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Abstract
We present a new algorithm for the design of the connection region between different lattice materials. We solve a Stokes-
type topology optimization problem on a narrow morphing region to smoothly connect two different unit cells. The proposed 
procedure turns out to be effective and provides a local re-design of the materials, leading to a very mild modification of the 
mechanical behavior characterizing the original lattices. The robustness of the algorithm is assessed in terms of sensitivity 
of the final layout to different parameters. Both the cases of Cartesian and non-Cartesian morphing regions are successfully 
investigated.

Keywords  Lattice materials · Topology optimization · Stokes flow · Anisotropic mesh adaptation

1  Introduction

Cellular materials, commonly known as metamaterials, are 
artificial structures characterized by the presence of distrib-
uted voids in the volume. In particular, structures exhibiting 
a regular and periodic distribution of voids are referred to 
as lattice materials. The topology characterizing the Refer-
ence Volume Element (RVE), namely the unit cell that is 
periodically distributed, affects the macroscopic material 
as a whole. Indeed, different microscopic topologies endow 
lattices with distinct physical properties. For instance, many 
lattice materials try to reproduce behaviors which are com-
monly observed in nature (e.g., wood, sponges, bones), 
while other microstructural designs aim to mimic uncom-
mon physical characteristics (e.g., auxetic materials). The 
proposal of newly conceived lattices is supported also by the 
spreading of additive manufacturing (AM) techniques, such 
as 3D printing Thompson et al. (2016).

Lattices are mainly designed via two approaches, either 
by trial-and-error paradigms to reproduce desired patterns 
or by setting suitable optimization problems to guide a rig-
orous design process. In the second case, inverse homog-
enization techniques are employed to architect the material 
distribution in the RVE guaranteeing target properties at the 
homogenized macroscopic scale Andreassen and Andreasen 
(2014); Allaire et al. (2019); and Sigmund (1994).

In some contexts, it is advisible to carry out a multi-
scale and/or multimaterial design strategy Rodrigues et al. 
(2002); Sanders et al. (2021); Arabnejad Khanoki and Pasini 
(2012), for instance, in the optimization of components both 
at a macroscopic (i.e., visible design) and at a microscopic 
level (i.e., infill characterization), to ensure optimal struc-
tural response with respect to some quantities of interest. In 
practice, multiscale optimization resorts to lattice materi-
als for the optimal distribution of the microstructured infill 
and ends up with the identification of several regions inside 
the macroscopic domain where different materials should 
be included. This scenario offers two approaches. On the 
one hand, the designer can allocate a single-cellular mate-
rial (i.e., a single topology) whose structural members are 
appropriately sized in different regions of the macroscopic 
domain. We associate this framework with functionally 
graded materials (FGMs) Radman et al. (2013); Panesar 
et al. (2018). On the other hand, it is possible to resort to 
lattices characterized by different RVE material distribution 
(i.e., different topologies), thus making the microscopic infill 
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spatially varying in topology and characteristics. The latter 
approach guarantees more flexibility in the optimal design 
process as it localizes the use of different materials and, as a 
consequence, locally diversifies the structural behavior Gao 
et al. (2019); Coelho et al. (2008); and Xia and Breitkopf 
(2014).

FGMs and multiple-lattice paradigms massively differ in 
terms of strategies to deal with heterogeneous unit cells. 
FGMs exhibit infill patterns which are essentially well-con-
nected due to homogeneity of the involved RVEs. Indeed, 
the size variation across the domain does not represent a 
strong issue with a view to manufacturing. Vice versa, when 
resorting to different microscopic unit cells, two adjacent 
RVEs are, in general, only partially matching or completely 
non-matching, thus leading to failing of designs, unfeasible 
manufacture, and to physics-related issues, such as unwanted 
stress concentration Du et al. (2018). These drawbacks have 
to be properly tackled and have been addressed in several 
ways in the recent literature. In Cramer et al. (2016) and 
Wang et al. (2017), the authors resort to an approach based 
on an actual interpolation between two geometries. As an 
alternative, in Zhou and Li (2008); Radman et al. (2013); 
Li et al. (2018); Zhou et al. (2019); Zobaer and Sutradhar 
(2020); and Liu et al. (2022), the transition between non-
matching materials is tackled according to a graded frame-
work, namely, by introducing additional unit cells that 
implement a progressive morphing of one cell to the other. 
In general, several cells are involved in such a morphing. 
Other viable approaches perform a concurrent multiscale 
topology optimization with explicit matching conditions 
as a constraint, thus designing at the same time both the 
macro- and the microscale while enforcing the requested 
connectivity Schumacher et al. (2015); Du et al. (2018); 
Garner et al. (2019); and Liu et al. (2020). This solution 
is effective, yet computationally heavy as it involves many 
iterations between the two scales.

In this paper, we propose a new methodology, named 
CONFLUENCE (CONnection by FLUids of differENt 
CElls), to join different RVEs, which relies on a SIMP-based 
topology optimization process for fluids Borrvall and Peters-
son (2003). Starting from two different adjacent unit cells, 
we identify a morphing region straddling the common side 
(see Fig. 1 for a sketch), where we solve a Stokes-based 
topology optimization, properly constrained by the mate-
rial distribution in the RVEs to be merged. The design of 
the matching region is enriched by a customized selection 
of the computational mesh based on the algorithm SIMP 
with AnisoTropic mesh adaptivitY (SIMPATY) proposed in 
Micheletti et al. (2019) and Ferro et al. (2020c).

CONFLUENCE algorithm is characterized by two main 
good features. It has a very localized impact on the cell 

design since it acts only in a narrow neighborhood of the 
side separating the different lattices, in contrast to Zhou 
and Li (2008); Radman et al. (2013); Li et al. (2018); Zhou 
et al. (2019); Zobaer and Sutradhar (2020); and Liu et al. 
(2022). Moreover, the mesh adaptation algorithm ensures 
to sharply describe the density across the material/void 
interface, thus limiting the post-processing phase typical of 
standard design tools. These features do not strongly affect 
the original mechanical performance of the joint lattices, 
ensure a limited computational effort to manage the match-
ing design, and essentially preserve the manufacturability 
characterizing the considered lattice materials.

The paper is organized as follows. Section 2 represents 
the core of the work since providing the new fluid-based 
methodology to connect diverse lattices, together with the 
corresponding algorithm. In Sect. 3, we assess CONFLU-
ENCE algorithm on an extensive bunch of test cases, by 
varying the topology of the considered lattices. Moreover, 
we investigate the sensitivity of the procedure with respect 
to the parameters involved in the cell morphing. Section 4 is 
devoted to an investigation of the mechanical performance of 
the joint lattices, with a particular attention to stress distribu-
tion and localization. Some conclusions are finally drawn in 
the last section with a view to future perspectives.

2 � CONFLUENCE algorithm

Connectivity issues among different lattices with non-
matching interfaces typically arise when materials char-
acterized by diverse topologies are alternated inside the 
same component. We consider two adjacent squared and 
periodic RVEs sharing one edge. The goal is to set a 
design procedure to join different lattices in a continuous 
and smooth fashion, by modifying the original topologies 
in a narrow neighborhood of the common side that we 
name morphing region. To this end, we solve in such an 
area a density-based topology optimization problem. In 
particular, we consider a fluid-type problem completed 

Fig. 1   CONFLUENCE algorithm. Sketch of the morphing region 
when merging different RVEs
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with appropriate boundary conditions on the velocity pro-
file and on the density in order to be compliant with the 
original topologies of the matched lattices. Throughout 
the paper, standard notations for the function spaces are 
employed Ern and Guermond (2004).

2.1 � Stokes flow‑driven topology optimization

We consider a flow design problem which describes the dis-
tribution of porous and impermeable material in a domain 
Y, here coinciding with the morphing region. In more detail, 
the design phase is driven by a Stokes-type equation, sub-
ject to given constraints and targeting a goal functional 
Borrvall and Petersson (2003). Following a density-based 
approach, we resort to the density (or design) variable 
� ∈ L∞(Y , [0, 1]) , which identifies the topology under opti-
mization. We associate � = 0 with the impermeable material 
(i.e., the solid), whereas � = 1 characterizes the fully porous 
regions (i.e., the fluid).

To clearly formalize the constrained optimization prob-
lem, we first introduce the weak form of the (generalized) 
Stokes equation for the velocity, � , and the pressure, p, i.e.,

Find (�, p) ∈ U� × Q such that

where

are the Stokes bilinear ( a(⋅, ⋅) and b(⋅, ⋅) ) and lin-
ear ( F(⋅) ) forms, for any � ∈ U� , � ∈ U  , and for any 
r ∈ Q . Here, we are assuming to close problem (1) with 
a Dirichlet data, � = � , for the velocity on the bound-
ary portion ΓD ⊂ 𝜕Y  , so that function spaces U� , U and 
Q can be selected as U� = {� ∈ [H1(Y)]2, �|ΓD

= �} , 
U = {� ∈ [H1(Y)]2, �|ΓD

= �} , and Q = L2(Y) . Moreover, 
� ∈ [L2(Y)]2 denotes an external forcing term, � ∈ ℝ+ the 
diffusivity of the fluid, and � ∈ ℝ+ the inverse permeability 
of the considered medium.

In Borrvall and Petersson (2003), the bilinear form (2) is 
modified to account for the presence of the design variable. 
Thus, we replace the form a(⋅, ⋅) with

where the constant inverse permeability � is now substituted 
by the function of �

(1)
{

a(�, �) + b(�, p) = F(�) ∀� ∈ U,

b(�, q) = 0 ∀q ∈ Q,

(2)
a(�, �) = ∫Y

�∇� ∶ ∇�dY + ∫Y

�� ⋅ �dY ,

b(�, r) = ∫Y

−r∇ ⋅ �dY , F(�) = ∫Y

� ⋅ �dY ,

a�(�, �) = ∫Y

�∇� ∶ ∇�dY + ∫Y

��� ⋅ �dY ,

with � and � ∈ ℝ+ the upper and lower bound for the inverse 
permeability, respectively. The scalar 𝜙 > 0 is a penaliza-
tion parameter, which strongly promotes a sharp alternation 
of porous and impermeable materials for large values. We 
remark that �� is equal to � for � = 0 and to � for � = 1 . 
Thus, the regions characterized by � = 0 have high inverse 
permeability (i.e., low permeability) and correspond to solid 
material; vice versa regions where � = 1 are associated with 
the fluid.

The topology optimization problem for the allocation of 
solid and fluid regions reads

where J(�, p, �) is the selected objective functional to be 
minimized; the two equations enforce the Stokes regime, 
with � ∈ U� and p ∈ Q ; the first inequality prescribes the 
maximum fraction �|Y| of fluid phase to be allocated in the 
domain Y, with � ∈ (0, 1) and |Y| the domain measure; the 
last box constraint keeps trace of the range prescribed to the 
design variable � . In the sequel, we adopt the total potential 
energy of the fluid

as objective functional. We observe that problem (4) does 
not suffer from uniqueness issues Borrvall and Petersson 
(2003) (as well as from drawbacks related to the numerical 
approximation), differently from the case when the optimiza-
tion process is constrained by the linear elasticity equation 
Bendsøe and Sigmund (2004).

2.2 � A fluid‑based approach to connect 
non‑matching lattices

We exploit the topology optimization problem pre-
sented in the previous section to design the transition 
area from one lattice material to an adjacent one. As a 
reference setting, we consider two design domains, YL 
and YR , which share the common vertical (entire) side 
E = {(xE, y) ∶ yl ≤ y ≤ yu} , with xE , yl , and yu ∈ ℝ (notice 

(3)�� = ��(�) = � + (� − �) �
1 + �

� + �
,

(4)min
�∈L∞(Y)

J(�, p, �) ∶

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

a�(�, �) + b(�, p) = F(�)

∀� ∈ U

b(�, q) = 0 ∀q ∈ Q

�
Y

�dY ≤ ��Y�

0 ≤ � ≤ 1,

(5)J(�, p, �) =
1

2
a�(�, �) − F(�),
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that E can be aligned with any axis, either x or y). The opti-
mization process takes place in the rectangular morphing 
region Y = (xE + s − �∕2, xE + s + �∕2) × (yl, yu) , with s ∈ ℝ 
the shift and � ∈ ℝ+ the width of the morphing region (see 
Fig. 2).

In order to merge the two lattices associated with YL and 
YR , problem (4) is solved in the morphing region, after pre-
scribing ad hoc boundary conditions on � and � . We label 
the two vertical sides of the morphing region boundary �Y  
by ΓL = �Y ∩ YL and ΓR = �Y ∩ YR , which are instrumental 
to set the minimization in problem (4).

The proposed procedure can be itemized as follows: 

	 (i)	 We read as an input the densities �L ∈ L∞(YL, [0, 1]) 
and �R ∈ L∞(YR, [0, 1]) identifying the original unit 
cell topologies to be merged;

	 (ii)	 We solve the generalized Stokes problems. Find 
(�i, pi) ∈ Ui × Qi such that 

w h e r e  i = L,R  ,  Ui = {� ∈ [H1(Yi)]
2} ,  Qi =

{q ∈ L2(Yi)} , and Fi(�) = ∫
Yi
�i ⋅ �dYi , with �i a forc-

ing term orthogonal to the side E;
	 (iii)	 We define the boundary conditions to the optimiza-

tion problem (4) by defining the two Dirichlet data 
�in = �L|ΓL

 and �out = �R|ΓR
;

	 (iv)	 We solve in the morphing region the topology opti-
mization problem 

(6)
{

a�i(�i, �) + b(�, pi) = Fi(�) ∀� ∈ Ui,

b(�i, q) = 0 ∀q ∈ Qi,

(7)min
�∈L∞(Y)

J(�, p, �) ∶

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a�(�, �) + b(�, p) = F(�)

∀� ∈ W

b(�, q) = 0 ∀q ∈ Q

��ΓL
= �L�ΓL

��ΓR
= �R�ΓR

�Y

�dY ≤ ��Y�
0 ≤ � ≤ 1,

where W = {� ∈ [H1

#
(Y)]2 ∶ �|ΓL∪ΓR

= �}, with 
� ∈ W� = {� ∈ [H1

#
(Y)]2 ∶ �|ΓL

= �in,�|ΓR
= �out} 

and where H1

#
(Y) is the space of the H1(Y)-functions 

which are periodic along �Y ⧵ (ΓL ∪ ΓR).
We remark that the data assigned to the density on ΓL and 
ΓR and the essential boundary conditions characterizing 
the space W� have a different, albeit complementary, role 
in the design of the transition topology. In particular, the 
former enforce the density continuity along the vertical 
sides of the morphing region, acting as a gluing expedi-
ent; the latter impose a smooth morphing between the 
original and the transition topologies, so that no sharp 
features characterize the junction. As confirmed by the 
numerical assessment, these boundary assignments have 
to be simultaneously imposed in order to guarantee a 
seamless transition design.

2.3 � Numerical discretization

The numerical implementation of problem (7) is tackled 
in a continuous finite element setting Ern and Guermond 
(2004). For this purpose, we introduce the computational 
mesh Th(Ω) = {K} , a conforming triangular tessellation 
associated with the generic domain Ω , and the correspond-
ing discrete space of continuous piecewise polynomials of 
degree s ∈ ℕ+,

Within this framework, we approximate problems (6) to dis-
cretize �L and �R instrumental to assign the boundary data 
in the discrete counterpart of problem (7). Thus, we solve

Find (�h,i, ph,i) ∈ Uh,i × Qh,i such that

with Uh,i = [X2

h
(Yi)]

2 and Qh,i = X1

h
(Yi) and with �h,i the dis-

crete density in X1

h
(Yi) , for i = L,R . The spaces Uh,i and Qh,i 

ensure the inf–sup condition, i.e., the well posedness of 
problems (8) and the absence of spurious oscillations in the 
discrete solutions (�h,i, ph,i) Boffi et al. (2013).

Successively, problem (7) is tackled by resorting to a gra-
dient-based optimizer for the minimization of the functional 
and to a finite element scheme to approximate the state equa-
tions. The discrete counterpart of the topology optimization 
problem (7) reads

Xs
h
(Ω) =

{
v ∈ C0(Ω) ∶ v|K ∈ ℙs(K) ∀K ∈ Th(Ω)

}
.

(8)
{

a�h,i(�h,i, �h) + b(�h, ph,i) = Fi(�h) ∀�h ∈ Uh,i,

b(�h,i, qh) = 0 ∀qh ∈ Qh,i,

Fig. 2   Morphing region. Definition of the main geometric parameters
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with Vh = X1

#,h
(Y) , Qh = X1

h
(Y) , and Wh = {�h ∈ [X2

#,h
(Y)]2,

�|Γi
= �, i = L,R} , where �h ∈ W�,h = {�h ∈ [X2

#,h
(Y)]2,

�h|ΓL
= �in,h,�h|ΓR

= �out,h} , with �in,h and �out,h suitable 
finite element approximations in [X2

h
(Y)]2 of the data �in and 

�out and where symbol # refers to the periodicity of the func-
tions along �Y ⧵ (ΓL ∪ ΓR).

We solve problem (9) by means of a variant of the SIM-
PATY (SIMP with Anisotropic adaptiviTY) algorithm intro-
duced in Micheletti et al. (2019) and successfully validated 
in different application settings Ferro et al. (2020a, b, c, 
2022); di Cristofaro et al. (2020); and Ferro et al. (2019). 
SIMPATY algorithm efficiently combines the well-estab-
lished SIMP method for topology optimization Bendsøe and 
Sigmund (2004) with an advanced mesh adaptation tech-
nique. An a posteriori estimator for the discretization error 
associated with the density variable is exploited to drive 
a metric-based mesh adaptation process Frey and George 
(2008). In particular, the authors resort to an anisotropic 
counterpart [formulated in Micheletti and Perotto (2010)] 
of the well-known recovery-based error analysis proposed 
by Zienkiewicz and Zhu (1987, 1992). The employment 
of anisotropic meshes allows to strike a balance between 
accuracy and efficiency as it is consolidated in the literature 
Dompierre et al. (2002); Perotto and Formaggia (2015); and 
Sevilla et al. (2022).

As a matter of fact, SIMPATY algorithm ensures to 
design high-quality optimized layouts, characterized by 
smooth boundaries and free-form features, while healing 
some drawbacks typical of density-based topology optimiza-
tion approaches Lazarov and Sigmund (2011) and Sigmund 
and Petersson (1998), such as the staircase effect and the 
presence of too thin details, unpractical for manufacturing. 
Successively, in order to make mechanical analysis free from 
any bias induced by stretched elements, a hybrid version 
of SIMPATY algorithm has been proposed in Ferro et al. 
(2020a). Here, the idea is to prescribe sufficiently small iso-
tropic elements in correspondence with the internal portion 
of the structures ( � ≃ 1 ), while preserving deformed trian-
gles in order to sharply detect the layout boundary.

(9)min
�h∈Vh

J(�h, ph, �h) ∶

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a�h(�h, �h)+ b(�h, ph)

= F(�h) ∀�h ∈ Wh

b(�h, qh) = 0 ∀qh ∈ Qh

�h�ΓL
= �h,L�ΓL

�h�ΓR
= �h,R�ΓR

�Y

�hdY ≤ ��Y�
0 ≤ �h ≤ 1,

Although topology optimization based on a Stokes flow 
exhibits, in general, few drawbacks related to the selected 
grid, we solve problem (9) on a sequence of anisotropic 
adapted meshes to benefit of the computational advantages 
led by such a technique. The whole procedure is listed in the 
algorithm below.

The first phase which occurs is a pre-processing step 
(lines 2–6). In particular, the left and right RVEs are read 
by function ������ in terms of density function and design 
domain (lines 2–3). Successively, the auxiliary problems in 
(8) are solved to compute the approximations �h,L and �h,R 
(lines 4–5), which, together with the associated densities, 
�h,L and �h,R , are employed to assemble the matching condi-
tions, �� , on ΓL and ΓR through the function ������ (line 6).

The main optimization loop consists of lines 7–12. At each 
iteration � , �������� performs the topology optimization in 
(9) in a �� number of iterations. Such routine is fed with the 
goal functional, J  , the associated gradient with respect to the 
density, ∇�J  , the volume fraction � , the matching conditions 
�� on ΓL and ΓR , the distribution of the density at the previ-
ous iteration, ��

h
 , and the tolerance ���� to break the optimi-

zation (line 8). In particular, with reference to the gradient 
of the functional ∇�J  , we employ a standard Lagrangian 
approach Lions (1971). As an alternative, one may resort to 
automatic differentiation Margossian (2019).
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Finally, the optimized density is employed to drive an 
anisotropic mesh adaptation (line 9). In particular, function 
����� minimizes the number of the mesh elements for a 
fixed accuracy ��� on the discretization error for the density. 
To this aim, the size, shape, and orientation of the triangles 
are properly tuned, jointly with an error equidistribution 
criterion (we refer the interested reader to Micheletti and 
Perotto (2006); Micheletti et al. (2010) for all the details). 
Two criteria constrain the while loop, the first one in order 
to control the stagnation of the mesh cardinality and the 
second one to ensure a termination within a ���� number 
of iterations.

The algorithm eventually delivers the final layout �Y that 
describes the optimized topology in the morphing region Y; 
the whole design domain Ω◦ , with Ω = YL ∪ YR and where ◦ 
denotes the internal part of the associated set; the distribu-
tion of the density on Ω◦ , given by

The global density, �LYR , and domain, Ω◦ , are assembled by 
function ���� in line 14.

�LYR(�) =

⎧
⎪⎨⎪⎩

�h,L(�) � ∈ YL ⧵ Y

�(�) � ∈ Y

�h,R(�) � ∈ YR ⧵ Y .

3 � Results

The effectiveness of CONFLUENCE algorithm for con-
necting non-matching lattice materials is here investi-
gated, with emphasis on the role played by the main 
parameters involved in the design strategy in (9). As a 
benchmark scenario, we join two RVEs, starting from 
the simplified configuration in Fig. 2 where the common 
edge E  is vertical and the morphing region does coin-
cide with a Cartesian domain. As different geometries to 
be connected, we consider the four topologies in Fig. 3 
associated with the square (0, 1)2 . These unit cells are 
selected according to a twofold goal. Indeed, we assess 
CONFLUENCE on topologies available in the literature 
(geometries A and D), as well as on free-form layouts 
(geometries B and C) drawn from scratch by the exten-
sion of the SIMPATY algorithm to the design of lattice 
materials Ferro et al. (2020c). Such design tool, named 
microSIMPATY algorithm, relies on SIMPATY proce-
dure and on a standard inverse homogenization approach 
to propose new unit cells which confer prescribed 
(homogenized) physical properties at the macroscale. 
For instance, geometries B and C have been designed in 
a thermo-elastic multiobjective context, to ensure a high 
shear stiffness while exhibiting an isotropic (geometry 
B) or an anisotropic (geometry C) thermal and stiffness 
behavior Gavazzoni et al. (2022).

The unit cells in Fig. 3 are characterized by poor one-
to-one connectivity and do not show any trivial matching. 
This allows us to verify the performances and the ductility 
of CONFLUENCE algorithm on unit cells which share a 
portion of material along the common interface or which 
are completely disconnected.

For all the test configurations in this section, we pre-
serve the same choices for some of the quantities tuning 
CONFLUENCE morphing. We start the optimization prob-
lem on an initial unstructured grid, T0

h
 , characterized by a 

uniform spacing h ≃ 1∕60 and selecting an initial constant 
��
h
= 0.5 ; we set the penalization parameter � to 0.6, the 

diffusivity � to 1, the lower bound for the inverse perme-
ability � to 2.5� ⋅ 10−4 , � to [1, 0]T , ���� to 1.5 ⋅ 10−2 , ��� 
to 2.5 ⋅ 10−6 , ���� to 10−3 , and ���� to 50. Moreover, to 
perform the connection between two heterogeneous cells, 
we identify YL with the unit square (−1, 0) × (0, 1) and YR 
with the unit square (0, 1)2 . Then, the volume fraction � in 
(7) is chosen as

in order to preserve the quantity of material in Y during the 
morphing process. Finally, concerning function �������� in 
Algorithm 1, we select the gradient-based optimizer package 

� =
1

|Y|
(
∫YL∩Y

�h,LdY + ∫YR∩Y

�h,RdY

)
,

Fig. 3   Geometries used to assess the effectiveness of CONFLUENCE 
algorithm
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IPOPT Wächter and Biegler (2006), while function ����� 
resorts to the metric-based mesh generator BAMG (Bidi-
mensional Anisotropic Mesh Generator). Both these compu-
tational tools are embedded in ������� Hecht (2012) which 
is the solver we adopt.

Matching geometries A and B
The first scenario used to assess CONFLUENCE mor-

phing involves geometries A (on the left) and B (on the 
right). As shown in Fig. 4 (top), the cells to be joined have 
a null intersection along the common interface E . This fea-
ture challenges the proposed procedure to identify the new 
topology in the morphing region. We select Y so that s = 0 
(i.e., the region is centered at E ) and � = 0.5 (see Fig. 2). 
Finally, for this configuration, we set � = 2.5� ⋅ 105.

Figure 4 (bottom) displays the output of CONFLUENCE 
algorithm. In region Y we can still recognize the initial topol-
ogy of both the geometries, despite the complete absence of 
connectivity before morphing.

Figure 5 (left) shows the 4 × 4 two-material ensemble. 
The panel on the right highlights the smoothness character-
izing the distribution of �Y together with the sharpness of 
the solid/void interface. This is the result of the anisotropic 
mesh adaptation process which selects the elements in an 
optimal way, in order to match the directional features of 
the design. We remark that an isotropic mesh is employed 
to discretize the internal part of the junction, according to 
the hybrid mesh generation paradigm described in Sect. 2.3.

We exploit this case study first to investigate the sensitiv-
ity of �Y to the value selected for � . To this goal, we make 
two different choices for such parameter, namely � = 0.3 and 
� = 0.7 , while preserving s = 0 . In Fig. 6, we provide the 
corresponding results. A cross-comparison among the three 
layouts in Figs. 4 (bottom) and 6 reveals that, for increasing 
values of the morphing region width, the designs miss the 
features characterizing the original geometries. Thus, for a 
too small value for � , we can lose some structural property of 
interest. For instance, in the specific case of the top panel in 
Fig. 6, the right diagonal strut of geometry B is not modified 
by the morphing process so that the junction lacks horizon-
tal connectivity. On the other hand, the connection along 
the vertical direction is reached only through the periodic 
replication of the density �LYR . On the contrary, the choice 
� = 0.7 leads to ignore the upward strut in cell B (bottom 
panel in Fig. 6) and to drastically change the original struc-
tural properties characterizing the two RVEs.

On the same cell configuration, we analyze the different 
roles played by the matching conditions on the density and on 
the velocity along ΓL and ΓR . The enlarged view on the left 
in Fig. 7 provides the reference layout when both the match-
ing conditions are applied. It is evident that such constraints 

Fig. 4   Matching A–B. Initial (top) and final (bottom) density distri-
bution provided by CONFLUENCE in Ω◦

Fig. 5   Matching A–B. 4 × 4 two-material ensemble (left); detail of 
the density distribution �Y and corresponding anisotropic adapted 
mesh (right) in Y 

Fig. 6   Matching A–B. Sensitivity of �Y to � : � = 0.3 (top) and � = 0.7 
(bottom)
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ensure continuity as well as smoothness to the final density. On 
the contrary, when we neglect the requirements (9)3 - (9)4 on 
the final topology, spurious values for �Y arise, compromising 
the global continuity of �LYR (see the center enlarged view). 
On the other hand, the removal of the matching condition on 
the velocity characterizing space W�,h may yield sharp corners 
at the junction, thus degrading the global smoothness of the 
material in a neighborhood of ΓL ∪ ΓR . For instance, in the 
enlarged view on the right in Fig. 7, we only impose the match-
ing of the x-component of the velocities �h along ΓL and ΓR.

This generates a small kink, which can be ascribed to the 
unconstrained behavior allowed to the design procedure along 
the vertical direction (Fig. 8 highlights the relevance of both 
the components of fields �h,L and �h,R along ΓL and ΓR).

Matching geometries B and D
We address the morphing from geometry B to geometry D 

in order to tackle the non-matching material at the common 
interface. The outcome of CONFLUENCE algorithm, for 
� = 2.5� ⋅ 105 , � = 0.43 , and s = 0 , is shown in Fig. 9. The 
effect of the morphing is to horizontally bend the diagonal 
struts of cell D in order to join the straight trusses in cell B.

In this scenario, we focus on the performance of the opti-
mization and on the evolution of the mesh elements through-
out the adaptation process. To this aim, we plot the trend of 
J  in (5) and of the constraint C = |Y|−1 ∫

Y
�hdY  in (9), as a 

function of the cumulative number 
∑

� �� of IPOPT iterations 
[see Fig. 10 (top)]. Both the functional and the constraint 
quickly converge, except for mild oscillations. A different 

behavior characterizes the cardinality, #Th , of the compu-
tational mesh as a function of index � . Figure 10 (bottom) 
exhibits the evolution typical of a mesh adaptation process, 
which includes an initial abrupt increment of the cardinality, 
followed by a gradual reduction of the number of triangles 
until stagnation. The plots in Fig. 10 highlight the twofold 
control performed by the tolerances ���� and ���� . Indeed, 
the tolerance ���� is guaranteed already on the first adapted 
mesh. On the contrary, the stagnation of the relative mesh 
cardinality within tolerance ���� is ensured only after 5 
adaptation steps (i.e., 5 complete while loops). The outcome 
of this coupled check guarantees an optimized solution both 
from a structural and a computational viewpoint.

On this configuration, we carry out a sensitivity analysis 
of the CONFLUENCE output with respect to the value for 
� in (3). In particular, we adopt a larger and a smaller value 
for � with respect to the one considered in Fig. 9. In Fig. 11, 
we provide the distribution of �LYR for � = 2.5� ⋅ 104 (top) 
and � = 2.5� ⋅ 106 (bottom).

We do not detect a strong dependence of the final topol-
ogy on parameter � . However, a reduced permeability (i.e., 

Fig. 7   Matching A–B. Sensitivity of �Y to the matching conditions on the density and velocity: reference configuration (enlarged view on the 
left); �Y distribution when removing the matching of the density (center enlarged view) and of the velocity (enlarged view on the right)

Fig. 8   Matching A–B. Velocity fields �h,L in YL (left) and �h,R in YR 
(right), where ΓL and ΓR are red-highlighted

Fig. 9   Matching B–D. Initial (top) and final (bottom) density distri-
bution provided by CONFLUENCE in Ω◦
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a larger value for � ) seems to hinder the Stokes flow-driven 
topology design, as confirmed by the wavy contour of the 
optimized density in the junction area (compare top and bot-
tom panels in Fig. 11).

Finally, we exploit this case study to investigate the 
computational performances of CONFLUENCE1. Table 1 

collects the results of such an analysis. In particular, we pro-
vide the running CPU time for the overall CONFLUENCE 
process, together with the partial contributions necessary to 
(i) pre-process the geometry, solve the auxiliary problems 
in (8), and plot the results (routines ������ , �����_���� , 
and ������ ); (ii) run the optimization in (9) (routine 
�������� ); and (iii) adapt the mesh (routine �����).

We highlight that the algorithm takes approximately 3 
minutes to converge to the solution in Fig. 9. The pre-
processing is a cheap phase which lasts around 17s, cor-
responding to about 9% of the overall CPU time. The most 
expensive code block is represented by the optimization, 
which approximately takes 90% of the total running time 
(173.7s). It is interesting to observe that the algorithm 
spends almost 90s (about 50% of the total time) for opti-
mizing the geometry on the first non-adapted mesh ( � = 0 ). 
Vice versa, the time is drastically reduced up to 28s when 
the optimization is carried out on an adapted grid ( � > 0 ). 
This remark emphasizes the benefits led by mesh adapta-
tion in terms of efficiency of the algorithm. The compu-
tational gain is further confirmed by the cheapness of the 
anisotropic mesh adaptation module, which amounts only 
to 1% of the total CPU time.

Matching geometries B and C
The last matching that we consider combines two unit 

cells, which share a portion of material along the common 
interface E , namely geometry B (on the left) and geometry C 
(on the right). For this purpose, we set � = 2.5� ⋅ 105 , s = 0 , 
and � = 0.4 . We show the result of the morphing associated 
with such configuration in Fig. 12. The topology identified in 
Ω◦ is characterized by long, hanging, and horizontal struts, 
which can be sub-optimal in view of a mechanical analysis.

These two geometries are adopted to evaluate the 
impact of the shift parameter s onto the output of CON-
FLUENCE algorithm. This investigation is performed by 
setting in the previous configuration the values s = −0.12 
and s = 0.12 . Figure 13 collects the results of this analysis. 
The position of the interfaces ΓL and ΓR turns out to be 
crucial in order to guarantee the generation of topologies 
suited for practical applications. As a matter of fact, the 

Fig. 10   Matching B–D. Convergence history of the goal functional J  
and of the constraint C as a function of the cumulative IPOPT itera-
tions (top); mesh cardinality evolution across the adaptation process 
(bottom). The vertical-dashed segments align the two panels in terms 
of the iteration index �

Fig. 11   Matching B–D. Sensitivity of �Y to the upper bound � for the 
inverse permeability � : � = 2.5� ⋅ 10

4 (top) and � = 2.5� ⋅ 10
6 (bot-

tom)

Table 1   Matching B–D - CONFLUENCE computational performances: 
overall, pre-processing, optimization, and mesh adaptation times

CPU time (s) %

Total 192.8 –
Pre-processing 17.1 8.87
Optimization 173.7 90.09
Mesh adaptation 2.0 1.04

1  The simulation is run on a standard computer with 16 GB of RAM, 
a CPU with 6 logical cores and a maximum frequency of 3 GHz.
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choice s = −0.12 [see Fig. 13 (top)] suffers from the simi-
lar drawbacks as the design in Fig. 12 (i.e., the presence 
of vertically unsupported trusses). Conversely, for s = 0.12 
[Fig. 13 (bottom)], the two cells are well connected, with-
out any artifacts which may deteriorate the mechanical 
performance. These considerations support the choice of 
this last scenario as the best configuration for the mechani-
cal analysis in Sect. 4.

3.1 � Generalization to a non‑Cartesian morphing 
region

Practical applications often demand to join different cel-
lular materials along an interface which is not vertical. 
In this section, we consider a possible generalization of 
Algorithm 1 in order to tackle settings such as the one in 
Fig. 14. Here, the morphing region Y coincides with a par-
allelogram which is overlapped to the lattices associated 
with different unit cells. In particular, Y is characterized by 
an inclination � with respect to the x-axis and by the width 
� . The main change to be done in CONFLUENCE algo-
rithm consists in replacing the periodic boundary condi-
tions along �Y ⧵ (ΓL ∪ ΓR) with a homogeneous Neumann 
data.

As benchmark configurations, we perform two match-
ings by morphing the 4 × 3-lattice materials associated 
with geometries A (left) and B (right) and with geom-
etries D (left) and C (right). For both these choices, we set 
� = 2.5� ⋅ 106 and � = 0.4 , while the inclination � is equal 
to �∕4 for the first case (A–B) and to �∕3 for the second 
case (D–C).

Figure 15 gathers the resulting materials. In particular, 
we remark the extremely localized effect of the morphing, 
together with the absence of unsupported struts along both 
the x- and y-directions.

This preliminary assessment confirms the high flexibil-
ity of CONFLUENCE algorithm to tackle configurations 
which are still rarely addressed in the reference literature.

4 � Structural analysis

The mechanical performance of the morphing geometry 
B–C in Fig. 13 (bottom) is assessed by means of a dedicated 
finite element mechanical analysis. To this aim, we inves-
tigate the global response of the heterogeneous structure to 
a given load and we quantify possible stress localizations 

Fig. 12   Matching B–C. Initial (top) and final (bottom) density distri-
bution provided by CONFLUENCE in Ω◦

Fig. 13   Matching B–C. Sensitivity of �Y to s: s = −0.12 (top) and 
s = 0.12 (bottom)

Fig. 14   Non-Cartesian morphing region. Definition of the main geo-
metric parameters
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induced by the change of topology in the morphing region. 
Moreover, to further validate the effectiveness of CONFLU-
ENCE algorithm, we carry out a comparison of the geom-
etry B–C after morphing with the case of a straightforward 
side-by-side connection between cells B and C [see Fig. 16 
(top)] and with a connection represented by a solid wall of 
thickness 0.1 separating the two materials [see Fig. 16 (bot-
tom)]. We remark that while the side-by-side solution is not 
always necessarily pursuable [see Figs. 4 and 9 (top), where 
the cells do not share portions of material along the interface 
E ], the solid wall approach unavoidably increases the global 
mass of the multicellular specimen.

The structural analysis is performed using the commer-
cial finite element software Abaqus2. In Fig. 17 (top), we 
provide the three settings to be compared, which consist 
of a heterogeneous volume composed by a 4 × 4-block of 
unit cells B joint with a 4 × 4-block of unit cells C. We 
apply a uniform vertical compressive displacement on the 
top of the multilattice material; we constrain the bottom 
along the y-direction while allowing for lateral expansion. 
Concerning the boundary configuration, two solid layers 
with thickness 0.1 are introduced at the top and at the 

bottom in order to mimic a sandwich structure. Finally, 
the displacement along the vertical border is left free. The 
considered base material is characterized by a linear elas-
tic behavior with unitary Young’s modulus and a Poisson’s 
ratio equal to 0.3.

A quadratic finite element approximation is used to dis-
cretize the structural displacement.

The response of the composite structures to the applied dis-
placement is investigated in Fig. 17 (bottom), where we show 
the distribution of the von Mises stress �VM on the deformed 
multilattice specimen, together with enlarged views in cor-
respondence with the junction. The deformation and the von 
Mises stress distribution of the three materials are essentially 
identical far from the morphing region. On the contrary, the 
choice adopted to join the different lattices leads to a signifi-
cant difference, in particular on the stress, in correspondence 
with the area around the interface E . We observe an overall 
increment for the stress in both the non-optimized configu-
rations (compare the three detailed views), together with a 
significant stress localization for the solid wall solution.

We compare the three different scenarios in Fig. 17 also 
in terms of the pressure measured along the x-direction 
at the top border where the displacement is applied. As 
expected, CONFLUENCE algorithm and the side-by-side 
strategy exhibit a global similar trend, whereas the solid 
wall solution leads to a high pressure peak in correspond-
ence with the connection. This anomalous feature might 
represent an issue, in particular when a smooth transition 
of the mechanical properties among the different materials 
is demanded.

We replicate the analysis above by changing the case 
study setting. A tensile displacement is now applied along 

Fig. 15   Non-Cartesian morphing region. Matching A–B for � = �∕4 
(top); matching D–C for � = �∕3 (bottom)

Fig. 16   Structural analysis. Side-by-side (top) and solid wall (bottom) 
connections between cells B and C

2  Abaqus, Dassault Systèmes Simulia Corp, USA.
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the left side, while the composite material is clamped 
along the right border. The top and the bottom of the speci-
men are not subject to any imposed displacement.

Figure 19 collects the results of this new framework by 
providing the same information as in Fig. 17. It turns out 
that this setting is in general more challenging with respect 
to the compressive case, as the von Mises distribution 
highlights. CONFLUENCE algorithm delivers the most 
effective solution when compared with the side-by-side 
and the solid wall connections. In particular, we notice that 
the stress localization is much more severe when resorting 
to the solid wall approach.

As a final check, we consider a specimen, H , of the 
same global extension as the three composite structures in 
Fig. 19, characterized by discontinuous mechanical fea-
tures. In particular, as sketched in Fig. 20, the left and the 
right halves of the material share the homogenized proper-
ties associated with cell B and C, respectively. We com-
pute the compliance, C∗ = ∫

�P
� ⋅ � ds , associated with the 

load � applied to the boundary portion 𝛾P ⊂ 𝜕H and induc-
ing the displacement � (see Fig. 20). The same mechanical 
configuration is enforced on the multilattice materials in 
Fig. 19, for comparison purposes.

Table 2 gathers the results of such an analysis in terms 
of compliance and percentage error with respect to the 
homogenized configuration H . As expected, the solid wall 
connection provides the smallest compliance error while 
representing a non-viable strategy in practice (see Figs. 17, 

18, and 19). CONFLUENCE connection turns out to better 
perform with respect to the side-by-side solution, leading 
to a lower compliance and to half of the percentage error, 
approximately.

5 � Conclusion

We propose the new algorithm CONFLUENCE (CONnec-
tion by FLUids of differENt CElls) to design the junction 
between heterogeneous lattice materials. To this end, we 
exploit a Stokes-type topology optimization setting which is 
used to locally modify the matching between different RVEs.

Fig. 17   Structural analysis. Composite structures B–C for three 
matching strategies under a compressive displacement: CONFLU-
ENCE algorithm (left), side-by-side connection (center), and solid 

wall connection (right). Layouts and case study setting (top), and von 
Mises stress distribution on the deformed structures with enlarged 
views (bottom)

Fig. 18   Structural analysis. Trend of the pressure as a function of x 
along the top border of the specimen
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CONFLUENCE guarantees a cost-effective and local re-
design of the materials, thus inducing a very mild modifica-
tion to the original behavior of the matched materials.

The new morphing process is assessed by investigating 
the sensitivity of the final optimized layout to different geo-
metric and physics parameters in order to validate the robust-
ness of the algorithm. Additionally, CONFLUENCE algo-
rithm is compared with two basic approaches (side-by-side 
and solid wall connections) used to join different materials, 
in terms of displacement and von Mises stress. As far as the 
configuration here considered (composite structure B–C), 
the matching optimized through CONFLUENCE exhibits 
good properties. The morphing acts on a very small area so 
that the mechanical performance of the joint RVEs is slightly 
affected. Moreover, the solution offered by the CONFLU-
ENCE avoids undesired stress concentration and limits any 
pressure peak in correspondence with the morphing region.

Finally, the new algorithm is challenged with a non-
Cartesian-aligned transition region to mimic practical con-
figurations where the morphing between two consecutive 
heterogeneous lattices takes place along a generic curve. 
Results in Fig. 15, yet preliminary, confirm the robustness 
of CONFLUENCE also in such a context.

The present work opens some relevant issues for future 
investigations, such as

•	 The extension of the presented algorithm to a 3D setting 
with a view to engineering applications;

•	 The inclusion of additional structural constraints (e.g., 
stiffness, stress, buckling) in the optimization problem 

Fig. 19   Structural analysis. Composite structures B–C for three 
matching strategies under a tensile displacement: CONFLUENCE 
algorithm (left), side-by-side connection (center), and solid wall con-

nection (right). Layouts and case study setting (top), and von Mises 
stress distribution on the deformed structures with enlarged views 
(bottom)

Fig. 20   Structural analysis. Sketch of the homogenized specimen H : 
material and mechanical setting

Table 2   Structural analysis - Quantitative comparison in terms of 
compliance and percentage error between the homogenized specimen 
H and CONFLUENCE, side-by-side, and solid wall connections

C
∗

E%

H 19.12
Morphing 21.78 13.88
Side-by-side 23.80 24.98
Solid wall 19.88 3.95
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(7) to take into account, for instance, the conclusions 
drawn in Sect. 4;

•	 The scaling-up of the proposed methodology to the con-
nection along a generic curve and to the management of 
multiple cells;

•	 The selection of a driver for the topology optimization in 
the morphing region different from the Stokes problem 
in Sect. 2 [see, e.g., Li et al. (2016)];

•	 The generalization of the present setting to a parametric 
framework in order to exploit consolidated model order 
reduction techniques to solve parametric problems.
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