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ABSTRACT
Search algorithms based on quantum walks have emerged as a
promising approach to solve computational problems across various
domains, including combinatorial optimization, and cryptography.
Stating a generic search problem in terms of a (quantum) search over
a graph makes the efficiency of the algorithmic method depend
on the structure of the graph itself. In this work, we propose a
complete implementation of a quantum walk search on Johnson
graphs, speeding up the solution of the subset-sum problem. We
provide a detailed design of each sub-circuit, quantifying their cost
in terms of gate number, depth, and width.We compare our solution
against a Grover quantum search, showing a reduction of the T-
count and T-depth for practically solvable problems. The proposed
design provides a building block for the construction of efficient
quantum search algorithms that can bemodelled on Johnson graphs,
filling the gap with the existing theoretical complexity analyses.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; • Mathematics of computing → Graph algorithms; •
Computer systems organization→ Quantum computing.
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1 INTRODUCTION
Random walks play a crucial role in the analysis of probabilistic
approaches to search problems. Their importance was first rec-
ognized in [1], in which the authors addressed the shortest path
problem by modeling the positions inside a maze as vertices of a
graph, and then generating random sequences of directions. More
recently, the quantum counterpart of random walks, referred to
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as quantum walks, were proven to provide a quadratic speedup
in search algorithms [20, 21] compared to the classical paradigm
of computation, reducing the computational complexity with re-
spect to a Grover-based quantum search algorithm [9]. Inspired
by [2], which proposes a quantum-walk search strategy on a John-
son graph to achieve an exponential-time algorithm surpassing
Grover’s approach for solving the element distinctness problem, re-
searchers have adapted the same approach to address NP-complete
problems like information set decoding [13] and claw finding [23].

In this study, we tackle the subset-sum problem, which involves
finding a subset I⊆X of a given set X of 𝑛 integers such that
the sum of its elements equals a given value 𝑝>0. The constrained
version additionally requires that |I |=𝑘 . To solve the unconstrained
version, we can run its constrained version for all 𝑘∈{1, . . . , ⌈𝑛/2⌉}.
Both formulations belong to the class of NP-hard problems [7].

In [4], the authors explore the theoretical advantages of using a
quantum walk search algorithm to solve the subset-sum problem.
Adapting a classical meet-in-the-middle approach to the quantum
setting, their strategy significantly reduces the number of required
operations compared to classical algorithms. The asymptotic run-
time was further improved in [10, 5] by exploiting a different adap-
tation of the classical strategy. All the works, however, rely on
an exponential amount of memory with quantum random-access
(QRAM), whose practical realization is still challenging [12].No-
tably, [12] shows the only partial design of a quantum walk-based
search on the Johnson graph, focusing on the claw-finding problem.
Nevertheless, their proposal modifies the graph structure by adding
a self-loop to every vertex, introducing sub-optimal performance
compared to theoretical expectations.
Contribution.We give a concrete design and implementation of
a quantum walk search algorithm on the Johnson graph to solve
the subset-sum problem. Our analysis assumes a fault-tolerant
regime of quantum computation, avoiding any discussion related to
noise correction and hardware architectures. We derive closed-form
complexity metrics in terms of number of quantum gates, number
of qubits (a.k.a., width) and depth of the quantum circuit. In contrast
to the state-of-the-art theoretical approaches, our proposal does not
depend on an exponentially-sized QRAM, but only on a polynomial
amount of qubits. We additionally retrieve the complexity metrics
of our circuits in terms of the Clifford+T gate set, considered the
most promising one for fault-tolerant quantum computation [6].

We compare our implementation with a Grover-based search
approach, showing improvements in terms of both the depth and
depth×widthmeasure, considering a problem size range from practi-
cally solvable subset sum instances, to problem sizes which are con-
sidered large enough to build post-quantum cryptosystems upon
(and therefore assumed not solvable even with a quantum com-
puter).
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2 BACKGROUND
In this section, we introduce the notation and give an overview on
Markov chains and the MNRS framework [15].

2.1 Quantum computing
In quantum computing, the qubit represents the basic unit of infor-
mation, and its state is expressed as a linear combination of two
column vectors, |0⟩ and |1⟩. Denoting a generic qubit as |𝜓 ⟩, its state
can be written as |𝜓 ⟩=𝑎0 |0⟩ + 𝑎1 |1⟩, where 𝑎0, 𝑎1∈C are known as
amplitudes of the basis states |0⟩ and |1⟩. A group of 𝑛 qubits is ex-
pressed in terms of column vectors belonging C2

𝑛
, described by 2𝑛

basis states labeled as length-𝑛 bitstrings, as in |𝜓 ⟩=∑
𝑖∈{0,1}𝑛 𝑎𝑖 |𝑖⟩.

We denote a subset of 𝑚≤𝑛 qubits as quantum register, and we
use an underline to describe them, as in 𝑎. To reference individ-
ual qubits within the register, we employ the standard 0-indexing
notation commonly used for classical arrays (e.g., 𝑎[0] is the first
qubit of 𝑎). The system evolves through the application of quantum
operators, described by a unitary matrix𝑈 , to quantum registers.
In the gate-based model of quantum computation, each qubit is vi-
sualized as a wire of a circuit, and quantum operators are visualized
as quantum gates acting on the wires. The application of a gate G
to a quantum register modifies the amplitudes of all the basis states
depending on the values of the labels of the qubits it acts on. In
the rest of the work, we will employ the following quantum gates:

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Ry (𝜃 ) =
[
cos𝜃/2 − sin𝜃/2
sin𝜃/2 cos𝜃/2

]
The X gate, commonly known as NOT, switches the amplitude

of the basis state |0⟩ and |1⟩, resembling the classical NOT gate.
Given a generic gate G acting on𝑚 qubits, the gate C𝑐G operates
on𝑚+𝑐 qubits, in which the additional 𝑐 qubits serve as controls.
The gate G is applied to the𝑚 qubits only if all the 𝑐 control qubits
are in state 1. If 𝑐=1 the superscript is omitted; moreover, CX and
C2X are commonly known as CNOT and CCNOT respectively. In
the circuit representation, C𝑐G gate is depicted by a black circle on
the control qubits, connected through a vertical line to the gate G.
Reflection operators. We define as𝑈r(𝛼) the operator performing
a reflection of the quantum state through the hyperplane gener-
ated by |𝛼⊥⟩, where |𝛼⊥⟩ is any state orthogonal to |𝛼⟩. Its action is
such that𝑈r(𝛼)|𝛼⟩=|𝛼⟩, while𝑈r(𝛼)|𝛼⊥⟩=−|𝛼⟩. We define𝑈r(1⊥) as the
reflection through the basis state labelled as the all-ones bitstring.
Such reflection is realized in terms of a (multi-)controlled Z gate
applied on all the qubits it acts upon. Dually, we denote as𝑈r(0⊥) the
reflection through the basis state labelled as the all-zeros bitstring.
Its realization requires a (multi-)controlled Z gate, taking care of
applying a NOT gate on all the involved qubits before and after
its application. For a generic quantum state |𝛼⟩, however, imple-
menting 𝑈r(𝛼) in terms of quantum gates may be difficult, and it
is hence usually realized through the Quantum Phase Estimation
(QPE) algorithm [16]. Indeed, when |𝛼⟩ is the unique eigenvector
of a unitary 𝑈 with eigenvalue 1 (and eigenphase 𝜆0=0) — that is,
𝑈 |𝛼⟩=𝑒𝑖𝜆0 |𝛼⟩=|𝛼⟩— the reflection 𝑈r(𝛼) is approximated applying
the QPE algorithm to𝑈 , storing the eigenphase on a set of auxiliary
qubits, and then applying𝑈r(0⊥) on them. The QPE, in its realization,
requires the repeated application of the controlled version of𝑈 .

2.2 Probabilistic search through random walks
over Johnson graphs

A random walk on a graph 𝐺=(V, E) is a stochastic process mod-
elled as a sequence of probabilistic transitions between a vertex
𝑣𝑖∈V and any of its adjacent vertexes 𝑣 𝑗∈V , with (𝑣𝑖 , 𝑣 𝑗 )∈E being
an edge of G. If the probability of taking a step to an adjacent vertex
depends only on the current vertex, the random walk is equiva-
lent to a Markov chain [17]. Its evolution is described in terms of
a vector of probabilities 𝒔𝑖 of size |V|, denoting the occurrence
of each vertex, and a stochastic matrix 𝑃 of size |V|×|V|, where
the element in row 𝑖 and column 𝑗 represents the probability of
transitioning from 𝑣𝑖 to 𝑣 𝑗 . We consider Markov chains having a
unique stationary distribution 𝒔𝜋 . In such chains, starting from any
initial distribution of the vertices, we reach 𝒔𝜋 in a fixed number of
steps, and any further step does not alter the probability distribu-
tion. Such number of steps, known as mixing time, is proportional
to 1/𝛿 , in which 𝛿 denotes the spectral gap of 𝑃 — the difference
between its two largest eigenvalues.
Search problem. A search problem can be described as the prob-
lem of finding one or more elements belonging to the domain X
for which the Boolean function 𝑓 : X↦→{0, 1} is equal to 1. The
setM={𝑥 | 𝑥∈X, 𝑓 (𝑥)=1} is termed the marked set, and we define
the ratio of marked elements as 𝜀=|M|/|X|. A naive probabilistic
approach to the problem repeatedly samples an element 𝑥∈X ac-
cording to the uniform distribution, stopping when 𝑓 (𝑥)=1. For
each sample, the probability that 𝑥∉M is equal to 1−𝜀, and the
expected number of trials required to get a success is equal to the
mean of the geometric distribution, i.e., 1/𝜀. Denoting as T𝑠 the cost
to initialize the uniform distribution and taking a sample from it,
and T𝑐 the cost to check if an element belongs toM, the expected
cost of this approach is T𝑠 +(T𝑠 +T𝑐 )/𝜀. When the search space has
a known structure, we can model it as the vertices of the transition
graph 𝐺=(V, E) associated to a Markov chain. This alternative
probabilistic algorithm samples an element 𝑥∈X according to the
stationary distribution 𝒔𝜋 . After checking if 𝑥∈M, it performs ≈1/𝛿
steps on the chain to return to the stationary distribution, restarting
with a new, independent sample. Denoting T𝑢 as the cost of taking
a step on the Markov chain, this approach has an expected compu-
tational complexity of T𝑠 +(T𝑢/𝛿+T𝑐 )/𝜀, offering an advantage with
respect to repeatedly sampling from the uniform distribution in all
the cases in which T𝑢/𝛿< T𝑠 .
Johnson graphs. The Johnson graph 𝐽 (𝑛, 𝑘) is defined as the undi-
rected graph 𝐺=(V, E), in which each vertex represents a size-𝑘
subsetS of {1, . . . , 𝑛}, and there exists an edge between two vertices
S and T if |S∩T | = 𝑘−1. From the previous definition, it follows
that |V| =

(𝑛
𝑘

)
. Additionally, Johnson graphs have a fixed spectral

gap 𝛿=𝑛/𝑘 (𝑛−𝑘 ), making them ideal candidates for quantum walks.

2.3 Quantum walk search
The most advanced theoretical framework adapting the random
walk search over a Johnson graph to the quantum computing para-
digm is outlined in [15]. Termed MNRS from the initials of the
authors’ surnames, it searches for a subset of marked vertices
M={S∈V | 𝑓 (S)=1} given the graph 𝐺=(V, E) and a Boolean
function 𝑓 . The state of the system throughout the algorithm is
described in terms of the quantum state |S⟩|T ⟩, encoding the edge
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(S,T)∈E. We refer to the two registers as left and right respectively.
After preparing the initial state |𝜋⟩=1/

√
| E |

∑
(S,T)∈E |S⟩|T ⟩ —that

is, the uniform superposition of all the edges of the graph— the
MNRS framework employs an amplitude amplification scheme [11]
to increase the amplitude of all the states whereS∈M. This scheme,
which also serves as the basis for Grover’s algorithm [9], relies on
two reflection operators: 1)𝑈r(𝑀⊥), reflecting around the hyperplane
generated by |S⟩|T ⟩, for S∉M; 2) 𝑈r(𝜋), reflecting around the hy-
perplane generated by |𝜋⟩. Each reflection is repeated 1/√𝜀 times to
achieve a probability ≈1 of measuring a vertex ∈M. The authors
then summarise the amplification procedure using only three oper-
ators, reminding of the classical steps of the random walk search:
a) 𝑈𝑠 , roughly corresponding to the setup circuit (cost T𝑠 ); b) 𝑈𝑢 ,
denoting the update circuit (cost T𝑢 ); c) 𝑈𝑐 , denoting the check
circuit (cost T𝑐 ). In the following, we provide an overview on the
MNRS framework relying on the previous three operators.
Generate |𝜋⟩. The initialization routine, used to create the state |𝜋⟩,
relies on𝑈𝑠 and𝑈𝑢 . The operator𝑈𝑠 prepares a uniform superposi-

tion of all the verticesS∈V; that is, |0⟩|0⟩ 𝑈𝑠−−→ 1/
√
|V |

∑
S∈V |S⟩|0⟩.

Given a generic state |S⟩, with S∈V , the operator 𝑈𝑢 generates
instead the uniform superposition of all its adjacent vertices; that

is, |S⟩|0⟩ 𝑈𝑢−−→ |S⟩∑(S,T)∈E |T ⟩. By applying the two operators
one after the other, we obtain the uniform superposition over all

the edges; that is, |0⟩|0⟩ 𝑈𝑠𝑈𝑢−−−−−→ |𝜋⟩.
Reflection𝑈r(𝑀⊥). This operator is decomposed in terms of two aux-
iliary operators. The first one,𝑈𝑐 , computes 𝑓 and sets an auxiliary
qubit to |1⟩ if 𝑓 (S)=1. The second one is the reflection operator
𝑈r(1⊥), which is applied on such auxiliary qubit. Finally, the applica-
tion of𝑈 †

𝑐 concludes the realization of𝑈r(𝑀⊥).
Reflection𝑈r(𝜋). The realization of𝑈r(𝜋) in the MNRS framework is
the main difference with respect to Grover’s one. While the latter
refers to this operator as diffusion and, to realize it, applies the
sequence of operators𝑈𝑠𝑈r(0⊥)𝑈

†
𝑠 , the MNRS framework avoids𝑈𝑠

in this stage, since it can require a significant amount of resources
to implement. To achieve the same effect of Grover’s diffusion op-
erator, the MNRS framework defines a new operator 𝑈𝑤 , called
walk operator, corresponding to a quantum realization of a single
step taken on the Markov chain according to the stochastic ma-
trix 𝑃 . 𝑈𝑤 is realized in terms of two distinct applications of the
sequence of operators𝑈𝑢𝑈r(0⊥)𝑈

†
𝑢 , the first time having𝑈r(0⊥) applied

on the right vertex, and the second time applied on the left vertex.
The operator 𝑈𝑤 is such that the quantum state |𝜋⟩ is the unique
eigenvector having eigenphase 0. For this reason, to perform the
reflection through 𝑈r(𝜋), the framework applies a QPE procedure
as described in Sec. 2.1, applying the controlled version of 𝑈𝑤 a
number of times proportional to 1/√𝛿 . The quadratic speedup on
the mixing time 1/√𝛿 reflects the relation between the phase-gap of
𝑈𝑤 and the spectral gap of the stochastic matrix 𝑃 [15].
Overall. The total cost of the MNRS search is equal to (T𝑠 +T𝑢 ) +
(T𝑢/√𝛿+T𝑐 )/√𝜀, in which the first term corresponds to the initializa-
tion cost (i.e., the complexity of 𝑈𝑠 and𝑈𝑢 ), while the second one
corresponds to the iterative application of the update and check
routines (i.e.,𝑈𝑢 and𝑈𝑐 ). Since, for all relevant problems, the quan-
tity 1/√𝜀 is large, the quantum walk results in a quadratic speedup
compared to the classical probabilistic approach.

Table 1: Main quantum registers (QRegs) used in our quan-
tum circuit implementation of the MNRS quantum walk.

QRegs Semantics of the content
S T Edge of the Johnson graph 𝐽 (𝑛, 𝑘), with S,T ⊂ {1, . . . , 𝑛},

|S|=|T |=𝑘 , |S∩T |=𝑘−1
S′ T ′ Complement, i.e. S′={1, . . . , 𝑛} \ S and T ′={1, . . . , 𝑛} \ T
𝑚 Stores the sum of 𝑘 integers
𝜎 Stores the Dicke state |𝐷𝑘

𝑛⟩
𝜔 ,𝜔 ′ Stores the Dicke states |𝐷1

𝑘
⟩ and |𝐷1

𝑛−𝑘 ⟩ respectively

3 IMPLEMENTATION
In this section, we present our realization of the MNRS framework
components for the Johnson graph 𝐽 (𝑛, 𝑘) to solve the subset-sum
problem. Tab. 1 gives an overview of the main registers used. Hence-
forth, we use the shorthand𝑚 to represent log2 (𝑛) .

3.1 Setup𝑈𝑠

Our design for this operator combines the Dicke state generation
circuit, a novel circuit named Bitstring Index eXtractor (BIX), and a
circuit computing the sum of 𝑘 integer values. The total number of
resources used to implement this operator is reported in Tab.2.
A. Dicke state generation. Presented in [3], this circuit generates
on the register 𝜎 the Dicke state |𝐷𝑛

𝑘
⟩=
√︃(𝑛

𝑘

) ∑
𝑑 |𝑑⟩, with 𝑑 being a

length-𝑛 bitstring having Hamming weight 𝑘 .
B. Binary Index eXtractor (BIX). We interpret the indices of
the qubits of 𝜎 with values 1 (resp., 0) as the integers of a vertex
S (resp., S′) to be encoded in S (resp., S′). To obtain them, we
describe the BIX quantum circuit, marking the first-ever solution to
this problem in our knowledge. Such a circuit stores the elements
of S and S′ in increasing order in fixed location, avoiding therefore
the dependence on any random-access memory location.

Fig. 1a shows the abstract gates required for the indices to be
stored in S. In the picture, and for the rest of this section, we
denote as S𝑖 the element at position 𝑖 of the quantum register S,
encoding the ordered set S. The quantum circuit applies the same
sequence of operations over 𝑛 iterations on two main elements ofS,
namely S0, serving as an accumulator, and 𝛼 , an auxiliary register
encoding the all-zeros bitstring. At the beginning of iteration 𝑖 , 𝛼
contains the last index found up to that point; that is, 𝛼= 𝑗 such that
𝜎 [ 𝑗]=1 for 𝑗<𝑖 . S0, on the other hand, accumulates the number of
iterations before the next index is found, starting from the value
of 𝛼 . To keep the two elements updated, the algorithm performs,
at each iteration, three operations. First, the +1 gate increase the
integer value stored in S0 by 1. Then, if the value of 𝜎 [𝑖]=1, it first
performs a cyclic left shift of the elements of S (gate LSHIFT), and
then XOR the value of 𝛼 to S0, storing the result in S0 (gate TBX,
shorthand for Topmost to Bottommost XOR). Note that the cyclic
shift always moves intoS0 a group of qubits in state 0, and therefore
the following XOR operation stores the value of 𝛼 into S0. At the
end of the last iteration, given the unconditioned +1 gate applied
at each iteration, the front register S0 contains the value 𝑛. For
this reason, the last step of the algorithm cleans this difference by
performing a fixed, constant subtraction described by the gate −n.
The final LSHIFT moves the clean qubits to 𝛼 , additionally ensuring
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X
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S
H
IF

T
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X

▶

−
n

L
S
H
IF

T

(a)

ω[0]
ω[1]
ω[2]

T0
T1
T2

= |1⟩
= |0⟩
= |0⟩
= |2⟩
= |3⟩
= |5⟩
α

log2(n)

log2(n)

log2(n)

log2(n)

T
B
X

▶
T
B
X

▶
T
B
X

▶|2⟩

D
E
L

|3⟩
|5⟩
|⊥⟩

α′ = |4⟩

IN
S

|3⟩
|4⟩
|5⟩

(b)

Figure 1: (a) The Bitstring Index eXtractor (BIX) encodes in S the indices of the 𝑘 qubits 𝜎 in state 1. LSHIFT performs a cyclic
left shift on S; TBX XORes the topmost log2 (𝑛) qubits to the bottommost log2 (𝑛) qubits it acts upon, putting the result on the
qubits marked by the black triangle. (b) Example showing the action of 𝑈𝑢 on T for a fixed state 𝜔=|100⟩. Since the unique
element of 𝜔 having state 1 is located at the first index, DEL deletes the sample 𝛼=2 from T . The sample 𝛼 ′=4, on the other
hand, is assumed to be generated by the dual subcircuit sampling from T ′ based on 𝜔 ′. The INS gate inserts its value into the T
register, generating therefore a valid adjacent vertex of the initial state.

the correct ordering of the values of S. The sequence of operations
described is analogous for S′, taking care of negating each qubit of
𝜎 before applying the conditional gates of the iteration.

The LSHIFT gate requires (𝑘−1)𝑚 CSWAP gates when acting on
S. Since the control qubit is shared among all CSWAP, all the gates
are applied sequentially. A TBX gate can be implemented using𝑚
CNOT gates, each having as control qubit the one stored in 𝛼 and
as target the corresponding one in S𝑖 . The controlled version of
this gate requires therefore𝑚 CCNOT gates, all sharing the same
additional control qubit of 𝜎 . The gates +1 is implemented using
the quantum adder design of [22], which employs 5𝑚−5 CNOT
gates, and 2𝑚−1 CCNOT gates and has a depth equal to 5𝑚−3.
Additionally, to store the constant value of 1, we use an auxiliary
quantum register of size𝑚, not shown in the picture, initialized to
the binary value 1 using one X gate. The subtraction circuit −n is
implemented using the same adder circuit, taking care of initializing
the auxiliary qubits to the binary complement of 𝑛. Since 𝑛>0, its
complement requires at most𝑚−1 X gates to be encoded. Given the
sequential structure enforced by the shared control qubit inside the
iteration itself, and since all the qubits involved in the TBX circuit
are shared across distinct iterations, the circuit is not prone to
parallelization. Nonetheless, it is trivial to parallelize the execution
between the gates involving S and the ones involving S′.
C. Subset sum. The last step of the setup circuit stores the sum
of the 𝑘 integers of S in the register𝑚 using a series of 𝑘 distinct
adders, each taking as first input one element of S at a time and the
𝑚 circuit as the second addend. Each adder is implemented using
the proposal presented in [22].

3.2 Check𝑈𝑐

The operator𝑈𝑐 checks if the value encoded in𝑚 is equal to 𝑝 . To
implement it, we perform, on the qubits of𝑚, a bitwise XOR with
the binary complement of 𝑝 using X gates. If the equality holds, all
the qubits𝑚 will be in state 1, and they can be used as controls in
a C𝑚X gate having as target an auxiliary qubit.

3.3 Update𝑈𝑢

We detail in this section all the subcircuits composing𝑈𝑢 , reporting
all their costs in Tab.2.
D. XOR S into T . This subcircuit applies the TBX gate to the
quantum registers S and T , using the latter as a target. The opera-
tion requires 𝑘𝑚 CNOT gates, each one having as control a qubit
of S and as target a qubit of T . Since T , at this stage, encodes the
all-zeros bitstring, the operation stores the values encoded in S on
T . An identical operation is applied on S′ and T ′.
E. Sample from T and T ′. This subcircuit selects an element
from T and another one from T ′ uniformly at random. To sample
one element out of the 𝑘 (resp., 𝑛−𝑘) elements of T (resp., T ′), we
reuse the Dicke generation circuit shown in Sec. 3.1 to generate
the state |𝐷1

𝑘
⟩ (resp., |𝐷1

𝑛−𝑘 ⟩) on the auxiliary register 𝜔 (resp., 𝜔 ′).
The unique qubit 𝜔 [𝑖] (resp., 𝜔 ′ [𝑖]) equal to 1 is then used to apply
a TBX gate between the element T𝑖 (resp., T𝑖 ′) and the auxiliary
register 𝛼 (resp., 𝛼 ′), using the qubits of the register 𝛼 (resp., 𝛼 ′),
initially labelled as the all-zeros bitstring, as targets.
F. Generate adjacent vertex; Sum. The overall idea of this stage
is to delete, from T (resp., T ′) the element having the same value
of the one stored in 𝛼 (resp., 𝛼 ′). Then, we insert into T (resp., T ′),
the element having the same value of the one stored in 𝛼 ′ (resp.,
𝛼). The effect of this sequence is the generation, in superposition,
of all the neighbours of each vertex stored in S.

The main challenge of this step is to keep the values of T (resp.,
T ′) ordered, since the quantum state representing the set T (resp.,
T ′) must have a unique representation. Fig. 1b shows an example
of such a strategy, adapted from the one shown in [12]. The INS
starts with a sorted array T , having one free spot in its last position,
and an element 𝛼 ′ to be inserted; it relies on two auxiliary arrays
U andV having the same size of T and initialized to 0. The first
stage of the insertion XORs the value of 𝛼 ′ into all the spots of
U, and then stores the element-wise comparison between T and
U on V . A series of conditional swaps controlled by V is then
performed between the elements of T and U to move 𝛼 ′ in the
right position. A final sequence of operations is used to restore the
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Table 2: Cost metrics for𝑈𝑠 and𝑈𝑢 , detailed in each of their components. The metrics are expressed as a function of the Johnson
graph 𝐽 (𝑛, 𝑘) parameters;𝑚 is a shorthand notation for log2 (𝑛) .

Cost
metrics

Setup𝑈𝑠 Update𝑈𝑢
A. Dicke generation B. BIX C. Subset sum D. S ⊕ T E. Sample F. Generate adjacent vertex; Sum

X 𝑘 𝑛 +𝑚 0 0 2 0
Ry 4𝑛𝑘 − 4𝑘2 − 2𝑛 + 1 0 0 0 2𝑛 − 2 0

CNOT 5𝑛𝑘 − 5𝑘2 − 2𝑛 10𝑛𝑚 − 10𝑛 + 10𝑚 − 10 5𝑘𝑚 − 5𝑘 𝑛𝑚 2𝑛 − 2 28𝑛𝑚 − 20𝑛 + 10𝑚 − 10
CCNOT 0 6𝑛𝑚 − 2𝑛 + 4𝑚 − 2 2𝑘𝑚 − 𝑘 0 𝑛𝑚 8𝑛𝑚 − 4𝑛 + 4𝑚 − 4
CSWAP 0 𝑛2𝑚 − 2𝑛𝑚 0 0 0 4𝑛𝑚
Depth 27𝑛𝑘−12𝑛−27𝑘2+3

𝑘−2
𝑛2𝑚 + 5𝑛𝑚 − 3𝑛 −
𝑛𝑘𝑚 + 𝑘𝑚 + 10𝑚 − 6

5𝑘𝑚 − 3𝑘 1 𝑛𝑚 − 𝑘𝑚 + 4𝑛 −
4𝑘 − 4

30𝑚+4 log2 (𝑛 −𝑘 ) +4 log2 (𝑚) −14

Qubits 𝑛 𝑛𝑚 +𝑚 log2 ( (2𝑛𝑘 − 𝑘2 + 𝑘 )/2) 𝑛𝑚 𝑛 + 2𝑚 2𝑛𝑚

auxiliary arrays to their original state. The DEL applies the same
operations in reverse order. To keep the subset sum updated, the
INS and DEL procedures are followed by the subtraction of the
integer value stored in 𝛼 from the one in register𝑚, followed by
the addition of the one stored in 𝛼 ′. These steps require adder gates,
which we realize using [22].

4 PERFORMANCE
All the components of our design have been extensively tested us-
ing the open-source Qiskit simulator. To assess the soundness of the
quantum-walk search strategy, we compare its computational com-
plexity to a Grover-based search strategy. Although both strategies
rely on an amplitude amplification scheme, they substantially differ
in their implementations of the reflection operator 𝑈r(𝜋). Grover’s
implementation of 𝑈r(𝜋) is expressed in terms of the sequence of
operators 𝑈𝑠′𝑈r(0⊥)𝑈

†
𝑠′
, in which the 𝑈𝑠′ describes a modified ver-

sion of the𝑈𝑠 used in our implementation. Indeed, since Grover’s
approach does not need all the auxiliary data structure to perform a
walk on the Johnson graph, the𝑈𝑠′ has a lower cost compared to𝑈𝑠 .
Specifically, the operator generates a superposition of all the size-𝑘
sets of integers in the range {1, . . . , 𝑛} through 1) the Dicke state
generation circuit; 2) a reduced version of the BIX circuit acting
only on register S, and not on S′. The generated integers are then
added together using a sequence of 𝑘 adders, storing the result on
the register𝑚.

To compare the performance of the two quantum algorithms,
we translated the abstract quantum gates used in the previous sec-
tion into the Clifford+T, considered to be the most promising one
for fault-tolerant quantum computation [6]. Although the trans-
lation between different gate sets results in at most a polynomial
overhead [16], the T requires extensively more resources to be
implemented in a fault-tolerant way [8] with respect to the Clif-
ford gates. Therefore, the literature adopts the T-count and the
T-depth as the relevant computational complexity metrics. Using
the Clifford+T gate sets, the only admissible two-qubit gate is the
CNOT one, and all the other abstract gates used in Sec. 3 require
a decomposition. The results shown in [18, Tab. III] summarize
the key translations required for our proposal. The CSWAP and
CCNOT both requires 7 T gates and a T-depth of 3. The Ry, on the
other hand, has a T-depth and T-count of 149. Finally, adopting
a strategy similar to [19], the translation of the multi-controlled
Z gates required to realize the reflection operators𝑈r(0⊥) inside𝑈𝑢

and𝑈r(𝜋) is obtained by first translating them in terms of CCNOT
and Z gates, and then translating the CCNOT gates using the same
strategy used before. When using a controlled gate having 𝑐 control
qubits, this strategy requires 𝑐−2 auxiliary qubits, 2𝑐−4 CCNOT
plus one CNOT, and has a depth equal to log2 (𝑐+1) +1. The values
of the T-count and T-depth for the two different realizations of the
𝑈r(𝜋) used in the Grover approach and a quantum-walk approach
based on our proposal is shown in Tab.3.

We compare the efficiency of the proposed quantum walk strat-
egy with a Grover search approach in Figure 2, where the ratio
between the two approaches in terms of T-count, T-depth and
T-depth×width, omitting the width ratio as it stays constant. We
chose a range of subset sum problem starting from values of 𝑛
and 𝑘 low enough to be tackled classically, and reaching values
which are large enough to be deemed unpractical even with a quan-
tum computer, and therefore useful when designing post-quantum
cryptosystems [14].

Our quantum walk approach outperforms Grover search for all
practical parameters (𝑛 ≤ 211), showing a T-count reduction of
≈ 33% for all ratios 𝑘/𝑛, and a similar reduction in T-depth for the
hardest instances (𝑡=𝑛). When considering parameter sizes large
enough to be employed in a cryptosystem (𝑛 ≥ 212), our approach
yields a (up to 5×) shorter quantum circuit in terms of T-depth than
Grover’s. Finally, considering the T-depth×width (Fig. 2, right),
which captures the effective use of a quantum computer (since
applying quantum gates to some qubits requires the remaining
ones to be idle), our approach improves on cryptosystem-building
grade parameters, pointing to the concrete re-evaluation of such
parameters as an interesting research direction for cryptanalysts.

5 CONCLUDING REMARKS
We presented a complete design of a quantum-walk based search
algorithm over a Johnson graph to accelerate the solution of the
subset-sum problem. Our proposal shows a novel technique to
generate a uniform superposition of all the integers in the set of
all the size-𝑘 subsets of a size-𝑛 set of integers, which may be of
independent interest.We assessed the performances of our proposal,
considering the T-count, T-depth and T-depth×width metrics, and
showed that the advantage of quantum walks persist up to a very
large parameter regime, namely the one of interest for cryptanalytic
purposes. As a potential future direction, it would be beneficial to
assess the computational complexity of our circuit design when
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Table 3: Comparison between the𝑈r(𝜋) realization in Grover’s
approach with respect to our quantum-walk approach, in
terms of T-count and T-depth.𝑚 is a shorthand for log2 (𝑛) .

MNRS𝑈r(𝜋) Grover𝑈r(𝜋)

T
count

1√
𝛿
(364𝑛𝑚 + 1080𝑛 +

28𝑛𝑘 + 112𝑚 − 1360) +
𝑂 (log2 (1/

√
𝛿 ) )

28𝑛𝑚 + 582𝑛 + 14𝑛𝑘𝑚 +
1192𝑛𝑘 − 1192𝑘2 +
28𝑘𝑚 − 14𝑘 + 28𝑚 +
277 + 14 log2 (2𝑛𝑘 − 𝑘2 + 𝑘 )

T
depth

1√
𝛿
(12𝑛𝑚 + 1216𝑛 −

12𝑘𝑚 − 1192𝑘 + 96𝑚 +
6 log2 (𝑘𝑚 + 1) −1204) +
𝑂 (log2 (1/

√
𝛿 ) )

(1788𝑛 + 3576𝑛𝑘 − 3576𝑘2 +
894)/(𝑘 − 2) + 12𝑛𝑚 − 4𝑛 +
6𝑛𝑘𝑚 + 121𝑘𝑚 − 6𝑘 + 12𝑚 −
6 +𝑂 (log2 (𝑚) )

graphs different from the Johnson’s graphs are used to model the
search space.
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