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GROUND STATE DIRAC BUBBLES AND KILLING SPINORS

WILLIAM BORRELLI, ANDREA MALCHIODI, AND RUIJUN WU

Abstract. We prove a classification result for ground state solutions of the critical Dirac equation

on R
n, n > 2. By exploiting its conformal covariance, the equation can be posed on the round

sphere S
n and the non-zero solutions at the ground level are given by Killing spinors, up to conformal

diffeomorphisms. Moreover, such ground state solutions of the critical Dirac equation are also related

to the Yamabe equation for the sphere, for which we crucially exploit some known classification results.
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1. Introduction

1.1. Main results. We are interested in the following nonlinear Dirac equation

/Dψ = |ψ|2♯−2ψ on R
n , n > 2 , (1.1)

with critical exponent

2♯ :=
2n

n− 1
.

This equation arises naturally in conformal spin geometry and in variational problems related to

critical Dirac equations on spin manifolds. Moreover, two-dimensional critical Dirac equations recently

attracted a considerable attention as effective equations for wave propagation in honeycomb structures,

as explained in Section 1.2.

We consider solutions to (1.1) corresponding to critical points of the following functional

L(ψ) = 1

2

∫

Rn

〈 /Dψ,ψ〉dvolgRn − 1

2♯

∫

Rn

|ψ|2♯ dvolgRn , (1.2)

belonging to the homogeneous Sobolev space H̊1/2(Rn,CN ), which is the completion of the space

C∞
c (Rn,CN ) with respect to ‖ψ‖2

H̊1/2
:=
∫
Rn |ξ||ψ̂(ξ)|2 dξ. Here ψ̂ denotes the Fourier transform of ψ

and N = 2[
n
2
].

The following lower bound for non-zero solutions has been proved in [30]:

L(ψ) > 1

2n

(n
2

)n
ωn , (1.3)

where ωn = Volg0(S
n) denotes the volume of the round unit n-sphere S

n ⊂ R
n.

As it will be explained in Section 2.4, both the functional (1.2) and equation (1.1) are conformally

invariant so that one can equivalently study it on the n-dimensional unit sphere S
n,

/Dg0ψ = |ψ|2♯−2ψ on (Sn, g0) , (1.4)

where S
n is endowed with the round metric g0 and its canonical spin structure. As a consequence,

inequality (1.3) also holds for the functional (1.2) on the round sphere, denoted by Lg0 .
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Definition 1.1. We say that a non-trivial solution ψ ∈ H1/2(Sn,Σg0S
n) to (1.4) is a ground state

solution if equality in (1.3) holds, that is

Lg0(ψ) =
1

2n

(n
2

)n
ωn. (1.5)

Our main result is the following

Theorem 1.2. Let ψ ∈ H1/2(Sn,ΣSn) be a ground state solution to (1.4) with n > 2. Then, ψ is

a (−1
2 )-Killing spinor up to a conformal diffeomorphism. More precisely, there exists a (−1

2 )-Killing

spinor Ψ ∈ Γ(Σg0S
n) and a conformal diffeomorphism f ∈ Conf(Sn, g0) such that

ψ = (det(df))
n−1
2n βf∗g0,g0(f

∗Ψ),

where βf∗g0,g0 is the identification of spinor bundles for conformally related metrics.

We will give more details on the pullback f∗ in Section 2.5.

Remark 1.3. In [3], B. Ammann studied (actually, on a general spin manifold M) the conformally

invariant functional

Fg
qD

(ϕ) :=

∫
Sn
〈 /Dgϕ,ϕ〉dvolg0
‖ /Dgϕ‖2Lq

D

, (1.6)

where q
D
= 2n

n+1 is the conjugate exponent of 2♯.

He showed that (1.6) is well-defined and bounded above on W 1,q
D (Sn,ΣSn): assuming some extra

regularity, he proved that any maximizer φ is of the form ϕ = f∗Ψ, where Ψ is a (-1/2)-Killing spinor

and f : Sn → S
n is an orientation preserving conformal diffeomorphism.

The Sobolev-like quotient (1.6) is closely related to the functional (1.2). Indeed, suitably choosing

the functional setting, it should be possible to prove that those functionals are related by a duality

relation, but we prefer not to investigate this aspect here. We observe that our main result Theorem

1.2 deals with critical points of (1.2) under minimal regularity assumptions, proving an analogous

classification result. To this aim we need a careful analysis of the nodal set, as stated in Theorem 1.6.

The ground state solutions of (1.1) on Rn are obtained via pulling back the above spinors via

stereographic projection.

Corollary 1.4. Let ψ
Rn

∈ H̊
1
2 (Rn,CN ) be a ground state solution of (1.1). Then there exists Φ̃0 ∈ C

N

with |Φ̃0| = 1√
2

(
n
2

)n−1
2 , and x0 ∈ R

n, λ > 0 such that

ψ
Rn
(x) =

(
2λ

λ2 + |x− x0|2
)n

2
(
1− γ

Rn

(
x− x0
λ

))
Φ̃0 .

On the other hand, for n = 2 infinitely many explicit excited state solutions (i.e. solutions for which

inequality (1.3) is strict) have been found in [14]. We also mention that the ground state solutions for

the Dirac-Einstein equations have been recently classified in [15].

Remark 1.5. There is a similar statement in the Yamabe problem, namely, up to conformal diffeomor-

phisms, the prescribing scalar curvature equation

−4
n− 1

n− 2
∆g0h+ Scalg0 h = n(n− 1)h

n+2
n−2 on (Sn, g0)

admits a unique positive solution in H1(Sn) given by the constant function h ≡ 1. Geometrically this

can be reformulated as Obata’s Theorem [41, Theorem 6.6]: the round metric g0 is the only (up to
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conformal diffeomorphisms) metric on S
n which has constant scalar curvature n(n− 1). Indeed, this

fact will be used in the proof of our result.

The proof of Theorem 1.2 in the case n > 3 requires an estimate on the Hausdorff dimension of the

nodal set of solutions.

Theorem 1.6. Let n > 3 and ψ ∈ H1/2(Sn,ΣSn) be a non-trivial solution to (1.4). The nodal set

Z(ψ) := {x ∈ S
n : ψ(x) = 0} (1.7)

has Hausdorff dimension at most n− 2.

The above theorem generalizes Bär’s result [8], which holds for equations of the form /Dψ = V (ψ)

on a spin manifold M , where V : ΣM → ΣM is a smooth fiber-preserving map of the spinor bundle.

We remark that it is indeed the case for (1.1) when n = 2, but this is not necessarily true in higher

dimension, as smoothness of solutions is not guaranteed in that case. Indeed, for n > 3 the function

x 7→ |x| 2
n−1 is not smooth at x = 0. Then, as a consequence, solutions are a priori only of class C1,α

near the nodal set, for all 0 < α < 1, (see [14, 30]). Note that away from the nodal set solutions are

smooth by standard regularity theory.

1.2. Some motivations. Equation (1.1) appears in the study of different problems from conformal

geometry and mathematical physics, as shortly explained in this section.

It describes, for instance, the blow-up profiles for the equation

/Dψ = µψ + |ψ|2♯−2ψ on M, withµ ∈ R , (1.8)

where (M,g) is a compact spin manifold. For µ = 0 the equation is usually referred to as the spinorial

Yamabe equation and has been studied in [2, 3, 4, 6]; see also [27, 28, 39, 42] and references therein.

Equation (1.8) with general µ ∈ R is the spinorial analogue of the Brézis–Nirenberg problem [17] and

has been studied, for instance, in [10] and [30].

Note that solutions of (1.8) are critical points of the functional

L(ψ) = 1

2

∫

M
〈 /Dψ,ψ〉d volg −

µ

2

∫

M
|ψ|2d volg −

1

2♯

∫

M
|ψ|2♯d volg

defined on H
1
2 (ΣM), the space of H

1
2 -sections of the spinor bundle ΣM of the manifold, see Sect 2.3.

Then by [30, Theorem 5.2] any Palais–Smale sequence (ψn)n∈N ⊆ H
1
2 (ΣM) for the functional L, up

to subsequences, satisfies

ψn = ψ∞ +
N∑

j=1

ωj
n + o(1) in H

1
2 (ΣM),

where ψ∞ is the weak limit of (ψn)n and the ωj
n are suitably rescaled versions of solutions to (1.1).

This is the spinorial counterpart of Struwe’s theorem for the Brézis-Nirenberg problem [45]. Thus,

equation (1.1) describes bubbles in the spinorial Yamabe and Brézis–Nirenberg problems.

Critical Dirac equations also appear as effective models for the wave propagation in two-dimensional

honeycomb structures. Assume that V ∈ C∞(R2,R) possesses the symmetries of a honeycomb lattice.

As proved in [22], the dispersion bands of the associated Schrödinger operator

H = −∆+ V (x) in L2(R2)
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exhibit generically conical intersections (called Dirac points). Then the Dirac operator turns out to be

the effective operator describing the dynamics of wave packets spectrally concentrated around those

conical points. Consider a wave packet u0(x) = uε0(x) spectrally concentrated around a Dirac point,

that is,

uε0(x) =
√
ε(ψ0,1(εx)Φ1(x) + ψ0,2(εx)Φ2(x))

where Φj, j = 1, 2, are the Bloch functions at a Dirac point and the functions ψ0,j are some modulation

amplitudes. The solution to the nonlinear Schrödinger equation with parameter κ ∈ R \ {0},

i∂tu = −∆u+ V (x)u+ κ|u|2u ,

and with initial conditions uǫ0 evolves to leading order in ε still as a modulation of Bloch functions,

uε(t, x) ∼
ǫ→0+

√
ε (ψ1(εt, εx)Φ1(x) + ψ2(εt, εx)Φ2(x) +O(ε)) .

Fefferman and Weinstein in [23] pointed out that the modulation coefficients ψj satisfy the following

effective Dirac system,
{
∂tψ1 + λ(∂x1 + i∂x2)ψ2 = −iκ(β1|ψ1|2 + 2β2|ψ2|2)ψ1 ,

∂tψ2 + λ(∂x1 − i∂x2)ψ1 = −iκ(β1|ψ2|2 + 2β2|ψ1|2)ψ2 ,
(1.9)

where β1,2 > 0 and λ ∈ C\{0} are coefficients related to the potential V . The large-time validity of the

Dirac approximation has been proved in [24] in the linear case κ = 0 and in [7] for cubic nonlinearities.

For stationary solutions, i.e. ∂tψ1 = ∂tψ2 = 0, and for a suitable choice of the parameters involved,

(1.9) reduces to (1.1) with n = 2. Existence and regularity of solutions to (1.9) of ‘vortex-type’

(for general values of β1,2, λ) have been investigated in [12, 14]. In particular, in [14] existence and

uniqueness of such solutions (among spinors of the same form) are proved under suitable boundary

conditions at the origin. We also mention the papers [11, 13], where the massive case is addressed.

1.3. Outline of the paper. In Section 2, we first recall some preliminaries and also fix our no-

tation. Exploiting some results from the literature, we give a short proof of Theorem 1.2 for the

two-dimensional case in Section 3. Then, assuming the validity of Theorem 1.6, we prove Theorem 1.2

in dimension n > 3 in Section 4, with a particular emphasis on the nodal set of the solution. Finally,

Section 5 is devoted to the proof of Theorem 1.6, which gives an estimate for the dimension of the

nodal set of solutions, thus completing the proof of Theorem 1.2 for n > 3.

Acknowledgements. The authors are grateful to B. Ammann for bringing to their attention some

results contained in [3] and to G. Buttazzo for pointing out reference [47] to them.

A.M. has been partially supported by the project Geometric problems with loss of compactness from

Scuola Normale Superiore and by MIUR Bando PRIN 2015 2015KB9WPT001. A.M. and W.B. are

members of GNAMPA as part of INdAM and are supported by the GNAMPA 2020 project Aspetti

variazionali di alcune PDE in geometria conforme. W.B. and R.W. are also supported by Centro di

Ricerca Matematica Ennio de Giorgi.

2. Preliminaries

In this section we collect some known facts in spin geometry and on analytical properties of Dirac

operators. For more details on spin geometry and the Dirac operator one can refer to [2, 26, 31, 37].
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2.1. Spin structures. Let (M,g) be an oriented Riemannian manifold of dimension n ≥ 2.

Recall that the special orthogonal group SO(n) has non-trivial fundamental group: π1(SO(2)) ∼= Z

and π1(SO(n)) = Z2 for n ≥ 3. Thus there exist double coverings for any n ≥ 2, given by the so-called

spin groups:

λ : Spin(n) → SO(n).

Definition 2.1. A spin structure on (M,g) is a pair (PSpin(M,g), σ), where PSpin(M,g) is a Spin(n)-

principal bundle and σ : PSpin(M,g) → PSO(M,g) is a 2-fold covering map, which restricts to the

non-trivial covering λ : Spin(n) → SO(n) on each fiber. In other words, the quotient of each fiber by

{−1, 1} ≃ Z2 is isomorphic to the frame bundle of M , so that the following diagram commutes

PSpin(M,g) PSO(M,g)

M

σ

A Riemannian manifold (M,g) endowed with a spin structure is called a spin manifold.

It is well-known that an orientable manifold admits a spin structure if and only if its second Stiefel–

Whitney class vanishes; and in that case the spin structure needs not to be unique: the different

spin structures are parametrized by elements in H1(M ;Z2). In particular, the spin structures of the

Euclidean space (Rn, gRn) and of the round sphere (Sn, g0), with n > 2, are actually unique.

Definition 2.2. The complex spinor bundle ΣM →M is the vector bundle associated to the Spin(n)-

principal bundle PSpin(M,g) via the complex spinor representation of Spin(n).

The complex spinor bundle ΣM has rank N = 2[
n
2
]. It is endowed with a canonical spin con-

nection ∇s (which is a lift of the Levi-Civita connection) and an Hermitian metric gs which will be

abbreviated as 〈·, ·〉 if there is no confusion.

2.2. The Dirac operator and special spinors. On the spinor bundle ΣM there is a Clifford

map γ : TM → EndC(ΣM) which satisfies the Clifford relation

γ(X)γ(Y ) + γ(Y )γ(X) = −2g(X,Y ) IdΣM ,

for any tangent vector fields X,Y ∈ Γ(TM). The Clifford map is compatible with the Hermitian

metric gs above in the sense that

〈γ(X)ψ, γ(X)ϕ〉gs = g(X,X) 〈ψ,ϕ〉gs , ∀X ∈ Γ(TM), ∀ψ,ϕ ∈ Γ(ΣM).

Locally, taking an oriented orthonormal frame (ei) with dual frame (ei), the Dirac operator /D and

the Penrose operator /P , respectively, as

/D : Γ(ΣM) → Γ(ΣM) , /Dψ := γ(ei)∇s
eiψ ,

/P : Γ(Σ) → Γ(T ∗M ⊗ ΣM) , /Pψ := ∇sψ +
1

n
ei ⊗ γ(ei) /Dψ

Here and in the sequel, we always use the Einstein summation convention.

Definition 2.3. The spinors in ker( /D) are called harmonic spinors, while those in ker(/P ) are called

twistor spinors.
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For any ψ ∈ Γ(ΣgM), we have the following pointwise Penrose–Dirac decomposition

|∇sψ|2 = |/P g
ψ|2 + 1

n
| /Dg

ψ|2. (2.1)

The spinors which are twistor spinors and at the same time eigenspinors of /D deserve special interest:

they are the so-called Killing spinors, defined as follows.

Definition 2.4. Given α ∈ C, a non-zero spinor field ψ ∈ Γ(ΣM) is called α-Killing if

∇s
Xψ = αγ(X)ψ, ∀X ∈ Γ(TM).

The α-Killing spinors form a vector space, denoted by K (g;α). The name comes from the fact that

real Killing spinors give rise to Killing (tangent) vector fields: if α ∈ R, then the vector field defined

by

g(V,X) :=
√
−1 〈ψ, γ(X)ψ〉 , ∀X ∈ Γ(TM)

is a Killing field on (Mn, g). Hence Killing spinors only exists on manifold with infinitesimal symme-

tries. For more information on Killing spinors and twistor spinors, we refer to [26, Appendix A].

Observe that on Euclidean space Killing spinors are exactly given by constant vector-valued func-

tions ψ : Rn → C
N , with α = 0. The case of spheres is particularly relevant for our purposes.

Proposition 2.5 (Killing spinors on round spheres, [26, Appendix]). Let (Sn, g0) be the standard

n(≥ 2)-sphere in R
n+1 and consider an α-Killing spinor ψ, for some α ∈ C.

1. The zero set of ψ is empty. Moreover, α ∈ {±1/2}, and ψ has constant length: |ψ| ≡ const.

2. The space of 1/2-Killing spinors is 2[
n
2
]-dimensional. Such spinors are given by ϕ = Φ|Sn,

where Φ is a constant spinor on R
n+1. They coincide with eigenspinors for the first negative

eigenvalue λ−1 = −n/2 of /D.

3. The space of −1/2-Killing spinors is 2[
n
2
]-dimensional. Such spinors are given by ξ = Ψ|Sn,

where Ψ(x) = γ(x)Φ (∀x ∈ R
n+1) is a non-parallel twistor spinor on R

n+1, Φ as above. They

coincide with eigenspinors for the first positive eigenvalue λ1 = n/2 of /D.

In the paper [38] Killing spinors on (Sn, g0) are explicitly computed in spherical coordinates.

2.3. Sobolev spaces of spinors. We recall that since (M,g, σ) is a compact spin manifold the

spectrum of the Dirac operator is discrete and unbounded on both sides of R, accumulating at ±∞.

Then, using the spectral decomposition of /D one can define fractional order Sobolev spaces of spinors.

Embedding theorems of Sobolev spaces into Lebesgue and Hölder spaces of spinors, analogous to

the Euclidean case, also hold. We refer the reader to [2, Section 3] for more details.

2.4. Conformal symmetry. Of particular importance for us is the behavior of the Dirac and Penrose

operators under conformal transformations of the metric, see e.g. [29, 37, 26, 33]. To make this clear

we label the various geometric objects with the metric g explicitly, e.g. ΣgM,∇s,g, /D
g
, /P

g
etc.

Now let u ∈ C∞(M) and consider the conformal metric gu = e2ug. The map b : X 7→ e−uX

for 1 ≤ i ≤ n is an isometry between (TM, g) and (TM, e2ug), which gives rise to an SO(n)-equivariant

map b : PSO(M,g) → PSO(M,e2ug). By lifting b to the principal Spin(n)-bundles and then inducing

it on the associated spinor bundles, we get an isometric isomorphism

β ≡ βg,gu : (ΣgM,gs) → (ΣguM,gsu).
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The map β does not respect the spin connections: for X ∈ Γ(TM) and ψ ∈ Γ(ΣgM),

∇s,gu
X β(ψ) − β(∇s,g

X ψ) = −1

2
β (γg(X)γg(gradg u)ψ +X(u)ψ)

Consequently, by a direct computation, we can get

/D
guβ(ψ) = e−uβ

(
/D
g
ψ +

n− 1

2
γg(gradg u)ψ

)
,

/P
gu
X β(ψ) = β

(
∇s,g

X ψ +
1

n
γg(X) /D

g
ψ

)
− 1

2n
β (γg(X)γg(gradg u)ψ)− 1

2
X(u)β (ψ) ,∀X ∈ Γ(TM).

The non-homogeneous parts could be eliminated by introducing suitable weights:

/D
guβ(e−

n−1
2

uψ) = e−
n+1
2

uβ( /D
g
ψ), (2.2)

/P
guβ

(
e

u
2
uψ
)
= e

u
2 β(/P

g
ψ).

The summands in the functional L are conformally invariant: setting ϕ := β(e−
n−1
2

uψ), there holds
∫

M

〈
/D
g
ψ,ψ

〉
gs
dvolg =

∫

M

〈
/D
guϕ,ϕ

〉
gsu

dvolgu,

∫

M
|ψ|2♯gs dvolg =

∫

M
|ϕ|2♯gsu dvolgu .

Consequently the action L in (1.2) (here we quote it for a general M) is conformally invariant, and

hence also equation (1.1).

2.5. Transformations induced by conformal diffeomorphisms. Let f : M → M be a diffeo-

morphism preserving the orientation and the spin structure σ. Let gf ≡ f∗g denote the pull-back

metric on TM , then the tangent map Tf : (TM, gf ) → (TM, g) is an isometry, hence it also pre-

serves the Levi-Civita connections. Since f is assumed to preserve the spin structure, we have an

isomorphism Spin(f) : PSpin(M,gf ) → PSpin(M,g) which covers the equivariant morphism SO(f) =

Tf : PSO(M,gf ) → PSO(M,g). Thus there is an induced map F which also covers the map f in the

sense that the following diagram is commutative:

(ΣgfM,gsf ) (ΣgM,gs)

(M,gf ) (M,g)

F

f

The map F preserves the spin connection and is an isometry of vector bundles, hence also preserves

the Dirac operators: for any ψ ∈ Γ(ΣgM), write f∗ψ = F−1 ◦ ψ ◦ f ∈ Γ(ΣgfM) for the pull back

spinor, then

F
(
/Dgf (f

∗ψ)(x)
)
= /Dgψ(f(x)), x ∈M.

Suppose in addition that f is a conformal diffeomorphism, i.e. gf = f∗g = e2ug for some u ∈ C∞(M).

Then a solution ψ ∈ Γ(ΣgM) of (1.1) corresponds to another solution ϕ ∈ Γ(ΣgM) via the following

procedure:
(

ψ ∈ Γ(ΣgM)

/Dgψ = |ψ| 2
n−1ψ

)
7→
(
ψf ≡ f∗ψ ∈ Γ(ΣgfM)

/Dgf (ψf ) = |ψf |
2

n−1ψf

)
7→
(
ϕ := e

n−1
2

uβ−1(ψf ) ∈ Γ(ΣgM)

/Dgϕ = |ϕ| 2
n−1ϕ

)
.
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Example. Let p : Sn\{N} → R
n be the stereographic projection, where N ∈ S

n is the north pole.

Using the ambient coordinate S
n ⊂ R

n+1(y1, · · · , yn+1) and R
n(x1, · · · , xn), we have

S
n \ {N} ∋ y 7→ p(y) = x ∈ R

n, with xi =
2yi

1− yn+1
. (2.3)

The inverse of p will be denoted by π : Rn → S
n \ {N} ⊂ R

n+1,

x 7→ π(x) = y, with yi =
2xi

|x|2 + 1
, (1 ≤ i ≤ n), yn+1 =

|x|2 − 1

|x|2 + 1
. (2.4)

These are conformal maps, i.e. they satisfy

π∗g0(x) =

(
2

1 + |x|2
)2

gRn(x), p∗gRn(y) =

(
1

1− yn+1

)2

g0. (2.5)

Now let ψ ∈ H̊ 1
2 (Rn,CN ) be a solution of (1.1), and set

ϕ :=

(
1

1− yn+1

)n−1
2

p∗ψ ∈ Γ(Σg0 (S
n \ {N})).

Then ϕ is a solution to

/DgSnϕ = |ϕ|2♯−2ϕ on S
n\{N} (2.6)

and
∫
Sn

|ϕ|2♯ dvolgSn < ∞. This allows to prove (see [2]) that ϕ extends to a weak solution on S
n.

Thus there exists a one-to-one correspondence between weak solutions to (1.1) in H̊
1
2 (Rn,ΣRn) and

weak solutions to (2.6) in the space H
1
2 (Sn,ΣSn).

Recall that the −1
2 -Killing spinors on (Sn, g0) have suitable constant length and are eigenspinors,

thus being particular solutions of (1.1), as recalled in Proposition 2.5. Moreover, they are also ground

states as they verify (1.5). The Möbius group of conformal diffeomorphism of the round sphere Sn can

be expressed in terms of Rn via stereographic projection. Then, exploiting the conformal invariance of

(1.1) Killing spinors on the sphere can be mapped to a family of solutions of (1.1). Thus it is natural

to ask whether such family spinors are the only ground states of (1.2). Our aim is to give a positive

answer to this question, also providing an explicit formula for the minimizers. This is the content of

Theorem 1.2 and of Corollary 1.4

2.6. Estimates on conformal eigenvalues. For convenience of the reader, in this section we briefly

recall the proof of the lower bound (1.3). Let (M,g) be a closed spin manifold and consider the

conformal class of g

[g] =
{
gu := e2ug | u ∈ C∞(M)

}
.

The dimension of harmonic spinors dimC ker( /D
g
) = dimC ker( /D

gu) ≥ 0 is a conformal invariant, as

it easily follows from (2.2). Let λ1( /D
g
) be the first positive eigenvalue of /D

g
, then λ1( /D

gu) depends

on u continuously and never vanishes for gu ∈ [g].

In [1], B. Ammann considered the following quantity (using a different notation, also noting that

we fixed the spin structure throughout)

Λ1(M, [g]) := inf
gu∈[g]

{
λ1( /D

gu)Vol(gu)
1
n

}
.

Let C be the orthogonal complement of ker( /D
g
), so L2(M ; ΣM) = ker( /D

g
)⊕ C; and let C∗ be the set

of non-zero elements in C.
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Lemma 2.6 ([1, Prop. 2.4.]). Λ1(M, [g]) = infϕ∈C∗

{
‖ϕ‖2

L
2n
n+1∫

M〈ϕ,| /Dg|−1ϕ〉 dvolg

}
.

By taking φ = ( /D
g
)−1(ϕ) and φ ⊥ ker( /D

g
), one can see that

Λ1(M, [g]) = inf
φ∈W 1, 2n

n+1 (ΣgM)∩ker( /Dg
)⊥,φ 6=0

(∫
M | /Dg

φ| 2n
n+1 dvolg

)n+1
n

∫
M

〈
/D
g
φ, φ

〉
dvolg

Denote the standard round metric on S
n ⊂ R

n+1 by g0, then λ1( /D
g0) = n

2 and Vol(g0) = ωn. Similarly

to the Yamabe problem, we have that Λ1 attains its maximum on the standard unit sphere.

Lemma 2.7 ([5, Thm. 1.1]). Λ1(M, [g]) ≤ Λ1(S
n, [g0]) =

n
2ω

1
n
n .

As proved by T. Isobe in [30], if ψ is a nontrivial solution of (1.1), then

Λ1(S
n, g0) =

n

2
ω

1
n
n ≤

(∫
Sn

| /Dg0ψ| 2n
n+1 dvolg0

)n+1
n

∫
Sn

〈
/D
g0ψ,ψ

〉
dvolg0

=

(∫
Sn

|ψ| 2n
n−1 dvolg0

)n+1
n

∫
Sn

|ψ| 2n
n−1 dvolg0

=

(∫

Sn

|ψ|2∗ dvolg0
) 1

n

.

Hence

L(ψ) = 1

2n

∫

Sn

|ψ|2∗ dvolg0 ≥
1

2n

(n
2

)n
ωn,

which shows the lower bound of the non-trivial critical levels in (1.3).

2.7. Capacity and Sobolev spaces. The concept of capacity is useful in regularity theory, and we

recall some basic facts here, which can be found in [43, 48].

Let Ω ⊆ R
n be a connected open domain and K ⋐ Ω a compact subset. Let p > 1 be a fixed

number. The set of admissible potentials are

W0(K,Ω) := {u ∈W 1,p
0 (Ω) ∩ C0(Ω) | u ≥ 1K}

where 1K is the characteristic function of K. The p-capacity of (K,Ω) is defined as

capp(K,Ω) := inf
u∈W0(K,Ω)

∫

Ω
|∇u|p dx.

Then, we can also define the p-capacity of an open subset U ⊂ Ω via inner exhaustion by compact

subsets, and then the p-capacity of a general measurable set E ⊂ Ω via outer approximation by open

neighborhoods, see [43].

Definition 2.8. A set E ⊂ R
n is said to be of p-capacity zero if capp(E,Ω) = 0 for all open sets Ω ⊂ R

n.

(Equivalently, capp(E,Ω0) = 0 for some Ω0 ⊂ R
n.)

The capacity of a set is closely related to its Hausdorff measure H.

Proposition 2.9. Let E ⊂ R
n and 1 < p ≤ n. Then the following implications hold.

(i) If capp(E) = 0, then dimH(E) ≤ n− p.

(ii) If Hn−p(E) <∞, then capp(E) = 0.

Functions in the space W 1,p
0 (Ω) cannot see the sets of p-capacity zero. More precisely, we have

Proposition 2.10. Let Ω ⊂ R
n be open and E ⊂ Ω relatively closed. Then W 1,p

0 (Ω) = W 1,p
0 (Ω\E)

iff capp(E) = 0.
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3. Classification in dimension two

Roughly speaking, the strategy of the proof of the main result, Theorem 1.2, consists of using the

modulus of the spinor to make a conformal change of the metric on S
n, which allows then to use some

rigidity result to conclude the claim. This method is similar to the one used by Ammann in [3], see

also Remark 1.3.

In dimension two the equation has a smooth structure, so the nodal set is already known to be

discrete by the result in [9]. In this case, after the conformal change of the metric, we can use the

classification result associated with eigenvalue estimates, due to Bär [8]. To this aim, we exploit the

fact that ground state solutions of (1.1) on S
2 do not admit zeros.

Proposition 3.1 ([16, Prop. 3.7]). Let ψ ∈ Γ(ΣM) with ‖ψ‖L4 = 1 be a solution of

/Dψ = µ|ψ|2ψ,

where µ ∈ R. Let N(ψ) denote the sum of orders of zeros of ψ. Then

N(ψ) ≤ µ2

4π
− χ(M)

2
.

For a ground state solution, µ = 1 and χ(S2) = 2. It follows that ψ never vanishes. Moreover, by

elliptic regularity theory one can prove that ψ ∈ C∞(S2,ΣS2), see e.g. [14, 32].

Theorem 3.2. Let ψ ∈ H1/2(S2,Σg0S
2) be a ground state solution to (1.4) with n = 2. Then, ψ is

a (−1
2)-Killing spinor up to a conformal diffeomorphism. More precisely, there exist a (−1

2 )-Killing

spinor Ψ ∈ Γ(Σg0S
2) and a conformal diffeomorphism f ∈ Conf(S2, g0) such that

ψ = (det(df))
1
4 β−1(f∗Ψ),

where β : Σg0S
n → Σf∗g0S

n is the conformal identification of the spinor bundles.

Proof. Let ψ ∈ H1/2(S2,Σg0S
2) be a ground state solution to (1.4). We know that ψ is smooth and

has no zeros (see Proposition 3.1). Consider the conformal metric

g = |ψ|4g0 ,

with volume

volg(S
2) =

∫

S2

|ψ|4 dvolg0 = 4π = ω2 ,

since ψ is a ground state solution. Let β : Σg0S
2 → ΣgS

2 denote the corresponding isomorphism of

the associated spinor bundles, and define

φ =
β(ψ)

|ψ| ,

which has constant length |φ| ≡ 1.

The conformal invariance of (1.4) implies that φ solves the same equation

/D
g
φ = |φ|2φ = φ , on (S2, g) . (3.1)

In [8], the following lower bound for the eigenvalues of the Dirac operators on a closed surfaces (M2, g)

was proved

λ2 >
2πχ(M2)

volg(M2)
,
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where χ(M2) is the Euler characteristic of the surface. Moreover, equality is attained if and only if

the surface is isometric to the round sphere S
2, or to the torus T2 with the flat metric and the trivial

spin structure.

Let f : (S2, g) → (S2, g0) be the isometry given above. It can be used to transform the spinor φ to a

spinor on the round sphere (S2, g0). More precisely, the isometry f induces an isomorphism F : ΣgS
2 →

Σg0S
2 which preserves the Hermitian structures and the spin connections, hence also the Dirac oper-

ators. Then the induced spinor is

φf := (f−1)∗φ = F ◦ φ ◦ f−1 ∈ Γ(Σg0S
2)

which has the same properties as φ, namely

|φf | ≡ 1, /D
g0φf = φf , /P

g0φf = 0.

In particular, φf is a (−1
2)-Killing spinor, say φf = Ψ ∈ K (g0;−1

2). Then φ = f∗Ψ = F−1 ◦Ψ ◦ f ∈
Γ(ΣgS

2).

Note that the isometry f is also conformal: f∗g0 = g = |ψ|4g0, and ψ can be obtained by the

induced conformal transformations on spinors from φ, namely

ψ = det (df)
1
4 β−1 (f∗Ψ) ∈ Γ(Σg0S

2).

This concludes the proof. �

Though being elegant, the proof above is not constructive enough, and the argument does not

directly generalize to higher dimensions. The reason, among others, is due to the lack of a strong

rigidity statement in the eigenvalues estimate: we do not know whether the round metric is the only

(up to isometry) metric assuming the extremals of the first positive conformal eigenvalue or not (see

Section 2.6). In the following we take a closer look at the curvatures of the conformally related

metrics g0 and g. We will see that the length function |ψ| : S2 → R actually determines the conformal

isometry f (up to rigid motions) and vice versa. This idea continues to work in general dimensions.

From the pointwise Lichnerowicz formula (see e.g. [31, Theorem 3.4.1])

1

4
Scalg φ =

(
/D
g
)2
φ−

(
∇s,g

)∗ (∇s,g
)
φ (3.2)

we get the integral Bochner–Lichnerowicz formula
∫

S2

| /Dg
φ|2 dvolg =

∫

S2

|∇s,gφ|2 dvolg +
1

4

∫

S2

Scalg |φ|2 dvolg,

where Scalg = 2Kg denotes the scalar curvature of g. Substituting (2.1) into it, we obtain
∫

S2

|/P g
φ|2 dvolg =

1

2

∫

S2

(1−Kg)|φ|2 dvolg =
1

2

∫

S2

(1−Kg) dvolg

=Volg(S
2)− 2πχ(S2) = 0 .

Hence /P
g
φ = 0, i.e. φ is a twistor spinor on (S2, g). It follows that φ is a −1

2 -Killing spinor and (3.1)

and (3.2) give

1

2
Kgφ = φ− 1

2
φ =

1

2
φ.

Since φ is nowhere vanishing, we conclude that Kg ≡ 1.
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Thus the conformal factor u = log |ψ|2 satisfies g = e2ug0 and solves the equation

−∆g0u+Kg0 = Kge
2u, i.e. −∆g0u+ 1 = e2u. (3.3)

It is well-known that the solutions of (3.3) have the form

u =
1

2
log det(df),

with f ∈ Conf(S2, g0) being a conformal trasformation: f∗g0 = e2ug0 = |ψ|4g0. Thus f : (S2, g) →
(S2, g0) is an isometry, which is the one in our proof, up to rigid motions.

Remark 3.3. The length function |ψ| can be explicitly given. Indeed, fixing Kg ≡ 1 and noting that

equation (3.3) is conformally invariant, we can use the stereographic projection

π : R2 ∋ z 7→ y =

(
2Re(z)

1 + |z|2 ,
2Im(z)

1 + |z|2 ,
−1 + |z|2
1 + |z|2

)
∈ S

2 ⊂ R
3

to pull the equation back to R
2. Since π : R2 → S

2 is conformal (2.5), the function

v := u ◦ π(z) + ln

(
2

1 + |z|2
)

is a solution of

−∆R2v = e2v in R
2,

and by conformal invariance ∫

R2

e2v dx =

∫

S2

e2u dvolg0 <∞,

since u ∈ C∞(S2). Such solutions v were classified, see e.g. [20]: there exist λ > 0 and z0 ∈ R
2 such

that

v(z) =
1

2
ln

(
32λ2

(4 + λ2|z − z0|2)2
)
− 1

2
ln 2.

Since u = ln |ψ|2, we see that the length function of the spinor ψ is given by

|ψ(y)| =
(

2λ(1 + |p(y)|2)
4 + λ2|p(y)− z0|2

) 1
2

.

4. Classification in higher dimensions

The proof of Theorem 1.2 for n > 3 essentially relies upon the same ideas as in the two dimensional

case. However, the higher-dimensional case is technically more delicate, since we have less information

on the nodal set of the spinor, and thus the solution is a priori only of class C1,α. The proof of Theorem

1.2 for n > 3 requires to estimate the Hausdorff dimension of the nodal set (1.7), see Theorem 1.6.

We postpone its proof and present it in the next section in order to simplify the proof of Theorem 4.2.

We start by estimating the perimeter of the boundary of the tubular neighborhoods for a set of

Hausdorff dimension less than n− 1. We denote by Hs(·) the s-dimensional Hausdorff measure.

Lemma 4.1. Let Z ⊂ R
n be a compact (n − 1)-rectifiable set with Hn−1(Z) = 0. For any ε > 0,

consider the ε-tubular neighborhood Zε := {x ∈ S
n : dist(x,Z) 6 ε}. Then for a.e. ε > 0, the

boundary ∂Zε is (n− 1)-rectifiable and along a sequence εk → 0+,

lim
k→∞

Hn−1(∂Zεk) = 0 .
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Proof. It is well-known that there exists ε0 > 0 such that for all but countably many ε ∈ (0, ε0) the

set ∂Zε is (n−1)-rectifiable, see e.g. [34, Section 5]. Moreover, applying [34, Prop. 5.8] with λ = n−1,

we get

Hn−1(∂Zε) 6 C(n)Mn−1
ε (Z) , (4.1)

where Mn−1
ε is the (n − 1)-dimensional Minskowski ε-content [40, §4], and the dimensional con-

stant C(n) is independent of ε. Now Z is compact and (n − 1)-rectifiable with Hn−1(Z) = 0, so

its (n − 1)-Minkowski content is well-defined and coincides with the (n − 1)-Hausdorff measure [21,

Theorem 3.2.39]. Then we have

lim
ε→0+

Mn−1
ε (Z) = Mn−1(Z) = Hn−1(Z) = 0 .

and the claim follows by (4.1). �

We will apply Lemma 4.1 to the nodal set Z(ψ) of a solution ψ to (1.4). Since ψ has regularity C1,α,

its zero set Z = Z(ψ) is closed in the compact space S
n, hence it is also compact. By Theorem 1.6, it

has Hausdorff dimension at most (n− 2), in particular Hn−1(Z) = 0. Note that Sn\Z is a non-empty

open set of full measure. Thus, up to a stereographic projection, Z can be viewed as a compact

subset of BR(0) ⊂ R
n for some R < ∞. Since the Hausdorff measures on BR(0) with respect to the

Euclidean metric and the conformal spherical metric are uniformly equivalent, we can apply Lemma 4.1

to conclude that, along a sequence εk → 0+,

lim
εk→0+

Hn−1(∂Zεk) = 0 . (4.2)

Theorem 4.2. Let ψ ∈ H1/2(Sn,Σg0S
n) be a ground state solution to (1.4) with n > 3. Then, ψ is

a (−1
2)-Killing spinor up to a conformal diffeomorphism. More precisely, there exist a (−1

2 )-Killing

spinor Ψ ∈ Γ(Σg0S
n) and a conformal diffeomorphism f ∈ Conf(Sn, g0) such that

ψ = (det(df))
n−1
2n β−1(f∗Ψ),

where β : Σg0S
n → Σf∗g0S

n is the conformal identification.

Proof. Let ψ ∈ H1/2(Sn,Σg0S
n) be a ground state solution to (1.4), with n > 3. Consider the

conformal change of metric on S
n \ Z

g =

(
2

n

)2

|ψ|4/(n−1)g0 . (4.3)

Notice that the total volume is preserved

volg(S
n \ Z) =

(
2

n

)n ∫

Sn

|ψ| 2n
n−1 dvolg0 = ωn = Volg0(S

n) ,

since ψ is a ground state solution and Lg0(ψ) =
1
2n

∫
S2

|ψ| 2n
n−1 dvolg0 (see (1.5)).

As before, let β = βg0,g : Σg0(S
n \ Z) → Σg(S

n \ Z) be the isometry associated to the conformal

change of the metric and define the spinor

φ =
(n
2

)n−1
2 β(ψ)

|ψ| , |φ| ≡
(n
2

)n−1
2
. (4.4)

Denote the nodal set of ψ by Z = Z(ψ), then

φ ∈ C∞(Sn \ Z) ∩ L∞(Sn \ Z) .
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Note that φ is an eigenspinor for the /D
g
-Dirac operator, i.e.

/D
g
φ = |φ|2♯−2φ =

n

2
φ , on (Sn \ Z, g) (4.5)

in the classical sense.

Fix ε > 0 and consider the neighborhood Zε of the nodal set as in Lemma 4.1. Observe that

the metric g is regular and Riemannian on S
n \ Zε, so here we can consider the pointwise Bochner–

Lichnerowicz formula [31, Theorem 3.4.1]

(
/D
g
)2

=
(
∇s,g

)∗ (∇s,g
)
+

Scalg
4

,

where Scalg is the scalar curvature of the metric g. It follows that
∫

Sn\Zε

〈( /Dg
)2φ, φ〉dvolg =

∫

Sn\Zε

〈∇s,g∗∇s,gφ, φ〉dvolg +
∫

Sn\Zε

Scalg
4

|φ|2 dvolg . (4.6)

We claim that the integral form of Bochner–Lichnerowicz’s formula
∫

Sn\Zε

| /Dg
φ|2 dvolg =

∫

Sn\Zε

|∇s,gφ|2 dvolg +
∫

Sn\Zε

Scalg
4

|φ|2 dvolg (4.7)

holds. Generally speaking, on a manifold with non-empty boundary, from (4.6) one gets additional

boundary integrals in (4.7). However, in our case,
〈
( /D

g
)2φ, φ

〉
=
(n
2

)2
〈φ, φ〉 =

〈
/D
g
φ, /D

g
φ
〉
,

∫

Sn\Zε

〈∇s,g∗∇s,gφ, φ〉dvolg =

∫

Sn\Zε

|∇s,gφ|2 dvolg −
∫

∂Zε

〈∇s,g
ν φ, φ〉dHn−1,

and

2ℜ
〈
∇s,g

ν φ, φ
〉
= ∂ν |φ|2 = 0,

whence (4.7). Furthermore, the decomposition (2.1) and the eigenspinor equation (4.5) give
(
n− 1

n

)(n
2

)2 ∫

Sn\Zε

|φ|2 dvolg =
∫

Sn\Zε

|/P g
φ|2 dvolg +

1

4

∫

Sn\Zε

Scalg |φ|2 dvolg.

Since |φ| is constant (see (4.4)), it follows that
(
n− 1

n

)(n
2

)n+1
Volg(S

n \ Zε) =

∫

Sn\Zε

|/P g
φ|2 dvolg +

1

4

(n
2

)n−1
∫

Sn\Zε

Scalg dvolg. (4.8)

In particular, this implies
∫

Sn\Zε

Scalg dvolg ≤ n(n− 1)Volg(S
n \ Zε) ≤ n(n− 1)ωn.

We need to control the integral of the new curvature Scalg over the set S
n \ Zε. In dimension

two this could be estimated using the Gauss–Bonnet formula, while in higher dimensions we use the

Yamabe invariant.

Recall that the Yamabe invariant of the conformal class [g0] is defined as

Y(Sn, [g0]) = min





∫
Sn

Scalg dvolg
(∫

Sn
dvolg

)n−2
n

| g ∈ [g0]



 ,
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where [g0] denotes the conformal class of the round metric g0, which is equivalently characterized as

Y(Sn, [g0]) = min




Q(u) ≡

∫
Sn
cn|∇g0u|2 + Scalg0 u

2 dvolg0
(∫

Sn
u

2n
n−2 dvol

)n−2
n

| u ∈ C∞(S2), u > 0




.

By further taking the W 1,2-closure of C∞(Sn), we get

Y(Sn, [g0]) = min




Q(u) =

∫
Sn
cn|∇g0u|2 + Scalg0 u

2 dvolg0
(∫

Sn
|u| 2n

n−2 dvol
)n−2

n

| u ∈W 1,2(Sn), u 6= 0




. (4.9)

The value of the Yamabe invariant of the round sphere is well-known, and it is given by

Y(Sn, [g0]) = n(n− 1)ω
2
n
n .

The metric g in (4.3) might not be a Riemannian metric on S
n since Z = Z(ψ) might be non-empty,

that is, the conformal factor might vanish at some points.

Define

h :=

(
2

n

)n−2
2

|ψ|
n−2
n−1 ∈ C0(Sn) ∩C∞(Sn \ Z) , (4.10)

then g = h
4

n−2 g0, and the scalar curvatures of the two metrics on S
n \ Zε are related by

Lg0h ≡ −cn∆g0h+ Scalg0 h = Scalg h
n+2
n−2 , on S

n \ Z, (4.11)

with cn = 4n−1
n−2 and Scalg0 = n(n− 1). We need the following regularity result on h.

Lemma 4.3. With respect to the round metric g0, one has that h ∈ H1(Sn).

Proof of Lemma 4.3. Choose ε > 0 small enough such that ∂Zε is (n− 1)-rectifiable, see the proof of

Lemma 4.1. Using (4.11), an integration by parts gives

cn

∫

Sn\Zε

|∇g0h|2 dvolg0 =
∫

∂Zε

cn
∂h

∂ν
hdvolg0 −

∫

Sn\Zε

cn(∆g0h)hdvolg0 (4.12)

=

∫

∂Zε

cn
∂h

∂ν
hdvolg0 −

∫

Sn\Zε

Scalg0 h
2 dvolg0 +

∫

Sn\Zε

Scalg h
2n
n−2 dvolg0 .

Since h is given by (4.10) and n ≥ 3, we have |∂h∂νh| ≤ C|ψ|
n−3
n−1 ∈ L∞(Sn), so by (4.2) there holds

∫

∂Zε

cn
∂h

∂ν
hdvolg0 6 cn

∥∥∥∥
∂h

∂ν
h

∥∥∥∥
∞
Hn−1(∂Zε) , (4.13)

which converges to zero along a suitable sequence εk → 0. Meanwhile, noting that h is uniformly

bounded on S
n and h

2n
n−1 dvolg0 = dvolg, the other two terms on the right-hand side in (4.12) are

uniformly bounded. Therefore, letting ε→ 0 along the same sequence in (4.12), we see that

cn

∫

Sn\Z
|∇g0h|2 dvolg0 =−

∫

Sn\Z
Scalg0 h

2 dvolg0 +

∫

Sn\Z
Scalg h

2n
n−2 dvolg0 <∞ , (4.14)

and hence h ∈ H1(Sn \ Z). Observe that h ∈ Cα(Sn \ Z) and h = 0 pointwise on Z, hence by [47,

Theorem 2.2] h ∈ H1
0 (S

n \ Z).

Therefore, h ∈ H1
0 (S

n \ Z) →֒ W 1,p
0 (Sn \ Z), for all 1 6 2 < p. Since dimZ 6 n − 2, Hn−p(Z) = 0

for all 1 6 p < 2. Hence, by Proposition 2.9

capp(Z) = 0 , ∀ 1 6 p < 2 .
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We thus conclude that h ∈ W 1,p
0 (Sn \ Z) = W 1,p

0 (Sn) = W 1,p(Sn), for 1 6 p < 2, by Propostion 2.10.

In particular, h is weakly differentiable on the whole S
n and its weak derivatives are Lp functions

on S
n. Now, since Z has Hn-measure zero, (4.14) implies that h ∈ H1(Sn). �

By the characterization (4.9), we now see that

∫

Sn

cn|∇g0h|2 + Scalg0 h
2 dvolg0 ≥ Y(Sn, g0)

(∫

Sn

h
2n
n−1 dvolg0

)n−2
n

= n(n− 1)ωn.

Together with (4.12) and (4.13), we get

lim
ε→0

∫

Sn\Zε

Scalg dvolg ≥ n(n− 1)ωn.

We conclude from (4.8) that ∫

Sn\Z
|/P g

φ|2 dvolg = 0

and thus, /P
g
φ = 0 on S

n \Z, namely φ is a twistor spinor on (Sn \Z, g). This in turn implies further

information on the scalar curvature. Indeed, a direct computation shows that

( /D
g
)2φ =

n Scalg
4(n− 1)

φ in (Sn \ Z, g),

see e.g. [26, Prop A.2.1]. It follows that Scalg = n(n− 1) = Scalg0 on S
n \ Z.

Using the characterization (4.9), combined with the definition (4.10) and with (1.5) a direct com-

putation shows that h actually minimizes the Yamabe quotient. Then h is a weak solution of (4.11)

in H1(Sn), with Scalg ≡ n(n− 1).

Note that h ∈ Cα(Sn), hence elliptic regularity theory gives h ∈ C∞(Sn). Moreover, the strong

maximum principle implies that h > 0 on S
n and Z(ψ) = ∅.

Now the metric g is a smooth Riemannian metric on S
n with constant scalar curvature Scalg =

n(n− 1) = Scalg0 . A theorem of Obata [41] implies that there exists an isometry

f : (Sn, g) → (Sn, g0)

that is, f∗g0 = g = h
4

n−2 g0. Then

dvolf∗g0 = det(df) dvolg0 = h
2n
n−2 dvolg0 =⇒ h = (det(df))

n−2
2n .

Now the spinor φ ∈ ΣgS
n is an eigenspinor of eigenvalue n

2 as well as a twistor spinor, hence a (−1/2)-

Killing spinor. These properties are preserved by isometries. In particular, the spinor F ◦ φ ◦ f−1

coincides with a −1
2 -Killing spinor Ψ ∈ K (g0;−1

2 ) which has constant length: |Ψ| ≡
(
n
2

)n−1
2 (see (4.4)).

Then φ = F−1 ◦Ψ ◦ f ≡ f∗Ψ ∈ Γ(ΣgS
n) and

ψ = h
n−1
n−2β−1(φ) = (det(df))

n−1
2n β−1(f∗Ψ) ∈ Γ(Σg0S

n).

This concludes the proof. �

Remark 4.4. Similarly to the previous section, we can explicitly compute the length function |ψ|,
thanks to the classification theory for the Yamabe equation. Indeed, let h be a positive solution

of (4.11), i.e.

−cn∆g0h+ Scalg0 h = Scalg h
n+2
n−2 on (Sn, g0),
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with cn = 4n−1
n−2 , Scalg0 = n(n − 1), and Scalg = n(n − 1). Using the stereographic projection (2.3)

and (2.4), the induced metric π∗g0 has constant scalar curvature Scalπ∗g0 = n(n − 1). Then the

function π∗h = h ◦ π : Rn → R solves the equation

−cn∆π∗g0(π
∗h) + Scalπ∗g0(π

∗h) = Scalg h
n+2
n−2 on (Rn, π∗g0).

Moreover, since the flat Euclidean metric gRn is conformal to π∗g0, the function

u :=

(
2

1 + |x|2
)n−2

2

(h ◦ π) : Rn → R

is a solution to the equation

−cn∆Rnu = Scalg u
n+2
n−2 , on (Rn, gRn). (4.15)

For Scalg = n(n − 1), the solutions of (4.15) are explicitly known from [25, page 211], [46, Chapter

III-4]: there exist λ0 and x0 ∈ R
n such that

u(x) =

(
2λ

λ2 + |x− x0|2
)n−2

2

.

This determines the length of the solution ψ: for any y ∈ S
n, which is projected to p(y) ∈ R

n via (2.3),

|ψ(y)| =
(n
2

)n−1
2
h(y)

n−1
n−2 =

(
n

2

λ(1 + |p(y)|2)
λ2 + |p(y)− x0|2

)n−1
2

. (4.16)

Proof of Corollary 1.4. We can now give a quite explicit formula for the solutions of (1.1) on R
n. Via

the stereographic projection π in (2.4), the pull-back of the −1
2 -Killing spinors have the form

Ψ̃(x) =

(
2

1 + |x|2
)n

2

(1− γ
Rn
(~x)) Φ̃0 (4.17)

where 1 denotes the identity endomorphism of the spinor bundle ΣgRnR
n, γ

Rn
(~x) denotes the Clifford

multiplication by the position vector ~x, and Φ̃0 ∈ C
N is a constant complex N -vector. Formula (4.17)

is used in the study of the spinorial Yamabe problem and of critical Dirac equations on manifolds, see

e.g. [4, 6, 30], to construct suitable test spinors.

Recall that the −1/2-Killing spinors on (Sn, g0) constitute a linear space of dimension N = 2[n/2]

(see Proposition 2.5), thus the spinors of the form (4.17) are their conformal image on the Euclidean

space (Rn, gRn), via stereographic projection.

The other solutions of (1.1) on (Rn, gRn) are given by the transformations under conformal dif-

feomorphisms of (Rn, gRn). First consider the composition of translations and scalings: for x0 ∈ Rn

and λ ∈ R+, define fx0,λ : R
n → R

n by

fx0,λ(x) :=
x− x0
λ

.

Then f∗x0,λ
gRn = λ−1gRn . The corresponding transformation of (4.17) is given by

ψ(x) =βλ−2gRn ,gRnF
−1
x0,λ

Ψ̃(fx0,λ(x))

=

(
2λ

λ2 + |x− x0|2
)n

2

βλ−2gRn ,gRnF
−1
x0,λ

(
1− γ

Rn

(
x− x0
λ

))
Φ̃0.
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Note that βλ−2gRn ,gRnF
−1
x0,λ

can actually be taken as the identity, for the following reasons. Note

that PSO(R
n, gRn) = R

n × SO(n) is the product bundle. Using the notation from Section 2.4 and 2.5,

we see that bgRn ,λ−2gRn ◦ SO(f) : Rn × SO(n) → R
n × SO(n) is given by

(x, (v1, · · · , vn)) 7→ (fx0,λ(x), (v1, · · · , vn))

which is the identity on SO(n). Thus its lift to the Spin(n)-principal bundles is also the identity map

on the Spin(n) components. As a consequence, the spinors of ΣgRnR
n = R

n×C
N , which can be viewed

as CN -valued functions, are invariant under βλ−2gRn ,gRnF
−1
x0,λ

. Therefore,

ψ(x) =

(
2λ

λ2 + |x− x0|2
)n

2
(
1− γ

Rn

(
x− x0
λ

))
Φ̃0.

The length function of p∗ψ is exactly given by (4.16), provided the constant vector Φ̃0 is chosen with

the right norm: |Φ̃0| = 1√
2

(
n
2

)n−1
2 .

Second, note that the rotations do not generate new solutions: their conformal transformations

result in new choices of the parameters λ > 0, x0 ∈ R
n and Φ̃0 ∈ C

N . For example, consider a

rotation A ∈ SO(n), which is an isometry of (Rn, gRn). Denote the induced map on spinor bundles

by FA : ΣRn,→ ΣRn. Note that FA (γ
Rn
(v)ψ) = γ

Rn
(Av)FA(ψ). The pull-back of ψ under A is

A∗ψ(z) =F−1
A (ψ(Az)) =

(
2λ

λ2 + |Az − x0|2
)n

2

F−1
A

(
1− γ

Rn

(
Az − x0

λ

))
Φ̃0

=

(
2λ

λ2 + |z −A−1x0|2
)n

2

F−1
A

(
1− γ

Rn

(
z −A−1x0

λ

))
F−1
A Φ̃0

which is the solution parametrized by λ > 0, z0 = A−1x0 ∈ R
n and F−1

A Φ̃0 ∈ C
N .

�

We now see that the ground state solutions of (1.1) on (Rn, g
Rn
) can be parameterized by Φ̃0 ∈ C

N

with |Φ̃| = 1√
2

(
n
2

)n−1
2 , and x0 ∈ R

n, λ ∈ R+. Hence they form a space of real dimension

(2N − 1) + n+ 1 = 2[
n
2
]+1 + n.

We remark that, here we do not consider the reflections and inversions of R
n, which are also

conformal, since they are orientation reversing and hence do not lift to the Spin(n) level. However,

since ΣRn = R
n×C

N is trivial and the spinors are simply C
N valued functions1, one can consider the

corresponding transformations induced on the spinors. By a similar argument as above, one can find

that they do not give rise to new solutions.

5. On the Hausdorff dimension of the nodal set

This section is devoted to the proof of Theorem 1.6. We prove that, around a zero, a solution of (1.1)

can be expanded as a harmonic spinor with homogeneous polynomial components, plus higher order

terms. Such a decomposition is the spinorial counterpart of some results by Caffarelli and Friedman

in [18, 19].

We treat first the case where the leading order polynomial is of degree one and then we turn to case

of higher degrees. In the latter case we exploit the fact that if a solution to (1.1) vanishes at order

β > 1 at some point x0, then x0 must be in the critical set, i.e., ∇ψ(x0) = 0.

1This is to identify the spinor bundles associated to different spin structures.
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By conformal equivalence and by invariance of the Hausdorff dimension under diffeomorphisms, we

equivalently study the equation on R
n, that is, with respect to the Euclidean metric,

/Dψ = |ψ|2/(n−1)ψ , on R
n. (5.1)

Moreover, it is not restrictive to look at a solution defined on the unit ball B1 = B1(0) ⊆ R
n.

Let ψ ∈ C1,α(B1,C
N ) be a solution to (5.1). Our goal is to prove that the nodal set

Z := {x ∈ B1 : ψ(x) = 0}

has Hausdorff dimension at most n− 2.

Remark 5.1. Since we want to deal with measure-theoretic properties of the nodal set of solutions,

it is more convenient to work with real-valued spinors rather than complex-valued ones. Thus we

identify C
N with R

2N and assume ψ ∈ C1,α(B1,R
2N ) is a solution of (5.1), which is now a system

consisting of 2N differential equations with real coefficients.

5.1. Expansion of the spinor near a zero. In this section we prove a decomposition result for

solutions to (5.1) in B1, analogous to the case of second order elliptic equations treated in [18, 19].

The Dirac operator /D can be expressed as

/D = α · ∇ =

n∑

j=1

αj∂j ,

where the αj are 2N × 2N matrices satisfying the anti-commutation Clifford relations

αjαk + αkαj = −2δjk Id2N ,

and α = (α1, · · · , αn). Since /D
2
= (−∆) Id2N , the Green function of /D in R

n can be expressed as

G(x, y) = /Dx((2 − n)−1ω−1
n−1|x− y|−(n−2) Id2N ) =

α · (x− y)

ωn−1|x− y|n Id2N , (5.2)

and it verifies

/DxG(x− y) = δ(x− y) Id2N

in the distributional sense. Then, integrating by parts one finds the representation formula

ψ(x) =

∫

B1

G(x− y) /Dψ(y) dy +

∫

∂B1

(α · y)G(x − y)ψ(y) dS(y) =: I1 + I2 , (5.3)

where we abbreviated α · y ≡∑j y
jαj .

Lemma 5.2. Suppose ψ satisfies

| /Dψ| 6 Cβ|x|β , on B1, (5.4)

and that β > 0 is not an integer. Then there exists 0 < R 6 1 such that

ψ(x) = P (x) + Γ(x), on BR, (5.5)

for some P,Γ : BR → R
2N , where the components of P are harmonic polynomials of degree [β] + 1,

and

|Γ(x)| 6 C ′
β|x|β+1, |∇Γ(x)| 6 C ′′

β |x|β , on BR. (5.6)

Moreover P is a harmonic spinor, i.e. /DP = 0.
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Proof. We need to analyze the terms I1, I2 in (5.3).

Recall that the Green’s kernel of the Laplacian admits a power series expansion in terms of the

so-called Gegenbauer polynomials [44, p. 148-150]

|x− y|−(n−2) =
∑

k>0

1

|y|n−2+k
|x|kCτ

k (〈x, y〉) , τ = (n− 2)/2 , (5.7)

where Cτ
k (t) are the Gegenbauer polynomials of indices (k, γ), and |x|kCτ

k (〈x, y〉) are homogeneous

harmonic polynomials in x of degree k. Observe that in the above formula 〈x, y〉 denotes the Euclidean
scalar product of x, y ∈ R

n.

Then by (5.2) we conclude that the Green’s function of /D can be rewritten as

G(x− y) =
1

ωn−1

∑

k>0

1

|y|n−2+k
Ξk(x, y) , (5.8)

where the 2N × 2N matrix

Ξk(x, y) := /Dx(|x|kCτ
k (〈x, y〉)) (5.9)

is /Dx-harmonic and its components are homogeneous harmonic polynomials of degree k− 1, recalling

that /D
2
= (−∆) Id2N .

Remark 5.3. Notice that the power series in (5.7) is absolutely convergent in a smaller ball BR ⋐ B1.

This follows from the properties of the Gegenbauer polynomials, for which we refer the reader to [44,

p. 148-150] and [35]. Indeed, there holds

∣∣∣∣
dj

dtj
Cτ
k (t)

∣∣∣∣ 6 Ck2j+n−3 , j = 0, 1, 2 . (5.10)

One easily sees that

|Ξk(x, y)| 6 L
[
k|x|k−1Cτ

k (〈x, y〉) + |x|k∇xC
τ
k (〈x, y〉)

]
,

for some L > 0. Then, by (5.9) and (5.10), one concludes that the series in (5.8) converges uniformly

for x ∈ BR.

We estimate I1, decomposing the domain of integration as follows
∫

B1

=

∫

B1∩B(1+1/β)|x|(0)
+

∫

B1\B(1+1/β)|x|(0)
,

and then splitting

I1 = J1 + J2

accordingly. We can estimate J1 as follows, by (5.2), (5.4) and passing to polar coordinates

|J1| 6 CCβ|x|β
∫

B1∩B(1+1/β)|x|

dy

|x− y|n−1
6 C ′

β|x|β
∫

B2(1+1/β)|x|(x)

dy

|x− y|n−1

= C ′
β|x|β

∫

B2(1+1/β)|x|

dz

|z|n−1
6 C̃β|x|β+1,

using the inclusion B(1+1/β)|x|(x) ⊆ B2(1+1/β)|x|.
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We now turn to J2, exploiting the expansion (5.8). Observe that the properties of Ξk(x, y) imply

that the series converges uniformly, so that one can differentiate or integrate term by term. There

holds

J2 =
∑

k>0

∫

B1\B(1+1/β)|x|

1

|y|n−2+k
Ξk(x, y) /Dψ(y) dy

=

[β]+2∑

k=0

∫

B1\B(1+1/β)|x|

1

|y|n−2+k
Ξk(x, y) /Dψ(y) dy

+
∑

k>[β]+2

∫

B1\B(1+1/β)|x|

1

|y|n−2+k
Ξk(x, y) /Dψ(y) dy

=: A+ B .
Let us focus on A. Adding the sum

Ã =

[β]+2∑

k=0

∫

B1∩B(1+1/β)|x|

1

|y|n−2+k
Ξk(x, y) /Dψ(y) dy =:

[β]+2∑

k=0

Ãk

to A, we obtain a spinor

P0 := A+ Ã, (5.11)

which is harmonic and whose components are harmonic polynomials of degree [β] + 1.

Passing to polar coordinates, we can estimate the terms appearing in Ã as follows

|Ãk| 6 C1|x|k−1

∫

B1∩B(1+1/β)|x|

dy

|y|n−2+k−β

6 C2|x|k−1

∫ (1+1/β)|x|

0
rβ+1−k dr 6 C2

(1 + 1/β)β+2

β + 2
|x|β+1 ,

where we used the fact that Ξk(x, y) is (k − 1)-homogeneous and (5.4).

We now need to estimate the term

B =
∑

k>[β]+2

Bk , (5.12)

where

Bk =

∫

B1\B(1+1/β)|x|

1

|y|n−2+k
Ξk(x, y) /Dψ(y) dy .

Using (5.4) and the definition of Ξk(x, y) we get

|Bk| 6 CCβ|x|k−1

∫

Rn\B(1+1/β)|x|

dy

|y|n−2+k−β
.

Notice that the constant Cβ is independent of k. Then, passing in polar coordinates in the last integral

we obtain ∫

Rn\B(1+1/β)|x|

dy

|y|n−2+k−β
= ωn

∫ ∞

(1+1/β)|x|

dr

rk−β−1

6 ωn
(1 + 1/β)β+2

[β] + 1− β
|x|β+2 × (1 + 1/β)−k|x|−k .

Combining the above observations, summing up and using (5.12) we thus find

|B| 6 C
Cβ

β − [β]
|x|β+1 . (5.13)
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Observe that that β − [β] 6= 0, as we assumed that β is not an integer.

We are left with the term I2 in (5.3). Using the expansion (5.8) and the fact that |y| = 1, we see

that

I2 =

∫

∂B1

(α · y)G(x− y)ψ(y) dS(y) =

∞∑

k=0

Qk(x) ,

where Qk : B1 → C
N is /D-harmonic, i.e. /DQk = 0, and its components are homogeneous harmonic

polynomials of degree k − 1.

By (5.2) the components of the spinor

P1(x) :=

[β]+2∑

k=0

Qk(x) (5.14)

are harmonic polynomials of degree [β] + 1, and there holds /DP1 = 0.

The remainder term can be estimated, following [18, p. 342-343], as follows. Observe that

|Qk(x)| 6 Cδk−1|x|k−1 , ∀δ > 1 ,

where C > 0 depends on δ and ‖ψ‖L∞(∂B1). Now, if |x| < ρ, we have
∣∣∣∣∣∣

∑

k>[β]+2

Qk(x)

∣∣∣∣∣∣
6 C

∑

k>[β]+2

δk−1|x|k−1
6 C ′δβ |x|β+1 ,

where C ′ depends on C, δ, ρ. If ρ < |x| < 1, then
∣∣∣∣∣∣

∑

k>[β]+2

Qk(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
I2 −

∑

k6[β]+2

Qk(x)

∣∣∣∣∣∣
6 C +

∑

k6[β]+2

|Qk(x)|

6 C +
∑

k6[β]+2

δk−1 6 C ′′δβ+1 6 C ′′
(
δ

ρ

)β+1

|x|β+1

for some other constant C ′′ > 0. Taking δ = 5/4 and ρ = 3/4, we get
∣∣∣∣∣∣

∑

k>[β]+2

Qk

∣∣∣∣∣∣
6 Cβ|x|β+1 . (5.15)

Then formula (5.5) follows combining (5.11),(5.13),(5.14) and (5.15), taking

P := P0 + P1 ,

and, by (5.12),(5.15),

Γ :=
∑

k>[β]+2

(Bk +Qk) .

Let us focus now on gradient estimates in (5.6). There holds

∇Γ =
∑

k>[β]+2

(∇Bk +∇Qk) . (5.16)

Observe that the components of (∇Bk +∇Qk) are homogeneous polynomials of degree k − 2. The

gradient estimate in (5.6) follows along the same line as for the proof of (5.13) and (5.15), as the

argument in Remark (5.3) shows that |∇Bk(x) +∇Qk(x)| 6 Ckn+1|x|k−2, so that the series (5.16) is

uniformly convergent, possibly restricting to a smaller ball BR′ ⋐ BR ⋐ B1. �
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Since ψ is a solution to (5.1), then

| /Dψ| = |ψ|(n+1)/(n−1) on B1.

Let x0 ∈ B1 be such that ψ(x0) = 0. Without loss of generality, we assume x0 = 0.

Lemma 5.4. Suppose that a spinor ψ ∈ C1,α(B1,R
2N ) satisfies

| /Dψ| 6 C|ψ|σ , on B1,

with C > 0, σ > 1. Assume that

ψ(0) = 0 , ψ 6≡ 0 , on B1. (5.17)

Then there exist Pk,Γk : B1 → C
N such that

ψ(x) = Pk(x) + Γk(x) , x ∈ BR , (5.18)

for some 0 < R 6 1. Here the components of Pk are homogeneous harmonic polynomials of degree

k > 1, and there holds /DPk = 0. Furthermore, for any 0 < δ < 1 there exists a constant C = C(δ) > 0

such that

|Γk(x)| 6 C|x|k+δ , |∇Γk(x)| 6 C|x|k+δ−1 .

Proof. If not, then we can repeatedly apply Lemma 5.2 and conclude that ψ vanishes to infinite-order

at x = 0, in the sense that ψ(x) = o(|x|m), for any m ∈ N. The strong unique continuation principle

[36, Corollary to Theorem 1] implies that ψ ≡ 0, contradicting (5.17). �

5.2. Dimension estimates for the nodal set: proof of Theorem 1.6. As before, consider a

non-trivial C1,α solution ψ : B1 → R
2N of

/Dψ = |ψ|2/(n−1)ψ ,

and let Z = {x ∈ B1 : ψ(x) = 0} be its nodal set.

For each given x0 ∈ Z, the spinor ψ admits a decomposition

ψ(x) = Pk(x− x0) + Γk(x− x0) , in BR(x0), (5.19)

as in Lemma 5.4, where k > 1. Then we have

Z = Z1 ∪ Z>2 , (5.20)

where the set Z1 consists of points in Z for which the leading order polynomial term in (5.19) is of

first order, and Z>2 = Z \ Z1. We estimate the Hausdorff dimension of those sets separately, so that

the proof of Theorem 1.6 follows combining Propositions 5.5 and 5.6.

Proposition 5.5. The set Z1 in (5.20) has Hausdorff dimension at most n− 2.

Proof. Take x0 ∈ Z1. For simplicity we assume that x0 = 0. Our aim is to prove that there exists

ρ > 0 such that Z ∩Bρ is contained in a rectifiable subset of dimension at most n− 2.

Since k = 1, we have P1 = (P 1
1 , · · · , P 2N

1 ), where each P j
1 is a homogenous polynomial of degree

one, namely a linear function.

As P1 6= 0, the vector space SpanR{P 1
1 , · · · , P 2N

1 } is non-trivial.
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We claim that the vector space SpanR{P 1
1 , · · · , P 2N

1 } cannot be one-dimensional. Arguing by con-

tradiction, suppose that there exists a non-zero linear p(x1, · · · , xn) and constants c1, · · · , c2N ∈ R

such that

P j
1 = cjp, 1 ≤ j ≤ 2N

and at least one cj is non-zero. Note that ∇Γ(0) = 0. Then at x0 = 0 ∈ B1,

/Dψ(0) =
∑

1≤α≤n

γ(eα)∇eαψ(0) =
∑

1≤α≤n

γ(eα)∇eαP1(0).

Now since p(x1, · · · , xn) is linear, we may perform a linear transformation on B1(0) ⊂ R
n such

that p(x1, · · · , xn) = x1, and hence ∇eαp = δ1α. Consequently, at the origin

/Dψ(0) =
∑

1≤α≤n

γ(eα)




c1

...

c2N


 δ1α = γ(e1)




c1

...

c2N


 .

On the other hand, equation (5.1) implies that /Dψ(0) = 0. Since γ(e1) in invertible, we are led

to c1 = · · · = c2N = 0, a contradiction.

Therefore, the vector space SpanR{P 1
1 , · · · , P 2N

1 } is at least two-dimensional. Suppose that P 1
1 , P

2
1

are linearly independent, then so are their gradients ∇P 1
1 ,∇P 2

1 . Note that

Z = {x ∈ BR : ψ(x) = 0} ⊆ {x ∈ BR : ψ1(x) = 0, ψ2(x) = 0} =: Ω ,

and ∇ψ1(0) = ∇P 1
1 (0),∇ψ2(0) = ∇P 2

1 (0) are linearly independent. By the implicit function theorem,

there exists ρ > 0 such that Ω ∩Bρ is a submanifold of dimension n− 2, as desired. �

We now deal with the set Z>2, that is, we consider zeroes of the spinor for which the leading order

polynomial in (5.19) is of order k > 2. In this case the dimension estimate follows by the analogous

result in [19].

Proposition 5.6. The set Z>2 has Hausdorff dimension at most n− 2.

Proof. It is immediate to see that

Z>2 = {x0 ∈ BR : ψ(x0) = 0,∇ψ(x0) = 0 , ψ(x) = Pk(x− x0) + Γk(x− x0) , k > 2},

where Pk and Γk are as in Lemma 5.4. Observe that the components of the spinors Pk are harmonic

polynomials, and that

{x0 ∈ BR : ψ(x0) = 0,∇ψ(x0) = 0 , ψ(x) = Pk(x− x0) + Γk(x− x0) , k > 2}

=

N⋂

j=1

{x0 ∈ BR : ψj(x0) = 0,∇ψj(x0) = 0, ψj(x) = P j
k (x− x0) + Γj

k(x− x0) , k > 2} ,

where ψ = (ψ1, · · · , ψN ). Then we are led to estimate the dimension of the sets

Nj := {x0 ∈ BR : ψj(x0) = 0,∇ψj(x0) = 0, ψj(x) = P j
k (x− x0) + Γj

k(x− x0) , k > 2} , (5.21)

where j = 1, · · · , N , as clearly Z>2 = ∩N
j=1Nj .

The desired estimate dimHNj 6 n − 2 follows from [19, Theorem 3.1]. Indeed, in that paper the

authors show that dimH(S) 6 n − 2, S := {x ∈ Ω : u(x) = 0,∇u(x) = 0} being the singular set of

solutions to second order elliptic equations of the form

∆u = f(x, u,∇u) in Ω ,
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where Ω ⊆ R
n is an open set and

|f(x, u,∇u)| 6 A|u|α +B|∇u|β ,

for some A,B > 0 and α, β > 1. For such functions, they proved a decomposition result [19, Theorem

1.2] analogous to (5.18). Starting from such a decomposition, they obtained cusp-like estimates [19,

Theorem 2.1] and then conclude the proof of [19, Theorem 3.1]. The result also applies in our case for

the sets Nj in (5.21). Indeed, the proof of [19, Theorem 3.1] ultimately relies on the decomposition [19,

Forumula 1.8], whose analogue in our case is given by (5.18) in Lemma 5.4. Starting from that results

one can apply the mentioned argument of [19] to each component ψj , thus concluding the proof.

�
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