
Vol.:(0123456789)

Journal of Network and Systems Management (2022) 30:21
https://doi.org/10.1007/s10922-021-09633-5

1 3

Machine‑Learning‑Enabled DDoS Attacks Detection in P4
Programmable Networks

Francesco Musumeci, et al. [full author details at the end of the article]

Received: 21 December 2020 / Revised: 8 September 2021 / Accepted: 29 September 2021 /
Published online: 2 November 2021
© The Author(s) 2021

Abstract
Distributed Denial of Service (DDoS) attacks represent a major concern in mod-
ern Software Defined Networking (SDN), as SDN controllers are sensitive points of
failures in the whole SDN architecture. Recently, research on DDoS attacks detec-
tion in SDN has focused on investigation of how to leverage data plane programma-
bility, enabled by P4 language, to detect attacks directly in network switches, with
marginal involvement of SDN controllers. In order to effectively address cyberse-
curity management in SDN architectures, we investigate the potential of Artificial
Intelligence and Machine Learning (ML) algorithms to perform automated DDoS
Attacks Detection (DAD), specifically focusing on Transmission Control Protocol
SYN flood attacks. We compare two different DAD architectures, called Standalone
and Correlated DAD, where traffic features collection and attack detection are per-
formed locally at network switches or in a single entity (e.g., in SDN controller),
respectively. We combine the capability of ML and P4-enabled data planes to imple-
ment real-time DAD. Illustrative numerical results show that, for all tested ML algo-
rithms, accuracy, precision, recall and F1-score are above 98% in most cases, and
classification time is in the order of few hundreds of μs in the worst case. Consider-
ing real-time DAD implementation, significant latency reduction is obtained when
features are extracted at the data plane by using P4 language.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-021-09633-5&domain=pdf

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 2 of 27

Graphic Abstract

ML-assisted DDoS a ack detec module

1. features
extractor

2. ML
classifier

incoming
traffic

outgoing
traffic

traffic
informa

traffic features

decision

P4-enabled network

Keywords Distributed denial of service · Artificial intelligence · Machine learning ·
Software defined networks · P4 language · TCP flood

1 Introduction

Software Defined Networking (SDN) provides an unprecedented level of network
automation with respect to traditional legacy networking [1], mainly due to the
functional decoupling between control and data plane and to the logically-central-
ized network view achieved through dedicated SDN controllers.

However, in SDN, controllers are considered as one of the most critical points
of failure and they represent a vulnerable security target. In particular, malicious
cyber attacks such as Distributed Denial of Service (DDoS) may affect the con-
trollers in two ways: (i) directly, e.g., when an overwhelming sequence of non-
legitimate packets is sent against the controller, impairing its ability to function;
and (ii) indirectly, e.g., when attacks against the network nodes result in over-
flooding the controller with control packets, due to the SDN default forward-
ing policies configured in the switches. This second case is typical of a stateless
SDN approach, where network nodes forward packets based on the flow entries
enforced by the controller, while redirecting all unmatched packets to the control-
ler for further instructions.

Recently, SDN has been extended to support stateful data planes, using data
plane programmability. In this case, the switch pipeline is programmed to main-
tain persistent states related to specific network protocols or events (e.g., a layer-4
connection session), thus enabling in-network autonomous per-packet process-
ing, i.e., without the need to interrogate the SDN controller. This way, the SDN
switch may be instructed to derive specific statistics and feature extraction from
the selected connections.

In this paper we investigate a set of DDoS attack detection (DAD) strategies
based on Artificial Intelligence/Machine Learning (AI/ML) and leveraging on

1 3

Journal of Network and Systems Management (2022) 30:21 Page 3 of 27 21

SDN stateful data planes, specifically focusing on Transmission Control Protocol
(TCP) SYN flood attacks [2]. To the best of our knowledge, this is the first time
that these two aspects are combined in the context of cybersecurity. The use of
stateful data planes is shown to provide a reduction of data forwarding latency
and a significantly faster availability of network features needed by the ML algo-
rithms, thus achieving a quicker detection and attack damage minimization. The
considered data plane programmability is based on the P4 (Programming Proto-
col-independent Packet Processors) open source language [3].

This paper extends our previous work [4], where we targeted TCP flood attacks
combining the use of ML and P4 to effectively perform DDoS attack detection.
Moreover, we propose to combine the ML capability to detect anomaly patterns
data with the potential of stateful data planes in processing and collecting traffic
information as features, in order to minimize the risk of SDN controller over-
flooding. To this end, we model the DAD as a ML-based classification problem.
Using realistic emulated traffic, we compare different ML classifiers and deploy
the most suitable algorithm in an ”online” scenario where a DAD is performed
in real time in a ML-based module which directly interacts with the P4-enabled
switch. Compared to [4], here we include artificial neural networks among the
considered ML algorithms and evaluate algorithms performance not only in terms
of classification accuracy, but also in terms of precision, recall and F1-score,
which are more suitable metrics especially for unbalanced datasets as in our case.
Moreover, we perform a novel comparison, in terms of classification accuracy
and prediction time, between two distinct DAD architectures, namely, Standalone
and Correlated DAD, where we assume that attacks detection is performed either
at the network switches or in a centralized entity (e.g., the SDN controller)
exploiting global traffic information, respectively. For the two DAD architectures
we also evaluate the impact of attack bit rate on the attack detection performance.
Furthermore, leveraging P4 language, we evaluate for the two cases the perfor-
mance of the P4 code combined with the ML classifiers in terms of attack detec-
tion time, by comparing three real-time scenarios in which a P4-enabled switch
elaborates the received packets in different ways, namely, (1) packet mirroring,
(2) header mirroring, and (3) P4-metadata extraction.

The rest of the paper is organized as follows. Section 2 provides a background
on DDoS attacks detection and P4 language. In Sect. 3 we describe the ML-assisted
DAD framework, providing details on the considered DAD architectures, ML algo-
rithms and traffic features. Section 4 shows the P4 code adopted for features extrac-
tion at the data plane. In Sect. 5 we perform ML algorithms evaluation and model
selection, and provide numerical results for the Standalone and Correlated DAD
architectures in Sect. 6. Finally, Sect. 7 concludes the paper.

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 4 of 27

2 Background

2.1 DDoS Attacks

Denial of Service attacks (DoS) are among the most dangerous cyber security
threats affecting server platforms. Such attacks target a server, app or service plat-
forms by sending a huge amount of malicious traffic with the aim to overload its
computational (e.g., CPU load level) or network resources (e.g., network interface
throughput), thus inducing malfunctioning and/or congestion. The most challeng-
ing DoS type is the distributed DoS (DDoS), as a pool of multiple source attackers
with different and, often, dynamic/spoofed IP addresses perform a combined attack
action. Blocking these types of attacks is difficult since standard IP-address blacklist
countermeasures, based on static policies, are not effective. The most utilized DDoS
attacks are typically grouped in the following categories: TCP SYN flood, UDP
flood, ICMP flood and HTTP flood.

Note that TCP/UDP/ICMP packets, generated by any kind of attack type, besides
overloading transmission, computing and memory resources in the attack targets
(i.e., in the servers), also affect transmission capacity of other network elements
(i.e., switches and routers), that need to handle additional traffic generated by the
attackers (and also by the victims, when responding to the attack packets).

Among these attack types, in this paper we focus on SYN flood attacks [2], which
represent one of the most relevant DDoS attacks.

TCP SYN flood attacks exploit TCP connections’ initiation packets to target the
victim. Usually, the attacker sends multiple SYN requests from multiple spoofed IP
addresses, but does not reply to the victim SYN-ACK packet. This way, memory and
computing resources at the victim’s system are unnecessarily allocated while wait-
ing for the ACK messages required to successfully terminate the TCP connections
handshake from all the senders.

According to [5], three defense strategies are typically employed to mitigate
DDoS attacks, classified based on the location of the detection engine:

– Source-based detection, implemented at the attacking hosts
– Destination-based detection, implemented at the victim hosts
– Network-based detection, implemented at the network intermediate nodes (e.g.,

switches, routers)

The objective of this paper is to perform in-network attacks detection by deploy-
ing defense mechanisms directly at the SDN switches with the aim of blocking the
attack at the data plane level and preserving the SDN controller from major mal-
functioning or out-of-service events. Therefore, we focus on a network-based
defense mechanism.

1 3

Journal of Network and Systems Management (2022) 30:21 Page 5 of 27 21

2.2 Related Work

A number of ML-based detection strategies for DDoS attacks have been proposed
in literature, relying on ML ability to automatically infer anomaly patterns in
a sequence of traffic packets [5]. Several studies proposed to use Support Vector
Machine (SVM) classifiers, such as [6–10], and [11]. artificial neural networks, such
as [12, 13] and [14], and other ML algorithms, as in [15–19], and [20]. Interestingly,
reinforcement learning has been also adopted to perform DDoS mitigation in paper
[21].

Other papers have addressed attacks detection in the specific context of SDN,
such as [22–33], and [34].

Concerning the recent trend of considering SDN stateful data planes for DDoS
attack mitigation, a significant amount of work has appeared recently, though not
fully exploiting sophisticated detection mechanisms such as those based on ML
algorithms. For example, authors of [35] proposed a distributed architecture of
stateful switches to mitigate attacks as an alternative to classical SDN centralized
solutions, which are potentially more prone to computational resource bottlenecks.
Moreover, authors of [36] presented an alternative model for the coordination of
stateful switches. In [37], authors leveraged P4 to enable traffic inspection for real-
time attack detection, whereas authors of [38] adopt P4 language and statistical
models based on IP address entropy to distinguish between legitimate and attack
traffic. Similarly, in [39], authors implemented a P4 strategy to contrast TCP flood
port scan attacks and evaluated this strategy in both a P4-enabled software switch
and a FPGA. Authors in [40] and performed attack detection in P4-programmable
Ethernet switches, focusing on SIP attacks. Furthermore, authors of [41], data plane
programmability is exploited to mitigate DDoS attacks of different types, such as
SYN flood, DNS amplification, HTTP flood, when traffic characteristics change
over time, by adopting threshold-based defense mechanisms. Finally, authors of [42]
used P4 programming to contrast diverse attacks also taking into account the QoS of
legitimate users.

2.3 P4 Language

As mentioned before, in SDN, a DDoS attack targeting the SDN controllers may
seriously affect not only the correct functioning of the controllers, but also the over-
all network stability and operation, due to the logically centralized nature of the
SDN control plane. For such reason, it is crucial to keep the controller involvement
in the DAD process as limited as possible, as a large number of computationally-
intensive packet inspections may affect controller stability. In this context, program-
mability of SDN data plane offers a new opportunity to perform traffic inspection
inside the switches at wire-speed.

In this paper we exploit the P4 (Programming Protocol-independent Packet
Processors) open source language [3] to program a SDN switch pipeline with the
ability to perform traffic feature extractions to be consumed by ML algorithms.
P4 is a high-level, vendor-independent language and has been designed to enable

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 6 of 27

custom-programmed pipelines and forwarding planes on SDN switches, not con-
strained by traditional fixed-functions protocol stack. The compiled P4 code is sub-
mitted to a programmable device backend (i.e., a programmable network interface
card, a bare metal switch, a FPGA, a software switch) in charge of enforcing the
desired pipeline structures and functions.

A typical P4 code is structured by some well-defined components:

– Parsers, responsible for the analysis of the incoming packet and the detection of
the considered protocol stacks (either standard or proprietary)

– Tables and actions, the key set of the SDN paradigm, identifying the packet pro-
cessing rule in the standard match-action fashion. In P4, tables and actions may
be programmed with a high level of flexibility and rule definitions, including
protocol field updates, port selection, actions on the entire packet (e.g., packet
drop, cloning, recirculation)

– Pipeline control, responsible of structuring a programmable set of tables inside
a given pipeline, in the context of well-defined pipeline abstract models. In all
the considered models, the design identifies an ingress pipeline (i.e., perform-
ing operations at packet reception and implementing forwarding decisions) and
an egress pipeline (i.e., operations performed after the forwarding decision, such
as pre-forwarding operations or multicast). Each pipeline defines an ordered
sequence of tables, optionally subject to conditional rules and loop execution.
This latter feature is a specific and powerful P4 feature with respect to traditional
SDN pipelines, typically implemented with a static set of tables.

In addition, P4 is able to define and manipulate packet metadata, utilized to associ-
ate extra information to the packet and performing further processing. Examples of
typical metadata are timestamps, features, states, processing latency, etc. Finally, P4
allows to define and allocate stateful objects (i.e., memory persistent variables inside
the switch) that may be used to activate context-based processing and implement
Finite State Machines. In particular, P4 defines the use of meters (i.e., a three-state
object used to measure and classify the throughput of a given flow), counters and
registers. Such objects can be read/write accessed and utilized to perform stateful-
based actions inside tables.

3 ML‑Assisted DDoS Attack Detection

The aim of this paper is to perform DAD in SDN networks by combining ML ability
in performing effective attack detection by automatically retrieving traffic informa-
tion (i.e., a signature), and the opportunity to perform packet processing directly at
the data plane, enabled by stateful data planes and P4 language. Moreover, we com-
pare two DAD architectures, namely, Standalone and Correlated DAD, in terms of
classification performance and algorithm complexity, i.e., training duration and pre-
diction time, also evaluating the impact of attack rates on algorithms performance.

1 3

Journal of Network and Systems Management (2022) 30:21 Page 7 of 27 21

(b)

(a)

Fig. 1 Standalone and Correlated DDoS Attack Detection Architectures

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 8 of 27

3.1 DAD Detection Architectures

We define two different DDoS attacks detection architectures, namely, Standalone
DAD and Correlated DAD, whose functional blocks are illustrated in Fig. 1a, b,
respectively, for a network with 5 P4-enabled switches. For both Standalone and
Correlated architectures, we model the DDoS attack detection into a ML classifi-
cation problem. Given the traffic (i.e., a series of packets arriving at one or more
P4 switches) observed in a certain time frame, i.e., a time window with pre-defined
duration T, the detection module outputs a decision for the observed traffic, i.e., a
label “1: attack” or “0: no-attack”, to indicate if in the considered time frame an
attack is present or not, respectively. This label allows decision-making on packet
forwarding, which may consists of, e.g., dropping packets after a number of sub-
sequent windows are classified as containing an attack, or even performing further
analysis by, e.g., forwarding selected packets to the SDN controller. Note that, in this
paper, we do not concentrate on specific packet forwarding decisions, but limit our
analysis on the binary classification of traffic windows of duration T.

As shown in Fig. 1a, in the Standalone DAD architecture, a ML-assisted DAD
module is deployed at each P4 switch, so that each switch performs DDoS attacks
detection only based on locally-observed traffic. Conversely, in the Correlated DAD
architecture (see Fig. 1b), a unique DAD module receives traffic information from
several P4 switches and takes decisions based on globally-observed traffic.1

The detection module is generally constituted by two operational blocks, i.e., (1)
features extractor and (2) ML classifier. However, in both Standalone and Corre-
lated architectures, the detection module can be simplified by offloading some oper-
ations (e.g., features extraction or even the ML-based classification) directly at the
data plane in the P4 switches. In such a scenario, we also evaluate the additional
latency introduced by the attack detection module considering that information
derived from traffic flows is exchanged between the detection module and the P4
switches in different forms, e.g., by mirroring entire data packets, their headers, or
even extracting metadata (i.e., features) from a sequence of packets.

ML-assisted DDoS a�ack detec�on module

1. features
extractor

2. ML classifier:
• RF
• KNN
• SVM
• ANN

•Len(t)
•RTCP(t)
•RUDP(t)
•RTU(t)
•Flags(t)

traffic

�meT

0: no-a�ack
1: TCP flood

Input: traffic informa�on

Output: decision

t

Fig. 2 Window features extraction and classification

1 Note that, in the Correlated architecture, the DAD module can be co-located with the SDN control-
ler, or even physically deployed at one of the P4 switches, receiving traffic information from other P4
switches using out-of-band channels. Analysis considering specific deployments of the DAD module are
out of the paper scope, so we assume that the DAD module is deployed out of all the switches in the net-
work, without affecting the generality of our analysis.

1 3

Journal of Network and Systems Management (2022) 30:21 Page 9 of 27 21

3.2 ML Classifiers and Considered Features

To implement the classifiers for DAD we consider four different ML algorithms,
namely, Random Forest (RF), K-Nearest Neighbours (KNN), Support Vector
Machine (SVM) and Artificial Neural Network (ANN). A comparison between the
various algorithms has been carried out to devise the most appropriate solution in
terms of classification performance and algorithm complexity, i.e., training duration
and prediction time.

We developed binary classifiers that, for each window of duration T, assign one
of the following two labels: “0: no-attack” or “1: TCP flood”. A summary of the
steps performed by the ML-assisted DAD module is shown in Fig. 2, along with the
list of features extracted from the time window. Specifically, for each traffic window
of duration T starting at a generic time instant t, we consider the following features
f
1
 to f

5
:

– Average length: the average size in bytes of packets in time window (t, t + T)

– TCP ratio: the percentage of TCP packets out of the total in time window (t,
t + T);

– UDP ratio: similarly to RTCP , it represents the percentage of UDP packets;

– TCP-UDP ratio: the ratio between TCP and UDP packets in time window (t,
t + T). If no UDP packet is present in the window, we set this feature equal to a
large finite number;

– Flags(t): is the percentage of TCP packets with an active SYN flag out of the
total in time window (t, t + T).

Note that, although several traffic features have been adopted in literature to perform
DAD [43], as we focus on TCP flood attacks, we selected features according to the
considered attack type and following traffic information typically used in literature
[43–45]. Moreover, as in our paper we aim at performing attack detection indepen-
dently from the attacker or victim location, among the features considered in the

f
1
= Len(t) =

total no. of bytes in (t, t + T)

total no. of packets in (t, t + T)

f
2
= RTCP(t) =

no. of TCP packets in (t, t + T)

total no. of packets in (t, t + T)

f
3
= RUDP(t) =

no. of UDP packets in (t, t + T)

total no. of packets in (t, t + T)

f
4
= RTU(t) =

no. of TCP packets in (t, t + T)

no. of UDP packets in (t, t + T)

f
5
= Flags(t) =

no. of TCP packets with SYN flag in (t, t + T)

total no. of packets in (t, t + T)

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 10 of 27

aforementioned papers, we ignore location-specific ones, such as IP source/destina-
tion addresses and TCP/UDP ports.

4 Using P4 Language for Attack Detection in Data Plane

The aforementioned ML classifiers need to acquire real-time traffic data to perform
attack detection. The way real-time data are elaborated to perform features extrac-
tion and feed ML classifiers represents a key aspect in the efficiency of the whole
detection system. In the case of raw traffic data (e.g., traffic mirroring), features need
to be extracted by the DAD module through deep packet inspection techniques. The
availability of a P4 programmable data plane allows to offload the feature extraction,
enabling the deployment of selected P4 switches able to derive the traffic features
at wire-speed for immediate submission to the ML classifiers, thus speeding up the
detection process. For this reason we have implemented three versions of feature
extraction to be implemented at P4 switches: a) packet mirroring, b) header mirror-
ing, c) metadata extraction.

Packet mirroring is the simplest version, in which packets to be analyzed are
directed to the DAD module for feature extraction and classification. Header mir-
roring represents an intermediate version, where mirrored packets are truncated
to preserve the protocols header stack, mainly in order to reduce the throughput
of the data subject to feature extraction and, ultimately, the processing burden at
the DAD module. Metadata extraction requires the most complex P4 implementa-
tion, as features are extracted directly at the P4 switch exploiting telemetry func-
tions. Differently from in-band telemetry[46], where metadata are sent in-band

Fig. 3 Selected P4-metadata extraction code sections: ingress pipeline control, extra header and key
actions

1 3

Journal of Network and Systems Management (2022) 30:21 Page 11 of 27 21

and exchanged/elaborated by the SDN domain switches, here feature extraction
is configured as out-of-band telemetry data collected by each switch and sent to
control/monitoring interface to be consumed by the DAD module. Three specific
P4 language aspects have been exploited to realize this goal:

– Stateful objects handling, with the definition of programmable registers stor-
ing and updating the number of selected packets occurrences within a traffic
window;

– Feature Extra header, used to convey the statistics and provide the analysis
results to the detection module utilizing a portion of selected mirrored pack-
ets.

– Conditional pipeline control, used to implement different pipeline execution
branches subject to context condition.

The excerpts of Fig. 3 show a portion of selected sections of the P4 code used to
deploy extract metadata in P4 switches. First, the code defines all the required pro-
tocol stack headers and the related parsers to perform packet inspections: Ethernet,
IP, UDP and TCP headers. Then, four registers are defined to store the number of IP,
UDP, TCP and TCP SYN packet occurrences within a given traffic window. In addi-
tion, the code defines a proprietary extra header, namely my_int_header_t utilized
for the report packet to the DAD module, as depicted in the figure. The header is
composed by a 4-byte long switch_id field used to identify the source switch address
sending the report, along with four 2-byte long fields used to convey the number of
IP, UDP, TCP and TCP SYN packets observed in the traffic window, i.e., the fea-
tures utilized by the DAD. Finally, a custom-defined packet metadata (i.e., meta) is
defined to associate to the analyzed packet extra information, such as the cumulative
packet number inside the traffic window (i.e., meta.counter_tot).

In the following the workflow of the P4 code is explained. First, the received
packets are parsed to extract the considered protocol headers. Then, the code enters
the ingress pipeline, defined by the control block shown in the figure. The ingress
pipeline includes the sequence of three tables, used to perform the statistics. In par-
ticular, each table (i.e., m_ip for IP, m_transport for UDP/TCP and m_syn for
SYN flag detection) performs the update of the feature occurrences in the regis-
ters and in the packet metadata. The figure shows the list of actions related to the
m_transport table when the match detects UDP packets: in this case the regis-
ter at offset r1 will be first read (i.e., to retrieve the last cumulative value of UDP
packets occurrences), incremented and re-written by means of an auxiliary packet
metadata field. Similarly, such operations are performed in the other two tables.
When the statistics have been updated, the ingress pipeline is subject to a condi-
tional check. In the case the traffic window (e.g., set to 105 packets in the P4 code,
see experimental results) is terminated (the check is done using the specific packet
metadata field), the code executes a specific branch of tables (go_read_reset,
go_steer and go_header in Fig. 3) in order to generate the report packet to the
DAD, otherwise it follows a standard packet forward/block procedure based on flow
entries received by the DAD module or by the SDN controller. In this specific imple-
mentation, the traffic window is mapped in a packet-based window assuming that

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 12 of 27

the switch operates in a constant bit rate scenario (as in the experimental evaluation,
see Sect. 6.3), while in a more general deployment it may be mapped in a time-based
window using P4 timestamp metadata. Forwarding is implemented using standard
network-layer information to emulate internet router behavior. Specifically, in the
case of packet report generation, table go_read_reset is responsible for resetting
the values of the internal registers, table go_steer is responsible for cloning the
packet and set its output port to the control interface connected to the DAD mod-
ule, while table go_header triggers the features extra header insertion, positioned
after the considered packet protocol stack. The figure shows the details of the action
add_int, inside table go_header. The action first generates the extra header
insertion in the packet (i.e., add_header P4 native command), then updates its
fields with the statistics retrieved by the registers and temporarily stored in the
packet metadata, along with the switch id parameter, thus allowing multiple network
switches to send their reports to the DAD in parallel. It is worthwhile to note that
a P4 switch is not allowed to generate a new asynchronous packet, thus the report
packet sent to the DAD is the result of a mirror and a subsequent manipulation (i.e.,
extra header inclusion) of an existing traffic packet. The final P4 behavior allows to
generate a features report at the end of each traffic window, ready to be submitted to
the classifier. In the meanwhile, the switch is able to act as a firewall allowing/block-
ing suspected flows indicated by the controller through the DAD module outcomes.

It is important to underline that the selection of the features is a key aspect of
the programmable data plane effectiveness and scalability. In fact, the considered
stateful features are generated, processed and stored inside the P4 switch resorting
to stateless transport-layer information retrieved by packet parsing stage after flow
match condition. Such strategy allows overall system scalability, since P4 switches
have been demonstrated to scale with the number of flow entries (e.g., number of
different flows analyzed using the same pipeline control section) [39]. Conversely,
the online stateful analysis of TCP sessions would require a relevant processing bur-
den, practically unfeasible in metro and core routers due to the high amount of TCP
connections and with noticeable scalability issues, even for a P4 switch.

5 Case Study and ML Algorithms Settings

5.1 Traffic Scenario and Corresponding Datasets

ML algorithms have been implemented with Python-based scripts using keras and
sklearn libraries on a desktop with 8 × 2 GHz processor and 8 GB of RAM. Traffic
data for training and testing of our algorithms has been collected using a Spirent
N4U traffic generator [47]. We generate realistic traffic traces for 15 min, where
TCP SYN flood attack traffic at an average bit rate of 26.5 kbit/s is added to regu-
lar background traffic at 30 Mbit/s. The attack traffic is designed as an aggregation
of flows having random source IP addresses and specific IP destination addresses,
according to the nature of DDoS attacks. Moreover, the sequences utilize incremen-
tal TCP port scanning with random initial values and duration. The low rate has
been selected with the aim to test the system detection sensitivity. Average duration

1 3

Journal of Network and Systems Management (2022) 30:21 Page 13 of 27 21

of the attacks is 10 s, whereas background traffic is composed by three different
flows, i.e., 13.5 Mbit/s TCP traffic, 11.4 Mbit/s UDP traffic and 5.1 Mbit/s IP traf-
fic (not carrying UDP/TCP payloads2), with packet length following Internet Mix
(IMIX3) distribution [47].

Starting from this traffic trace, we create different datasets extracting traffic
windows of duration T and collected at a sampling period � . For our analysis,
we consider different values for parameters T and � and, for each of the datasets
obtained varying the values of T and � , we label the windows by assigning label
“1: TCP flood” only when the window contains at least one packet belonging
to the TCP flood attack, otherwise the window is assigned label “0: no-attack”.
Note that, varying the value of parameter � (i.e., the distance between two con-
secutive windows), the total number of windows in the dataset varies accord-
ingly, ranging between 1800 and 180000 windows, for the cases of � = 1 s and

Table 1 Traffic parameters in
the datasets

Parameter Value

Traces duration 15 min
TCP traffic bit rate 13.5 Mbit/s
UDP traffic bit rate 11.4 Mbit/s
IP traffic bit rate 5.1 Mbit/s
Attack traffic bit rate 26.5 kbit/s
Attack Type SYN flood
Window duration T ∈ {0.5;1;2;10} s
Windows distance � ∈ {0.01;0.05;0.1;0.2;0.5;1} s

2 The considered background traffic profile in terms of protocols has been designed according to the
expected Internet traffic profiles at Tier 1/2 carrier router in the next years. Instead of considering the
historical protocol distribution (where TCP dominates with over 70% volume traffic [48]), we designed
the profile according to the two most significant recent trends: the rapid increase of the HTTP/3 QUIC
protocol running on UDP, supported by Google, Facebook and other major platforms, that will replace
HTTP/2 (running on TCP), and the increase of IPv6 traffic, towards 20% volume rate [48]. Google net-
work volume traffic is dominated by QUIC, more than 40% [49, 50]. Current overall QUIC rate (around
10%) is expected to converge rapidly to the Google value once big providers will migrate their web pro-
tocols to HTTP/3. For these reasons we modelled 38% UDP traffic and 17% IP raw traffic, while the
dominant part is still TCP (45%). We remark that, given the features adopted in the ML algorithms,
which are mainly based on packets length and proportions of TCP/UDP packets and SYN flags out of the
total number of packets in a certain time frame (see Sect. 3.2), the absolute values of bit rates used in the
considered traffic scenario do not affect relevantly the numerical results due to the fact that we perform
features scaling and normalization, therefore the values of features f1 ÷ f5 would not be affected if all traf-
fic flows were increased by a given common factor.
3 IMIX traffic distribution is based on statistical sampling done on Internet routers. Traffic profile defini-
tions are based on IETF RFC 6985 [51] and the tests are run in accordance with RFC 2544 [52]. The
considered profile, defined as a Table of Proportions [51], defines the following distribution: 60-byte
(58.33%), 576-byte (33.33%), 1500-byte (8.33%). The profile was motivated by the fact that it is the most
considered traffic profile for internet routers used for tests and measurements, that guarantees reproduc-
ible traces.

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 14 of 27

� = 0.01 s, respectively. The parameters considered in our analysis are summa-
rized in Table 1.

5.2 Evaluation Metrics

In this study we compare different ML-based DAD solutions in terms of classifica-
tion performance and complexity. More specifically, since we model attack detection
as a binary classification, where we distinguish among “positive” and “negative”
windows (respectively, windows with label “1: TCP flood” or “0: no-attack”), we
consider:

– true positives (TP): Number of windows of type ‘1’ correctly classified with
label ‘1’;

– true negatives (TN): Number of windows of type ‘0’ correctly classified with
label ‘0’;

– false positives (FP): Number of windows of type ‘0’ misclassified with label ‘1’;
– false negatives (FN): Number of windows of type ‘1’ misclassified with label ‘0’.

Based on these definitions, to evaluate classification performance, we use the fol-
lowing metrics:

– Accuracy is the fraction of correctly-classified windows, i.e.,

– Precision is the fraction of correctly-classified positive windows out of the total
number of windows classified as positive, i.e.,

– Recall is the fraction of correctly-classified positive windows out of the total
number of windows which are actually positive, i.e.,

 Note that precision and recall are two contrasting objectives and different algo-
rithms may provide different trade-offs on these measures.

– F1-score (or F-score) is used as a unique metric when both precision and recall
are relevant in the evaluation, and it is defined as follows:

Concerning algorithm complexity, we evaluate the four ML algorithms considering
the following metrics:

A =
TP + TN

TP + TN + FP + FN

P =
TP

TP + FP

R =
TP

TP + FN

F1 = 2
P ⋅ R

P + R

1 3

Journal of Network and Systems Management (2022) 30:21 Page 15 of 27 21

– training duration: it represents the time required to perform ML algorithm train-
ing; as in the following we adopt fivefold cross-validation to perform algorithms
evaluation, we show training duration as an averaged value across all the sub-
sets used for algorithm training, i.e., it is evaluated on 1/5 of the entire dataset
obtained with given values of T and �.

– test time: it is the time needed to perform classification of a single traffic window
once the ML algorithm has been trained; note that, for each ML algorithm, test
time value can vary with window duration T, but it is not affected by window
sampling period �.

5.3 ML Models Selection

We consider four ML algorithms to perform windows classification for DDoS
attacks detection, namely, RF, KNN, SVM, and ANN. For each algorithm, different
combinations of hyperparameters have been evaluated using fivefold cross-valida-
tion, in order to obtain the classifiers with high classification accuracy (i.e., above
97%) and sufficiently-low training duration. For this analysis, we consider fixed val-
ues of window duration and window sampling interval (i.e., T = 1 s and � = 0.2 s,
respectively), in order not to affect ML model selection. These values have been
selected as they were obtained as best performing values for the real-time imple-
mentation of DAD in [4], however a further sensitivity analysis on the values of T
and � will be shown in the following after ML model selection, i.e., when the hyper-
parameters of all ML algorithms have been decided.

For each ML algorithm, the combinations of hyperparameters which have been
evaluated (such as number of hidden layers and hidden neurons in ANNs, kernel in
SVM, number K of neighbors in KNN, splitting criteria in RF, etc. [53]) are reported
in Table 2, along with the selected hyperparameters.

Table 2 Hyperparameters selection for the various ML algorithms

Algorithm Parameter Tested values Selected value

KNN no. of neighbors K {3, 4, 5, 6, 7, 8, 9, 10} 3
neighbors weight {uniform, distance-based} uniform

RF splitting criterium {Gini, Entropy} Gini
no. of trees {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 10

SVM kernel {sigmoid, rbf, polynomial} rbf
regul. param. C {1, 10, 102 , 103 , 104} 103

kernel coefficient � {10−4 , 10−3 , 10−2 , 10−1 , 1} 10−2

ANN no. of hidden layers {1,2} 2
no. of neurons per layer {5,10,11} 10
activation function {sigmoid, relu, elu} elu

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 16 of 27

6 Numerical Results

6.1 ML Algorithms Performance Evaluation

We start the numerical analysis of ML-assisted DAD by evaluating the impact

(b)(a)

Fig. 4 Classification performance for KNN algorithm, varying parameters (a) � and (b) T (A = Accuracy ,
P = Precision , R = Recall , F1 = F1-score)

(b)(a)

Fig. 5 Classification performance for RF algorithm, varying parameters (a) � and (b) T (A = Accuracy ,
P = Precision , R = Recall , F1 = F1-score)

(b)(a)

Fig. 6 Classification performance for SVM algorithm, varying parameters (a) � and (b) T (A = Accuracy ,
P = Precision , R = Recall , F1 = F1-score)

1 3

Journal of Network and Systems Management (2022) 30:21 Page 17 of 27 21

of parameters T and � on ML algorithms performance (considering the metrics
described in Sect. 5.2) and focusing on the Standalone DAD architecture depicted
in Fig. 1a. Values considered for parameters T and � are shown in Table 1.4 For
each case, since we use fivefold cross-validation, the numerical results shown in the
following, are averaged across all the five folds, except for test time, which is meas-
ured as the classification time for a single window of duration T. Concerning ML
algorithms hyperparameters, we consider only the values obtained after ML model
selection, which are reported in the right-most column of Table 2.

We first concentrate on Accuracy (A), Precision (P), Recall (R), and F1-score
(F1), which are shown in Figs. 4, 5, 6, and 7 for KNN, RF, SVM and ANN algo-
rithms, respectively, and for increasing values of � and T (respectively, subfigures
(a) and (b)). When one of the two parameters is varied, the other one is kept at a
fixed value (respectively, T = 1 s and � = 0.2 s), on the line of the analysis done in
Sect. 5.3.

As expected, in general, increasing the value of � , provides performance deterio-
ration for all the metrics and independently from the ML algorithm under analysis,
caused by the decrease of data points in the dataset (hence, a lower number of data
points used for training) when increasing � . For all values of � , extremely-high per-
formance is obtained, with all metrics laying above 96.6% for KNN and 98.6% for
RF, SVM and ANN algorithms, respectively. Notably, the values of precision P are
above 99% for all algorithms, showing that the classification of positive examples

(a) (b)

Fig. 7 Classification performance for ANN algorithm, varying parameters a � and b T (A = Accuracy ,
P = Precision , R = Recall , F1 = F1-score)

Table 3 Mean training time for
the different ML algorithms and
varying � (T = 1 s)

Algorithm � = 0.01 s � = 0.05 s � = 0.1 s � = 0.2 s � = 0.5 s

KNN 0.153 0.03 0.015 0.009 0.009
RF 1.003 0.236 0.154 0.126 0.128
SVM 3.28 0.179 0.077 0.03 0.014
ANN 10.303 6.784 5.289 5.239 5.278

4 Recall that, for each T-� pair, a different dataset is obtained.

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 18 of 27

(i.e., windows containing at least one attack packet) performed with any of the ML
algorithm is highly reliable. On the other hand, the values of recall R are the lowest
ones among all performance metrics and for all the four algorithms, meaning that,
despite the good performance of all the algorithms, still a very small percentage
of windows affected by attacks are misclassified as legitimate. This aspect suggests
that, in realistic deployments, further analysis, e.g., performed at the DAD module
(possibly co-located with the SDN controllers), may be necessary on some of the
windows classified as attack-free by the ML-based DAD.

Concerning the performance of the various algorithms when varying window
duration T, it is observed that increasing T deteriorates in general all performance
metrics, since the relatively-low amount of attack packets in longer windows do not
allow to efficiently capture the attack characteristics through the considered features.
Only in the KNN and especially RF cases, when T is increased above a certain value
(i.e., above 2s and 1s, respectively) the performance metrics start increasing after an
initial decrease. Similarly to the variation of � , also when varying T the performance
deterioration is mainly observed for the recall R, confirming that, depending on the
values of T, the role of DAD module may still be crucial to perform further analysis
onto windows classified as negatives by the ML algorithm. Therefore, it is evident
that, besides a sufficiently large dataset (i.e., a sufficiently low value of �), fine-tun-
ing of window duration T is also necessary to avoid overloading the DAD module.

To assess their complexity, we now compare the four ML algorithms in terms
of training and test time. Table 3 shows the mean training time5 for the four ML
algorithms and for increasing values of � . We here consider a fixed value of T = 1
s as we observed that window duration T does not affect training and test time sig-
nificantly (we do not report such an analysis over T due to space limitations). As
expected, training time decreases when increasing � , due to the lower number of
data points used for training. ANN shows the worst training time, which is up to
500 times higher than all other algorithms, especially for higher values of � . Indeed,
it can be observed that dataset size has a significant impact on RF and especially
SVM, for which the training time is reduced from 3.28 s (for � = 0.01 s) to 0.01 s
(for � = 0.5 s). Finally, KNN training time is negligible for all values of � , sincet
KNN is a non-parametric ML algorithm, and so no real training phase is necessary,
but only hyperparameter selection is performed.

Table 4 Average test time for
the different ML algorithms
(� = 0.2 s, T = 1 s)

Algorithm Mean test time (μs)

KNN 113.18
RF 112.68
SVM 1.75
ANN 279.95

5 Note that, as we adopt fivefold cross-validation, training time is expressed as the an averaged value
across all the subsets used for algorithm training, i.e., it is evaluated on 1/5 of the entire dataset obtained
with given values of T and �.

1 3

Journal of Network and Systems Management (2022) 30:21 Page 19 of 27 21

To evaluate classification speed in a possible real-time implementation of DAD,
we compare the four ML algorithms in terms of test time, and show in Table 4 the
values obtained for the classification of a single data point after model training has
been performed, considering T = 1 s and � = 0.1 s. Results are shown in terms of
mean test time, i.e., for all the four ML algorithms, we average classification time
over all data points in the test set. Observing the results, SVM shows the smallest
test time, which is two order of magnitude lower than the test time for the other
algorithms. On the other hand, ANN shows the worst performance, with test time
which is doubled in comparison to KNN and RF.

6.2 Standalone and Correlated DAD Architectures

In this subsection we compare the Standalone and Correlated DAD architectures
discussed in Sect. 3.1, considering a sample network with 3 P4-enabled switches. To
perform our analysis, we start from the same traffic traces with characteristics dis-
cussed in Sect. 5.1 and tailor two distinct datasets for the Standalone and Correlated
scenarios. In particular, for the Standalone case, we randomly split legitimate and
attack packets into three equally-sized subsets, one for each of the three switches,
and form windows of duration T taken at distance � to build the three datasets. To
have a homogeneous comparison between the Standalone and Correlated scenarios,
in both cases windows of duration T are labeled as ’positive’ (i.e., label = 1) if at
least one attack packet is included in the window of any of the three switches. We
remark also that, while in the Standalone DAD architecture each switch operates
window classification independently from the other switches (i.e., based on the local
windows features f

1
 to f

5
 discussed in Sect. 3.2), in the Correlated DAD architec-

tures, classification of a given window of duration T is performed based on the over-
all set of 15 features collected from all the three switches in time-frame T.

To evaluate the performance of the Standalone DAD architecture, we compare it
with the Correlated DAD in terms of classification accuracy, considering different
amounts of attack packets out of the total observed traffic. To do so, for both Stan-
dalone and Correlated cases, we generate 6 different scenarios considering attack
traffic bit rate at 26.5, 13.25, 10.6, 8, 6.7 and 4 kbit/s, corresponding to the case of
100%, 50%, 40%, 30%, 25% and 15% of the maximum attack rate considered so far,
respectively.

As expected (see Fig. 8), in the Correlated architecture classification accuracy
is higher compared to the accuracy obtained at any switch in the Standalone case,
independently from the adopted ML algorithm. This is due to the global traffic infor-
mation that can be exploited in the Correlated scenario, which is more significant
for lower attack rates, whereas when attack traffic becomes more relevant, i.e., above
8 kbit/s for KNN and above 13.25 kbit/s for the other algorithms, accuracy of Stan-
dalone DAD is always above 99% and approaches the performance of Correlated
DAD. We remark that, although low rate SYN floods might not be extremely dan-
gerous in traditional network environments, in SDN scenarios they might increase
the probability of service degradation, due to the fact that many switches/routes can

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 20 of 27

redirect to the same SDN controller several packets which do not match any entry of
their flow tables.

(a)

(b)

(c)

(d)

Fig. 8 Classification accuracy for Standalone and Correlated DAD architectures for different ML algo-
rithms and increasing attack rates (T = 1 s, � = 0.01 s)

1 3

Journal of Network and Systems Management (2022) 30:21 Page 21 of 27 21

6.3 Real‑Time DAD with P4‑Enabled Switches

We now assume to deploy the ML-based classifier to perform real-time DAD and
evaluate the impact of performing features extraction at the data plane in the P4-ena-
bled switches. To do so, we consider three different scenarios, where the P4 switch
provides different types of traffic information data to the ML classifier, namely:
(a) packet mirroring: the P4 switch forwards the received packets to the ML-based
module, which performs features extraction before making predictions, (b) header
mirroring: the P4 switch forwards only the headers of the received packets, and (c)
P4-metadata extraction: the P4 switch elaborates the received packets and extracts

(c)

(a)

(b)

Fig. 9 Different scenarios and corresponding time contributions

Table 5 Time contributions for
different scenarios and for the
Standalone DAD architecture (t3
values in parenthesis represent
classification time for the
Correlated DAD architecture)

RF SVM

t
1
(μs) t

2
 (s) t

3
(μs) t

1
(μs) t

2
 (s) t

3
(μs)

Packet mirr. 75 16.9 5.6 (5.7) 75 16.3 14.4 (17)
Header mirr. 65 14.9 5.6 (5.7) 65 14.3 14.4 (17)
P4-metadata 110 0 5.6 (5.7) 110 0 14.4 (17)

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 22 of 27

proper “metadata” (i.e., the features), which are sent to the ML classifier. Then, for
each case, we evaluate three latency contributions, namely:

– t
1
 : time needed by the P4 switch for packet processing, i.e., to elaborate packets

and send traffic information for a single window to the attack detection module;
– t

2
 : time needed for window features extraction, either performed in the P4 switch

or in the ML-assisted DAD module;
– t

3
 : time needed by the ML classifier to perform window classification, based on

the extracted features.

Note that, in the three scenarios described above, time contribution t
3
 does not

change but only depends on the adopted ML algorithm (i.e., it corresponds to
the test time discussed in Sect. 6.1). On the contrary, contributions t

1
 and t

2
 may

vary according to the amount of processing performed at the data plane by the P4
switches, which, instead of simple traffic mirroring, can also accomplish features
extraction. A summary of the three scenarios and the notation for the three time con-
tributions is summarized in Fig. 9.

To perform this analysis we consider RF and SVM algorithms as described
above, since they provide the best results in terms of accuracy and test time.
For all cases we consider windows of duration T = 1 s and datasets generated
with � = 0.01 s, and show numerical results in Table 5. The latency values have
been obtained by averaging over several runs and we report in Table 5 the aver-
age values. In particular, the latencies introduced by the P4 switch are evaluated
using a BMV2 running on Linux Box, Intel Xeon CPU E5-2620 v2 @ 2.10GHz,
RAM 16GB and 10Gigabit Ethernet optical interfaces, and are measured using
the Spirent N4U Traffic generator and analyzer and injecting traffic profile as in
Table 1. According to the considered value of T and the overall traffic profiles, the
P4 switch is programmed with a traffic window of 105 packets. Moreover, latency
contributions t

2
 due for features extraction for the cases in Fig. 9a, b have been

calculated by feeding a customized python-based script with .pcap traces and
executing it on a desktop with 8 × 2 GHz processor and 8 GB of RAM.6

For both RF and SVM a significant time reduction is obtained in the P4-metadata
extraction scenario, due to the time savings obtained by extracting windows features
directly in the programmable switches. A P4 switch is able to extract features in
around 110 μs (time contribution t

1
), which is extremely low if compared to time

contribution t
2
 in Packet mirroring and Header mirroring scenarios, which ranges

between 14.3 and 16.9 s. Moreover, the additional time required for feature extrac-
tion at the P4 switch (i.e., contribution t

2
 in the P4-metadata case) is negligible if

compared to both Packet mirroring and Header mirroring. Finally, as expected, the
classification time contribution t

3
 does not depend on the switch scenario, but only

on the adopted ML algorithm or the Standalone and Correlated DAD architecture,

6 Note that, although the features extraction can be optimized to reduce latency even further, further
advantages in terms of port line rate and processing requirements might be obtained in the P4-metadata
extraction scenario.

1 3

Journal of Network and Systems Management (2022) 30:21 Page 23 of 27 21

and equals 5.6 and 14.4 μs for RF and SVM in the Standalone DAD, whilst 5.7 and
17 μs for the same algorithms in the Correlated DAD.

7 Conclusion

In this paper we evaluated ML-assisted DDoS attack detection frameworks for
application in SDN environment considering Standalone and Correlated DAD archi-
tectures. Leveraging the potential of data-plane programmability enabled by P4
language, we evaluated how detection latency is reduced when performing features
extraction at P4 switches. To do so, we compared different ML classifiers in terms
of accuracy and computational time, and deployed the algorithms in a real-time sce-
nario in which the P4 switch provides different types of data to the ML classifiers,
namely, packet mirroring, header mirroring, and P4-metadata extraction. Numeri-
cal results show that attack detection can be performed with classification accuracy,
precision, recall and F1-score higher than 98% in most cases, and with drastic time
reduction, down to less than 200 μs , in case P4 is used for features extraction. As a
future work, we plan to investigate attack-type identification by developing multi-
class ML classifiers, and implementing attack detection exploiting ML algorithms
which leverage historical data, such as Recurrent Neural Networks.

Acknowledgements This work has received funding from the ECSEL Joint Undertaking (JU) BRAINE
Project, under grant agreement No 876967. The JU receives support from the European Union’s H2020
research and innovation programme and from Italy Ministry of Education, University and Research
(MIUR).

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Soft-
ware-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

 2. TCP Syn Flooding Attacks and Common Mitigations: IETF RFC 4987 (2007)
 3. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D.,

Vahdat, A., Varghese, G., Walker, D.: P4: Programming protocol-independent packet processors.
ACM SIGCOMM Comput. Commun. Rev 44(3), 87–95 (2014)

 4. Musumeci, F., Ionata, V., Paolucci, F., Cugini, F., Tornatore, M.: Machine-learning-assisted DDoS
attack detection with P4 language. In: IEEE International Conference on Communications (ICC)
2020, pp. 1–6. Dublin, Ireland (2020)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 24 of 27

 5. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial of ser-
vice (DDoS) flooding attacks. IEEE Commun. Surv. Tutor. 15(4), 2046–2069 (2013)

 6. Hoyos Ll, M.S., Isaza E, G.A., Vélez, J.I., Castillo O, L.: Distributed denial of service (DDoS)
attacks detection using machine learning prototype. In: Omatu, S., Semalat, A., Bocewicz, G., Sitek,
P., Nielsen, I.E., García García, J.A., Bajo, J. (eds.) Distributed Computing and Artificial Intelli-
gence, 13th International Conference, pp. 33–41. Springer, UK (2016)

 7. Ramamoorthi, A., Subbulakshmi, T., Shalinie, S.M.: Real time detection and classification of DDoS
attacks using enhanced SVM with string kernels. In: International Conference on Recent Trends in
Information Technology (ICRTIT) 2011, pp. 91–96 (2011)

 8. Sahoo, K.S., Tripathy, B.K., Naik, K., Ramasubbareddy, S., Balusamy, B., Khari, M., Burgos, D.:
An evolutionary SVM model for DDOS attack detection in software defined networks. IEEE Access
8, 132502–132513 (2020)

 9. Saini, P.S., Behal, S., Bhatia, S.: Detection of DDoS attacks using machine learning algorithms.
In: 2020 7th International Conference on Computing for Sustainable Global Development (INDI-
ACom), pp. 16–21 (2020)

 10. Subbulakshmi, T., Bala Krishnan, K., Shalinie, S.M., Anand Kumar, D., Ganapathi Subramanian,
V., Kannathal, K.: Detection of DDoS attacks using Enhanced Support Vector Machines with real
time generated dataset. In: Third International Conference on Advanced Computing 2011, pp.
17–22 (2011)

 11. Ye, J., Cheng, X., Zhu, J., Feng, L., Song, L.: A DDoS attack detection method based on SVM in
software defined network. Secur. Commun. Netw. 2018, 1–8 (2018)

 12. Bhardwaj, A., Mangat, V., Vig, R.: Hyperband tuned deep neural network with well posed stacked
sparse autoencoder for detection of DDoS attacks in cloud. IEEE Access 8, 181916–181929 (2020)

 13. Sumathi, S., Karthikeyan, N.: Detection of distributed denial of service using deep learning neural
network. Springer Journal of Ambient Intelligence and Humanized Computing (2020)

 14. Yuan, X., Li, C., Li, X.: DeepDefense: identifying DDoS attack via deep learning. In: IEEE Interna-
tional Conference on Smart Computing (SMARTCOMP) 2017, pp. 1–8 (2017)

 15. Aljuhani, A.: Machine learning approaches for combating distributed denial of service attacks in
modern networking environments. IEEE Access 9, 42236–42264 (2021)

 16. AlMomin, H., Ibrahim, A.A.: Detection of distributed denial of service attacks through a combina-
tion of machine learning algorithms over software defined network environment. In: 2020 Interna-
tional Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA),
pp. 1–4 (2020)

 17. Correa, J.H., Ciarelli, P.M., Ribeiro, M.R.N., Villaca, R.S.: ML-Based DDoS detection and identifi-
cation using native cloud telemetry macroscopic monitoring. J. Netw. Syst. Manag. 2 (2021)

 18. Gu, Y., Li, K., Guo, Z., Wang, Y.: Semi-supervised K-means DDoS detection method using hybrid
feature selection algorithm. IEEE Access 7, 64351–64365 (2019)

 19. Mhamdi, L., McLernon, D., El-moussa, F., Raza Zaidi, S.A., Ghogho, M., Tang, T.: A deep learn-
ing approach combining autoencoder with one-class SVM for DDoS attack detection in SDNs. In:
2020 IEEE Eighth International Conference on Communications and Networking (ComNet), pp.
1–6 (2020)

 20. de Miranda Rios, V., Inacio, P.R., Magoni, D., Freire, M.M.: Detection of reduction-of-quality
DDoS attacks using Fuzzy Logic and machine learning algorithms. Comput. Netw. 186, 107792
(2021)

 21. Simpson, K.A., Rogers, S., Pezaros, D.P.: Per-host DDoS mitigation by direct-control reinforcement
learning. IEEE Trans. Netw. Serv. Manage. 17(1), 103–117 (2020)

 22. Abou El Houda, Z., Khoukhi, L., Senhaji Hafid, A.: Bringing intelligence to software defined net-
works: mitigating DDoS attacks. IEEE Trans. Netw. Serv. Manag. 17(4), 2523–2535 (2020)

 23. Alamri, H.A., Thayananthan, V.: Bandwidth control mechanism and extreme gradient boosting
algorithm for protecting software-defined networks against DDoS attacks. IEEE Access 8, 194269–
194288 (2020)

 24. Dinh, P.T., Park, M.: BDF-SDN: A big data framework for DDoS attack detection in large-scale
SDN-based cloud. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp.
1–8 (2021)

 25. Dong, S., Sarem, M.: DDoS attack detection method based on improved KNN with the degree of
DDoS attack in software-defined networks. IEEE Access 8, 5039–5048 (2020)

1 3

Journal of Network and Systems Management (2022) 30:21 Page 25 of 27 21

 26. Kokila, R.T., Thamarai Selvi, S., Govindarajan, K.: DDoS detection and analysis in SDN-based
environment using support vector machine classifier. In: International Conference on Advanced
Computing (ICoAC) 2014, pp. 205–210 (2014)

 27. Mousavi, S.M., St-Hilaire, M.: Early detection of DDoS attacks against software defined network
controllers. J. Netw. Syst. Manag. 26, 573–591 (2018)

 28. Perez-Díaz, J.A., Valdovinos, I.A., Choo, K.K.R., Zhu, D.: A flexible SDN-based architecture for
identifying and mitigating low-rate DDoS attacks using machine learning. IEEE Access 8, 155859–
155872 (2020)

 29. Phan, T.V., Nguyen, T.G., Dao, N.N., Huong, T.T., Thanh, N.H., Bauschert, T.: DeepGuard: effi-
cient anomaly detection in SDN with fine-grained traffic flow monitoring. IEEE Trans. Netw. Serv.
Manag. 17(3), 1349–1362 (2020)

 30. Ravi, N., Shalinie, S.M.: Learning-driven detection and mitigation of DDoS attack in IoT via SDN-
cloud architecture. IEEE Internet Things J. 7(4), 3559–3570 (2020)

 31. Sudar, K.M., Beulah, M., Deepalakshmi, P., Nagaraj, P., Chinnasamy, P.: Detection of Distributed
Denial of Service Attacks in SDN using Machine learning techniques. In: 2021 International Con-
ference on Computer Communication and Informatics (ICCCI), pp. 1–5 (2021)

 32. Tan, L., Pan, Y., Wu, J., Zhou, J., Jiang, H., Deng, Y.: A new framework for DDoS attack detection
and defense in SDN environment. IEEE Access 8, 161908–161919 (2020)

 33. Zhijun, W., Qing, X., Jingjie, W., Meng, Y., Liang, L.: Low-rate DDoS attack detection based on
factorization machine in software defined network. IEEE Access 8, 17404–17418 (2020)

 34. Zhu, L., Tang, X., Shen, M., Du, X., Guizani, M.: Privacy-preserving DDoS attack detection using
cross-domain traffic in software defined networks. IEEE J. Sel. Areas Commun. 36(3), 628–643
(2018)

 35. Afek, Y., Bremler-Barr, A., Shafir, L.: Network anti-spoofing with SDN data plane. In: IEEE Con-
ference on Computer Communications (INFOCOM) 2017, pp. 1–9 (2017)

 36. Sviridov, G., Bonola, M., Tulumello, A., Giaccone, P., Bianco, A., Bianchi, G.: LODGE: LOcal
Decisions on Global statEs in progrananaable data planes. In: IEEE Conference on Network Soft-
warization and Workshops (NetSoft) 2018, pp. 257–261 (2018)

 37. Lapolli, A.C., Adilson Marques, J., Gaspary, L.P.: Offloading real-time DDoS attack detection to
programmable data planes. In: IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment (IM) 2019, pp. 19–27 (2019)

 38. Ilha, A.d.S., Lapolli, A.C., Marques, J.A., Gaspary, L.P.: Euclid: A fully in-network, P4-based
approach for real-time DDoS attack detection and mitigation. IEEE Transactions on Network and
Service Management, pp. 1–1 (2020)

 39. Paolucci, F., Civerchia, F., Sgambelluri, A., Giorgetti, A., Cugini, F., Castoldi, P.: P4 edge node ena-
bling stateful traffic engineering and cyber security. IEEE/OSA J. Opt. Commun. Networking 11(1),
A84–A95 (2019)

 40. Febro, A., Xiao, H., Spring, J.: Distributed SIP DDoS defense with P4. In: IEEE Wireless Commu-
nications and Networking Conference (WCNC) 2019, pp. 1–8 (2019)

 41. Zhang, M., Li, G., Wang, S., Liu, C., Chen, A., Hu, H., Gu, G., Li, Q., Xu, M., Wu, J.: Poseidon:
mitigating volumetric ddos attacks with programmable switches. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS) 2020, pp. 1–18 (2020)

 42. Friday, K., Kfoury, E., Bou-Harb, E., Crichigno, J.: Towards a unified in-network DDoS detection
and mitigation strategy. In: IEEE Conference on Network Softwarization (NetSoft) 2020, pp. 218–
226 (2020)

 43. Jalili, R., Imani-Mehr, F., Amini, M., Shahriari, H.R.: Detection of Distributed Denial of Service
Attacks Using Statistical Pre-processor and Unsupervised Neural Networks. Springer, Berlin (2005)

 44. Braga, R., Mota, E., Passito, A.: Lightweight DDoS flooding attack detection using NOX/Open-
Flow. In: IEEE Local Computer Network Conference 2010, pp. 408–415 (2010)

 45. Kalkan, K., Altay, L., Gür, G., Alagöz, F.: JESS: joint entropy-based DDoS defense scheme in SDN.
IEEE J. Sel. Areas Commun. 36(10), 2358–2372 (2018)

 46. Cugini, F., Gunning, P., Paolucci, F., Castoldi, P., Lord, A.: P4 in-band telemetry (INT) for latency-
aware VNF in metro networks. In: Optical Fiber Communication Conference (OFC) 2019, p.
M3Z.6. Optical Society of America (2019)

 47. Spirent Test Center. https:// www. spire nt. com/ produ cts/ testc enter (2020). Accessed Oct 2020
 48. MAWI Working Group Traffic Archive: Packet traces from WIDE backbone. https:// mawi. wide. ad.

jp/ mawi/ (2015)

https://www.spirent.com/products/testcenter
https://mawi.wide.ad.jp/mawi/
https://mawi.wide.ad.jp/mawi/

 Journal of Network and Systems Management (2022) 30:21

1 3

21 Page 26 of 27

 49. Rüth, J., Poese, I., Dietzel, C., Hohlfeld, O.: A first look at quic in the wild. In: Beverly, R., Smar-
agdakis, G., Feldmann, A. (eds.) Passive and Active Measurement, pp. 255–268. Springer, Cham
(2018)

 50. Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang, D., Yang, F., Kouranov, F.,
Swett, I., Iyengar, J., Bailey, J., Dorfman, J., Roskind, J., Kulik, J., Westin, P., Tenneti, R., Shade, R.,
Hamilton, R., Vasiliev, V., Chang, W.T., Shi, Z.: The quic transport protocol: design and internet-
scale deployment. In: Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 17, p. 183–196. Association for Computing Machinery, New York,
NY, USA (2017). https:// doi. org/ 10. 1145/ 30988 22. 30988 42

 51. Genome, I.M.I.X.: Specification of variable packet sizes for additional testing. IETF RFC 6985
(2013)

 52. Benchmarking Methodology for Network Interconnect Devices: IETF RFC 2544 (1999)
 53. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Infer-

ence, and Prediction. Springer Series in statistics New York (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Francesco Musumeci received the Ph.D. degree in Information Engineering from Politecnico di Milano,
Italy, in 2013, where he is currently an Assistant Professor with the Department of Electronics, Informa-
tion and Bioengineering since 2016. His current research interests include Machine-Learning-assisted
networking, design and optimization of optical networks, and network disaster resilience. He is author of
more than 90 papers in international journals and conference proceedings, 2 book chapters and 1 patent in
the area of communication networks, published, and is co-winner of three best paper awards from IEEE
sponsored conferences. He uses to serve as a TPC member and/or reviewer for several IEEE/OSA confer-
ences as well as IEEE/OSA, Springer and Elsevier journals since 2010.

Ali Can Fidanci received the B.Sc. degree in Electronics and Communication Engineering from Istan-
bul Technical University, Turkey, in 2017 and the M.Sc. degree in Telecommunication Engineering from
Politecnico di Milano, Italy in 2020, where he focused his research interests on Machine Learning for
cybersecurity. Currently, he works as system engineer at ASELSAN, Turkey.

Francesco Paolucci received the Laurea degree in telecommunications engineering from the University
of Pisa in 2002, and the Ph.D. degree from Scuola Superiore Sant’Anna, Pisa, in 2009. In 2008 he was
granted a research Merit Scholarship at the Istitut National de le Recherche Scientifique (INRS), Mon-
treal, Quebec, Canada. Currently, he is Senior Researcher at CNIT, Pisa Italy. His main research inter-
ests are in the field of network control plane, orchestration for edge/cloud platforms, traffic engineering,
network disaggregation, advanced network telemetry, SDN/P4 data plane programmability. He has been
involved in many European research projects on next generation control networking (E-Photon/ONe+,
BONE, NOBEL, STRONGEST, IDEALIST, PACE, 5GEx, 5GTRANSFORMER, METROHAUL,
5Growth, BRAINE). He is co-author of 2 IETF Internet Drafts, more than 170 publications in interna-
tional journals, conference proceedings and book chapters, and filed 4 international patents. He is Associ-
ate Editor of the IEEE/OSA Journal of Optical Communications and Networking (JOCN).

Filippo Cugini is Head of Research Area at CNIT, Pisa, Italy. His main research interests include theoreti-
cal and experimental studies in the field of packet and optical networking. He is co-author of 14 patents
and more than 250 international publications.

Massimo Tornatore is currently an Associate Professor with the Department of Electronics, Information,
and Bioengineering, Politecnico di Milano. He also holds an appointment as Adjunct Professor at Univer-
sity of California, Davis, USA and as visiting professor at University of Waterloo, Canada. His research
interests include performance evaluation, optimization and design of communication networks (with an
emphasis on the application of optical networking technologies), cloud computing, and machine learn-
ing application for network management. In these areas, he co-authored more than 400 peer-reviewed
conference and journal papers (with 19 best paper awards), 2 books and 1 patent. He is a member of

https://doi.org/10.1145/3098822.3098842

1 3

Journal of Network and Systems Management (2022) 30:21 Page 27 of 27 21

the Editorial Board of IEEE Communication Surveys and Tutorials, IEEE Communication Letters, IEEE
Transactions on Network and Service Management, and Elsevier Optical Switching and Networking. He
is active member of the technical program committee of various networking conferences such as INFO-
COM, OFC, ICC, and GLOBECOM. He acted as technical program chair of ONDM 2016 and DRCN
2017 and DRCN 2019 conferences. He has participated in several EU R&D projects (among others FP7
COMBO, H2020 MEtroHaul, and Cost Action RECODIS) as well as in several projects in USA, Canada
and Italy.

Authors and Affiliations

Francesco Musumeci1 · Ali Can Fidanci1 · Francesco Paolucci2,3 ·
Filippo Cugini3 · Massimo Tornatore1

 * Francesco Musumeci
 francesco.musumeci@polimi.it

1 Politecnico di Milano, Milan, Italy
2 Scuola Superiore Sant’Anna, Pisa, Italy
3 CNIT, Pisa, Italy

http://orcid.org/0000-0002-3617-5916

	Machine-Learning-Enabled DDoS Attacks Detection in P4 Programmable Networks
	Abstract
	Graphic Abstract
	1 Introduction
	2 Background
	2.1 DDoS Attacks
	2.2 Related Work
	2.3 P4 Language

	3 ML-Assisted DDoS Attack Detection
	3.1 DAD Detection Architectures
	3.2 ML Classifiers and Considered Features

	4 Using P4 Language for Attack Detection in Data Plane
	5 Case Study and ML Algorithms Settings
	5.1 Traffic Scenario and Corresponding Datasets
	5.2 Evaluation Metrics
	5.3 ML Models Selection

	6 Numerical Results
	6.1 ML Algorithms Performance Evaluation
	6.2 Standalone and Correlated DAD Architectures
	6.3 Real-Time DAD with P4-Enabled Switches

	7 Conclusion
	Acknowledgements
	References

