

Mortality-densities-italy-analysis.git, together with the R codes to re-
produce the analyses presented in this work.

Although the analyses here presented focus on mortality data, the pipeline
we propose is entirely general, and applicable to a broad spectrum of indicators.
Quarantined people over time, occupancy of intensive care units, emergency
calls or contacts with family doctors are only a few examples of indicators which
may offer complementary views of the disruptive effects of the pandemic in our
societies. In this sense, our work offers a methodological viewpoint rather than
a single analysis, to assess the spatio-temporal impacts of an exogenous shock
on health, economy and society, supporting the identification of local anomalies
in space and time. In fact, while our analyses on mortality data allow us to
quantify the impact a posteriori – being delayed with respect to the contagion
itself – the same analyses based on other types of indicators could act as early
warning signals of anomalies, to be possibly used to support decision makers in
designing timely prevention policies. In this context, the same analyses could be
carried out at larger spatial scales (e.g., identifying anomalous provinces within
regions) or at shorter time scales (i.e., conditioning the densities on suitable
time windows), to detect, in near real-time, abnormal behaviors at the desired
spatio-temporal granularity.
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