
Determination of sample size on surrogate model-based 

parameter inverse analysis of a super-high arch dam 

Xi Liu1[0000-0001-7303-367X], Maria Pina Limongelli2[0000-0002-9353-5439], Fei Kang1[0000-1111-

2222-3333]  

1 Dalian University of Technology, Dalian 116024, P. R. China 

2 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy 

mariagiuseppina.limongelli@polimi.it 

 

Abstract. This paper investigates the impact of the sample size on a surrogate 

model in the context of parameter inverse analysis for high arch dams. A deep 

learning-based surrogate model is developed and integrated with Jaya optimiza-

tion algorithm to enhance the computational efficiency and accuracy of the in-

verse analysis. The input variables for the training set of the surrogate model 

are generated by Latin Hypercube Sampling (LHS). The output variables are 

obtained based on a high-precision finite element model calculation. By com-

paring the model accuracy and computation time across different sample sizes 

(ranges from 20 to 200 times the number of input variables), the optimal sample 

size is identified. The study was conducted for the case study of an actual high 

arch dam in China for wich measured data are available. The results indicate 

that a sample size of 100 times the number of input variables achieves a favora-

ble balance between accuracy and computation time.  

Keywords: Sample size, Surrogate Model, Inverse Analysis, Arch Dam, Pa-

rameter Identification. 

1 Introduction 

Materials parameters, such as the elastic modulus of concrete dams, hold significant 

importance in modelling their structural performance and evaluating their structural 

integrity through model updating procedures. The identification of the elastic modulus 

of a dam commonly relies on the utilization of measured displacements and inverse 

analysis techniques, which is essentially an optimization problem. For super high arch 

dams with multi-material zoning, the inversion process is inherently complex, invol-

ving a significant number of parameters, a large sample space, and multiple local 

extremes. To enhance the accuracy and efficiency of the inverse analysis, surrogate 

models are often employed. 

The Kriging model [1], the response surface methodology[2], and neural network-

based models are commonly employed techniques for surrogate modeling. In a recent 

study, the authors proposed a deep learning-based surrogate model for parameter 

inverse analysis [3]. In comparison to the commonly used shallow neural network-
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based surrogate model, the proposed deep network exhibits superior high-dimensional 

data mapping capability and higher accuracy. In that first study, the sample size for 

establishing the surrogate model was set to 10~15 times the dimension of the input 

parameters based on the literature [4]. It is important to note that there is no universal-

ly applicable sample size for all practical applications. Moreover, the number of sam-

ples and their distribution in the parameter space directly affects the simulation effi-

ciency and accuracy of the surrogate model. This paper serves as a continuation of the 

previous work, to further investigate the appropriate setting for the sample size. 

In general, increasing the number of sample points tends to enhance the model fit-

ting performance. However, this improvement comes at the cost of increased compu-

tational complexity and time consumption. In this paper, we aim to investigate the 

relationship between sample size and model prediction accuracy through the analysis 

of an engineering example. Based on the findings, we will provide a recommended 

sample size value, which can serve as a foundation for addressing the parameter in-

verse analysis problem of concrete arch dams with similar characteristics. 

2 Methodology 

2.1 Inverse analysis theory based on measured displacement 

Assuming that the material of the dam and foundation is isotropic and homogeneous, 

the inverse analysis approach relies on the minimization of the distance between 

measured displacements and displacements calculated by a finite element model. The 

distance is quantified by an objective function which is minimized while considering 

prescribed constraints. 
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where J (.) is the objective function to be optimized, E is the vector of ela-

stic/deformation moduli collecting the terms Ej each corresponding to the elastic  

modulus of a portion of the dam-foundation system.  NE is the number of portions of 

the dam: within each of them the elastic modulus is considered constant. The values 

Ej,min and Ej,max are the minimum and maximum value of Ej. ωi is the weight assigned 

to the i-th displacement, 
,h iu

 is the hydrostatic component of the displacement, sepa-

rated from the measured displacement, uh,i is the displacement calculated by FEM, 

and N is the number of locations where displacement is measured. K is the global 

stiffness matrix, which depends on the vector of elastic moduli E, u is the nodal di-

splacement vector collecting the displacement at the N locations, R is the equivalent 

load vector. This study employs a meta-heuristic intelligent optimization algorithm 

called Jaya [5] to solve the optimization problem. This algorithm has been selcted 
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since the capability of Jaya in effectively exploring the search space and attaining the 

optimal solution for the given optimization problem has been empirically verified in 

various engineering optimization problem. 

2.2 CNN-based surrogate model 

The utilization of a surrogate model, as an alternative to finite element calculations, is 

a commonly employed technique for improving the computational efficiency of in-

verse analysis. In this study, an advanced deep learning network is introduced to con-

struct the surrogate model. The adopted architecture is built upon convolutional neu-

ral networks (CNN), and the network structure and hyperparameter settings are pre-

sented in  Table 1. Performance criteria employed to evaluate the proposed CNN 

surrogate model include mean absolute percentage error (MAPE), mean absolute error 

(MAE), mean square root error (RMSE), which can be expressed as: 

1

1
ˆMAPE | ( ) / | 100

n

i i i

i

y y y
n =

= −                                                   (2) 

1

1
ˆMAE

n

i i

i

y y
n =

= −                                                        (3) 

2

1

1
ˆRMSE ( )

n

i i

i

y y
n =

= −                                                     (4) 

where yi is the actual value, ˆ
iy  is the predicted value, n is the number of output. 

Table 1. Network structure and hyperparameter settings of CNN. 

Parameter Set 

Convolutional layers 3 layers, filter size 3*64, 3*128, 3*256 

Activation function Rectified Linear Units (ReLU) 

Fully connected layers 2 layers, size 256 and 10 

Optimizer ADAM 

Maximum number of epochs 100 

Size of the mini batch 32 

Sequence length 50 

Initial learn rate 1e-3 

Learn rate drop period and factor ‘Piecewise’, 0.1 

 

2.3 Sample datasets based on LHS and FEM 

The sample dataset used for the surrogate model comprises two main variables: the 

elastic/deformation modulus and the dam displacement. The elastic/deformation mo-

dulus serves as the input variable, while the dam displacement is considered the out-

put variable. To generate the initial points of the input variables within the parameter 

domain, Latin Hypercube Sampling (LHS) is employed. Subsequently, the output 

Commentato [MGL8]: add some references about this 



4 

variables are obtained from finite element calculations, considering a specific load 

and input variables for the limiting case. 

The determination of the sample size plays a crucial role in achieving accurate pre-

dictions and modeling efficiency for the surrogate model. A small sample size may 

not yield reliable statistical results, while increasing the sample size can improve 

computational accuracy. However, it also introduces a higher computational burden, 

particularly for complex structures and systems, resulting in a significant increase in 

simulation computation time. To optimize the utilization of computational resources 

while ensuring satisfactory accuracy, the approach employed in this paper involves 

initially assessing the performance of the surrogate model using a small sample size. 

Subsequently, the sample size is incrementally increased until the desired accuracy 

requirements are achieved. 

3 Results 

3.1 Description of the concrete arch dam 

The dam is a double-curved arch dam constructed in April 2007. The top elevation of 

the dam reaches 610 meters, while the bottom elevation is at 324.5 meters. The ma-

ximum height of the dam reaches 285.5 meters. The normal storage level is 600 me-

ters. Notably, the main body of the dam is divided into 31 sections, and it is further 

classified into three distinct areas, namely A, B, and C, based on the varying design 

values assigned to the concrete material strength of the dam. The finite element model 

and material zoning of the dam-foundation system are shown in Fig. 1. 

The data collection for horizontal radial displacement involved the selection of 10 

monitoring locations within dam sections 10, 15, and 22. These monitoring locations 

were noted as PL10-2, PL10-3, PL10-5, PL15-1, PL15-2, PL15-4, PL15-5, PL22-1, 

PL22-2, and PL22-4. 
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Fig. 1. FEM and material zoning of the dam-foundation system.  

3.2 Determination of sample size 

Table 2 displays the considered samples of different size. The training set consists of 

20 to 200 times the number of input variables, whereas the test set is set at 25% of the 

training set size. The input variables were generated using LHS technique. Subse-

quently, these variables are input into the FEM to calculate the dam displacements, 

thereby obtaining the output dataset for the surrogate model. The computation time of 

the finite element analysis for varying sample sizes is illustrated in Fig. 2. It is evident 

that the finite element computation time exhibits a primarily linear increase with the 

growth of the sample size. 

Table 2. Sample size setting. 

Sample size Training set Test set Total 

20D 120 30 150 

40D 240 60 300 

60D 360 90 450 

80D 480 120 600 

100D 600 150 750  

150D 900 225 1125  

200D 1200 300 1500 

Note: D is the number of input variables, in this case study D=6. 



6 

 

2.6

4.59

7.19

10.38
11.88

18.32

23.92

150 300 450 600 750 1125 1500
0

5

10

15

20

25

30

C
o
m

p
u
ta

ti
o
n
 t

im
e 

(h
)

Sample size  

Fig. 2. Computation time for different sample size.  

The prediction error of the surrogate models with different sample sizes is shown in 

Table 3 and Fig. 3. The observed trend reveals that the accuracy of the model im-

proves as the sample size increases. Notably, as the sample size reaches 100D (D 

represents the number of variables), the growth rate of accuracy tends to approach 

zero. This suggests that the prediction performance of the model tends to stabilize at 

this point. Therefore, a sample size of 100D is selected for surrogate modeling. 

Table 3. Prediction error of the surrogate models for different sample sizes. 

Dataset 

size 

Training  Test 

MAPE MAE/mm RMSE/mm  MAPE MAE/mm RMSE/mm 

20D 0.1402 0.0222 0.0304  0.3497 0.0586 0.0885 

40D 0.0891 0.0141 0.0197  0.1974 0.0319 0.0431 

60D 0.0837 0.0133 0.0179  0.1497 0.024 0.0328 

80D 0.0650 0.0103 0.0143  0.1094 0.0173 0.0251 

100D 0.0607 0.0095 0.0131  0.0927 0.0149 0.0217 

150D 0.0635 0.0099 0.0138  0.0782 0.0125 0.0173 

200D 0.0586 0.0093 0.0131  0.0720 0.0117 0.0176 

Note: MAPE is the mean absolute percentage error; MAE is the mean absolute error; RMSE is 

the root mean squared error. 
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(a) Training set 
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(b) Test set 

Fig. 3. Prediction error of the surrogate models for different sample sizes. 

3.3 Results of parametric inverse analysis  

The results of parametric inverse analysis are EA=53.541GPa, EB=47.184GPa, 

EC=40.699GPa, E1=36.453GPa, E2=25.414GPa, and E3=43.223GPa. Figure 4 shows 

the iterative process of parameters and mean fitness. The minimal variations in the 

parameters coupled with the small fitness values indicate that the inverse results are 

stable and accurate. Subsequently, the outcomes are utilized as input for the forward 

calculation within the finite element model, yielding the displacement values. The 

comparison between the calculated and the measured displacement is presented in 

Table 4. The results indicate that the maximum relative error is below 1%, thus 

providing substantial evidence for the high accuracy of the inverse analysis results 

obtained through the proposed approach. 

 



8 

0 20 40 60 80 100
25

30

35

40

45

50

55

 EA   EB   EC   E1   E2   E3

E
la

st
ic

/D
ef

o
rm

at
io

n
 m

o
d
u
lu

s 
(G

P
a)

Number of iterations

 

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
 v

al
u
e 

o
f 

fi
tn

es
s

Number of iterations

 

(a)                                                                                       (b) 

Fig. 4. Process of parametric inverse analysis. (a) Parametric evolution process; (b) Fitness evaluation 

process. 

Table 4. Performance of the Jaya-CNN for forward analysis. 

Monitoring 

locations 

Measured 

(mm) 

Calculated 

(mm) 

Absolute error 

(mm) 

Relative error 

(%) 

PL10-2 21.6218 21.5999 0.0219 0.1014 

PL10-3 18.4370 18.3823 0.0547 0.2965 

PL10-5 3.3131 3.2985 0.0146 0.4409 

PL15-1 27.3852 27.2674 0.1178 0.4300 

PL15-2 24.4985 24.3801 0.1184 0.4833 

PL15-4 15.2085 15.0832 0.1253 0.8242 

PL15-5 7.1204 7.1100 0.0104 0.1458 

PL22-1 23.2238 23.0915 0.1323 0.5698 

PL22-2 19.9128 19.8625 0.0503 0.2525 

PL22-4 10.1150 10.0660 0.0490 0.4840 

 

4 Conclusion 

This paper explores the influence of the sample size on a surrogate model for parame-

tric inverse analysis, utilizing a case study of a high arch dam example project. The 

sample size is varied from 20 to 200 times the number of input variables. The results 

reveal that a favorable trade-off between accuracy and computation time is achieved 

when the sample size is 100 times the number of input variables. Based on this sam-

ple size, a deep learning-based surrogate model is proposed for the parametric inverse 

analysis. The efficacy of this proposed approach is validated using measured displa-

cement data, thereby establishing a reliable framework for addressing similar inverse 

problems in super high arch dams. 
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