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Abstract

We study the local Hölder regularity of strong solutions u of second-order uniformly
elliptic equations having a gradient term with superquadratic growth γ > 2, and right-hand

side in a Lebesgue space Lq. When q > N γ−1
γ (N is the dimension of the Euclidean space),

we obtain the optimal Hölder continuity exponent αq >
γ−2
γ−1 . This allows us to prove some

new results of maximal regularity type, which consist in estimating the Hessian matrix of u
in Lq. Our methods are based on blow-up techniques and a Liouville theorem.
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1 Introduction

The goal of this paper is to address some regularity issues related to the elliptic PDE

− tr
(

A(x)D2u
)

+ H(x, Du) = f (x) in Ω ⊂ R
N , (1.1)

where A(x) is a nondegenerate diffusion matrix, H has superquadratic growth in the gradient
variable, and f belongs to some Lebesgue space Lq(Ω). We are interested in the Hölder
regularity of the solution u, as well as the regularity of the gradient Du and the Hessian
matrix D2u in Lq.

Equations of the form (1.1) appear naturally in the theory of (ergodic) stochastic control,
homogenization, in the theory of growth of surfaces, and in differential games with many play-
ers. They appear in the literature under different names, such as (viscous) Hamilton-Jacobi
equations, KPZ or Riccati equations. As a prototype of semilinear equation with superlin-
ear character in the first order entry, the regularity properties of (1.1) have been extensively
investigated. Nevertheless, some recent questions concerning the “maximal regularity” of so-
lutions demand for a deeper understanding of the interaction between the linear second order
diffusion and the nonlinear first order term.

Let us start with some considerations on the Hölder regularity of solutions to (1.1), having
in mind the model superquadratic Hamiltonian

H(x, Du) = |Du|γ, γ > 2. (1.2)
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A few years ago, A. Dall’Aglio and A. Porretta showed in [9] that weak solutions are γ−2
γ−1 -

Hölder continuous, provided that f ∈ Lq and

q = q0 :=
N

γ′
= N

γ − 1

γ
. (1.3)

Their result is for equations in divergence form, and it is genuinely perturbative: the diffusion
term plays no role (it can be even degenerate), and the regularity is a sole byproduct of the
coercivity of H. In some sense, it cannot be even improved, since

u(x) = c|x|
γ−2
γ−1 is a weak solution of −∆u + |Du|γ = 0 on R

N (1.4)

for suitable c ∈ R. Note that γ−2
γ−1 -Hölder estimates are true even for subsolutions, and hold

up to the boundary: this shows that superquadratic problems enjoy some properties that are
rather unnatural for elliptic equations. Besides, solutions to uniformly elliptic (quasilinear)
equations having subquadratic (subnatural) growth in the gradient are known to be Hölder

continuous when q >
N
2 (see e.g. [3, 13]), and this classical fact leans on the perturbative

nature of H(Du) when γ < 2.
If one looks at solutions that are more than just weak, better a priori estimates can be

obtained. In [15], P.-L. Lions showed that Lipschitz estimates for classical solutions can be
achieved, provided that q > N, in the full superlinear range γ > 1. It is worth remarking
that these estimates were obtained via the Bernstein method, which allowed to exploit both
the regularizing effects of the diffusion and the coercivity of H (and therefore, by means of a
nonperturbative argument). Lipschitz estimates have been obtained later in [5] for viscosity
solutions, and for equations with a possibly degenerate diffusion matrix, assuming in addition
f to be Lipschitz continuous.

Our first goal is to fill the gap in the understanding of α-Hölder regularity of u, in the range

γ − 2

γ − 1
< α < 1 with f ∈ Lq,

N

γ′
< q < N,

for solutions in the strong sense, which is naturally intermediate between weak and classical.
To achieve this goal, we will develop a nonperturbative method, which will again exploit first
and second order regularizing effects. These new Hölder regularity results will imply in a
straightforward way new results regarding the so-called Lq-maximal regularity.

The problem of Lq-maximal regularity for (1.1) has been raised by P.-L. Lions a decade ago
in a series of seminars, and, roughly speaking, is a semilinear version of the classical Calderón-
Zygmund linear maximal regularity; that is, under the assumption that f is bounded in Lq,
then one should be able to have a control of H(Du) and tr

(

AD2u
)

in Lq. Lions conjectured
that this should be possible provided that q > q0 (q0 as in (1.3)), and the conjecture has been
shown to be true in the recent work [8]. The results in [8] still have some limitations: they hold
for classical solutions, q > 2 is required (while it may happen that q0 < 2 for some N, γ) and
they are not local but require f (x) to be periodic in x. Moreover, no x dependence is allowed
in first and second order terms.

Our second goal here is to circumvent all these limitations. The results in [8] are again based
on a Bernstein method. Apart from the issues on the generality of the statements in [8], a crux
is that the Bernstein approach may not be employed for different problems, e.g. involving
degenerate or fractional diffusions. Therefore, a general goal of this work is to develop a
different approach to maximal regularity, which can be flexible enough to be applied to a
wider range of equations (which will be briefly described at the end of this introduction). The
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core idea of the method proposed here is to get maximal regularity using Hölder estimates as
an intermediate step. Nevertheless, (linear) maximal regularity will be crucial to obtain such
Hölder estimates, so one may argue, after reading the proofs, that regularity at these two scales
is in fact interconnected.

We now discuss our standing assumptions. Ω is a bounded Lipschitz domain, with uniform
interior sphere property. Concerning A, we assume that constants 0 < λ < Λ exist such that

A ∈ C(Ω), div A ∈ LN(Ω), λ|ξ|2 ≤ Aξ · ξ ≤ Λ|ξ|2 on Ω. (AssA)

Moreover we assume, that for some γ > 2,

H(x, p) = h(x)|p|γ + H0(x, p), where h ≥ hmin > 0 is continuous in Ω

and |H0(x, p)| ≤ C1|p|
γ1 + C2, with 0 ≤ γ1 < γ, C1, C2 ≥ 0.

(AssH)

For brevity, let

α0 =
γ − 2

γ − 1
, corresponding to q0 =

N

γ′

As we mentioned, the α0-Hölder regularity of u, which requires f ∈ Lq(Ω), q = q0 will be our
starting point. In the following remark, which will be useful in the sequel, we comment how
the regularity of u at different scales is given by the embeddings.

Remark 1.1. Assume that
N

γ′
≤ q < N.

If u ∈ W2,q(Ω) then, by Sobolev embedding, we have that Du ∈ Lq∗(Ω) and u ∈ C0,α(Ω),
where

q∗ =
Nq

N − q
≥ γq and α = 2 −

N

q
≥ α0,

and equalities hold if and only if q = q0 = N
γ′ .

The main results on the Hölder regularity reads as follows.

Theorem 1.2. Let q >
N
γ′ . Assume that α = 2 − N

q if q < N, or α < 1 if q ≥ N. For every M ≥ 0

there exists C = C(M, N, q, α, H, A, Ω) such that if u ∈ W2,q(Ω) solves (1.1) in Ω in the strong sense,
with ‖ f‖q ≤ M, then

sup
x̄ 6=x

min{dist(x̄, ∂Ω), dist(x, ∂Ω)}α−α0
|u(x̄)− u(x)|

|x̄ − x|α
≤ C. (1.5)

Note that the α-Hölder seminorm locally deteriorates as x, x̄ approach ∂Ω. This has to be
expected, as the function u in (1.4) is a classical solution in any domain Ω such that 0 ∈ ∂Ω,
and it is not better than α0-Hölder on Ω. In fact, the weight in (1.5) is sharp. Note also
that, as α → 1, such weight agrees with the one appearing in Lipschitz estimates which were
obtained in [5] for viscosity solutions. Finally, the constant C depends actually on λ, Λ in
(AssA), ‖div A‖LN(Ω), C1, C2, γ1, γ, hmin in (AssH), the moduli of continuity of A and h0 on Ω

and Ω itself.
The proof of Theorem 1.2 relies on a blow-up argument. We employ a Liouville theorem

for the homogeneous version of (1.1) on R
N . The compactness which is necessary to pass to

the limit in the scaling procedure involves an interpolation argument.

As a consequence of Theorem 1.2, we get the following Lq-maximal regularity result.
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Theorem 1.3. Let q >
N
γ′ . For every M ≥ 0 and Ω′ ⊂⊂ Ω there exists C = C(M, dist(Ω′, ∂Ω),

N, q, α, H, A, Ω) such that if u ∈ W2,q(Ω) solves (1.1) in Ω in the strong sense, with ‖ f‖q ≤ M, then

‖u‖W2,q(Ω′) ≤ C.

Both theorems hold for merely W
2,q
loc (Ω) solutions, as one can apply them in exhaustions of

Ω (and constants depend only on the diameter of the domain). Moreover, one could quantify
more precisely how the ‖u‖W2,q(Ω′) norm deteriorates as dist(Ω′, ∂Ω) → 0, but we avoid this

computation for brevity.

We now discuss further possible generalizations. First, we expect that div A ∈ LN(Ω)
could be avoided. In fact, this assumption is used only to trigger the α0-Hölder estimates,
which were obtained for equations in divergence form. Indeed, div A ∈ LN(Ω) is needed
when transforming (1.1) into a divergence form equation. We believe that α0-Hölder estimates
could be obtained directly for (1.1), and for merely continuous A. Note that this question is
related with the Lq-maximal regularity in the critical case q = q0. Despite a statement as in
Theorem 1.3 cannot hold (again by (1.4) it is possible to construct a sequence of un, fn solving
(1.1) such that un → ∞ in W2,q0 while fn remains bounded in Lq0 , see e.g. [8]), it should be
possible to control u in W2,q0 whenever f lies in a set of Lq0 uniformly integrable functions.
This has been shown to hold for subquadratic (γ < 2) problems [12].

We also hope that our strategy can be extended to different settings. Let us mention the
cases where tr

(

A(x)D2u
)

is replaced by a nonlocal diffusion operator, or Du, D2u become the
horizontal gradient and horizontal Hessian respectively induced by a family of Hörmander
vector fields, as in [2]. We stress again that, to achieve full Lq-maximal regularity, the adaption
of the methods in [8] are by no means obvious. On the other hand, the strategy presented
here basically relies on Liouville theorems, which can be obtained in rather different ways. We
also mention that, for parabolic problems, an exhaustive picture on the maximal regularity of
solutions is still missing, despite some partial results appeared in [7].

Another direction would be towards quasilinear equations, modeled for example on the p-
Laplacian operator. The extensive literature on the gradient regularity cannot be summarized
here, see for example the recent survey [17] and [6]. The case with strong first order terms
(in particular beyond the natural growth) appears to be still an open research field [14, 18].
Liouville theorems are known [4], hence we believe that the techniques presented here could
yield new results in this direction.

Finally, a challenging goal would be to address the Hölder regularity for systems of HJ
equations. Indeed, for such kind of systems, it is known that the equivalence between Liouville
results and interior Hölder regularity in general holds only in some restricted sense [16].

Acknowledgements. The authors are members of the Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta
Matematica (INdAM). Work partially supported by the project Vain-Hopes within the program
VALERE-Università degli Studi della Campania “Luigi Vanvitelli”, and by the Portuguese
government through FCT/Portugal under the project PTDC/MAT-PUR/1788/2020.

Notations.

• ‖v‖r;D = ‖v‖Lr(D); [v]α;D = [v]C0,α(D);

• α0 = γ−2
γ−1 ; q0 = N γ−1

γ ; γ′ = γ
γ−1 ; q∗ =

Nq
N−q ;

• C, C′ and so on denote non-negative universal constants, which we need not to specify,
and which may vary from line to line.
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2 Preliminaries

Our starting point is the α0-Hölder estimates. This is a version of the result by Dall’Aglio and
Porretta, simplified for our purposes.

Lemma 2.1 ([9, Thm. 1.1]). Let Ω ⊂ R
N be a bounded Lipschitz domain, satisfying the uniform

interior sphere condition. Assume that γ > 2, f̃ ∈ Lq(Ω), for some q ≥ N
γ′ and that u ∈ W

1,γ
loc (Ω)

satisfies in a distributional sense

−div(a(x, u, Du)) + |Du|γ ≤ f̃ in Ω,

where |a(x, s, ξ)| ≤ β(1 + |ξ|) for some β > 0. Then u is α0-Hölder continuous up to the boundary of
Ω, and there exists a constant K, only depending on γ, q, N, β diam(Ω) and ‖ f‖q, such that

|u(x)− u(x̄)| ≤ K|x − x̄|α0 , for every x, x̄ ∈ Ω.

Remark 2.2. Since
−div (A(x)∇u) = − tr

(

A(x)D2u
)

− b(x) · ∇u,

where b = (div A)T = (∑i ∂iai1, . . . , ∑i ∂iaiN), we infer that if u satisfies (1.1) then it fulfills the
assumptions of Lemma 2.1, as long as A satisfies (AssA) and H is such that

H(x, p) ≥ C|p|γ − C′ in Ω,

for some positive constants C, C′ (in particular this is true under (AssH), because minΩ h > 0).
Indeed, we have, by Young’s inequality,

−div (A(x)∇u) + C|∇u|γ ≤ f + C′ − b · ∇u

≤ f + C′ +
C

2
|∇u|γ + C′′|b|γ

′
,

and Lemma 2.1 applies with f̃ = f + C′ + C′′|div A|γ
′
.

Below we state the local version of the classical linear Calderòn-Zygmund elliptic regularity
result.

Lemma 2.3 ([11, Thm. 9.11, eq. (9.40)]). Let Ω be an open set in R
N and u ∈ W

2,q
loc (Ω) ∩ Lq(Ω),

1 < q < ∞, be a strong solution of

− tr
(

A(x)D2u
)

= g in Ω,

where A satisfies (AssA) and g ∈ Lq(Ω). There exists a constant C, only depending on N, q, λ and Λ,
and δ depending also on the modulus of continuity of A such that, for every ball BR ⊂⊂ Ω with R ≤ δ
and for every 0 < σ < 1,

‖D2u‖q;BσR
≤

C

(1 − σ)2R2

(

R2‖g‖q;BR
+ ‖u‖q;BR

)

.

We also need the following particular case of the Gagliardo-Nirenberg inequality.

Lemma 2.4 ([19]). Let γ > 2, N
γ′ < q < N, α = 2 − N

q . There exist C1, C2 independent of R such

that

‖Dw‖q∗;BR
≤ C1‖D2w‖a

q;BR
[w]1−a

α;BR
+ C2[w]α;BR

, where a = 1 −
q

N
<

1

γ
,

for every w ∈ W
2,q
loc (Ω), and BR ⊂⊂ Ω.

5



Proof. By Remark 1.1 if w ∈ W2,q(Ω) all the above quantities are finite. When R = 1 the
existence of C1, C2 is obtained in [19, Thm. 1′], and in particular assumption (4)′ therein is
fulfilled as

1 − α

2 − α
≤ a

By scaling, it is easy to check that the inequality holds in BR with the same constants.

Finally, we need the following Liouville-type result.

Lemma 2.5. Let A0 be a constant, symmetric and positive definite matrix, γ > 2, h0 be a positive

constant, and w ∈ W
2,q
loc (R

N), q >
N
γ′ , solve

− tr
(

A0D2w
)

+ h0|Dw|γ = 0 in R
N .

Then w is constant.

This result, in case w is C2 and A = Id, is [15, Cor. IV.2] (see also the previous work [20]).
As claimed there, it can be extended to more general situations, like the one we need here.
For the reader’s convenience we provide a proof (which could be generalized also to the range
1 < γ ≤ 2).

Proof. The proof is based on a Bernstein-type argument similar to that used in Theorem IV.1
in [15], with some standard modification to deal with non-divergence equations, see e.g. [10]
or [2]. First observe that, by a standard bootstrap argument (triggered by Remark 1.1), if

w ∈ W
2,q
loc (R

N) solves the above equation then w is actually C3.
For a cut-off function ϕ ∈ D(B1), 0 ≤ ϕ ≤ 1, ϕ(0) = 1, define

z(x) = ξ2(x)|Dw(x)|2, where ξ(x) = ϕ

(

x − x0

R

)

where R ≥ 1 and x0 ∈ R
N . Moreover

I = − tr(A0D2z) + h0γ|Dw|γ−2Dw · Dz.

Since both A0 = (aij) and D2w are symmetric, direct calculations yield (under the convention
of repeated indexes summation)

I = −aij(ξ
2)ij|Dw|2 − 4aij(ξ

2)iwlwl j − 2ξ2aijwliwl j + h0γ|Dw|γDw · D(ξ2).

Now, for suitable constants C > 0, and 0 < λI ≤ A0 ≤ ΛI,

• |Dξ| ≤ C
R ξ1/2, |D2ξ| ≤ C

R2 ;

• aij(ξ
2)ij = aijξξij + aijξiξ j ≥ − C

R2 ξ;

•
∣

∣

∣
aij(ξ

2)iwlwl j

∣

∣

∣
≤ C

R ξ3/2|Dw||D2w| ≤ C′

R2 ξ|Dw|2 + λξ2|D2w|2;

• 2ξ2aijwliwl j ≥ 2λξ2|D2w|2;

• λ|D2w|2 ≥ λ
NΛ2 tr(A2

0) tr((D2w)2) ≥ λ
NΛ2 tr(A0D2w)2 =

λh2
0

NΛ2 |Dw|2γ.
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We obtain

I ≤ C

[

1

R2
ξ|Dw|2 +

1

R
ξ|Dw|γ+1 − 2ξ2|Dw|2γ

]

= C

[

ξ|Dw|2
(

1

R2
− ξ|Dw|2(γ−1)

)

+ ξ|Dw|γ+1

(

1

R
− ξ|Dw|γ−1

)]

≤ C

[

ξ|Dw|2
(

1

R2
− zγ−1

)

+ ξ|Dw|γ+1

(

1

R
− z(γ−1)/2

)]

.

Finally, let xM be a maximum point for z. Then I(xM) ≥ 0 and the previous inequality yields

|Dw(x0)|
2 = z(x0) ≤ z(xM) ≤

1

R2(γ−1)
.

The lemma follows since R ≥ 1 and x0 ∈ R
N are arbitrary.

3 Proof of Theorems 1.2 and 1.3

To prove Theorem 1.2 we develop a blow-up procedure based on a contradiction argument.
Throughout this section we fix

q ∈

(

N

γ′
, N

)

and α = 2 −
N

q
∈ (α0, 1) .

We assume by contradiction the existence of sequences ( fn)n ⊂ Lq(Ω), (un)n ⊂ W2,q(Ω)
satisfying, for every n:

1. − tr
(

A(x)D2un
)

+ H(x, Dun) = fn(x);

2. ‖ fn‖q ≤ M;

3. sup
x̄ 6=x

min{dist(x̄, ∂Ω), dist(x, ∂Ω)}α−α0
|un(x̄)− un(x)|

|x̄ − x|α
=: Ln → +∞ as n → +∞.

Notice that, since W2,q(Ω) →֒ C0,α(Ω) (see Remark 1.1), Ln is finite for every n. Consequently,
there exist sequences (xn)n and (x̄n)n in Ω such that, for every n, xn 6= x̄n, dist(x̄n, ∂Ω) ≤
dist(xn, ∂Ω) and

Ln − 1 ≤ dist(x̄n, ∂Ω)α−α0
|un(x̄n)− un(xn)|

|x̄n − xn|α
≤ Ln.

Writing
rn = |x̄n − xn|, dn = dist(x̄n, ∂Ω) and, w.l.o.g., un(x̄n) = 0

we obtain

Ln − 1 ≤ d
α−α0
n

|un(xn)|

rα
n

≤ Ln (3.1)

(in particular, un(xn) 6= 0 for every n).

Lemma 3.1. There exists K, only depending on the structural constants and M, such that, for every n,

|un(xn)|

r
α0
n

≤ K.

7



Consequently,

dn

rn
→ +∞, rn → 0, |un(xn)| → 0 and

r
β
n

|un(xn)|
→ 0, β > α0,

as n → +∞.

Proof. Recalling that u(x̄n) = 0 the first assertion follows by Lemma 2.1, see also Remark 2.2.
From (3.1) we infer

(

dn

rn

)α−α0

≥ (Ln − 1)
r

α0
n

|un(xn)|
≥

Ln − 1

K

and the lemma follows.

We introduce the blow-up sequence

wn(y) :=
1

|un(xn)|
un(x̄n + rny), y ∈ Ωn :=

Ω − x̄n

rn
.

Of course, wn ∈ W2,q(Ωn), for every n. We first show that, by contruction, Ωn invades the
whole space, and that (wn)n is locally equi-Hölder with exponent α.

Lemma 3.2. Let R > 0 be fixed and BR = BR(0). Then

Ωn ⊃ BR and [wn]α;BR
≤ 2

for n sufficiently large. In particular, wn → w∞ uniformly on compact sets, up to subsequences, and
w∞ is not constant.

Proof. By Lemma 3.1 we have

dist(0, ∂Ωn) = max
y∈∂Ωn

|y| = max
x∈∂Ω

|x − x̄n|

rn
=

dn

rn
≥ R

for n large, and the first assertion follows.
Now let y, y′ ∈ BR ⊂ Ωn, and assume that, up to subsequences, dist(y′, ∂Ωn) ≤ dist(y, ∂Ωn).

Then, writing x = x̄n + rny, x′ = x̄n + rny′ we infer that x′n ∈ BRrn(x̄n), so that

dist(x, ∂Ω) ≥ dist(x′, ∂Ω) ≥ dist(x̄n, ∂Ω)− Rrn = dn − Rrn.

Thus
|un(x)− un(x′)|

|x − x′|α
≤

Ln

dist(x′, ∂Ωn)α−α0
≤

Ln

(dn − Rrn)α−α0
,

whence

|wn(y)− wn(y′)|

|y − y′|α
=

|un(x)− un(x′)|

|x − x′|α
rα

n

|un(xn)|
≤

Ln

(dn − Rrn)α−α0

d
α−α0
n

Ln − 1

by (3.1). Since Ln → +∞ and (by Lemma 3.1) rn = o(dn) as n → +∞, also the second assertion
follows.
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By direct computation it is easy to check that wn solves

− tr
(

An(y)D2wn

)

+
r2

n

|un(xn)|
Hn

(

y,
|un(xn)|

rn
Dwn

)

= gn(y) in Ωn, (3.2)

where

An(y) = A(x̄n + rny), Hn(y, p) = H(x̄n + rny, p), gn(y) =
r2

n

|un(xn)|
fn(x̄n + rny).

In order to pass to the limit in (3.2) we are going to show uniform boundedness in W
2,q
loc , by

means of an iterative argument. The desired regularity is achieved via elliptic estimates and
interpolation. The following argument is inspired by ideas in [1].

Proposition 3.3. Let R > 0, g ∈ Lq(B2R) and v ∈ W2,q(B2R) be such that v(0) = 0,

‖g‖q,B2R
+ [v]α,B2R

≤ c1

∣

∣

∣
tr
(

A(x)D2v(x)
)
∣

∣

∣
≤ c2|Dv(x)|γ + g(x)

a.e. in B2R, for some c1, c2 > 0. Then, there exists K depending on c1, c2, R such that

‖D2v‖q,BR
≤ K.

Proof. First, note that since [v]α,B2R
≤ c1 and v(0) = 0,

‖v‖q;B2R
≤ c1CR

α+ N
q = c1CR2. (3.3)

Let R ≤ ρ ≤ 2R and 0 < σ < 1. Assume first that 2R ≤ δ, δ be as in Lemma 2.3. Applying
such lemma, Hölder’s inequality, and using (3.3) we obtain

‖D2v‖q;Bσρ ≤
C

(1 − σ)2R2

(

R2‖c2|Dv|γ + g‖q;Bρ + ‖v‖q;Bρ

)

≤
C

(1 − σ)2

(

R
γ− N

q (γ−1)
‖Dv‖γ

q∗;Bρ
+ 1

)

.

Therefore, applying Lemma 2.4 we have

‖D2v‖q;Bσρ ≤
C

(1 − σ)2

(

R
γ− N

q (γ−1)
‖D2v‖aγ

q;Bρ
+ R

γ− N
q (γ−1)

+ 1

)

. (3.4)

Now, if ‖D2v‖aγ
q,BR

≤ 1+ R
−γ+ N

q (γ−1)
then there is nothing to prove. Otherwise, (3.4) yields,

for every R ≤ ρ ≤ 2R and 0 < σ < 1,

‖D2v‖q,Bσρ ≤
E

(1 − σ)2
‖D2v‖aγ

q;Bρ
, (3.5)

where E = CR
γ− N

q (γ−1)
, and C is independent of ρ, σ. For k ∈ N we write

ρk = (2 − 2−k)R, 1 − σk+1 =
ρk+1 − ρk

ρk+1
≥ 2−(k+2), φk = log2 ‖D2v‖q;Bρk

> 0.
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Then (3.5) implies, for every k,

φk ≤ log2 E + 2(k + 2) + aγφk+1

and, by induction,

φ0 ≤ (4 + log2 E)
k−1

∑
i=0

(aγ)i + 2
k−1

∑
i=0

i(aγ)i + (aγ)kφk,

for every k. Let k → +∞. Since aγ < 1 and φk ≤ log2 ‖D2v‖q;B2R
< +∞ we obtain

φ0 ≤
4 + log2 E

1 − aγ
+

2

(1 − aγ)2
,

and the conclusion follows by the definitions of φ0 and E.
The case 2R > δ follows by a standard covering argument.

We now apply the previous proposition to the blow-up sequence wn, which solves (3.2).

Lemma 3.4. For every R ≥ 1 there exists a constant CR such that

‖D2wn‖q,BR
≤ CR,

for n sufficiently large.

Proof. Let R ≥ 1 be fixed. By Lemma 3.2, if n is sufficiently large then B2R ⊂ Ωn, whence
wn ∈ W2,q(B2R). We want to apply Proposition 3.3, as

∣

∣

∣
tr
(

An(y)D2wn

)∣

∣

∣
≤

r2
n

|un(xn)|

∣

∣

∣

∣

Hn

(

y,
|un(xn)|

rn
Dwn

)∣

∣

∣

∣

+ |gn(y)| in B2R.

To this aim we notice that, on the one hand, by (AssH) we know that |H(x, p)| ≤ C1|p|
γ + C2,

for some C1, C2. Then Lemma 3.1 yields

∣

∣

∣

∣

r2
n

|un(xn)|
Hn

(

y,
|un(xn)|

rn
Dwn

)∣

∣

∣

∣

≤ C1
|un(xn)|γ−1

r
γ−2
n

|Dwn|
γ + C2

r2
n

|un(xn)|

≤ CKγ−1 [|Dwn|
γ + o(1)] .

On the other hand, by the contradiction assumption and again Lemma 3.1,

‖gn‖q;Ωn =
r

2− N
q

n

|un(xn)|
‖ fn‖q;Ω ≤

rα
n

|un(xn)|
M → 0. (3.6)

Finally, by Lemma 3.2, [wn]α;B2R
≤ 2, hence Proposition 3.3 applies and the assertion follows.

End of the proof of Thm. 1.2. Let R ≥ 1 and n be sufficiently large. By Lemmas 3.4 and 3.2 we
know that (wn)n is uniformly bounded in W2,q(BR) and, by a diagonal procedure, wn → w∞

weakly in W
2,q
loc (R

N).
We want to pass to the limit in (3.2). We already know that gn → 0 in Lq, see equation (3.6).

Moreover, up to subsequences, we can assume x̄n → x̄∞ ∈ Ω, whence (AssA) yields

An(y)D2wn → A∞D2w∞ weakly in L
q
loc , where A∞ = A(x̄∞). (3.7)
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Turning to the hamiltonian term, and taking into account (AssH), we first notice that, since
γq < q∗,

h(x̄n + rny)
|un(xn)|γ−1

r
γ−2
n

|Dwn|
γ → h∞|Dw∞|

γ strongly in L
q
loc, where 0 ≤ h∞ ≤ Kγ−1h(x̄∞)

(recall the definition of K in Lemma 3.1). On the other hand (AssH) implies

r2
n

|un(xn)|
H0

(

x̄n + rny,
|un(xn)|

rn
Dwn

)

≤ C1
|un(xn)|γ1−1

r
γ1−2
n

|Dwn|
γ1 + C2

r2
n

|un(xn)|

≤ C1
r

γ−γ1
n

|un(xn)|γ−γ1
Kγ1−1|Dwn|

γ1 + C2
r2

n

|un(xn)|
→ 0

in L
q
loc, since γ1 < γ (notice that, in (AssH), we can assume w.l.o.g. γ1 > 1). Summing up we

obtain that

r2
n

|un(xn)|
Hn

(

y,
|un(xn)|

rn
Dwn

)

→ h∞|Dw∞|
γ strongly in L

q
loc. (3.8)

Then using (3.2) we obtain that the convergence in (3.7) is actually strong, and finally w∞ ∈

W
2,q
loc (R

N) solves

− tr
(

A∞D2w
)

+ h∞|Dw|γ = 0 in R
N .

Now, in case h∞ > 0, Lemma 2.5 implies that w is constant, in contradiction with Lemma 3.2.
On the other hand, in case h∞ = 0, w∞ is a harmonic function, globally Hölder continuous
with exponent α < 1, which again implies the contradiction w∞ = constant.

We now prove Theorem 1.3, which will be obtained as a straightforward consequence of
Theorem 1.2.

Proof of Thm. 1.3. Assume first that q < N, and fix any Ω′′ such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Then,
Theorem 1.2 yields the bound

[u]α,Ω′′ ≤ C, α = 2 −
N

q
.

The compact set Ω′ can be covered by a finite number of balls Bk = Br(xk), such that Bk
2r ⊂ Ω′′.

On any such ball, Proposition 3.3 applies (to u − u(xk)), so that

‖D2u‖q,Bk ≤ K,

and the conclusion follows. If q ≥ N, one needs a few additional bootstrap steps. Pick
any N γ

γ+1 < q′ < N, and bounds on ‖u‖
W2,q′ ,Ω′′ are obtained as in the previous step. By

Sobolev embeddings, these yield bounds on ‖u‖
W1,(q′)∗ ,Ω′′ , and therefore H(x,∇u) is bounded

in Lp(Ω′′), with p = (q′)∗

γ , which is strictly bigger than N. One now applies Calderón-

Zygmund regularity (see Lemma 2.3) to control u in W2,p, possibly on a smaller set. Since
p > N, u enjoys Lipschitz bounds, and again by Calderón-Zygmund one achieves the desired
W2,q bounds.
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