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Obstacle Avoidance via Hybrid Feedback
S. Berkane, Member, IEEE, A. Bisoffi, Member, IEEE, D. V. Dimarogonas, Senior Member, IEEE

Abstract—In this paper we present a hybrid feedback ap-
proach to solve the navigation problem of a point mass in the
n−dimensional space containing an arbitrary number of ellip-
soidal shape obstacles. The proposed hybrid control algorithm
guarantees both global asymptotic stabilization to a reference
and avoidance of the obstacles. The intuitive idea of the proposed
hybrid feedback is to switch between two modes of control:
stabilization and avoidance. The geometric construction of the
flow and jump sets of the proposed hybrid controller, exploiting
hysteresis regions, guarantees Zeno-free switching between the
stabilization and the avoidance modes. Simulation results illus-
trate the performance of the proposed hybrid control approach
for 2-dimensional and 3-dimensional scenarios.

I. INTRODUCTION

For decades, the obstacle avoidance problem has been an
active area of research in the robotics and control communities
[1]. In a typical robot navigation scenario, the robot is required
to reach a given goal (destination) while not colliding with a
set of obstacle regions in the workspace. Since the pioneering
work by Khatib [2], artificial potential fields have been widely
used in the obstacle avoidance problem since they offer the
possibility to combine the solution to the global find-path prob-
lem with a feedback controller for the robot, thus, allowing the
high-level planner to address more abstract tasks. The idea is
to generate an artificial potential field that renders the goal
attractive and the obstacles repulsive. Then, by considering
trajectories that navigate along the negative gradient of the
artificial potential field, one can ensure that the robot will
reach the desired target while avoiding to collide with the
obstacles. However, artificial potential field-based algorithms
suffer from 1) the presence of local minima preventing the
successful navigation to the target point and 2) arbitrarily large
repulsive potential near the obstacles which are in conflict with
the inevitable actuator saturations.

The navigation function-based approach, which was initi-
ated by Koditscheck and Rimon [3] for sphere worlds [3,
p. 414], solves both problems. It allows to obtain artificial
potential fields with the nice property that all but one of
the critical points are saddles with the remaining critical
point being the desired reference. Since then, the navigation
function-based approach has been extended in many different
directions; e.g., for multi-agent systems [4]–[6], for unknown
sphere words [7], and for focally admissible obstacles [8].
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The major drawback of navigation functions is that they are
not correct by construction. In fact, navigation functions are
theoretically guaranteed to exist, but their explicit computation
is not straightforward since they require an unknown tuning
of a given parameter to eliminate local minima.

Recently, Loizou [9] introduced the navigation transform
that diffeomorphically maps the workspace to a trivial domain
called the point world consisting of a closed ball with a
finite number of points removed. Once this transformation
is found, the navigation problem is solved from almost all
initial conditions without requiring any tuning. In addition,
the trajectory duration is explicitly available, which provides
a timed-abstraction solution to the motion-planning problem.
Similarly, the recent work in [10] uses the so-called prescribed
performance control to design a time-varying control law that
drives the robot, in finite time, from all initial conditions to
some neighborhood of the target while avoiding the obstacles.
Another approach to the navigation problem is through barrier
functions (see [11] and references therein), which are devel-
oped for nonlinear systems with state-space constraints and
ensure safety. Model predictive control approaches have been
also used for reactive robot navigation, e.g., [12], [13].

However, by using any of the approaches described above,
it is not possible to ensure safety from all initial conditions
in the obstacle-free state space. As pointed out in [3], the
appearance of additional undesired equilibria is unavoidable
when considering continuous time-invariant vector fields. This
is a well known topological obstruction to global asymptotic
stabilization by continuous feedback when the free state space
is not diffeomorphic to an Euclidean space (see, e.g., [14,
Thm. 2.2]). Furthermore, this problem is more far-reaching
since, by using a continuous feedback law, it is always possible
to find arbitrarily small adversarial (noise) signals acting on the
vector field, such that a set of initial conditions different from
the target, possibly of measure zero, can be rendered stable
[15, Thm. 6.5]. To deal with such limitations, the authors
in [16] proposed a hybrid state feedback controller, using
Lyapunov-based hysteresis switching, to achieve robust global
asymptotic regulation in R2 to a target while avoiding a single
obstacle. This approach has been exploited in [17] to steer a
planar vehicle to the source of an unknown but measurable
signal while avoiding an obstacle. In [18] and [19], a hybrid
control law was proposed to globally asymptotically stabilize
a class of linear systems while avoiding neighbourhoods of
unsafe isolated points in Rn. Although such hybrid approaches
are promising, they are still challenged by constructing the
suitable hybrid feedback for higher dimensions and with more
complex obstacles shapes.

In this work, we propose a hybrid control algorithm for the
global asymptotic stabilization of a point mass moving in an
arbitrary n−dimensional space while safely avoiding obstacles

ar
X

iv
:2

10
2.

02
88

3v
1 

 [
m

at
h.

O
C

] 
 4

 F
eb

 2
02

1



2

that have generic ellipsoidal shapes, based on the preliminary
treatment of this problem for a single spherical obstacle in
[20]. The ellipsoids provide a tighter bounding volume than
spheres, and in our scheme this volume can be arbitrarily flat
and close to the target, which leads to a significant reduction
in the level of conservatism compared, for instance, to [21,
Thm. 3] (as shown in Section VI).

Our proposed hybrid algorithm employs a hysteresis-based
switching between the avoidance controller and the stabiliz-
ing controller in order to guarantee forward invariance of
the obstacle-free region (corresponding to safety) and global
asymptotic stability of the reference position. We consider tra-
jectories in an n−dimensional Euclidean space and we resort
to tools from higher-dimensional geometry [22] to provide a
construction of the flow and jump sets where the different
modes of operation of the hybrid controller are activated.
Furthermore, the hybrid control law guarantees a bounded
control input, it matches the stabilizing controller in arbitrarily
large subsets of the obstacle-free region by a suitable tuning of
its parameters (hence qualifying as minimally invasive), it can
be readily extended to a non-point mass vehicle and enjoys
some level of inherent robustness to perturbations. Structure.
Preliminaries are in Section II. The navigation problem is
formulated in Section III. Our proposed hybrid control scheme
is discussed in Section IV. Section V presents the main
result of forward invariance of the obstacle-free space and
global asymptotic stability of the target, together with other
desirable complementary properties. Numerical examples are
in Section VI. All the proofs are in the Appendix.

II. PRELIMINARIES

N, R and R≥ denote, respectively, the set of nonnegative
integers, reals and nonnegative reals. Rn is the n-dimensional
Euclidean space and Sn is the n-dimensional unit sphere
embedded in Rn+1. Given the column vectors v1 ∈ Rn1 and
v2 ∈ Rn2 , (v1, v2) denotes the stack vector

[
v>1 v>2

]>
. The

Euclidean norm of x ∈ Rn is defined as ‖x‖ :=
√
x>x and

the geodesic distance between two points x and y on the
sphere Sn is defined by dSn(x, y) := arccos(x>y) for all
x, y ∈ Sn. For an arbitrary matrix A ∈ Rn×n, λi(A) denotes
the i-th eigenvalue of A. If A is a symmetric matrix, then
λmin(A) and λmax(A) denote, respectively, the smallest and
largest eigenvalues of A. Given a closed set A ⊂ Rn, we
define the distance to the set A by |x|A := infy∈A ‖x − y‖.
Given two sets A and B, we define the distance from A
to B by dist(A,B) := inf{|a − b| : a ∈ A, b ∈ B}. The
closure, interior and boundary of a set A ⊂ Rn are denoted
as A,A◦ and ∂A, respectively. The relative complement of a
set B ⊂ Rn with respect to a set A is denoted by A\B and
contains the elements of A which are not in B. In particular,
we use Ac to denote the complement of A in Rn, i.e.,
Ac = Rn\A. Given the sets A, B and C, the following set
identities [23] will be used

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (1a)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (1b)
(A ∩ C)\(B ∩ C) = (A ∩ C)\B = A ∩ (C\B) (1c)

C\(A∪B)=(C\A)∩(C\B), C\(A∩B)=(C\A)∪(C\B) (1d)
(A ∪ B)c =Ac∩Bc, (A ∩ B)c =Ac∪Bc,A\B=A∩Bc (1e)

A ∪ B = A ∪ B, A ∩ B ⊂ A ∩ B, A\Ac = A◦ (1f)

A ⊂ B =⇒ A ⊂ B, ∂Ac = ∂A (1g)
∂(A ∪ B) ⊂ (∂A\B◦) ∪ (∂B\A◦) (1h)

∂(A ∩ B) ⊂ (∂A ∩ B) ∪ (∂B ∩ A). (1i)

Two sets A and B are said to be disjoint if A∩B = ∅. They
are said to be separated if A∩B = ∅ = A∩B. The notion of
separated sets is stronger than mere disjointness. If two sets
A and B are separated then we have [23, Exercise 1.3.A]

∂(A ∪ B) = ∂A ∪ ∂B. (2)

The tangent cone to a set K ⊂ Rn at a point x ∈ Rn, denoted
TK(x), is defined as in [24, Def. 5.12 and Fig. 5.4].

A. Projections Maps

For z ∈ Rn\{0}, we define the following projection maps:

π‖(z) := zz>

‖z‖2 , π
⊥(z) :=In− zz>

‖z‖2 , ρ(z) :=In− 2 zz
>

‖z‖2 (3)

where In is the n × n identity matrix. The map π‖(·) is the
parallel projection map, π⊥(·) is the orthogonal projection
map [22], and ρ(·) is the reflector map (also called House-
holder transformation). Consequently, for any x ∈ Rn, the
vector π‖(z)x corresponds to the projection of x onto the line
generated by z, π⊥(z)x corresponds to the projection of x
onto the hyperplane orthogonal to z and ρ(z)x corresponds to
the reflection of x about the hyperplane orthogonal to z. For
z ∈ Rn\{0}, some useful properties of these maps follow:

π‖(z)z = z, π⊥(z)π⊥(z) = π⊥(z), (4a)

π⊥(z)z = 0, π‖(z)π‖(z) = π‖(z), (4b)
ρ(z)z = −z, ρ(z)ρ(z) = In. (4c)

We also define for z ∈ Rn\{0} and θ ∈ R the parametric map

πθ(z) := cos2(θ)π⊥(z)− sin2(θ)π‖(z), (5)

which can also be written (thanks to 2π⊥(z)−ρ(z) = 2π‖(z)+
ρ(z) = In) as

πθ(z) = 1
2ρ(z) + 1

2 cos(2θ)In. (6)

B. Geometric Subsets of Rn

1) Line: A line is the one-dimensional subset of Rn de-
scribed by the set

L(c, v) := {x ∈ Rn : x = c+ λv, λ ∈ R}, (7)

which corresponds to the line passing by the point c ∈ Rn
and with direction parallel to v ∈ Rn\{0}. If in (7) λ ≥ 0
(respectively λ ≤ 0), then we obtain the half-line denoted by
L≥(c, v) (respectively L≤(c, v)).
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2) Hyperplane: A hyperplane is the (n − 1)-dimensional
subset of Rn described by the set

P(c, v) := {x ∈ Rn : v>(x− c) = 0}, (8)

which corresponds to the hyperplane that passes through a
point c ∈ Rn and has normal vector v ∈ Rn\{0}. The
hyperplane P(c, v) divides the Euclidean space Rn into two
closed subsets P≥(c, v) and P≤(c, v), which are obtained by
substituting the = in (8) with ≥ and ≤, respectively.

3) Sphere: A sphere is the (n − 1)-dimensional subset of
Rn described by the set

S(c, r) := {x ∈ Rn : ‖x− c‖ = r} (9)

where c is the center of the sphere and r ∈ R≥ is its
radius. The closed interior (respectively exterior) of the sphere,
also called a hyperball and denoted by S≤(c, r) (respectively
S≥(c, r)), is obtained from (9) by substituting the = with ≤
(respectively ≥).

4) Ellipsoid: For a positive definite matrix E ∈ Rn×n, a
ellipsoid is the (n−1)-dimensional subset of Rn described by
the set

E(c, E) := {x ∈ Rn : ‖E(x− c)‖2 = 1} (10)

where c is the center of the ellipsoid and its i-th principal
semi-axis is the vector λ−1

i (E)vi, with vi the unit eigenvector
corresponding to the eigenvalue λi(E). The closed interior
(respectively exterior) of the ellipsoid, denoted by E≤(c, E)
(respectively E≥(c, E)), is obtained from (10) by substituting
the = with ≤ (respectively ≥).

Definition 1: Two ellipsoids E≤(c1, E1) and E≤(c2, E2) are
weakly disjoint if E≤(c1, E1) ∩ E≤(c2, E2) = ∅.
Explicit algebraic conditions to test weak disjointness of two
ellipsoids can be found in [25, Thm. 6] for n = 2 and in [26,
Thm. 8] for n = 3.

Definition 2: Two ellipsoids E≤(c1, E1) and E≤(c2, E2) are
strongly disjoint if (λmin(E1))−1+(λmin(E2))−1 < ‖c1−c2‖.
Strong disjointness means that the two smallest spherical balls
containing the ellipsoids are disjoint. Strong disjointness is
more conservative than weak disjointness.

5) Cone: For a positive definite matrix E ∈ Rn×n, a cone
is the (n− 1)-dimensional subset of Rn described by the set

C(c,v,θ,E) :={x ∈ Rn: cos(θ)‖Ev‖‖E(x−c)‖=v>E2(x−c)}
(11)

where c ∈ Rn is its vertex, v ∈ Rn\{0} is its axis and
2θ ∈ [0, π] is its aperture. The cone defined here is sometimes
referred to as nappe or half-cone, as opposed to the double
cone. The closed interior (respectively, exterior) of the cone,
denoted by C≤(c, v, θ, E) (respectively C≥(c, v, θ, E)), is ob-
tained from (11) by substituting the = with ≤ (respectively
≥). A normal vector to the cone surface C(c, v, θ, E) at x is

n(x) := Eπθ(Ev)E(x− c), (12)

and can be obtained after squaring in (11) and taking the
gradient. The next fact will be used.

Lemma 1: Let v1, v2 ∈ Sn−1 such that v>1 v2 = cos θ for
some θ ∈ (0, π]. Let ψ1, ψ2 ∈ [0, π/2] with ψ1 +ψ2 < θ. Then
for each c ∈ Rn and E ∈ Rn×n positive definite,

C≤(c, E−1v1, ψ1, E) ∩ C≤(c, E−1v2, ψ2, E) = {c}.

C. Hybrid Systems Framework

We consider hybrid dynamical systems of the class [24],
described through constrained differential and difference in-
clusions for state X ∈ Rn:{

Ẋ ∈ F(X), X ∈ F ,
X+ ∈ J(X), X ∈ J ,

(13)

where the flow map F : Rn ⇒ Rn governs the continuous
evolution, the flow set F ⊆ Rn dictates where continuous
evolution can occur. The jump map J : Rn ⇒ Rn governs the
discrete evolution, and the jump set J ⊆ Rn defines where
discrete evolution can occur. The hybrid system (13) is defined
by its data and denoted H = (F ,F,J ,J).

A subset T ⊂ R≥×N is a hybrid time domain if it is a union
of a finite or infinite sequence of intervals [tj , tj+1]×{j}, with
the last interval (if existent) possibly of the form [tj , T ) with
T finite or T = +∞. The ordering of points on each hybrid
time domain is such that (t, j) � (t′, j′) if t < t′, or t = t′

and j ≤ j′. A hybrid solution is defined in [24, Def. 2.6].
A hybrid solution φ is maximal if it cannot be extended and
complete if its domain domφ (which is a hybrid time domain)
is unbounded.

III. PROBLEM FORMULATION

We consider a point mass vehicle moving in the n-
dimensional Euclidean space containing I ∈ N obstacles
denoted by O1, · · · ,OI . For each

i ∈ {1, · · · , I} =: I,

the obstacle Oi has an ellipsoidal shape such that Oi :=
E≤(ci, Ei), for some center ci ∈ Rn and some positive definite
matrix Ei ∈ Rn×n defining the orientation and the shape of
the obstacle. The free workspace (obstacle-free region) is then
defined by the closed set

W :=
⋂
i′∈I
E≥(ci′ , Ei′). (14)

The vehicle is moving according to the dynamics

ẋ = u, (15)

where x ∈ Rn is the state and u ∈ Rn is the control input. The
vehicle is required to stabilize its position to a target position
while avoiding the obstacles. Without loss of generality we
consider the target position to be x = 0 (the origin).

Assumption 1: n ≥ 2.
We consider n ≥ 2 since for n = 1 (i.e., the state space is a
line), global asymptotic stabilization with obstacle avoidance
is infeasible.

Assumption 2: For all i ∈ I, ‖Eici‖ > 1.
Assumption 2 requires that the target position x = 0 is not
inside any of the obstacle regions Oi, otherwise the considered
navigation problem would be infeasible.

Assumption 3: {Oi}i∈I are weakly pairwise disjoint.
In Assumption 3 we impose that there is no intersection
region between the obstacles. Otherwise, the union of the two
intersecting obstacles forms another region which might have
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P(x,E2
i (x− ci))

E2
i (x− ci)

κ(x, i,m)

pi−1

0

x

Oi

ci

E(ci, εEi)pi1

Fig. 1. Illustration of the projection-based avoidance controller. The vehicle is
attracted to the auxiliary point pim while sliding on a neighbouring ellipsoid.

a different shape than an ellipsoid. Our objectives in designing
a control strategy are:

i) the obstacle-free region W in (14) is forward invariant,
ii) the target x = 0 is globally asymptotically stable.

Objective i) guarantees that all solutions of the closed-loop
system are safely avoiding the obstacles by remaining in
the obstacle-free region W for all times while objective ii)
corresponds to global stabilization of the target.

IV. HYBRID CONTROL FOR OBSTACLE AVOIDANCE

In this section, we propose a hybrid controller that switches
suitably between a stabilizing and an avoidance controller. Let
us define a discrete variable

m ∈ {−1, 0, 1} =: M.

The value m = 0 corresponds to the activation of the
stabilizing controller and the values m = −1, m = 1
correspond to the activation of one of the two configurations
of the avoidance controller. The avoidance controller depends
also on the current obstacle Oi, as detailed in the next sections.

A. Control Input

In this section we propose the feedback law for the control
input u in (15). u depends on the state x ∈ Rn, the obstacle
i ∈ I and the control mode m ∈M as

u = κ(x, i,m) (16)

:=

{
−k0x, m = 0,

−kmE−1
i π⊥(Ei(x− ci))Ei(x− pim), m ∈ {−1, 1},

where k−1, k0, k1 > 0 are the control gains for each control
mode m ∈M and the points pim ∈ Rn, m ∈ {−1, 1} and i ∈ I,
are design parameters defined below. In the stabilization mode
(m = 0), the control input in (16) steers x towards the origin
under a state feedback. In the avoidance mode depicted in
Fig. 1, the control input minimizes the distance to the auxiliary
attractive point pim while maintaining a constant distance to the
obstacle Oi. Indeed, the time derivative of ‖Ei(x−ci)‖2 along
solutions of ẋ = κ(x, i,m) for m ∈ {−1, 1} and i ∈ I, reads

1
2
d
dt‖Ei(x− ci)‖

2 = (x− ci)>E2
i κ(x, i,m)

= −km(x− ci)>Eiπ⊥(Ei(x− ci))Ei(x− pim) = 0
(17)

by (4b). Then, if we activate the avoidance mode sufficiently
away from the obstacle, the avoidance feedback u = κ(x, i,m)
guarantees that the vehicle does not hit the obstacle. Whereas
the logic variable i corresponds to obstacle Oi, the logic

variable m is selected according to a hybrid mechanism that
exploits a suitable construction of the flow and jump sets as
detailed in Section IV-B.

In order to clear the obstacle while approaching the desired
target position at the origin, we select the points pi1 and pi−1

in the region between the obstacle and the origin, see Fig. 1.
The motivation is that the avoidance task is equivalent (up
to a linear transformation) to a stabilization problem on the
unit sphere Sn−1. Therefore, as pointed out for instance in
[27], global asymptotic stabilization cannot be accomplished
by only one continuous time-invariant controller, but it can be
by a hybrid feedback with at least two configurations. For this
reason, we consider two avoidance modes with m = −1 and
m = 1 and, hence, the points pi1 and pi−1 must be distinct.
More precisely, for θi > 0 (which will be further bounded in
Lemma 4), the points pi1 and pi−1 are selected as

pi1 ∈ C(ci,−ci, θi, Ei)\{ci}, (18a)

pi−1 := −E−1
i ρ(Eici)Eip

i
1. (18b)

By (18), pi−1 opposes pi1 diametrically with respect to the cone
axis (for Ei = In, pi−1 is obtained by an orthogonal reflection)
and also belongs to C(ci,−ci, θi, Ei)\{ci} as shown in the
next lemma.

Lemma 2: pi−1 ∈ C(ci,−ci, θi, Ei)\{ci}.
Note that the results of the paper hold for any selection of the
point pi1 as long as it lies on the surface of the cone as in
(18a). An explicit guided choice for those points is given in
Section VI for the 2D and 3D cases. Finally, further motivation
about the choice of the avoidance controller mode in (16) is
detailed in Section IV-B and, in particular, in Lemma 3, which
is important for the construction of flow and jump sets.

B. Geometric Construction of the Flow and Jump sets

In this section we construct explicitly the flow and jump sets
where the stabilization and avoidance controllers are activated.

1) Safety Helmets: Our proposed construction of flow and
jump sets is based on regions that have the shape of a helmet,
whose construction is now motivated. In the stabilization mode
m = 0, the closed-loop system should not flow when: 1) x is
close enough to any of the obstacle regions E≤(ci, Ei) and 2)
the vector field −k0x points inside E≤(ci, Ei). Otherwise, the
vehicle ends up hitting the obstacle i. Indeed, by computing
the time derivative of ‖Ei(x − ci)‖2 along solutions of the
vector field −k0x, we obtain

1
2
d
dt‖Ei(x− ci)‖

2 = −k0x
>E2

i (x− ci)
= k0c

>
i E

2
i ci/4− k0(x− ci/2)>E2

i (x− ci/2)

= k0‖Eic̄i‖2
(
1− ‖Ēi(x− c̄i)‖2

) (19)

where c̄i and Ēi are defined as

c̄i := ci/2, Ēi := 2Ei/(‖Eici‖). (20)

(19) implies that the distance function ‖Ei(x−ci)‖2 decreases
for all x in the closed set E≥(c̄i, Ēi). Consider now Fig. 2 for
a sketch of the next sets and for obstacle i, define the helmet-
shaped set

H∗i := E(ci, Ei) ∩ E≥(c̄i, Ēi). (21)
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0

ci

E(c̄i, νĒi) E(ci, εEi)

E(ci, Ei)

Hi(ε, ν)

H∗iE(c̄i, Ēi)

Fig. 2. The helmetH∗i in (21) (red) corresponds to all boundary points where
the stabilization vector field is pointing inside the obstacle (grey). The safety
helmet Hi(ε, ν) in (22) (green) corresponds to an dilated version of H∗i .

H∗i is the set of all points that lie on the boundary of the
obstacle Oi and generate a vector field pointing towards the
obstacle. Then, for obstacle i, we define the safety helmet as:

Hi(ε, ν) := E≤(ci, εEi) ∩ E≥(ci, Ei) ∩ E≥(c̄i, νĒi) (22)

for some parameters ε, ν > 0. ε and ν determine the thickness
of the safety helmet by tuning the dilation/shrinking of the
ellipsoids E(ci, Ei) and E(c̄i, Ēi), thereby generating a dilated
version of H∗i . The safety helmet Hi(ε, ν) constitutes the main
ingredient of our following constructions.

2) Stabilization Mode m = 0: Consider from now on
Fig. 3 for a visualization of the sets we are introducing in
our construction. In stabilization mode (m = 0), we create
around each obstacle Oi a safety helmet Hi(εi, νi) which
adds a safety layer to the given obstacle. The controller mode
must be switched to the avoidance mode whenever the vehicle
reaches this safety helmet. Specifically, we define for each
i ∈ I, a jump set

J i0 := Hi(εi, νi) ∩W, (23)

where εi ∈ (0, 1) (dilating E≤(ci, Ei) to E≤(ci, εiEi)), and
νi ∈ (1,∞) (shrinking E≥(c̄i, Ēi) to E≥(c̄i, νiĒi)) and W
is the free workspace defined in (14). We emphasize that we
consider the intersection with W in (23) for convenience, but
later we tune the parameters such that Hi(εi, νi) ⊂ W , which
implies J i0 will equal toHi(εi, νi). The selection of J i0 in (23)
leads naturally to the following flow set of the stabilization
mode (corresponding to the closed complement of J i0 in the
free workspace)

F i0 :=
(
E≥(ci, εiEi) ∪ E≤(c̄i, νiĒi)

)
∩W. (24)

Finally, from (23) and (24), we take all the obstacles into
account and define the flow and jump sets for the stabilization
mode m = 0 as

F0 :=
(⋂
i∈I
F i0
)
× I, J0 :=

(⋃
i∈I
J i0
)
× I. (25)

Indeed, the stabilization mode can be selected when the state x
belongs to the intersection of the sets F i0 (and for any obstacle
index i ∈ I), and a jump to the avoidance mode can occur
when the state x belongs to the union of the sets J i0 (and
for any obstacle index i ∈ I). In other words, if during the
stabilization mode the vehicle reaches any one of the safety
helmets, then the controller jumps to one of the avoidance
modes with m equal to −1 or 1.

F i
0 J i

0

F i
1

J i
−1

J i
1

c̄i

pi−1

pi1

0

F i
−1 Oj

Oi

Fig. 3. 2D illustration of flow and jump sets considered in Sections IV-
V corresponding to obstacle Oi (in the presence of a second obstacle Oj ).
The stabilization-mode jump set J i

0 (hatched red) is constructed by using the
helmet Hi(εi, νi), while the corresponding flow set Fi

0 is the complement of
J i
0 in the free workspace. For the avoidance mode we select pi1 and pi−1 to

lie on the cone C(ci,−ci, θi, Ei) (solid brown line). The avoidance flow set
Fi

m, with m ∈ {−1, 1}, corresponds to the helmet Hi(δi, µi) deprived of
the interior of the the cone region defined by C(ci, ci − pim, ψi, Ei) (solid
purple line for m = −1 and solid orange line for m = 1). The corresponding
jump set J i

m is the complement of Fi
m in the free workspace.

3) Avoidance Mode m ∈ {−1, 1}: We consider now the
construction of flow and jump sets for the avoidance modes
m ∈ {−1, 1} and the specific obstacle i ∈ I with the aid of
Fig. 3. To highlight their motivation, we first define such flow
sets and state later the corresponding jump sets (see (28)). For
each i ∈ I and m ∈ {−1, 1}, the avoidance flow set is

F im := Hi(δi, µi) ∩ C≥(ci, ci − pim, ψi, Ei) ∩W, (26)

where δi ∈ (0, εi) (dilating E≤(ci, εiEi) to E≤(ci, δiEi)),
µi ∈ (νi,∞) (shrinking E≥(c̄i, νiĒi) to E≥(c̄i, µiĒi)), and
ψi ∈ (0, π/2]. In the two configurations m ∈ {−1, 1} of the
avoidance of obstacle i ∈ I, we want the vehicle to slide on the
safety helmet Hi(δi, µi) while maintaining a constant distance
to the obstacle. By selecting δi ∈ (0, εi) and µi ∈ (νi,∞), one
obtains a dilated version of Hi(εi, νi) used in J i0 and, thus,
creates a hysteresis region useful to prevent infinitely many
consecutive jumps (Zeno behavior). However, the avoidance
vector field κ(x, i,m) in (16) has some undesirable equilibria,
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TABLE I
SELECTION OF THE DESIGN PARAMETERS OF (30), WITH i ∈ I.

Parameter Selection Parameter Selection
δi (δi, 1) εi (δi, 1)
µi (1, µ̄i(δi)) νi (1, µi)
θi (0, θ̄i(δi, µi)) ψ̄i (0, θi)
k0, k1, k−1 (0,+∞) ψi (0, ψ̄i)

pi1, pi−1 as in (18)

which we need to rule out from the flow sets F i1 and F i−1.
These are characterized in the next lemma.

Lemma 3: Let c ∈ Rn, p ∈ Rn\{c} and E ∈ Rn×n positive
definite. For each x ∈ Rn\{c}, π⊥(E(x− c))E(x− p) = 0 if
and only if x ∈ L(c, p− c).
For each m ∈ {−1, 1}, i ∈ I, we want solutions to eventually
leave the set F im of the avoidance mode, so it is necessary to
select point pim and flow set F im such that L(ci, p

i
m − ci) ∩

F im = ∅ based on Lemma 3, otherwise solutions could stay
in avoidance mode indefinitely. This motivates the intersection
with the cone in (26), and the next lemma.

Lemma 4: For each i ∈ I, define the quantities

δi := ‖Eici‖−
1
2 (27a)

µ̄i(δi) :=
(
1− 4δ2

i (1− δ
2
i /δ

2
i )
)− 1

2 (27b)

θ̄i(δi, µi) := arccos

(
δ2
i

δ2
i

+
1

4δ2
i

(
1− 1

µ2
i

))
(27c)

and select the parameters δi, µi, θi, ψi as in Table I so that
µ̄i(δi) and θ̄i(δi, µi) are well-defined. Then, for each m ∈
{−1, 1}, L(ci, p

i
m − ci) ∩ F im = ∅.

From the flow set in (26), we suitably define the jump set
for the avoidance mode, of an obstacle i ∈ I with configuration
m ∈ {−1, 1}, to be the closed complement of F im in the free
workspace. For i ∈ I and m ∈ {−1, 1},

J im :=
(
E≥(ci, δiEi) ∪ E≤(c̄i, µiĒi) (28)

∪ C≤(ci, ci−pim, ψi, Ei)
)
∩W.

Finally, the avoidance mode has overall flow and jump sets

F1 :=
⋃
i∈I

(
F i1×{i}

)
, J1 :=

⋃
i∈I

(
J i1×{i}

)
, (29a)

F−1 :=
⋃
i∈I

(
F i−1×{i}

)
, J−1 :=

⋃
i∈I

(
J i−1×{i}

)
, (29b)

where F im and J im (m ∈ {−1, 1}) are defined in (26) and (28).
Indeed, each obstacle i gives rise, for the avoidance mode, to
a specific flow (jump) set with two configurations F i1 and F i−1

(J i1 and J i−1), as we motivated in this section.

C. Hybrid Mode Selection
In this section we define the hybrid switching strategy that

permits a Zeno-free transition between the different control
modes. The hybrid selection of the logical variables i ∈ I and
m ∈M is implemented in the hybrid system

ẋ = κ(x, i,m)︷̇︷
i = 0

ṁ = 0

(x, i,m) ∈ F (30a)

{
x+ = x[
i+

m+

]
∈ L(x, i,m)

(x, i,m) ∈ J (30b)

where κ(x, i,m) is the control input as defined in (16) and
the flow and jump sets are given by

F :=
⋃
m∈M

(Fm×{m}) , J :=
⋃
m∈M

(Jm×{m}) . (30c)

with Fm and Jm being defined in (25) for m = 0 and in
(29a)-(29b) for m ∈ {−1, 1}. We define now the (set-valued)
jump map L in (30b). To this end, for i ∈ I and m ∈ {−1, 1},
define the sets Cim as

Cim := C≥(ci, ci − pim, ψ̄i, Ei) (30d)

which corresponds to the region outside the cone with vertex
at ci, axis ci − pim and aperture 2ψ̄i, where ψ̄i is a design
parameter selected below. The jump map L for m ∈ {−1, 1}
is then defined as

L(x, i,−1) := L(x, i, 1) := {[ i0 ]}, (30e)

i.e., when jumping to stabilization mode, the obstacle index i
is not used in the control law κ in (16) and consequently is
not updated. The jump map L for m = 0 is

L(x, i, 0) :=
{[

i′

m′

]
: x ∈ J i

′

0 ,m
′ ∈M(x, i′)

}
(30f)

where M is defined, based on (30d), as

M(x, i) :=


{−1} x ∈ Ci−1\Ci1
{1} x ∈ Ci1\Ci−1

{−1, 1} x ∈ Ci−1 ∩ Ci1.
(30g)

L(·, ·, 0) captures that when jumping from the stabilization
mode m = 0, the suitable avoidance mode of obstacle i′ ∈
I with configuration m′ ∈ {−1, 1} is selected based on the
position x of the vehicle (m′, in particular, is selected based on
whether x is within the cone region Ci′−1 or Ci′1 ). A necessary
condition to implement our hybrid controller is that the jump
map is nonempty, for which we have the next lemma.

Lemma 5: Select the parameters ψ̄i and ψi as in Table I.
Then, the set L(x, i,m) is nonempty for all (x, i,m) ∈ J .
For compact notation, we write flow and jump maps as

(x, i,m) 7→ F(x, i,m) := (κ(x, i,m), 0, 0) (30h)
(x, i,m) 7→ J(x, i,m) := (x,L(x, i,m)), (30i)

and the overall state of the hybrid system as

ξ := (x, i,m) ∈ Rn × I×M. (30j)

This completes the description of the hybrid controller in (30).
The selections we made in this section for the parameters
of (30) are summarized in Table I.

V. MAIN RESULT

In this section, we show that the hybrid controller achieves
forward invariance (Section V-A) and global asymptotic sta-
bility (Section V-B) (related to the objectives in Section III),
as well as some complementary properties (Section V-C).
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The mild regularity conditions satisfied by the hybrid sys-
tem (30), as in the next lemma, allows us to invoke useful
results on hybrid systems in the proof of our results.

Lemma 6: The hybrid system with data (F ,F,J ,J)
satisfies the hybrid basic conditions in [24, Assumption 6.5].

A. Forward Invariance

In this section, we show that all generated solutions are
complete and safe. Since the state x must evolve always within
the free workspace W in (14) regardless of the logic variables
i and m, we seek forward invariance of the set K defined as:

K :=
⋂
i′∈I
E≥(ci′ , Ei′)× I×M =W × I×M. (31)

The next lemma shows that the union of flow and jump
sets covers exactly the obstacle-free state space K and that
solutions cannot leave K through jumps.

Lemma 7: F ∪ J = K and J(J ) ⊂ K.
Forward invariance of K is proven in the next theorem.

Theorem 1: Under Assumptions 1-3, consider the hybrid
system (30) with parameters selected as in Table I. Assume
also that the controller parameters δi are tuned so that
the ellipsoids {E≤(ci, δiEi)}i∈I are weakly pairwise disjoint.
Then, the obstacle-free set K in (31) is forward invariant.
The existence of tuning parameters δ1, . . . , δI satisfying the
weak pairwise disjointness of the sets {E≤(ci, δiEi)}i∈I is
guaranteed by Assumption 3, which implies that weak pairwise
disjointness holds when δi = 1 for all i ∈ I. Hence, by a
continuity argument, we can always tune each δi sufficiently
close to 1 in order to guarantee the weak pairwise disjointness
of the dilated obstacles {E≤(ci, δiEi)}i∈I. Note that algebraic
tests of weak pairwise disjointness (provided in [25, Thm. 6]
for n = 2 and in [26, Thm. 8] for n = 3) can be used for this
tuning purpose.

B. Global Asymptotic Stability

In this section we show that from all initial conditions in the
free workspace, all solutions converge asymptotically to the
origin. To this end, we define the notion of sufficient disjoint-
ness of a set of ellipsoids, which is slightly stronger than weak
disjointness but less conservative than strong disjointness, and
guarantees that each obstacle is avoided at most one time. The
motivation behind the assumption of sufficient disjointness is
that the ellipsoids considered here can be arbitrarily large and
flat, which might lead to long detours during the avoidance
mode that take the vehicle far away from the origin. In this
case, specific configurations of the obstacles exist such that
from a set of initial conditions, the vehicle does not converge
to the origin although it remains safe. Similarly, in the Bug 0
planning algorithm [28], termination (i.e., convergence to the
target) is not always guaranteed since the algorithm is designed
to “walk toward the target whenever you can” [28]. Our
hybrid feedback shares a similar philosophy since the vehicle
jumps from avoidance to stabilization mode whenever the
stabilization controller generates a vector field not pointing
towards the obstacle (see (19)). To proceed, the next lemma
characterizes the intersection of two ellipsoids of interest.

Oi′
Oi

R∗i′R∗i

weakly disjoint sufficiently disjoint strongly disjoint

Fig. 4. Different types of disjointness introduced in the paper with set R∗i
(orange, see (36)). For global attractivity, sufficient disjointness is asked.

Lemma 8: Consider an arbitrary i ∈ I. For δi, δ 7→ µ̄i(δ)
and (δ, µ) 7→ θ̄i(δ, µ) defined in (27), let δ ∈ [δi, 1], µ ∈
[1, µ̄i(δ)] and ϑi(δ, µ) be such that

cos(ϑi(δ, µ)) :=
1− cos(θ̄i(δ, µ))δ2

i√
(1 + µ−2)/2− δ−2δ4

i

. (32)

The expression in (32) is well-defined and positive, and

E(ci, δEi) ∩ E(c̄i, µĒi) ⊂ C(0, ci, ϑi(δ, µ), Ei). (33)

Let us consider for each obstacle i ∈ I the sphere S(0, r̄i) with
center at the origin and radius r̄i defined by the next quadratic
optimization problem

r̄2
i := min ‖x‖2 subject to x ∈ H∗i (34)

where H∗i is the helmet defined in (21). The radius r̄i defines
the minimum distance from the helmet H∗i to the origin. Let
x be a point belonging to the intersection of the two ellipsoids
E(ci, Ei) and E(c̄i, Ēi). Taking δ and µ equal to 1 in Lemma 8,
one obtains x ∈ C(0, ci, ϑ̄i, Ei) with

cos(ϑ̄i) := cos(ϑi(1, 1)) =
√

1− ‖Eici‖−2, (35)

from (32), (27c) and (27a). Now, let us define the set

R∗i := C(0, ci, ϑ̄i, Ei) ∩ S≥(0, r̄i) ∩ E≥(ci, Ei) ∩ E≤(c̄i, Ēi),
(36)

whose geometry is sketched in Fig. 4. Intuitively speaking, it
is a subset of all points on the cone C(0, ci, ϑ̄i, Ei) that have a
distance to the origin greater than the distance r̄i of the helmet
H∗i to the origin. The idea is that the vehicle should not to
start avoiding another obstacle while it is still in R∗i , otherwise
there is no guarantee that the number of times the vehicle
avoids the obstacles is bounded and that global attractivity
holds. This motivates the next definition.

Definition 3: The ellipsoids {E(ci, Ei)}i∈I are sufficiently
pairwise disjoint if they are weakly pairwise disjoint and

∀i, i′ ∈ I with i 6= i′, R∗i ∩ E≤(ci′ , Ei′) = ∅. (37)

Now, let us introduce the ingredients for a dilated version
of R∗i as in (39) below and refer to Fig. 5. First, consider
the escape annulus cone where solutions escape from the
avoidance mode by applying the stabilization vector field.
This region lies between the two cones C(0, ci, ϑi(1, µi), Ei)
and C(0, ci, ϑi(δi, µi), Ei) which are related, according to
Lemma 8, to the intersections E(ci, Ei) ∩ E(c̄i, µiĒi) and
E(ci, δiEi) ∩ E(c̄i, µiĒi), respectively. Second, consider for
each obstacle i ∈ I the ball S≥(0, ri) where the radius ri is
defined by the quadratic optimization problem

r2
i := min ‖x‖2 subject to x ∈ Hi(δi, µi). (38)
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Ri(δi, µi)

S(0, ri)
E(c̄i, Ēi)

Hi(δi, µi)

C(0, ci, ϑi(1, µi), Ei)
C(0, ci, ϑi(δi, µi), Ei)

Fig. 5. Safety helmetHi(δi, µi) (green) and the corresponding escape region
Ri(δi, µi) (orange). The region Ri(δi, µi) must not intersect with any other
jump set J i′

0 , i′ 6= i, to avoid starting another avoidance while the distance
to target has not yet decreased.

Note the following on (38). 1) The safety helmet Hi(δi, µi) is
compact and, hence, the solution to (38) exists. 2) For each i ∈
I, ri > 0. Indeed, for each i ∈ I, ‖δiEici‖ = δiδ

−2
i > δiδ

−1
i >

1 by Assumption 2 and the selection of δi in Table I, so that
0 /∈ E≤(ci, δiEi) and in turn 0 /∈ Hi(δi, µi) (Hi(δi, µi) ⊂
E≤(ci, δiEi)). Hence, since Hi(δi, µi) is compact there exists
ri > 0 such that ‖x‖ ≥ ri for all x ∈ Hi(δi, µi). Finally, we
can define the considered dilated version of R∗i as

Ri(δi, µi) := S≥(0, ri) ∩ E≥(ci, δiEi) ∩ E≤(c̄i, Ēi)

∩ C≥(0, ci, ϑi(1, µi), Ei) ∩ C≤(0, ci, ϑi(δi, µi), Ei). (39)

Lemma 9: Assume that the obstacles {Oi}i∈I are suffi-
ciently pairwise disjoint. Then, for each i ∈ I, there exist
δ∗i , µ

∗
i such that for all δi ∈ (δ∗i , 1) and µi ∈ (1, µ∗i ), we have

∀i′, i′′ ∈ I, i′ 6= i′′, Ri′(δi′ , µi′)∩E≤(ci′′ , δi′′Ei′′) = ∅. (40)

Property (40) of Lemma 9 will be used to show global attrac-
tivity. Intuitively, we require that after avoiding an obstacle, the
distance ‖x‖ to the target decreases before the vehicle reaches
the proximity of another obstacle. Although the bounds δ∗i
and µ∗i are not defined explicitly for generic ellipsoids, the
parameters δi and µi can be tuned offline. Now, we are ready
to state our main result for this section.

Theorem 2: Consider the hybrid system (30) under the same
assumptions as Theorem 1. Assume also that the obstacles
{Oi}i∈I are sufficiently pairwise disjoint, and δi and µi are
tuned such that (40) holds. Then, the set A := {0} × I ×M
is globally asymptotically stable for (30) and the number of
jumps is bounded.

For spherical obstacles, we show next that the extra tuning
of the parameters to satisfy (40) is not needed.

Theorem 3: (Spherical obstacles) Let Ei = λiIn for all
i ∈ I. Under the same assumptions as Theorem 1, the set
A := {0} × I ×M is globally asymptotically stable for (30)
and the number of jumps is bounded.

C. Complementary Properties

In this section we present four relevant complementary
properties of the proposed hybrid law for obstacle avoidance.

1) Bounded Control: First, we can show that x remains al-
ways in a given ball. Indeed, let S≤(0, rb), with rb > 0, be the
smallest ball containing all the dilated ellipsoids E(ci, δiEi)
(which must exist since these ellipsoids are compact). Dur-
ing stabilization mode the distance ‖x‖ is decreasing and
during avoidance mode the vehicle stays within the dilated
ellipsoids E(ci, δiEi). Then, it is guaranteed that from all
x(0, 0) ∈ S≤(0, rb), x(t, j) ∈ S≤(0, rb) for all (t, j) ∈ domx.
Moreover, since the projection matrix π⊥(Ei(x − ci)) has
eigenvalues in 0 and 1, it follows that we can upper bound
the control input in (16) by ‖u‖ ≤ kα(rb + p) where
k = max{k1, k0, k−1}, α = maxi∈I(λmax(Ei)/λmin(Ei))
and p = maxi∈I ‖pi1‖. The control gains can then be tuned
to satisfy the inherent practical saturation of the actuators.

2) Semiglobal Preservation: The second property is the
so-called semiglobal preservation property [18, §II]. This
property is desirable when the original controller parameters
are optimally tuned and the controller modifications imposed
by the presence of the obstacles should be as minimal as
possible. Such a property is also accounted for in the quadratic
programming formulation of [29, III.A.]. We summarize this
property for our case in the next proposition.

Proposition 1: Be ε ∈ (0, 1) andWε :=
⋂
i′∈I E≥(ci′ , εEi′).

There exist controller parameters such that the control law
matches, inWε, the stabilization feedback u = −k0x (k0 > 0)
used in the absence of obstacles.

3) Non-point Mass Vehicles: There is no loss of generality
in considering a point-mass vehicle in this work. Let us rather
consider that the vehicle has some volume, e.g., bounded by
S≤(x, rv). Then, for the navigation scenario to be feasible, the
radius rv of the vehicle needs to be smaller than the smallest
distance between the obstacles, i.e., for all i, i′ ∈ I with i 6=
i′, rv < dist(E≤(ci, Ei), E≤(ci′ , Ei′)). For the safety of the
vehicle during the stabilization mode, selecting the parameter
εi as εi < (1 + λmax(Ei)rv)

−1 is sufficient (in addition to
Table I) to guarantee that the vehicle starts the avoidance mode
away from the obstacle. Indeed, under this condition, it is
easy to show that for all x ∈ E≥(ci, εiEi) (i.e., the vehicle
center is outside the dilated ellipsoid E(ci, εiEi)) and for all
x′ ∈ S≤(x, rv), one has x′ ∈ E≥(ci, Ei), which guarantees
safety of the whole volume of the vehicle.

4) Robustness: The constructed hybrid controller guaran-
tees some level of robustness to perturbations (e.g., in the
form of measurement noise). Hysteresis switching is one of
the typical ways to ensure robustness to measurement noise,
and hysteresis switching is indeed behind the designed hybrid
feedback, in particular the hysteresis regions of flow and jump
sets in Section IV-B and the logical selections of the jump sets
in Section IV-C. More generally, fundamental results in [24,
Chap. 7] guarantee structurally that global asymptotic stability
of A in Theorem 2 is also uniform (by [24, Thm. 7.12]) and
robust (by [24, Thm. 7.21]) with respect to perturbations since
A is a compact set and the hybrid basic conditions are satisfied
as in Lemma 6.

VI. SIMULATIONS

We illustrate the effectiveness of the proposed hybrid control
strategy through two simulation scenarios. The first scenario
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Fig. 6. Plot (at time t = 0.5 and t = 30 seconds) of the 2-dimensional
trajectory of the vehicle starting at different initial conditions.

considers 9 obstacles in 2D (see Fig. 6) while the second one
considers 5 obstacles in 3D (see Fig. 7). For both cases, Table I
provides a suitable order to choose the parameters for each
i ∈ I, as follows.
1) For δi in (27a), select δi and εi so that δi < δi < εi < 1;
2) For δi and µ̄i(δi) in (27b), select νi and µi so that 1 <

νi < µi < µ̄i(δi) (possibly iterating steps 1) and 2) so that
δi and µi satisfy (40));

3) For δi, µi and θ̄i(δi, µi) in (27c), select ψi, ψ̄i and θi so
that 0 < ψi < ψ̄i < θi < θ̄i(δi, µi).

Any parameter selection according to this guideline guarantees
our results, and can be carried out keeping in mind the physical
interpretation illustrated in Section IV-B for these parameters.
The gains are k0 = k1 = k−1 = 1/4 and determine the speed
of convergence of the scheme. By (18a), the point pi1 can be
selected arbitrarily as long as it is on C(ci,−ci, θi, Ei)\{ci}.
A suitable choice is given by

pi1 = π⊥(E−1
i R(θi)Eici)ci (41)

where R(θi) is the standard 2× 2 rotation matrix with angle
θi or the standard 3× 3 axis-angle rotation matrix with angle
θi and an arbitrary vector of S2 as axis. The idea behind (41)
is to project ci on the plane orthogonal to a rotated version of
ci, in order to obtain the point lying on the cone and closest to
the origin. Having all points pim close enough to the origin is
an effective way so that k0, k1, k−1 can take the same values
and yield comparable speeds for avoidance and stabilization,
independently of the obstacles.

Fig. 6 (Fig. 7, respectively) shows that the solution gen-
erated by the closed loop hybrid system avoids the 2D
obstacles (3D obstacles, respectively) and Fig. 8 shows the
convergence of solutions to the origin. Complete simulation
videos for the 2D and 3D cases can be found at https:
//youtu.be/CnXJlhzlzd8, https://youtu.be/4mzTXPR6D9Y.

Finally, we note that for the very obstacle configuration of
the 2D scenario, the state-of-the-art approach of navigation
functions [3], [21] cannot be applied since the condition [21,
Thm. 3, Eq. (23)] is violated for all obstacles except obstacle
O5, where [21, Eq. (23)] intuitively corresponds to the fact
that obstacles are not too flat and not too close to the target
position. ([21, Eq. (23)] is violated for all obstacles of the 3D
scenario.) Moreover, navigation function approaches require
tuning a parameter sufficiently large (k in [21, Eq. (17) and
Remark 5]), which may conflict with actuator limitations.
Instead, our approach provides a clear tuning guideline for

Fig. 7. Plot (at time t = 30 seconds) of the 3-dimensional trajectory of the
vehicle starting at different initial conditions.

Fig. 8. Plot of the position norm ‖x‖ versus time showing the convergence
of the solutions to the origin from the considered initial conditions.

all parameters (given in this section) and actuator limitations
can be taken into account (see Section V-C1).

VII. CONCLUSIONS

We proposed a novel hybrid feedback on Rn to solve
the obstacle avoidance problem for arbitrarily flat ellipsoidal
obstacles. Our control strategy ensures global asymptotic sta-
bilization to the target and safety (thus, successful navigation
from all initial conditions) while guaranteeing a Zeno-free
switching between the avoidance and stabilization modes.
Moreover, the control input remains bounded (in particular,
arbitrarily close to any obstacle) and matches semi-globally in
the free-state space the nominal feedback used in the absence
of obstacles.

Future work will be devoted to considering more com-
plex vehicle dynamics (e.g., under-actuated and second-order
dynamics) and more generic obstacle shapes (e.g., convex
obstacles). Furthermore, although our scheme considers static
obstacles to obtain formal guarantees for global asymptotic
stability and safety, extending this approach to deal with
unknown environments is an interesting research direction that
we aim at pursuing in the future.

APPENDIX

In the appendix, an equation number over an (in)equality in-
dicates which equation has been used to obtain the (in)equality.

1) Proof of Theorem 1: Define SH (K) as the set of
all maximal solutions φ to H with φ(0, 0) ∈ K. Each
φ ∈ SH (K) has range rgeφ ⊂ K = F ∪ J by Lemma 7
and the definition of hybrid solution [24, p. 124], so K is
forward pre-invariant [30, Def. 3.3]. The set K is in fact
forward invariant [30, Def. 3.3] if for each ξ ∈ K there exists

https://youtu.be/CnXJlhzlzd8
https://youtu.be/CnXJlhzlzd8
https://youtu.be/4mzTXPR6D9Y
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one solution and each φ ∈ SH (K) is complete, which we
show in the rest of the proof through [24, Prop. 6.10]. In the
rest of the proof, let

F∗0 :=
⋂
i∈I
F i0, J ∗0 :=

⋃
i∈I
J i0 . (42)

Lemma 10: Under the assumptions of Theorem 1, we have
for each i ∈ I and m ∈ {−1, 1}

J i0 = Hi(εi, νi), (43a)

F im = Hi(δi, µi) ∩ C≥(ci, ci − pim, ψi, Ei), (43b)

∂F∗0 \J ∗0 ⊂
⋃
i∈I

(
E(ci, Ei)\E≥(c̄i, Ēi)

)
, (43c)

∂F im\J im ⊂E(ci, Ei)\(E≤(c̄i, µiĒi)

∪ C≤(ci, ci−pim, ψi, Ei)).
(43d)

First, let us show that the viability condition

F(x, i,m) ∩TF (x, i,m) 6= ∅ (44)

holds for all (x, i,m) ∈ F\J . Let (x, i,m) ∈ F\J , which
implies by (30c) that (x, i) ∈ Fm\Jm for some m ∈ M,
and divide into the cases m = 0 and m ∈ {−1, 1}. When
m = 0, from (25) there exists i ∈ I such that x ∈ F∗0 \J ∗0 .
If x ∈ (F∗0 )◦\J ∗0 (hence, x is in the interior of F∗0 ), then
TF∗0 (x) = Rn, so that TF (ξ) = Rn × {0} × {0} and (44)
holds. If x ∈ ∂F∗0 \J ∗0 , which satisfies the set inclusion (43c),
the weak pairwise disjointness of {E(ci, Ei)}i∈I yields:

x ∈ E(ci, Ei), i ∈ I
TF (x, i, 0) = P≥(0, E2

i (x− ci))× {0} × {0}.
(45)

By (19) and x /∈ E≥(c̄i, Ēi) by (43c), we obtain

−k0x
>E2

i (x−ci) = k0‖Eic̄i‖2
(
1−‖Ēi(x− c̄i)‖2

)
>0, (46)

hence, κ(x, i, 0) ∈ P≥(0, E2
i (x− ci)) in (45), and (44) holds

for m = 0. When m ∈ {−1, 1}, we have i ∈ I and x ∈
∂F im\J im, which satisfies the set inclusion (43d), and so

TF (x, i,m) = P≥(0, E2
i (x− ci))× {0} × {0}. (47)

κ(x, i,m) ∈ P≥(0, E2
i (x− ci)) in (47) because

− km(x− pim)>Eiπ
⊥(Ei(x− ci))Ei(x− ci) = 0, (48)

so the viability condition (44) holds for m ∈ {−1, 1} as well.
Second, we apply [24, Prop. 6.10]. By it and (44), there

exists a nontrivial solution to H from each initial condition
in K. Finite escape times can only occur through flow. They
can neither occur for x in the set F i−1 ∪ F i1 (F i−1 and F i1
are bounded by their definitions in (26)) nor for x in the
set F∗0 because they would make x>x grow unbounded, and
this would contradict that d

dt (x
>x) ≤ 0 by the definition of

κ(x, i, 0) and by (30a). So, all maximal solutions do not have
finite escape times. By Lemma 7, J(J ) ⊂ K = F∪J . Hence,
by [24, Prop. 6.10], all maximal solutions are complete.

2) Proof of Theorem 2: We prove global asymptotic sta-
bility of A by [24, Def. 7.1]. For each i ∈ I, ‖δiEici‖ =
δiδ
−2
i > δiδ

−1
i > 1 by Assumption 2 and the selection of δi

in Table I, so 0 /∈ E≤(ci, δiEi). As a consequence, there exists
ε∗ > 0 such that the ball S≤(0, ε∗) does not intersect with any
of the dilated obstacles E≤(ci, δiEi). It can be shown easily
that for each ε ∈ [0, ε∗], the set S := S≤(0, ε) × I ×M is
forward invariant because S≤(0, ε) is disjoint from J ∗0 and
the component x of solutions evolves, after at most one jump,
with the stabilization mode ẋ = −k0x. Thanks to forward
invariance of S, stability of A for (30) is immediate from [24,
Def. 7.1]. Let us prove global attractivity of A.Before that, we
need the next intermediate result.

Lemma 11: There exists σ > 0 such that for all solutions
ξ = (x, i,m) with ξ(t, j) ∈ Fl×{l} for some l ∈ {−1, 1} and
(t, j) ∈ dom ξ, there exists (s, `) ∈ dom ξ such that (s, `) �
(t, j) and

‖x(s, `)‖ ≤ ‖x(t, j)‖ − σ. (49)

Now, for each solution ξ to (30), there exists a finite time
(T, J) � (0, 0) after which the solution does not evolve with
the avoidance controller any longer, i.e., m(t, j) = 0 for all
(t, j) � (T, J). Otherwise, there would exist a sequence of
hybrid times {(tk, jk)}∞k=0 such that ξ(tk, jk) ∈ Flk × {lk}
with lk ∈ {−1, 1} and this would imply by Lemma 11 that
‖x(tk+1, jk+1)‖ ≤ ‖x(tk, jk)‖ − σ for all k ∈ N. This is
indeed a contradiction as it would lead to ‖x(·, ·)‖ becoming
negative. Then, the solution ξ enters the stabilizing mode m =
0 after (T, J) and its flow map ẋ = −k0x guarantees in turn
global attractivity. Moreover, J is the maximum number of
jumps of the hybrid system since any extra jump will cause
m to take values in {−1, 1}, which is not possible after (T, J).

3) Proof of Theorem 3: To prove the theorem, it is sufficient
to show that for spherical obstacles the result of Lemma
11 holds. The proof of Lemma 11 under the assumptions
of Theorem 3 is the same up to (85). From (85) we have
x(t′, j + 1) = x(t′, j) ∈ P̃i(t

′,j)
m(t′,j),3(δ, ψ), i(t′, j + 1) =

i(t′, j) =: ι and m(t′, j) = 0. However, since x(t, j)
and x(t′, j + 1) both belong to E(cι, δEι), we can write
‖x(t, j) − cι‖2 = ‖x(t′, j + 1) − cι‖2 (since Eι = λιIn)
and hence

‖x(t, j)‖2 − 2c>ι x(t, j) = ‖x(t′, j + 1)‖2 − 2c>ι x(t′, j + 1).
(50)

x(t′, j + 1) ∈ P̃ι0,3(δ, ψ) ⊂ E(c̄ι, µιĒι) implies also that

c>ι x(t′, j + 1) = ‖x(t′, j + 1)‖2 + (1− µ−2
ι )‖c̄ι‖2,

thus, with (50), we have

c>ι x(t, j) =
‖x(t, j)‖2 + ‖x(t′, j + 1)‖2

2
+ (1− µ−2

ι )‖c̄ι‖2.

However, since x(t, j) ∈ E≥(c̄ι, µιĒι), we have

c>ι x(t, j) ≤ ‖x(t, j)‖2 + (1− µ−2
ι )‖c̄ι‖2,

and, hence, ‖x(t′, j + 1)‖2 ≤ ‖x(t, j)‖2 must hold. Also,
by (85), x(t′, j + 1) ∈ E(cι, δEι) ∩ E(c̄ι, µιĒι), and, by
Lemma 8, x(t′, j + 1) ∈ C(0, cι, ϑι(δ, µι), Eι). In view of
Step 2 of the proof of Lemma 11, both the sets E≤(c̄ι, Ēι)
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and C(0, cι, ϑι(δ, µι), Eι) are forward invariant under the
stabilization flow map for x, i.e., −k0x. Since the obstacles
are weakly disjoint, the solution then flows in E≤(c̄ι, Ēι) ∩
C(0, cι, ϑι(δ, µι), Eι) until it reaches the set E(cι, διEι) at
(t′′, j + 1). Since flow with stabilization mode decreases the
distance to the origin we have

‖x(t′′, j + 1)‖2 ≤ ‖x(t′, j + 1)‖2 ≤ ‖x(t, j)‖2

Also, the solution must flow after (t′′, j + 1) up to some
(s, j + 1) with the stabilization mode (since obstacles are
weakly disjoint) such that at least σ1 in (86) is traversed, i.e.,

‖x(s, j + 1)‖2 + σ1 ≤ ‖x(t′′, j + 1)‖2 ≤ ‖x(t, j)‖2.

This proves Lemma 11 and in turn Theorem 2.
4) Proof of Proposition 1: Note preliminarily that thanks to

ε < 1,Wε ⊂ W in (14). It is sufficient to show that the closed
loop system under the proposed hybrid feedback cannot flow
except with stabilization mode m = 0 when x ∈ Wε. Indeed, if
in Table I we further constrain δi as δi ∈ (max(δi, ε), 1) for all
i ∈ I, then F im ⊂ H(δi, µi) ⊂ E≤(ci, δiEi) ⊂ E≤(ci, εEi) and
E≤(ci, δiEi) 6= E≤(ci, εEi). Therefore, we have F im∩Wε = ∅
for all i ∈ I and m ∈ {−1, 1}. This implies that solutions
cannot flow with the avoidance mode when x belongs to Wε

and must then flow with the stabilization mode.
5) Proof of Lemma 1: Let xl ∈ C≤(c, E−1vl, ψl, E)\{c},

l = 1, 2, and be otherwise arbitrary. Define then zl :=
E(xl − c)/‖E(xl − c)‖ ∈ Sn−1 for l = 1, 2. Hence,
zl ∈ Sl := C≤(0, vl, ψl, In) ∩ Sn−1, l = 1, 2. For l = 1, 2,
zl satisfies, by (11), cos(ψl) ≤ z>l vl, and consequently
dSn−1(vl, zl) ≤ ψl. It follows from the triangle inequality
that θ = dSn−1(v1, v2) ≤ dSn−1(v1, z1) + dSn−1(z1, z2) +
dSn−1(v2, z2) ≤ dSn−1(z1, z2) + ψ1 + ψ2. Hence, in view
of the condition ψ1 + ψ2 < θ, dSn−1(z1, z2) > 0. This
fact implies that the compact sets S1 and S2 (and in turn
C≤(c, E−1vl, ψl, E)\{c}, l = 1, 2) are disjoint.

6) Proof of Lemma 2: First, by (18b) and (3) we have

pi−1 − ci = −E−1
i ρ(Eici)Ei(p

i
1 − ci), hence (51)

‖Ei(pi−1 − ci)‖2
(51)
= (pi1 − ci)>Eiρ(Eici)ρ(Eici)Ei(p

i
1 − ci)

(4c)
= (pi1 − ci)>E2

i (pi1 − ci) = ‖Ei(pi1 − ci)‖2 (52)

(so that pi1 6= ci implies pi−1 6= ci). Based on (11) for
C(ci,−ci, θi, Ei), one has

− c>i E2
i (pi−1 − ci)

(51)
= c>i Eiρ(Eici)Ei(p

i
1 − ci)

(4c)
= −c>i E2

i (pi1 − ci)
(18a)
= cos(θi)‖Ei(−ci)‖‖Ei(pi1 − ci)‖

(52)
= cos(θi)‖Ei(−ci)‖‖Ei(pi−1 − ci)‖.

This concludes by (11) that pi−1 ∈ C(ci,−ci, θi, Ei)\{ci}.
7) Proof of Lemma 3: As for the =⇒ implication, let x ∈

Rn\{c} be such that π⊥(E(x − c))E(x − p) = 0, which is
equivalent to π⊥(E(x− c))E(p− c) = 0. By substituting the
definition of π⊥(·) in (3), one obtains ‖E(x− c)‖2(p− c) =(
(p− c)>E2(x− c)

)
(x− c). This very equation excludes that

(p − c)>E2(x − c) = 0 since E is positive definite, x 6= c,
and p 6= c by assumption. So, letting λ = ‖E(x− c)‖2/

(
(p−

c)>E2(x− c)
)

in (7), one deduces that x ∈ L(c, p− c). The
⇐= implication is straightforward.

8) Proof of Lemma 4: The quantities in (27b)-(27c) are
well-defined. Indeed, we have for (27b) that 1 − 4δ2

i (1 −
δ2
i /δ

2
i ) = (2δ2

i −1)2 +4δ4
i (δ
−2
i −1) > 0 thanks to δi ∈ (δi, 1).

Moreover, by µi ∈ (1, µ̄i(δi)), the argument of the arccos
in (27c) belongs to (0, 1), so θ̄i(δi, µi) is also well-defined.
Now, define

F̂ im :=E≤(ci, δiEi) ∩ E≥(c̄i, µiĒi)∩
C≥(ci, ci − pim, ψi, Ei) ∩ E≥(ci, Ei) ⊃ F im.

(53)

By proving that for each i ∈ I and m ∈ {−1, 1}

L(ci, p
i
m − ci) ∩ F̂ im = ∅, (54)

the claim of the lemma is also proven. We prove then (54)
for an arbitrary i ∈ I and an arbitrary m ∈ {−1, 1}. For this
proof, select the following angle ψ′i as any angle ψ′i ∈ (0, ψi).
First, let us show that the following set inclusions hold

L≤(ci, p
i
m − ci) ⊂ C≤(ci, ci − pim, ψ′i, Ei), (55a)

L≥(ci, p
i
m − ci) ⊂ C(ci,−ci, θi, Ei). (55b)

Let x ∈ L≤(ci, p
i
m − ci). Then there exists λ ≤ 0 such that

x − ci = λ(pim − ci). Such x − ci verifies the condition
cos(ψ′i)‖Ei(ci − pm)‖‖Ei(x− ci)‖ ≤ (ci − pim)>E2(x− ci)
corresponding to C≤(ci, ci − pm, ψ′i, Ei) by simple computa-
tions for any 0 < ψ′i < ψi (since cos(ψ′i) ≤ 1). This proves
(55a). Now, let x ∈ L≥(ci, p

i
m − ci). Then there exists λ ≥ 0

such that x − ci = λ(pim − ci). Such x − ci verifies the
condition cos(θi)‖Ei(−ci)‖‖Ei(x − ci)‖ = −c>i E2

i (x − ci)
corresponding to C(ci,−ci, θi, Ei) by simple computations
using that cos(θi)‖Ei(−ci)‖‖Ei(pim−ci)‖ = −c>i E2

i (pim−ci)
(corresponding to pim ∈ C(ci,−ci, θi, Ei) from (18a) and
Lemma 2). This proves (55b). Second, from (55) one has

F̂ im ∩ L(ci, p
i
m − ci)

= (F̂ im ∩ L≤(ci, p
i
m − ci)) ∪ (F̂ im ∩ L≥(ci, p

i
m − ci))

⊂(F̂ im∩C≤(ci, ci−pim, ψ′i, Ei))∪(F̂ im∩C(ci,−ci, θi, Ei)) (56)

and we prove that the two intersections in (56) are empty.
Since 0 < ψ′i < ψi, one obtains readily from the definition of
the cone in (11) that

C≥(ci, ci − pim, ψi, Ei) ∩ C≤(ci, ci − pim, ψ′i, Ei) = {ci}.

This relationship and the definition of F̂ im in (53) imply
that the first intersection in (56) is empty. We show now
that the second intersection in (56) is also empty. Let x ∈
F̂ im ∩ C(ci,−ci, θi, Ei). So,

c>i E
2
i (x− ci)

(20)
= −(x− ci)>E2

i (x− ci)
+ 1

4c
>
i E

2
i ci (x−c̄i)>Ē2

i (x−c̄i)− 1
4c
>
i E

2
i ci

= −‖Ei(x− ci)‖2 + 1
4‖Eici‖

2‖Ēi(x− c̄i)‖2 − 1
4‖Eici‖

2

≥ − 1

δ2
i

− 1

4
‖Eici‖2

(
1− 1

µ2
i

)
(57)

where the bound holds since x ∈ F̂ im implies x ∈ E≤(ci, δiEi)
and x ∈ E≥(c̄i, µiĒi). We continue (57) as

c>i E
2
i (x− ci) ≥ −

1

δ2
i

− 1

4
‖Eici‖2

(
1− 1

µ2
i

)
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(27c),(27a)
= − cos(θ̄i(δi, µi))/δ

2
i

(27a)
= − cos(θ̄i(δi, µi))‖Eici‖

≥ − cos(θ̄i(δi, µi))‖Eici‖‖Ei(x− ci)‖ (58)

since cos(θ̄i(δi, µi)) ≥ 0 and ‖Ei(x − ci)‖ ≥ 1 (x ∈ F̂ im
implies x ∈ E≥(ci, Ei)). It is also x ∈ C(ci,−ci, θi, Ei). So,

c>i E
2
i (x− ci) = − cos(θi)‖Eici‖‖Ei(x− ci)‖

< − cos(θ̄i(δi, µi))‖Eici‖‖Ei(x− ci)‖
(59)

from the bound on θi in Table I. (58) and (59) contradict each
other, so the second intersection in (56) is also empty. Then,
(54) is proven.

9) Proof of Lemma 5: Given (30e)-(30f), we just need to
show that L(x, i, 0) 6= ∅ for all (x, i) ∈ J0. This holds if
we show, as we do in the rest of the proof, that for each
x ∈ Rn and i ∈ I, M(x, i) 6= ∅. First, we show that
∩m=−1,1C≤(ci, ci − pim, ψ̄i, Ei) = {ci} for each i ∈ I. To
this end, note that pi1 ∈ C(ci,−ci, θi, Ei) by (18a), and this
implies cos2(θi)‖Eici‖2‖Ei(pi1 − ci)‖2 = (c>i E

2
i (pi1 − ci))2

or, equivalently,

(pi1 − ci)>Eiπθi(Eici)Ei(pi1 − ci) = 0. (60)

Introduce then vim := Ei(ci − pim)/‖Ei(ci − pim)‖ for m ∈
{−1, 1}, and compute

(vi1)>vi−1 =
(pi1 − ci)>E2

i (pi−1 − ci)
‖Ei(pi1 − ci)‖‖Ei(pi−1 − ci)‖

(52)
= − (pi1 − ci)>Eiρ(Eici)Ei(p

i
1 − ci)

‖Ei(pi1 − ci)‖2

(6)
= − (pi1 − ci)>Ei(2πθi(Eici)− cos(2θi)In)Ei(p

i
1 − ci)

‖Ei(pi1 − ci)‖2

(60)
=

cos(2θi)(p
i
1 − ci)>E2

i (pi1 − ci)
‖Ei(pi1 − ci)‖2

= cos(2θi)

Then, by Lemma 1 and 2ψ̄i < 2θi, ∩m=−1,1C≤(ci, ci −
pim, ψ̄i, Ei) = {ci}. Second, note that

∪m=−1,1 C>(ci, ci − pim, ψ̄i, Ei) =(
∩m=−1,1 C≤(ci, ci − pim, ψ̄i, Ei)

)c
= Rn\{ci}. (61)

Therefore, we have

∪m=−1,1Cim
(30d)
= ∪m=−1,1C≥(ci, ci−pim, ψ̄i, Ei) = Rn (62)

since ∪m=−1,1Cim is a superset of the set in (61) and contains
ci. So, for each x ∈ Rn and i ∈ I, M(x, i) 6= ∅ in (30g).

10) Proof of Lemma 6: F and J are closed subsets of
Rn×{−1, 0, 1}. F is continuous on F . J(x, i,m) 6= ∅ for each
(x, i,m) ∈ J thanks to Lemma 5 and J has a closed graph
relative to J because, in particular, the construction in (30g)
allows M to be set-valued whenever x ∈ ∩m=−1,1Cim. Then,
J is outer semicontinuous and locally bounded relative to J .

11) Proof of Lemma 7: If we prove that ∀i ∈ I, m ∈
{−1, 1} ( ⋂

i′∈I
F i
′

0

)
∪
( ⋃
i′∈I
J i
′

0

)
=W=F im ∪ J im (63)

then (25), (29a), (29b) imply straightforwardly F0 ∪ J0 =
W × I = F1 ∪ J1 = F−1 ∪ J−1 and, in turn, (30c) implies

F ∪J =W × I×M =: K. Therefore, we just need to prove
(63) in the remainder. For each i ∈ I and m ∈ {−1, 1},

F im ∪ J im
(26),(28)

=
(
E≤(ci, δiEi) ∩ E≥(c̄i, µiĒi)

∩C≥(ci, ci−pim, ψi, Ei)∩W
)
∪
((
E≥(ci, δiEi)∪E≤(c̄i, µiĒi)

∪ C≤(ci, ci−pim, ψi, Ei)
)
∩W

)
=W. (64)

We are left with proving
( ⋂
i′∈I
F i′0
)
∪
( ⋃
i′∈I
J i′0

)
=W in (63).

First, note that for each i′, Hi′(εi′ , νi′)∩W = E≤(ci′ , εi′Ei′)∩
E≥(c̄i′ , νi′Ēi′) ∩W and, hence,( ⋂
i′∈I
F i
′

0

)
∪
( ⋃
i′∈I
J i
′

0

)
=
⋂
i′∈I

((
E≥(ci′ , εi′Ei′)

∪ E≤(c̄i′ , νi′Ēi′)
)
∩W

)
∪
⋃
i′∈I

(
Hi′(εi′ , νi′) ∩W

)
=
(⋂
i′∈I

(
E≥(ci′ , εi′Ei′) ∪ E≤(c̄i′ , νi′Ēi′)

)
∪
⋃
i′∈I

(
E≤(ci′ , εi′Ei′)∩E≥(c̄i′ , νi′Ēi′)

))
∩W=Rn∩W=W.

From F ∪ J = K, the definition of K in (31) and x+ = x in
the jump map J, it follows immediately that J(J ) ⊂ K.

12) Proof of Lemma 8: The intersection of E(ci, δEi) and
E(c̄i, µĒi) corresponds to the two quadratic equations{

δ2‖Ei(x− ci)‖2 = 1

µ2‖Ēi(x− c̄i)‖2 = 1
. (65)

By expanding squares and using (20), (65) is equivalent to{
‖Eix‖2 − 2c>i E

2
i x+ ‖Eici‖2 − δ−2 = 0

‖Eix‖2 − c>i E2
i x+ ‖Eici‖2(1− µ−2)/4 = 0

.

Solving for ‖Eix‖2 and c>i E
2
i x, we obtain using (27a){

‖Eix‖2 = ‖Eici‖2
(
(1 + µ−2)/2− δ−2δ4

i

)
c>i E

2
i x = ‖Eici‖2

(
(3 + µ−2)/4− δ−2δ4

i

) (66)

and both right-hand sides of (66) are positive because

(1 + µ−2)/2− δ−2δ4
i

≥ (1 + µ̄i(δ)
−2)/2− δ−2δ4

i
(27b)
= 1− 2δ2

i + δ−2δ4
i

= (δ2
i − 1)2 + δ4

i (δ
−2 − 1) ≥ (δ2

i − 1)2 > 0

(67a)

(3 + µ−2)/4− δ−2δ4
i ≥ (3 + µ̄i(δ)

−2)/4− δ−2δ4
i

= 1− δ2
i > 0, by Assumption 2.

(67b)

From (66), one obtains with some computations

c>i E
2
i x

‖Eici‖‖Eix‖
(66)
=

‖Eici‖2
(
(3+µ−2)/4−δ−2δ4

i

)
‖Eici‖‖Eici‖

√
(1+µ−2)/2−δ−2δ4

i

(27c)
=

1− cos(θ̄i(δ, µ))δ2
i√

(1 + µ−2)/2− δ−2δ4
i

.

(68)

For µ ∈ [1,
(
1−4δ2

i (1− δ
2
i /δ

2)
)− 1

2 ] and δ < 1, we can prove

1− cos(θ̄i(δ, µ))δ2
i√

(1 + µ−2)/2− δ−2δ4
i

=
(3 + µ−2)/4− δ−2δ4

i√
(1 + µ−2)/2− δ−2δ4

i

<1 (69)
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(e.g., set χ := (1 + µ−2)/2, obtain the bounds of χ from the
bounds of µ, substitute χ in (69), and note that the obtained
quadratic inequality holds true for such bounds of χ due to
δ < 1). Because of (67a), (67b) and (69), the expression in (32)
is well-defined and positive. Since (68) yields

c>i E
2
i x

‖Eici‖‖Eix‖
=

1− cos(θ̄i(δ, µ))δ2
i√

(1 + µ−2)/2− δ−2δ4
i

(32)
= cos(ϑi(δ, µ)),

(33) holds as well by the cone definition in (11).
13) Proof of Lemma 9: The obstacles {Oi}i∈I are suffi-

ciently pairwise disjoint, so (37) holds. Moreover, the sets
Ri′(δi′ , µi′) in (39) and E≤(ci′′ , δi′′Ei′′) are bounded, and for
δi′ , δi′′ , µi′ → 1, Ri′(δi′ , µi′) and E≤(ci′′ , δi′′Ei′′) reduce re-
spectively to R∗i′ and E≤(ci′′ , Ei′′). By a continuity argument,
there exist parameters δ∗i and µ∗i such that the lemma holds.

14) Proof of Lemma 10: We prove the claim for arbitrary
i ∈ I and m ∈ {−1, 1}. Let us prove (43a)-(43b). Thanks to
the weak pairwise disjointness of {E≤(ci, δiEi)}i∈I we have
E≤(ci, δiEi) ∩ E≥(ci′ , δi′Ei′) = E≤(ci, δiEi) for all i′ 6= i.
Then, E≤(ci, δiEi) ∩ W = E≤(ci, δiEi) ∩ E≥(ci, Ei), which
implies by (26) that F im satisfies (43b). By a similar argument,
J i0 satisfies (43a) as well.

Let us prove (43c). Write the complement of F∗0 as

(F∗0 )c
(42)
=
(⋂
i∈I
F i0
)c (1)

=
⋃
i∈I

(
F i0
)c

(24)
=
⋃
i∈I

((
E≥(ci, εiEi) ∪ E≤(c̄i, νiĒi)

)
∩W

)c
(1)
=
⋃
i∈I

(
E≥(ci, εiEi) ∪ E≤(c̄i, νiĒi)

)c ∪Wc

(14)
=
⋃
i∈I
E<(ci, εiEi) ∩ E>(c̄i, νiĒi) ∪

⋃
i∈I
E<(ci, Ei)

=
⋃
i∈I

(
E<(ci, εiEi) ∩ E>(c̄i, νiĒi)

)
∪ E<(ci, Ei)

=
⋃
i∈I

(E<(ci,εiEi)∪E<(ci, Ei))∩(E>(c̄i, νiĒi)∪E<(ci,Ei))

=
⋃
i∈I
E<(ci, εiEi) ∩ (E>(c̄i, νiĒi) ∪ E<(ci, Ei))

(70)

because εi < 1. Thanks to the weak pairwise disjointness
of {E(ci, δiEi)}i∈I and δi < εi, the sets {E<(ci, εiEi) ∩
(E>(c̄i, νiĒi) ∪ E<(ci, Ei))}i∈I can actually be proven to
be pairwise separated. Then, we can use (2) to obtain the
boundary of the set F∗0 as

∂F∗0 = ∂
(
(F∗0 )c

)
(70)
= ∂

(⋃
i∈I
E<(ci, εiEi) ∩ (E>(c̄i, νiĒi) ∪ E<(ci, Ei))

)
(2)
=
⋃
i∈I
∂
(
E<(ci, εiEi) ∩ (E>(c̄i, νiĒi) ∪ E<(ci, Ei))

)
(1)
⊂
⋃
i∈I

(
∂E<(ci, εiEi) ∩ E>(c̄i, νiĒi) ∪ E<(ci, Ei)

∪ ∂
(
E>(c̄i, νiĒi) ∪ E<(ci, Ei)

)
∩ E<(ci, εiEi)

)
(1)
⊂
⋃
i∈I

(
E(ci, εiEi) ∩

(
E≥(c̄i, νiĒi) ∪ E≤(ci, Ei)

)

∪
((
E(c̄i, νiĒi)\E<(ci,Ei)

)
∪
(
E(ci,Ei)\E>(c̄i, νiĒi)

))
∩E≤(ci,εiEi)

)
=
⋃
i∈I

((
E(ci, εiEi)∩E≥(c̄i, νiĒi)

)
∪
(
(E(c̄i, νiĒi)\E<(ci, Ei))

∩ E≤(ci, εiEi)
)
∪
(
E(ci, Ei)\E>(c̄i, νiĒi)

))
=:
⋃
i∈I
Pi0

(43c) is finally proven in (74), for which we note that: (a)
J ∗0 is simplified into ∪i∈IHi(εi, νi) thanks to (43a); (b) Pi0 ∩
Hi′(εi′ , 1) = ∅ for all i 6= i′; (c) most of the sets in the next-
to-last expression are empty, so the last expression follows.

Let us prove (43d). First, note that by (43b) and (22)

F im = E≤(ci, δiEi) ∩ E≥(ci, Ei)

∩ E≥(c̄i, µiĒi) ∩ C≥(ci, ci − pim, ψi, Ei),

which is an intersection of four closed sets. By successive
applications of (1i) and (1f), the boundary of F im satisfies

∂F im ⊂
⋃

k∈{1,2,3,4}

Pim,k (71)

with the following definitions

Pim,1 := E(ci, δiEi) ∩ E≥(ci, Ei) ∩ E≥(c̄i, µiĒi)

∩ C≥(ci, ci − pim, ψi, Ei) (72a)

Pim,2 := E≤(ci, δiEi) ∩ E(ci, Ei) ∩ E≥(c̄i, µiĒi)

∩ C≥(ci, ci − pim, ψi, Ei) (72b)

Pim,3 := E≤(ci, δiEi) ∩ E≥(ci, Ei) ∩ E(c̄i, µiĒi)

∩ C≥(ci, ci − pim, ψi, Ei) (72c)

Pim,4 := E≤(ci, δiEi) ∩ E≥(ci, Ei) ∩ E≥(c̄i, µiĒi)

∩ C(ci, ci − pim, ψi, Ei). (72d)

Second, note that since F im is closed, ∂F im ⊂ F im ⊂ W , and
hence ∂F im\W ⊂ W\W = ∅. By this fact, we can write that

∂F im\J im
(28)
= ∂F im\

((
E≥(ci, δiEi) ∪ E≤(c̄i, µiĒi)

∪ C≤(ci, ci−pim, ψi, Ei)
)
∩W

)
(1)
= ∂F im\W ∪ ∂F im\

(
E≥(ci, δiEi) ∪ E≤(c̄i, µiĒi)

∪ C≤(ci, ci−pim, ψi, Ei)
)

= ∂F im\
(
E≥(ci, δiEi)∪E≤(c̄i, µiĒi)∪C≤(ci, ci−pim, ψi, Ei)

)
(71)
⊂
(
∪k∈{1,2,3,4} Pim,k

)
\
(
E≥(ci, δiEi) ∪ E≤(c̄i, µiĒi)

∪ C≤(ci, ci−pim, ψi, Ei)
)

(1)
= ∪k∈{1,2,3,4}

(
Pim,k\

(
E≥(ci, δiEi) ∪ E≤(c̄i, µiĒi)

∪ C≤(ci, ci−pim, ψi, Ei)
))

(1)
⊂ ∪k∈{1,2,3,4}

((
Pim,k\E≥(ci, δiEi)

)
∩
(
Pim,k\E≤(c̄i, µiĒi)

)
∩
(
Pim,k\C≤(ci, ci−pim, ψi, Ei)

))
.
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Finally, we simplify this expression through the following facts

Pim,1\E≥(ci, δiEi) = ∅, Pim,3\E≤(c̄i, µiĒi) = ∅
Pim,4\C≤(ci, ci−pim, ψi, Ei) = ∅,

(73)

which are an immediate consequence of (72) and yield

∂F im\J im
(73)
⊂ Pim,2\

(
E≥(ci, δiEi) ∪ E≤(c̄i, µiĒi)

∪ C≤(ci, ci−pim, ψi, Ei)
)

(1)
=Pim,2∩

(
E≥(ci,δiEi)∪E≤(c̄i,µiĒi)∪C≤(ci,ci−pim,ψi,Ei)

)c
(1)
=Pim,2 ∩ E<(ci,δiEi) ∩ E>(c̄i,µiĒi) ∩ C>(ci,ci−pim,ψi,Ei)
=E<(ci,δiEi)∩E(ci,Ei)∩E>(c̄i,µiĒi)∩C>(ci, ci − pim,ψi,Ei)
=E(ci, Ei) ∩ E>(c̄i, µiĒi) ∩ C>(ci, ci − pim, ψi, Ei)
(1)
=E(ci, Ei)\(E≤(c̄i, µiĒi) ∪ C≤(ci, ci − pim, ψi, Ei)).

15) Proof of Lemma 11: We divide the proof into steps.
Step 1: For each i ∈ I and m ∈ {−1, 1}, δ ∈ [δi, 1] and
ψ ∈ [ψi, ψ̄i), consider the sets

F̃ im(δ, ψ) := E≤(ci, δEi) ∩ E≥(ci, Ei) ∩ E≥(c̄i, µiĒi)

∩ C≥(ci, ci − pim, ψ, Ei).
(75a)

P̃im,3(δ, ψ) := E≤(ci, δEi) ∩ E≥(ci, Ei)

∩ E(c̄i, µiĒi) ∩ C≥(ci, ci − pim, ψ,Ei)
(75b)

Each maximal solution x to the flow-only hybrid system

ẋ = κ(x, i,m) =: u(x), x ∈ F̃ im(δ, ψ) (76)

has T = supt domx < +∞ and x(T ) ∈ P̃im,3(δ, ψ). We
first prove that T is finite. Consider the following nonnegative
function V(x) := 1

2‖Ei(x − pim)‖2. Simple computations,
(16), and (4a) yield that for all x ∈ F̃ im(δ, ψ)

〈∇V(x), κ(x, i,m)〉
=−km(x− pim)>Eiπ

⊥(Ei(x− ci))Ei(x− pim)

=−km‖π⊥(Ei(x− ci))Ei(x− pim)‖<−e<0,

where e > 0 follows from π⊥(Ei(x−ci))Ei(x−pim) vanishing
only for x ∈ L(ci, p

i
m− ci) (Lemma 3), and L(ci, p

i
m− ci) is

separated by a positive distance from F̃ im(δ, ψ) (Lemma 4).
Then, T is finite, otherwise V evaluated along solutions would
become negative. In order to show x(T ) ∈ P̃im,3(δ, ψ), we
resort to a viability argument based on tangent cones. To this
end, we need the next lemma.

Lemma 12: For all x ∈ F̃ im(δ, ψ)\P̃im,3(δ, ψ),

u(x) ∈ TE≤(ci,δEi)(x) (77a)

u(x) ∈ TE≥(ci,Ei)(x) (77b)

u(x) ∈ TE≥(c̄i,µiĒi)(x) (77c)

u(x) ∈ TC≥(ci,ci−pim,ψ,Ei)(x). (77d)

F̃ im(δ, ψ) in (75a) is the intersection of four closed sets: if

u(x) ∈TE≤(ci,δEi)(x) ∩TE≥(ci,Ei)(x)

∩TE≥(c̄i,µiĒi)(x) ∩TC≥(ci,ci−pim,ψ,Ei)(x),
(78)

then u(x) ∈ TF̃i
m(δ,ψ)(x) by the next fact, which is an

immediate corollary of [31, Thm. 5].

Fact 1 ([31, Thm. 5]): Let v ∈ A ∩ B with A, B closed
subsets of Rn. Suppose TA(v) ∩ (TB(v)◦) 6= ∅. Then,
TA∩B(v) ⊃ TA(v) ∩TB(v).
The condition (78) has been checked in Lemma 12 for each
x ∈ F̃ im(δ, ψ)\P̃im,3(δ, ψ), hence

u(x) ∈ TF̃i
m(δ,ψ)(x) ∀x ∈ F̃ im(δ, ψ)\P̃im,3(δ, ψ). (79)

Then, it can only be x(T ) ∈ P̃im,3(δ, ψ), otherwise the solution
could be further extended by viability results such as [24,
Lemma 5.26(b)].

Step 2: For each i ∈ I, both the sets E≤(c̄i, Ēi) and
C(0, ci, ϑi(δ, µi), Ei) (δ ∈ [δi, 1]) are forward invariant under
the vector field −k0x. For x ∈ E(c̄i, Ēi), we have

− k0x
>Ē2

i (x− c̄i)
(20)
= −k02 ‖Ēix‖

2− k0
2 x
>Ē2

i (x− ci)
(19)
= −k02 ‖Ēix‖

2 + k0
2

(
1− ‖Ēi(x− c̄i)‖2

)
= −k02 ‖Ēix‖

2 ≤ 0,

(80)

where the last equality follows from x ∈ E(c̄i, Ēi). There-
fore, {−k0x} ∈ P≤(0, Ē2

i (x − c̄i)) = TE(c̄i,Ēi)(x). For
x ∈ C(0, ci, ϑi(δ, µi), Ei), we have

−k0x
>Eiπ

ϑi(δ,µi)(Eici)Eix = 0. (81)

Therefore, {−k0x} ∈ P(0, Eiπ
ϑi(δ,µi)(Eici)Eix) =

TC(0,ci,ϑi(δ,µi),Ei)(x) (cf. (12)). Forward invariance follows
then from the classical Nagumo’s theorem.

Step 3: Proof of (49). Let ξ(t, j) =
(x(t, j), i(t, j),m(t, j)) ∈ Fl × {l} with l ∈ {−1, 1}
and (t, j) ∈ dom ξ. Hence, by (38),

‖x(t, j)‖ ≥ ri(t,j) > 0 (82)

thanks to the discussion below (38). We further divide into
mutually exclusive subcases.

Step 3a: ξ(t, j) ∈ (Fl ∩ Jl) × {l} and the solution
jumps. By (30b) and (30e), ξ(t, j + 1) = (x(t, j), i(t, j), 0).
Depending on x(t, j), either the solution never jumps again
or reaches the set J ∗0 in (42) at some (t′, j+ 1). Consider the
former case. The flow map for x in (30a) ensures x(τ, j+1) =
exp(−k0(τ − t))x(t, j) for all τ ≥ t. By (82), s ≥ t exists
such that ‖x(s, j + 1)‖ = mini′∈I ri′/2=:σ0>0. So,

‖x(s, j + 1)‖+ σ0 = min
i′∈I

ri′ ≤ ri(t,j) ≤ ‖x(t, j)‖ (83)

and the claim of the proposition is proven. Consider the latter
case, i.e., there exist t′ ≥ t and i′ ∈ I such that x(t′, j +
1) ∈ J i′0 ⊂ J ∗0 . J i′0 is a shrinking of the set F i′1 ∪ F i

′

−1

by construction of the flow and jump sets (cf. (23) and (26),
where the union of the cones from (26) gives Rn from the
same arguments yielding (62)). Then, by Lemma 5, there exist
l′ such that ξ(t′, j + 2) ∈ (Fl′\Jl′)× {l′} and the solution is
forced to flow as in Step 3b below.

Step 3b: ξ(t, j) ∈ (Fl\Jl) × {l} and the solution flows. If
x(t, j) ∈ F il \J il , there exists δ ∈ (δi, 1] and ψ ∈ (ψi, ψ̄i) such
that x(t, j) ∈ F̃ il (δ, ψ) as defined in (75a). From the facts

Hi(δ, µi) ∩ E≥(ci, δiEi) = ∅ (84a)

C≥(ci, ci − pil, ψ,Ei) ∩ C≤(ci,ci − pil, ψi, Ei)
= {ci} /∈ E≥(ci, Ei),

(84b)
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∂F∗0 \J ∗0 ⊂
(⋃

i∈I
Pi
0

)
\
(⋃

i∈I
Hi(εi, νi)

)
=
⋃
i∈I

(
Pi
0\
⋃
i′∈I

(
Hi′ (εi′ , νi′ )

))
=
⋃
i∈I

(⋂
i′∈I

(
Pi
0\Hi′ (εi′ , νi′ )

))
=
⋃
i∈I

(
Pi
0\Hi(εi, νi) ∩

⋂
i′∈I,i′ 6=i

Pi
0

)
=
⋃
i∈I

(
Pi
0\Hi(εi, νi)

)
=
⋃
i∈I

((
E(ci, εiEi) ∩ E≥(c̄i, νiĒi)

)
∪
(
(E(c̄i, νiĒi)\E<(ci, Ei)) ∩ E≤(ci, εiEi)

)
∪(E(ci, Ei)\E>(c̄i, νiĒi))

)
\Hi(εi, νi)

=
⋃
i∈I

((
E(ci, εiEi) ∩ E≥(c̄i, νiĒi)

)
∪
(
(E(c̄i, νiĒi)\E<(ci, Ei)) ∩ E≤(ci, εiEi)

)
∪ (E(ci, Ei)\E>(c̄i, νiĒi))

)
∩Hi(εi, νi)

c

=
⋃
i∈I

((
E(ci,εiEi)∩E≥(c̄i,νiĒi)

)
∪
(
(E(c̄i,νiĒi)\E<(ci,Ei))∩E≤(ci,εiEi)

)
∪(E(ci,Ei)\E>(c̄i,νiĒi))

)
∩
(
E>(ci,εiEi)∪E<(c̄i,νiĒi)∪E<(ci,Ei)

)
=
⋃
i∈I

(
E(ci, εiEi) ∩ E≥(c̄i, νiĒi) ∩ E>(ci, εiEi)

)
∪
(
E(ci, εiEi) ∩ E≥(c̄i, νiĒi) ∩ E<(c̄i, νiĒi)

)
∪
(
E(ci, εiEi) ∩ E≥(c̄i, νiĒi) ∩ E<(ci, Ei)

)
∪
((
E(c̄i, νiĒi)\E<(ci, Ei)

)
∩ E≤(ci, εiEi) ∩ E>(ci, εiEi)

)
∪
((
E(c̄i, νiĒi)\E<(ci, Ei)

)
∩ E≤(ci, εiEi) ∩ E<(c̄i, νiĒi)

)
∪
((
E(c̄i, νiĒi)\E<(ci, Ei)

)
∩ E≤(ci, εiEi) ∩ E<(ci, Ei)

)
∪
((
E(ci, Ei)\E>(c̄i, νiĒi)

)
∩ E>(ci, εiEi)

)
∪
((
E(ci, Ei)\E>(c̄i, νiĒi)

)
∩ E<(c̄i, νiĒi)

)
∪
((
E(ci, Ei)\E>(c̄i, νiĒi)

)
∩ E<(ci, Ei)

)
=
⋃
i∈I
E(ci, Ei)\E≥(c̄i, νiĒi).

(74)

F̃ il (δ, ψ) ∩ J il is a subset of P̃il,3(δ, ψ) because

F̃ il (δ, ψ) ∩ J il = E≤(ci, δEi) ∩ E≥(ci, Ei)

∩ E≥(c̄i, µiĒi) ∩ C≥(ci, ci − pil, ψ,Ei) ∩ J il
⊂ Hi(δ, µi) ∩ C≥(ci, ci − pil, ψ,Ei)
∩
(
E≥(ci, δiEi) ∪ E≤(c̄i, µiĒi) ∪ C≤(ci, ci − pil, ψi, Ei)

)
=
(
Hi(δ, µi) ∩ C≥(ci, ci − pil, ψ,Ei) ∩ E≥(ci, δiEi)

)
∪
(
Hi(δ, µi) ∩ C≥(ci, ci − pil, ψ, Ei) ∩ E≤(c̄i, µiĒi)

)
∪
(
Hi(δ, µi)∩C≥(ci, ci−pil, ψ, Ei)∩C≤(ci, ci−pil, ψi, Ei))

)
(84)
= Hi(δ, µi) ∩ C≥(ci, ci − pil, ψ,Ei) ∩ E≤(c̄i, µiĒi)

= E≤(ci, δEi)∩E≥(ci, Ei)∩E(c̄i, µiĒi)∩C≥(ci, ci−pil, ψ,Ei)
(75b)
= P̃il,3(δ, ψ). (85)

This fact combined with Step 1, shows that the solution leaves
the set F il in finite time through the set P̃il,3(δ, ψ), where it

jumps. Then, we have x(t′, j+1) = x(t′, j) ∈ P̃i(t
′,j)

m(t′,j),3(δ, ψ),
i(t′, j + 1) = i(t′, j) =: ι and m(t′, j) = 0. Then, by (85),
x(t′, j + 1) ∈ E(cι, δEι) ∩ E(c̄ι, µιĒι), and, by Lemma 8,
x(t′, j + 1) ∈ C(0, cι, ϑι(δ, µι), Eι). We have shown in
Step 2 that both the sets E≤(c̄ι, Ēι) and C(0, cι, ϑι(δ, µι), Eι)
are forward invariant under the stabilization flow map for
x, i.e., −k0x. Since the obstacles are weakly disjoint, the
solution then flows in E≤(c̄ι, Ēι)∩C(0, cι, ϑι(δ, µι), Eι) until
it reaches the set E(cι, διEι) at (t′′, j + 1). We either have
‖x(t′′, j + 1)‖ < rι or ‖x(t′′, j + 1)‖ ≥ rι. Consider the
former case. Define

σ1 := min
i,i′∈I, i 6=i′

dist(E≤(ci, δiEi), E≤(ci′ , δi′Ei′)) > 0, (86)

which is positive because obstacle are compact, pairwise
disjoint sets. Since x(t′′, j+1) ∈ E(cι, διEι) and the obstacles
are weakly pairwise disjoint, the solution can only flow up to
the time (s, j + 1) such that σ1 is traversed, i.e.,

‖x(s, j + 1)‖+ σ1 ≤ ‖x(t′′, j + 1)‖ < rι ≤ ‖x(t, j)‖, (87)

and the claim of the proposition is proven. Consider the latter
case, i.e., ‖x(t′′, j + 1)‖ ≥ rι. Then, the definition of the
set Rι(δι, µι) in (39) implies that x(t′′, j + 1) ∈ Rι(δι, µι).

However, thanks to (40), the solution can only flow with
stabilization mode while inRι(δι, µι), so that (t′′′, j+1) exists
such that ‖x(t′′′, j + 1)‖ = rι. Define

σ2 := min
i,i′∈I,i6=i′

dist(Ri(δi, µi), E≤(ci′ , δi′Ei′)) > 0, (88)

which is positive because the considered sets are compact and
pairwise sufficiently disjoint. Before a jump to avoidance mode
at (s, j + 1) can occur, we have

‖x(s, j + 1)‖+ σ2 ≤ ‖x(t′′′, j + 1)‖ = rι ≤ ‖x(t, j)‖. (89)

Step 3c: ξ(t, j) ∈ (Fl∩Jl)×{l} and the solution flows. The
solution cannot flow forever, as established in Step 1. If it flows
until its component x reaches the set Pi(t,j)l,3 (δi(t,j), ψi(t,j)),
the second part of the argument of Step 3b still applies, in
particular (87) or (89). If it jumps beforehand, Step 3a applies.
Then we do not have circularity. By combining (83), (87) and
(89), (49) is proven with σ := min{σ0, σ1, σ2} > 0.

16) Proof of Lemma 12: As for (77a), we have that
TE≤(ci,δEi)(x) is either Rn for x ∈ E<(ci, δEi) or
P≤(0, E2

i (x − ci)) for x ∈ E(ci, δEi). For all x ∈
E≤(ci, δEi) ⊃ F̃ im(δ, ψ), u(x) ∈ P(0, E2

i (x − ci)) (see
(48)), so (77a) is proven. A similar argument yields (77b).
As for (77c), we note that

F̃ im(δ, ψ)\P̃im,3(δ, ψ)=E≤(ci,δEi)∩E≥(ci,Ei)

∩E≥(c̄i,µiĒi)∩C≥(ci, ci−pim, ψ, Ei)\
(
E≤(ci, δEi)

∩E≥(ci, Ei)∩E(c̄i, µiĒi)∩C≥(ci, ci − pim, ψ, Ei)
)

(1c)
= E≤(ci, δEi) ∩ E≥(ci, Ei) ∩ E>(c̄i, µiĒi)

∩ C≥(ci, ci − pim, ψ, Ei).

(90)

Then, for all x ∈ F̃ im(δ, ψ)\P̃im,3(δ, ψ), TE≥(c̄i,µiĒi)(x) =
Rn thanks to (90), and this proves (77c). As for (77d), we have
that TC≥(ci,ci−pim,ψ,Ei)(x) is either Rn for x ∈ C>(ci, ci −
pim, ψ,Ei) or P≥(0, nim(x)) for x ∈ C(ci, ci−pim, ψ,Ei) with
nim(x) := Eiπ

ψ(Ei(ci− pim))Ei(x− ci) by (12). If we prove
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that u(x)>nim(x) ≥ 0 for all x ∈ C(ci, ci − pim, ψ, Ei) ⊃
F̃ im(δ, ψ), then (77d) holds. Indeed, this last step follows from

u(x)> · nim(x)=−km(x− pim)>Eiπ
⊥(Ei(x− ci))E−1

i

· Eiπψ(Ei(ci − pim))Ei(x− ci)
= km(pim − ci)>Eiπ⊥(Ei(x− ci))

· πψ(Ei(ci − pim))Ei(x− ci)
(5),(3)
= km(pim − ci)>Eiπ⊥(Ei(x− ci))

·
(

cos2(ψ)In − π‖(Ei(ci − pim))
)
Ei(x− ci)

= −km(pim − ci)>Eiπ⊥(Ei(x− ci))
· π‖(Ei(ci − pim))Ei(x− ci)

(3)
= km(ci − pim)>Eiπ

⊥(Ei(x− ci))Ei(ci − pim)

· (ci − pim)>E2
i (x− ci)‖Ei(ci − pim)‖−2≥ 0

(91)

because for all x ∈ C(ci, ci − pim, ψ, Ei), one has x ∈
P≥(ci, E

2
i (ci − pim)).
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