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Abstract. Operator Precedence Languages (OPL) have been recently
identified as a suitable formalism for model checking recursive proce-
dural programs, thanks to their ability of modeling the program stack.
OPL requirements can be expressed in the Precedence Oriented Tem-
poral Logic (POTL), which features modalities to reason on the natural
matching between function calls and returns, exceptions, and other ad-
vanced programming constructs that previous approaches, such as Visi-
bly Pushdown Languages, cannot model effectively. Existing approaches
for model checking of POTL have been designed following the explicit-
state, automata-based approach, a feature that severely limits their scal-
ability. In this paper, we give the first symbolic, SMT-based approach for
model checking POTL properties. While previous approaches construct
the automaton for both the POTL formula and the model of the pro-
gram, we encode them into a (sequence of) SMT formulas. The search
of a trace of the model witnessing a violation of the formula is then car-
ried out by an SMT-solver, in a Bounded Model Checking fashion. We
carried out an experimental evaluation, which shows the effectiveness of
the proposed solution.

Keywords: SMT-based Model Checking · Tree-shaped Tableau · Tem-
poral Logic · Operator Precedence Languages.

1 Introduction

Operator Precedence Languages (OPL) [16] are very promising for software ver-
ification: as a subclass of context-free languages, they can naturally encode the
typical stack-based behavior of programs, without the shortcomings of the bet-
ter known Visibly Pushdown Languages (VPL), originally introduced as Input-
driven languages [5,6,30]. In particular, the main characteristic of VPL is the
one-to-one “matching” between a symbol representing a procedure call and the
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symbol representing its corresponding return. Unfortunately, this feature makes
them ill-suited to model several typical behaviors of programs that induce a
many-to-one or one-to-many matching, such as exceptions, interrupts, dynamic
memory management, transactions, and continuations.

OPL were introduced through grammars for deterministic parsing by Floyd
in 1963, and were re-discovered and studied in more recent works, where con-
tainment of VPL and closure w.r.t. Boolean operations were proved [15], to-
gether with the following characterizations: automata-based, monadic second or-
der logic [26], regular-like expressions [28], and syntactic congruence with finitely
many equivalence classes [22]. OPL are also the biggest known class maintaining
an important feature of Regular languages: first-order logic, star-free expressions,
and aperiodicity define the same subclass [29]. A temporal logic called OPTL was
defined in [11], and a subsequent extension called POTL (on which we focus in
this work) was introduced in [12], and then proved to capture the first-order
definable fragment of OPL in [13]. The linear temporal logics for VPL CaRet [4]
and NWTL [2] were also proved to be less expressive than both OPTL [11] and
POTL [13].

POTL contains explicit context-free modalities that interact not only with
the linear order of events representing time, but also with the nested structure
of function calls, returns, and exceptions. For instance, consider this formula:

□(call ∧ qs → ¬(#u exc ∨ χu
F exc))

Here □ is the LTL globally operator, and call and exc hold respectively in
positions that represent a function call and an exception. #u exc means that
the next position is an exception (similarly to the LTL next), while χu

F exc
means that a subsequent position, which terminates the function call in the
current position, is an exception. Thus, the formula means “function qs is never
terminated by an exception” (or, equivalently, it never terminates or it always
terminates with a normal return).

It is worth to note that VPL were originally proposed for automatic verifi-
cation, thanks to their nice Regular-like closure properties, but effective Model
Checking (MC) tools for them are still not publicly available, in particular sup-
porting logics capable of expressing context-free specifications. This situation
improved with the introduction of POMC [8,12,10], a model checker for struc-
tured context-free languages based on POTL, but that can be easily adapted to
the simpler structure of VPL. POMC’s core consists of an explicit-state tableau
construction procedure, which yields nondeterministic automata of size at most
singly exponential in the formula’s length, and is shown to be quite effective in
realistic cases in [32,10].

The main shortcoming of explicit-state MC tools is the state explosion prob-
lem, i.e. the exponential growth of the state space as the system size and com-
plexity increase, which makes MC infeasible for large and realistic systems. In-
deed, as reported in [10], managing longer arrays or variables encoded with a
realistic number of bits was problematic. A classical way to address this issue is
to use Symbolic Model Checking, which is a variant of MC that represents the
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system and the specification using symbolic data structures, instead of explicit
enumeration of states and transitions. One very successful symbolic technique is
Bounded Model Checking (BMC) [7,14], where the model is unrolled for a fixed
number of steps and encoded into SAT, i.e. Boolean Satisfiability, to leverage
recent efficient SAT solvers, and later the more general Satisfiability Modulo
Theories (SMT) solvers, such as Z3 [31].

In this paper we apply BMC to POTL by encoding its tableau into SMT,
extending the approach used in the BLACK tool [19]. BLACK is a satisfiability
checker and temporal reasoning framework based on an encoding into SAT of
Reynolds’ one-pass tableau system for classical linear temporal logic [18]. Cur-
rently, we consider the future fragment of the temporal logic POTL on finite-word
semantics, but we plan to extend the encoding to cover full POTL and ω-words.
SMT-based approaches were already introduced for verifying pushdown program
models [23,25], but only against regular specifications. To the best of our knowl-
edge, this is the first SMT encoding of a context-free temporal logic, proving
that BMC can be beneficial to verification of this class of temporal logics, too.

We applied our tool to a number of realistic cases: an implementation of
the Quicksort algorithm, a banking application, and C++ implementations of a
generic stack data structure, where our approach is compared with the original
POMC. The results are very promising, as our SMT-based approach was able
to avoid POMC’s exponential increase of the solving time in several cases.

The paper is structured as follows. OPL and the logic POTL are introduced
in Section 2. Section 3 defines the tree-shaped tableau for POTL, while Section 4
presents its encoding into SMT. Section 5 illustrates the experimental evaluation.
Last, Section 6 draws the conclusions.

2 Preliminaries

2.1 Operator Precedence Languages

We assume that the reader has some familiarity with formal language theory
concepts such as context-free grammar, parsing, shift-reduce algorithm [20,21].
Operator Precedence Languages (OPL) were historically defined through their
generating grammars [16]; in this paper, we characterize them through their
automata [26], as they are more suitable for model checking. Readers not familiar
with OPL may refer to [27] for more explanations on their basic concepts.

Let Σ be a finite alphabet, and ε the empty string. We use a special symbol
# ̸∈ Σ to mark the beginning and the end of any string. An operator precedence
matrix (OPM) M over Σ is a partial function (Σ ∪ {#})2 → {⋖, .=,⋗}, that,
for each ordered pair (a, b), defines the precedence relation (PR) M(a, b) holding
between a and b. If the function is total we say that M is complete. We call the
pair (Σ,M) an operator precedence alphabet. Relations ⋖, .=,⋗, are respectively
named yields precedence, equal in precedence, and takes precedence. By conven-
tion, the initial # yields precedence, and other symbols take precedence on the
ending #. If M(a, b) = π, where π ∈ {⋖, .=,⋗}, we write a π b. For u, v ∈ Σ+ we
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write u π v if u = xa and v = by with a π b. The role of PR is to give structure
to words: they can be seen as special and more concise parentheses, where e.g.
one “closing” ⋗ can match more than one “opening” ⋖. It is important to remark
that PR are not ordering relations, despite their graphical appearance.

Definition 1. An operator precedence automaton (OPA) is a tuple A = (Σ,
M,Q, I, F, δ) where (Σ,M) is an operator precedence alphabet, Q is a finite set
of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, δ
is a triple of transition relations δshift ⊆ Q × Σ × Q, δpush ⊆ Q × Σ × Q, and
δpop ⊆ Q × Q × Q. An OPA is deterministic iff I is a singleton, and all three
components of δ are functions.

To define the semantics of OPA, we set some notation. Letters p, q, pi, qi, . . .
denote states in Q. We use q0

a−→ q1 for (q0, a, q1) ∈ δpush , q0
a

99K q1 for
(q0, a, q1) ∈ δshift , q0

q2
=⇒ q1 for (q0, q2, q1) ∈ δpop , and q0

w; q1, if the automaton
can read w ∈ Σ∗ going from q0 to q1. Let Γ = Σ ×Q and Γ ′ = Γ ∪ {⊥} be the
stack alphabet ; we denote symbols in Γ ′ as [a, q] or ⊥. We set smb([a, q]) = a,
smb(⊥) = #, and st([a, q]) = q. For a stack content γ = γn . . . γ1⊥, with γi ∈ Γ ,
n ≥ 0, we set smb(γ) = smb(γn) if n ≥ 1, smb(γ) = # if n = 0.

A configuration of an OPA is a triple c = ⟨w, q, γ⟩, where w ∈ Σ∗#, q ∈ Q,
and γ ∈ Γ ∗⊥. A computation or run is a finite sequence c0 ⊢ c1 ⊢ . . . ⊢ cn of
moves or transitions ci ⊢ ci+1. There are three kinds of moves, depending on
the PR between the symbol on top of the stack and the next input symbol:
push move: if smb(γ)⋖ a then ⟨ax, p, γ⟩ ⊢ ⟨x, q, [a, p]γ⟩, with (p, a, q) ∈ δpush ;
shift move: if a .= b then ⟨bx, q, [a, p]γ⟩ ⊢ ⟨x, r, [b, p]γ⟩, with (q, b, r) ∈ δshift ;
pop move: if a⋗ b then ⟨bx, q, [a, p]γ⟩ ⊢ ⟨bx, r, γ⟩, with (q, p, r) ∈ δpop .

Shift and pop moves are not performed when the stack contains only ⊥. Push
moves put a new element on top of the stack consisting of the input symbol
together with the current state of the OPA. Shift moves update the top element
of the stack by changing its input symbol only. Pop moves remove the element
on top of the stack, and update the state of the OPA according to δpop on the
basis of the current state of the OPA and the state of the removed stack symbol.
They do not consume the input symbol, which is used only to establish the ⋗
relation, remaining available for the next move. The OPA accepts the language
L(A) = {x ∈ Σ∗ | ⟨x#, qI , ⊥⟩ ⊢∗ ⟨#, qF , ⊥⟩, qI ∈ I, qF ∈ F} .

We now introduce the concept of chain, which makes the connection between
OP relations and context-free structure explicit, through brackets.

Definition 2. A simple chain c0 [c1c2 . . . cℓ]
cℓ+1 is a string c0c1c2 . . . cℓcℓ+1, such

that: c0, cℓ+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . ℓ (ℓ ≥ 1), and c0 ⋖ c1
.
=

c2 . . . cℓ−1
.
=cℓ⋗cℓ+1. A composed chain is a string c0s0c1s1c2 . . . cℓsℓcℓ+1, where

c0 [c1c2 . . . cℓ]
cℓ+1 is a simple chain, and si ∈ Σ∗ is the empty string or is such

that ci [si]
ci+1 is a chain (simple or composed), for every i = 0, 1, . . . , ℓ (ℓ ≥ 1).

Such a composed chain will be written as c0 [s0c1s1c2 . . . cℓsℓ]
cℓ+1 . c0 (resp. cℓ+1)

is called its left (resp. right) context; all symbols between them form its body.
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call ret han exc

call ⋖ .
= ⋖ ⋗

ret ⋗ ⋗ ⋗ ⋗
han ⋖ ⋗ ⋖ .

=
exc ⋗ ⋗ ⋗ ⋗

1 #⋖ call⋖ han⋖ call⋗ exc⋗ call
.
= ret⋗ ret⋗#

2 #⋖ call⋖ han
.
= exc⋗ call

.
= ret⋗ ret⋗#

3 #⋖ call⋖ call
.
= ret⋗ ret⋗#

4 #⋖ call
.
= ret⋗#

5 #
.
=#

#[call[[han[call]exc]call ret]ret]#

Fig. 1: OPM Mcall (left), a string with chains shown by brackets (bottom), and
its parsing steps using the OP algorithm (right).

A finite word w over Σ is compatible with an OPM M iff for each pair of
letters c, d, consecutive in w, M(c, d) is defined and, for each substring x of #w#
that is a chain of the form a[y]b, M(a, b) is defined.

Chains can be identified through the traditional operator precedence parsing
algorithm. We apply it to the sample word wex = call han call exc call ret ret,
which is compatible withMcall. First, write all precedence relations between con-
secutive characters, according to Mcall. Then, recognize all innermost patterns
of the form a⋖ c

.
= · · · .= c⋗ b as simple chains, and remove their bodies. Then,

write the precedence relations between the left and right contexts of the removed
body, a and b, and iterate this process until only ## remains. This procedure is
applied to wex and illustrated in Fig. 1 (right). The chain body removed in each
step is underlined. In step 1 we recognize the simple chain han[call]exc, which
can be removed. In the next steps we recognize as chains first call[hanexc]call,
then call[call ret]ret, and last #[call ret]#. Fig. 1 (bottom) reports the chain
structure of wex .

Let A be an OPA. We call a support for the simple chain c0 [c1c2 . . . cℓ]
cℓ+1

any path in A of the form q0
c1−→ q1 99K . . . 99K qℓ−1

cℓ
99K qℓ

q0
=⇒ qℓ+1. The

label of the last (and only) pop is exactly q0, i.e. the first state of the path; this
pop is executed because of relation cℓ⋗ cℓ+1. We call a support for the composed
chain c0 [s0c1s1c2 . . . cℓsℓ]

cℓ+1 any path in A of the form q0
s0; q′0

c1−→ q1
s1; q′1

c2
99K

. . .
cℓ
99K qℓ

sℓ; q′ℓ
q′0=⇒ qℓ+1 where, for every i = 0, 1, . . . , ℓ: if si ̸= ϵ, then qi

si; q′i
is a support for the chain ci [si]

ci+1 , else q′i = qi.
Chains fully determine the parsing structure of any OPA over (Σ,M). If

the OPA performs the computation ⟨sb, qi, [a, qj ]γ⟩ ⊢∗ ⟨b, qk, γ⟩, then a[s]b is
necessarily a chain over (Σ,M), and there exists a support like the one above
with s = s0c1 . . . cℓsℓ and qℓ+1 = qk. This corresponds to the parsing of the
string s0c1 . . . cℓsℓ within the contexts a,b, which contains all information needed
to build the subtree whose frontier is that string.

In [15] it is proved that Visibly Pushdown Languages (VPL) [5] are strictly
included in OPL. In VPL the input alphabet is partitioned into three disjoint
sets, namely of call (Σc), return (Σr), and internal (Σi) symbols, where calls and
returns respectively play the role of open and closed parentheses. Intuitively, the
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string structure determined by these alphabets can be represented through an
OPM as follows: a⋖b, for any a ∈ Σc, b ∈ Σc∪Σi; a

.
=b, for any a ∈ Σc, b ∈ Σr;

a ⋗ b, for all the other cases. On the other hand, the OPM that we use in this
paper cannot be expressed in VPL, because the typical behavior of exceptions
cannot be modeled with the limited one-to-one structure of calls and returns.

To sum up, given an OP alphabet, the OPM M assigns a unique structure to
any compatible string in Σ∗; unlike VPL, such a structure is not visible in the
string, and must be built by means of a non-trivial parsing algorithm. An OPA
defined on the OP alphabet selects an appropriate subset within the “universe”
of strings compatible with M .

2.2 Precedence Oriented Temporal Logic

POTL is a propositional linear-time temporal logic featuring context-free modal-
ities based on OPL. Here we are only interested in its future fragment, POTLf
(the letter “f” stands for “future”), with the addition of weak operators, which
are needed for our tableau. In this paper, we focus on the finite words semantics
for POTLf .

We fix a finite set of atomic propositions AP . POTLf semantics are based on
OP words, which are tuples (U,<,MAP , P ), where U = {0, . . . , n}, n ∈ N, is a
finite set of word positions, < a linear order on them, MAP an OPM on P(AP ),
and P : U → P(U) a labeling function, with 0, n ∈ P (#). From MAP follows
the chain relation χ ⊆ U2, such that χ(i, j) holds iff i and j are resp. the left
and right contexts of a chain. We only define the OPM on propositions in bold,
called structural, and assume that only one of them holds in each position. If
l1 ∼ l2 for any PR ∼ and i ∈ P (l1) and j ∈ P (l2), we write i ∼ j.

# ⋖ call ⋖ han ⋖ call ⋖ call ⋖ call ⋗ exc ⋗ call
.
= ret ⋗ ret ⋗ #

0 1 2 3 4 5 6 7 8 9 10

.
= ⋗ ⋗

⋖
.
=

Fig. 2: An example OP word, with the χ relation depicted by arrows, and PRs.
First, a procedure is called (pos. 1), which installs an exception handler in pos. 2.
Then, another function throws an exception, which is caught by the handler.
Another function is called and returns and, finally, the initial one also returns.

POTLf offers next and until operators based on two different kinds of paths,
which we define below, after fixing an OP word w.

Definition 3. The downward summary path (DSP) between positions i and j,
denoted πd

χ(w, i, j), is a set of positions i = i1 < i2 < · · · < in = j such that, for
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each 1 ≤ p < n,

ip+1 =

{
k if k = max{h | h ≤ j ∧ χ(ip, h) ∧ (ip ⋖ h ∨ ip

.
= h)} exists;

ip + 1 otherwise, if ip ⋖ (ip + 1) or ip
.
= (ip + 1).

We write πd
χ(w, i, j) = ∅ if no such path exists. The definition for πu

χ(w, i, j) is
obtained by substituting ⋗ for ⋖.

DSPs can either go downward in the nesting structure of the χ relation by follow-
ing the linear order, or skip whole chain bodies by following the χ relation. What
this means depends on the OPM: with Mcall, until operators on DSPs express
properties local to a function invocation, including children calls. Their upward
counterparts, instead, go from inner functions towards parent invocations. For
instance, in Fig. 2 we have πd

χ(w, 1, 6) = {1, 5, 6}, and πu
χ(w, 2, 7) = {2, 4, 5, 6, 7}.

Definition 4. The downward hierarchical path between positions i and j, de-
noted πd

H(w, i, j), is a sequence of positions i = i1 < i2 < · · · < in = j such that
there exists h > j such that for each 1 ≤ p ≤ n we have χ(ip, h) and ip ⋗ h, and
for each 1 ≤ q < n there is no position k such that iq < k < iq+1 and χ(k, h).

The upward hierarchical path πu
H(w, i, j) is defined similarly, except h < j

and for all 1 ≤ p ≤ n we have χ(h, ip) and h⋖ ip.
We write πd

H(w, i, j) = ∅ or πu
H(w, i, j) = ∅ if no such path exists.

Hierarchical paths range between multiple positions in the χ relation with the
same one. With Mcall, this means functions terminated by the same exception.
For instance, in Fig. 2 we have πd

H(w, 3, 4) = {3, 4}.
Let a ∈ AP , and t ∈ {d, u}; the syntax of POTLf is the following:

φ := a | ¬φ | φ ∨ φ | #t φ | #̃t
φ | χt

F φ | χ̃t
F φ | φ U t

χ φ | φRt
χ φ

| #t
H φ | #̃t

H φ | φ U t
H φ | φRt

H φ

The truth of POTLf formulas is defined w.r.t. a single word position. Let w be a
finite OP word, and a ∈ AP ; we set ∼d= ⋖ and ∼u= ⋗. Then, for any position
i ∈ U of w and t ∈ {d, u}:

1. (w, i) |= a iff i ∈ P (a);
2. (w, i) |= ¬φ iff (w, i) ̸|= φ;
3. (w, i) |= φ1 ∨ φ2 iff (w, i) |= φ1 or (w, i) |= φ2;
4. (w, i) |= #t φ iff i < |w| − 1, (w, i+ 1) |= φ and i ∼t (i+ 1) or i .= (i+ 1);
5. (w, i) |= #̃t

φ iff i = |w|−1 and (i ∼t (i+1) or i .=(i+1)) implies (w, i+1) |= φ;
6. (w, i) |= χt

F φ iff ∃j > i such that χ(i, j), i ∼t j or i .= j, and (w, j) |= φ;
7. (w, i) |= χ̃t

F φ iff ∀j > i such that χ(i, j) and (i ∼t j or i .= j), we have
(w, j) |= φ;

8. (w, i) |= φ1 U t
χ φ2 iff ∃j ≥ i such that πt

χ(w, i, j) ̸= ∅, (w, j) |= φ2 and
∀j′ < j in πt

χ(w, i, j) we have (w, j) |= φ1;
9. (w, i) |= φ1 Rt

χ φ2 iff ∀j ≥ i such that πt
χ(w, i, j) ̸= ∅ we have either

(w, j′) |= φ2 for all j′ ∈ πt
χ(w, i, j), or ∃k ∈ πt

χ(w, i, j) such that (w, k) |= φ1

and ∀j′ ≤ k in πt
χ(w, i, j) we have (w, j) |= φ2;
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10. (w, i) |= #u
H φ iff there exist a position h < i s.t. χ(h, i) and h ⋖ i and a

position j = min{k | i < k ∧ χ(h, k) ∧ h⋖ k} and (w, j) |= φ;
11. (w, i) |= #̃u

H φ iff the existence of a position h < i s.t. χ(h, i) and h⋖ i and
a position j = min{k | i < k ∧ χ(h, k) ∧ h⋖ k} implies (w, j) |= φ;

12. (w, i) |= #d
H φ iff there exist a position h > i s.t. χ(i, h) and i ⋗ h and a

position j = min{k | i < k ∧ χ(k, h) ∧ k ⋗ h} and (w, j) |= φ;
13. (w, i) |= #̃d

H φ iff the existence of a position h > i s.t. χ(i, h) and i⋗ h and
a position j = min{k | i < k ∧ χ(k, h) ∧ k ⋗ h} implies (w, j) |= φ;

14. (w, i) |= φ1 U t
H φ2 iff ∃j ≥ i such that πt

H(w, i, j) ̸= ∅, (w, j) |= φ2 and
∀j′ < j in πt

H(w, i, j) we have (w, j) |= φ1;
15. (w, i) |= φ1 Rt

H φ2 iff ∀j ≥ i such that πt
H(w, i, j) ̸= ∅ we have either

(w, j′) |= φ2 for all j′ ∈ πt
χ(w, i, j), or ∃k ∈ πt

H(w, i, j) such that (w, k) |= φ1

and ∀j′ ≤ k in πt
χ(w, i, j) we have (w, j) |= φ2.

We additionally employ ∧ and → with the usual semantics.
For instance, formula ⊤Ud

χ p evaluated in a function call means that p holds
somewhere between the call and its matched return (or exception); formula χu

F p,
evaluated in a call, means that p will hold when it returns (this can be used to
check post-conditions or, if p = exc, to assert that the function is terminated
by an exception). Formula ⊤ Ud

H p, when evaluated in a call terminated by an
exception, means that p holds in one of the calls already terminated by the same
exception. For a more in-depth presentation of POTL, we refer the reader to [13].

3 A tree-shaped tableau for POTLf

In this section, we describe our tableau system for POTLf , that will form the
core of our bounded model checking procedure. Let Σ be a set of structural
propositions, (Σ,M) an OP alphabet, AP a set of atomic propositions, and φ
a formula over Σ ∪ AP . Given Γ ⊆ Cl(φ), if Γ ∩ Σ = {a}, then we define
struct(Γ ) = a. Moreover, for Γ, Γ ′ ⊆ Cl(φ) and ∼ ∈ {⋖, .=,⋗}, we write Γ ∼ Γ ′

meaning struct(Γ ) ∼ struct(Γ ′).
A tableau for φ is a tree built on top of a set of nodes N . Each node u ∈ N

has four labels: Γ (u) ⊆ Cl(ϕ), smb(u) ∈ Σ, stack(u) ∈ N ∪ {⊥}, ctx(u) ∈
N∪{⊥}. Each node u is a push, shift, or pop node if, respectively, smb(u)⋖Γ (u),
smb(u)

.
= Γ (u), or smb(u)⋗ Γ (u).

The tableau is built from φ starting from the root u0 which is labelled as
Γ (u0) = {φ}, smb(u0) = #, stack(u0) = ⊥, ctx(u0) = ⊥. The tree is built by
applying a set of rules to each leaf. Each rule may add new children nodes to the
given leaf, while others may accept or reject the leaf. The construction continues
until every leaf has been either accepted or rejected. The tableau rules can be
divided into expansion, termination, step, and guess rules.

To each leaf of the tree, at first expansion rules are applied, which are sum-
marised in Table 1. Each rule works as follows. If the formula ψ in the leftmost
column belongs to Γ (u), then for each i ∈ {1, 2, 3} for which Γi is given in Ta-
ble 1, a child ui is added to u, whose labels are identical to u excepting that
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Table 1: Expansion rules, where t ∈ {u, d}.
ψ ∈ Γ (u) Γ1 Γ2 Γ3

α ∧ β {α, β}

α ∨ β {α} {β}
α Uu

H β {α,#u
H(α Uu

H β)} {β} (only if condition 1 holds)
α Ud

H β {α,#d
H(α Ud

H β)} {β} (only if condition 2 holds)
αRt

χ β {α, β} {β, #̃t
(αRt

χ β), χ̃
t
F (αRt

χ β)}
αRu

H β {α, β} {β, #̃u
H(αRu

H β)}

α U t
χ β {β} {α,#t(α U t

χ β)} {α, χt
F (α U t

χ β)}
αRd

H β ∅ {α, β} {β, #̃u
H(αRu

H β)}︸ ︷︷ ︸
(only if condition 2 holds)

condition 1: the closest step ancestor of u is a pop node up

such that Γ (ctx(up))⋖ Γ (up)

condition 2: the closest step ancestor of u is a push or shift node

Γ (ui) = (Γ (u) \ {ψ}) ∪ Γi. If multiple rules can be applied, the order in which
they are applied does not matter.

When no expansion rules are applicable to a leaf u, and Γ (u)∩(Σ∪{#}) = ∅,
then one child ua, for each a ∈ Σ∪{#}, is added to u whose labels are the same
as u except that Γ (ua) = Γ (u) ∪ {a}.

When no expansion rules are applicable to a leaf u and Γ (u) ∪ Σ ̸= ∅, u is
called a step node. In this case, termination rules are checked to decide whether
the leaf can be either rejected or accepted. Rejecting rules are described in
Table 2. Most rules depend on the type of the leaf node u where they are applied
(i.e., it being a push, pop, or shift node), and the type of the closest step ancestor
us of u. The rule in a given row of the table fires when u and us are of the stated
type (if any) and where the condition in the last column is met. In this case, u
is rejected. We need to set up the following terminology in order to understand
some of those rules.

Definition 5 (Fulfillment of a chain next operator). A χd
F α operator is

said to be fulfilled in a node u iff χd
F α ∈ Γ (u), and there exists a pop node

descendant up such that ctx(up) = u and:

1. Γ (u)⋖ Γ (up) or Γ (u) .= Γ (up), and
2. α ∈ Γ (us), where us is the closest push or shift node descending from up.

Replace χd
F with χu

F and ⋖ with ⋗ for the upward case.

Definition 6 (Pending node). A node u is pending iff either:

1. u is a push node and no pop node up exists such that stack(up) = u, or
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2. u is a shift node and no pop node up exists such that stack(up) = stack(u).

Definition 7 (Equivalent nodes). Two nodes u and u′ belonging to the same
branch are said to be equivalent if the following hold:

1. Γ (u) = Γ (u′);
2. smb(u) = smb(u′);

3. Γ (stack(u)) = Γ (stack(u′)); and
4. Γ (ctx(u)) = Γ (ctx(u′)).

In contrast to rejecting rules, there is only one simple accepting rule: u is
accepted when Γ (u) = {#} and stack(u) = ⊥.

If no termination rules fire on a step node u, the construction can proceed by a
temporal step. To understand how it works, we need the following notation: given
a node u and a unary temporal operator ⊙, we denote the set of all the formulas
that appear as arguments of ⊙ inside Γ (u) as G⊙(u) = {α | ⊙α ∈ Γ (u)}, and for
a set of operators {⊙1, . . . ,⊙n} we define G⊙1,...,⊙n

(u) = G⊙1
(u) ∪ . . . ∪ G⊙n

(u).
The temporal step consists in two parts: the application of one step rule, and
of one guess rule. The step rules, summarised in Table 3, are chosen depending
on the type of the leaf at hand, and of its closest step ancestor. Each rule adds
exactly one child u′ to the leaf u, whose label is described in the table. The child
u′ is then fed to one of the guess rules described in Table 4. The applicability
of the guess rules depend on the type of u and some other conditions, in a
way such that in each case at most one guess rule is applicable to u′. If any
is applicable, the selected rule defines a set of formulas G as described in the
table, and for each G ⊆ G adds a child u′′G such that Γ (u′′G) = Γ (u′) ∪ G,
smb(u′′G) = smb(u′), stack(u′′G) = stack(u′), and ctx(u′′G) = ctx(u′). After the
temporal step is completed, the construction continues with the expansion rules
again, and everything repeats.

We can now sketch a soundness and termination argument for the tableau.

Theorem 1 (Soundness). If the tableau for ϕ has an accepted branch, then
ϕ is satisfiable.

Proof (Sketch). Cl(ϕ) is finite, and so is the number of possible node labels.
Thus, unless they are rejected by a rule other than 13, all branches of the tableau
must eventually reach a node that is equivalent (cf. Definition 7) to a previous
one. Then, they are rejected by Rule 13. Thus, once fully expanded, the tableau
for a formula ϕ is also finite. Then, soundness of the tableau can be proved by
building a word out of any accepted tableau branch, with a mapping from push
and shift step nodes of the branch to letters in the word. Chain supports in the
word correspond to sequences of step nodes. See [9] for the full proof.

4 SMT Encoding of the Tableau

Our technique for symbolic model checking of POTLf properties does not directly
construct the tableau described in Section 3, but rather, it encodes it into SMT
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Table 2: Rejecting termination rules.

n◦ type of u type of us
1 condition

1. {p,¬p} ⊆ Γ (u)

2. |Γ (u) ∩Σ| > 1

3. {ψ,#} ⊆ Γ (u) and ψ is strong2

4. push/shift Γ (us)⋗ Γ (u) and some #d α ∈ Γ (us)
1

push/shift Γ (us)⋖ Γ (u) and some #u α ∈ Γ (us)
1

5. push/shift Γ (us)⋖ Γ (u) or Γ (us)
.
= Γ (u),

and some #̃d
α ∈ Γ (us), but α ̸∈ Γ (u)

push/shift Γ (us)⋗ Γ (u) or Γ (us)
.
= Γ (u),

and some #̃u
α ∈ Γ (us), but α ̸∈ Γ (u)

6. pop χt
F α is not fulfilled in u′,

for some u′ ∈ G such that χt
F α ∈ Γ (u′)3, for t ∈ {d, u}

7. push pop χ̃d
F α ∈ ctx(us) and α ̸∈ Γ (u)

shift pop χ̃t
F α ∈ ctx(us) and α ̸∈ Γ (u), for t ∈ {d, u}

pop pop χ̃u
F α ∈ ctx(us) and α ̸∈ Γ (u)

8. pop #u
H α ∈ Γ (stack(u)) and Γ (ctx(u)) ̸⋖ Γ (u)

push pop #u
H α ∈ Γ (stack(us)) and α ̸∈ Γ (u)

push push/shift #u
H α ∈ Γ (u)

shift #u
H α ∈ Γ (u)

9. push pop #̃u
H α ∈ Γ (stack(us)), stack(us) is a push node, the

closest step ancestor of stack(us) is a pop node, and
α ̸∈ Γ (u)

10. pop #d
H α ∈ Γ (ctx(u)) and smb(stack(u))

.
= Γ (u)

pop push/shift #d
H α ∈ Γ (ctx(u))

pop pop #d
H α ∈ Γ (ctx(u)) and α ̸∈ Γ (ctx(us))

1

pop/shift pop/shift #d
H α ∈ Γ (us)

1

11. pop pop #̃d
H α ∈ Γ (ctx(u)),

smb(stack(u))⋗ Γ (u), and α ̸∈ Γ (ctx(us))

12. pop/shift push/shift α Ud
H β ∈ Γ (us)

push/shift pop αRd
H β appears in one of the nodes between ctx(us)

and the closest step ancestor of us (exclusive)

pop pop α, #̃d
H(αRd

H β) ̸∈ Γ (ctx(us)), α, β ̸∈ Γ (ctx(us)), and
αRd

H β appears in one of the nodes between ctx(us)
and the closest step ancestor of us (exclusive)

13. push/shift there is a pending ancestor ui of u equivalent to u4

1 us is the closest step ancestor of u
2 ψ is strong if it is a positive literal or a strong tomorrow
3 G = {stack(u)} ∪ {u′ | stack(u′) = stack(u) and u′ is a shift node}
4 See Definitions 6 and 7.
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Table 3: Step rules
u us

1 Γ (u′) smb(u′) stack(u′) ctx(u′)

push push/shift G#d,#u(u) struct(Γ (u)) u us or ⊥2

push pop G#d,#u(u) struct(Γ (u)) u ctx(us) or ⊥2

shift G#d,#u(u) struct(Γ (u)) stack(u) ctx(u)
pop Γ (u) smb(stack(u)) stack(stack(u)) ctx(stack(u))

1 us is the closest step ancestor of u
2 ctx(u′) = ⊥ if stack(u) = ⊥

Table 4: Guess rules
u only if G

push/shift G#̃d(us) ∪ G#̃u(us) ∪ G#d
H
(us) ∪ G#̃d

H
(us)

pop uc ̸= ⊥1 ⋃

Gχd

F
(uc) ∪ Gχu

F
(uc)

Gχ̃d
F
(uc) ∪ Gχ̃u

F
(uc)

G#d
H
(uc) ∪ G#̃d

H
(uc)

G#̃u
H
(stack(us)) ∪ G#u

H
(stack(us))

1 us is the closest step ancestor of u and uc = ctx(us)

formulas that can be efficiently handled by off-the-shelf solvers. Iterating over
a growing index k > 1, at each step our procedure produces an SMT formula
that encodes the branches of the tableau of length up to k step nodes, such that
the formula is satisfiable if and only if an accepted branch of the tableau exists.
If not, we increment k and proceed. In this respect, the procedure reminds of
classic bounded model checking [7,14]. Here we summarize the working principles
of the tableau encoding. The full details are available in [9].

The encoding produces formulas whose models, when they exist, represent
single branches of the tableau. At a given step k, the formulas are interpreted
over a restricted form of quantified5 EUF, over two finite, enumerated, ordered6

sorts: a sort Nk, of exactly k + 1 elements used to identify the nodes in the
branch, and a sort called S that contains a finite set of symbols used in the
encoding to represent the letters of the formula’s alphabet. We suppose to have
a finite number of constants for the values in S. Among those, we have p ∈ S
for each p ∈ Σ ∪ AP . Others will be introduced when needed. We also exploit
a fixed arbitrary ordering between elements of Nk, and we abuse notation by
denoting the constants for sort Nk as 0, 1, . . . , k, and writing x+1 and x− 1 for
an element x ∈ Nk to denote its predecessor and successor in this order.

For each proposition p ∈ Σ∪AP , the encoding uses a binary predicate Γ (p, x)
whose first argument ranges among S and the second among Nk. The intuitive
5 Thanks to finite sorts, quantifiers are in fact expanded to disjunctions/conjunctions.
6 The sort returned by the Z3_mk_finite_domain_sort() function of the Z3 C API.
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meaning of Γ (p, x) is that p ∈ Γ (u) if u is the x-th step node of the current branch
of the tableau. The encoding also uses some function symbols. A unary predicate
Σ̄ ranging over S tells which symbols from S are structural symbols. A function
smb(x) : Nk → S is used to represent the smb(ux) symbol. A function symbol
struct(x) : Nk → S represents Γ (ux) ∩ Σ. Two functions stack(x) : Nk → Nk

and ctx(x) : Nk → Nk represent the corresponding functions in the tableau.
When stack(u) = ⊥, we denote it as stack(x) = 0, and similarly for ctx(x).

For any strong or weak next or chain next temporal formula in the closure of
ϕ we also introduce a corresponding propositional symbol in S. Specifically, for
each formula #t ψ, χt

F ψ, #̃t
ψ and χ̃t

F ψ in the closure, S contains the follow-
ing propositional symbols, which we call grounded : (#t ψ)G, (χt

F ψ)G, (#̃t
ψ)G,

(χ̃t
F ψ)G, and (#t ψ)G, (χt

F ψ)G, (#̃t
ψ)G, (χ̃t

F ψ)G.
The core building block of the encoding is the following normal form for

POTLf formulas.

Definition 8 (Next Normal Form). Let ϕ be a POTLf formula. The next
normal form of ϕ, denoted xnf(ϕ) is defined as follows:

xnf(p) = p for p ∈ Σ xnf(¬p) = ¬p for p ∈ Σ

xnf(#̃t
ψ) = #̃t

ψ xnf(χ̃t
F ψ) = χ̃t

F ψ

xnf(α ◦ β) = xnf(α) ◦ xnf(β) for ◦ ∈ {∨,∧}
xnf(α U t

χ β) = xnf(β) ∨
(
xnf(α) ∧ (#t(α U t

χ β) ∨ χt
F (α U t

χ β))
)

xnf(αRt
χ β) = xnf(β) ∧

(
xnf(α) ∨ (#̃t

(αRt
χ β) ∧ χ̃t

F (αRt
χ β))

)
Intuitively, xnf(ϕ) encodes the expansion rules of the tableau (Table 1). Given
ϕ and a fresh variable x of sort Nk, we denote as xnf(ϕ)G the formula obtained
from xnf(ϕ) by replacing any proposition p with Γ (p, x). Note that xnf(ϕ)G
does not contain temporal operators: it is a first-order formula with a single free
variable x.

We can now show the encoding itself. We start by constraining the meaning
of the Σ̄ predicate and the struct and smb functions. We define a formula ϕaxioms

that states that the Σ̄ predicate identifies structural symbols and the struct(x)
and smb(x) functions only return structural symbols, and we write a formula
ϕOPM that explicitly models the ⋖, .= and ⋗ relations between symbols in S as
binary predicates in the SMT encoding. The predicates range over the whole S
but only the relationship between symbols in Σ will matter. With these in place,
we can identify the type of each step node depending on the PR between smb(x)
and struct(x). We encode this by the following three predicates:

push(x) ≡ smb(x)⋖ struct(x) shift(x) ≡ smb(x)
.
= struct(x)

pop(x) ≡ smb(x)⋗ struct(x)

A formula ϕinit encodes how the root node of the tableau looks like. In par-
ticular, it includes the conjunct xnf(ϕ)G(1), to say that its label contains ϕ.
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We can now encode the step rules of Table 3. For space constraints we only
show here the encoding of the step rules concerning push nodes (first two lines
of Table 3). The encoding of such rules is the following:

steppush(x) ≡
∧

#t α∈Cl(ϕ)

(
Γ ((#t α)G, x) → xnf(α)G(x+ 1)

)
∧ smb(x+ 1) = struct(x) ∧ stack(x+ 1) = x

∧ (stack(x) = 0 → ctx(x+ 1) = 0)

∧ ((stack(x) ̸= 0 ∧ (push(x− 1) ∨ shift(x− 1))) → ctx(x+ 1) = x− 1)

∧ ((stack(x) ̸= 0 ∧ pop(x− 1)) → ctx(x+ 1) = ctx(x− 1))

We can similarly obtain two formulas stepshift(x) and steppop(x). It is worth
to note the first line of the above definition, where xnf(α) is imposed to hold on
x+ 1 if a next operator on α is present on x.

Next, we can encode the rejecting rules of Table 2. Since there are so many
of them, we only show some examples (see [9] for the full list). What we actually
encode is the negation of the rejecting rules, that describes what a node has to
satisfy to not be rejected. We start to note that Rule 1 does not need to be
encoded, since it just states that a proposition cannot hold together with its
negation, which is trivially implied by the logic. Then, the simplest ones are
Rules 2 and 3 of Table 2, and can be encoded as follows:

r2(x) ≡ ∀p ∀q(Σ(p) ∧Σ(q) ∧ Γ (p, x) ∧ Γ (q, x) → p = q)

r3(x) ≡ Γ (#, x) →
(∧

#t α∈Cl(ϕ)

(¬Γ ((#t α)G, x)) ∧
∧

p∈AP

(¬Γ (p, x))
)

We similarly have a formula ri(x) encoding the negation of each block of
lines from Rule 4 to 13. With these in place, we define a formula JϕKk called the
k-unraveling of ϕ, that encodes all the non-rejected branches of the tableau of
up to k step nodes.

ϕaxioms ∧ ϕOPM ∧ ϕinit ∧ ∀x
(
x > 1 →

∧13

i=2
ri(x)

)
∧

∀x

1 ≤ x < k →

 (push(x) → steppush(x))

∧ (shift(x) → stepshift(x))

∧ (pop(x) → steppop(x))




The only acceptance rule of the tableau is encoded by a formula e(x) defined as
e(x) ≡ Γ (#, x) ∧ stack(x) = 0.

Finally, we have the following.

Theorem 2. If JϕKk ∧ e(k) is satisfiable for some k > 0, then ϕ is satisfiable.

We exploit this encoding of POTLf satisfiability for model checking a formula
ϕ through an algorithm that iterates on k starting from k = 1. First, we check
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satisfiability of J¬ϕKk ∧ JMKk, where JMKk encodes a length-k prefix of a trace
of the program M to be checked. We automatically translate programs to OPA
whose transitions are labeled with program statements in the same way as [3,10],
so that the automaton’s stack simulates the program stack. Such extended OPA
are then directly encoded into SMT in a straightforward manner, using the
theories of fixed-size bit vectors and arrays to represent variables (cf. [9]). If this
satisfiability check fails, it means no trace of M of length ≥ k violates ϕ, proving
that M satisfies ϕ. Otherwise, we check whether e(k) is satisfied when conjoined
with the previous assertions. If it is, then we have found a counterexample trace
that violates ϕ. Otherwise, we increase k by 1 and repeat. Since the tableau is
finite, we eventually either find a counterexample, or hit a value of k such that
Rule 13 rejects all branches, and the initial satisfiability check fails.

5 Experimental Evaluation

We implemented the encoding described in Section 4 in a SMT-based model
checker that leverages the Z3 SMT solver [31]. We developed it within POMC [8],
an explicit-state model checker for POTL developed by the authors of [10].

We compare our SMT-based approach with the explicit-state algorithm pow-
ering POMC, which performs the following steps on-the-fly: (i) it builds an OPA
Aφ encoding the negation of the formula φ to be checked; (ii) it constructs the
synchronized product between Aφ and the model of the system; (iii) it checks
the nonemptiness of the product automaton, witnessing a counterexample to the
property in the model, in a depth-first fashion.

We ran our experiments on server with a 2.0 GHz AMD CPU and RAM
capped at 30 GiB.

5.1 Description of the benchmarks

We evaluate the two tools on a set of benchmarks adapted from [10], divided
in three categories (Quicksort, Jensen, Stack). We modeled all benchmarks in
MiniProc, the modeling language of the POMC tool. The checked formulas are
reported in Table 5. Below, we give a brief description of each category.

Quicksort. We modeled a Java implementation of the Quicksort sorting algo-
rithm. The algorithm is implemented as a recursive function qs, called by the
main function in a try-catch block, and is applied to an array of integers that
may contain null values, which cause a NullPointerException. We vary the
length of the arrays from 1 to 5 elements and the width of the elements from 2
to 16 bits. Formulas 1 and 2 both check that the main function returns without
exceptions, while 3 checks the same for the qs (QuickSort) function. Formulas 4
(resp., Formula 5) states that the array is sorted when the main function (resp.,
the qs function) returns without exceptions. Finally, Formula 6 states that either
qs throws an exception or the array is sorted (and qs returns normally).
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Table 5: Benchmark formulas. The last column states whether they are true (T)
or false (F) in each model. □ is the LTL always, which we implemented as in [17].

Q
ui

ck
So

rt

1 χu
F (ret ∧main) T

2 call ∧main → ¬(#u exc ∨ χu
F exc) T

3 □(call ∧ qs → ¬(#u exc ∨ χu
F exc)) F

4 χu
F sorted F

5 □(call ∧ qs → χu
F sorted) F

6 χd
F (han ∧#d(call ∧ qs ∧ χu

F (exc ∨ sorted))) T

Je
ns

en

8 □(call ∧ ¬Pcp → ¬(⊤ Ud
χ (call ∧ read))) T

9 □(call ∧ ¬Pdb → ¬(⊤ Ud
χ (call ∧ write))) T

10 □(call ∧ ((canpay ∧ ¬Pcp) ∨ (debit ∧ ¬Pdb)) → #u exc ∨ χu
F exc) T

11 ¬(⊤ Ud
χ (balance < 0)) T

St
ac

k

12 □(modified → ¬(#u exc ∨ χu
F exc)) T/F

13 □(call ∧ (push ∨ pop) → ¬(⊤ Ud
H modified)) T/F

14 □(call ∧ (push ∨ pop) ∧ χd
F ret →

¬(⊤ Ud
χ (han ∧ Stack ∧ (¬han Ud

χ (T ∧#u exc)))))
T/T

Bank Account. This category consists of a simple banking application taken
from [24] which allows users to withdraw money or check their balance. The
variable representing the balance is protected by a Java AccessController, which
prevents unauthorized users from accessing it by raising exceptions. We modeled
the balance with an integer variable. Formula 8 (resp., Formula 9) checks that,
whenever a function is called without having permission to check the balance
(resp., to make a payment), then there is no read-access (resp., write access) to
the variable holding the balance. The permission of checking the balance and
to make a payment are modeled by the variables Pcp and Pdb, respectively.
Formula 10 checks that if the functions that check the balance (canpay) and
make a payment (debit) are called without permission, an exception is thrown.
Formula 11 checks that the balance never becomes negative, because payments
are only made if the account has enough money.

Stack. We model two C++ implementations of a generic stack data structure
taken from [33], where constructors of contained elements may throw exceptions.
Only one of the two implementations is exception safe. The pop method of the
safe implementation does not return the popped element, which must be accessed
through the top method, and it performs other operations on a new copy of the
internal data structure, to prevent exceptions from leaving it in an inconsistent
state. In contrast with [10] which uses a manually-crafted abstraction for the
elements in the stack, our model implements the stack with actual arrays of
fixed-width integers. Formulas 12 and 13 check strong exception safety [1], i.e.,
that each operation on the data structure is rolled back if any functions related
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to the element type T throw an exception, leaving the stack in a consistent state.
Formula 14 checks exception neutrality [1], which means that exceptions thrown
by element functions are always propagated by the stack’s methods.

5.2 Description of the plots

We compare the time (measured in seconds) taken by the SMT-based approach
(in the plots referred to as SMT) with the time taken by POMC, dividing the
plots by the three categories of benchmarks (Quicksort, Jensen, and Stack). For
each category, we show a scatter plot (Fig. 3) and a survival plot (Fig. 4).

We first look at the scatter plots in Fig. 3. The x-axis refers to the solving
time for the SMT-based approach while the y-axis to the solving time for POMC,
both measured in seconds. The blue border lines indicate the timeout (set to 3600
seconds) for the tools, while the red line denotes the diagonal of the plot.

For all three categories of benchmarks, the scatter plots reveal an exponential
blow up for the solving time of the POMC tool; on the contrary, the SMT-based
approach does not incur in such a blow up. As an example, we take the scatter
plot for the Quicksort category in Fig. 3 (a) and we consider the brown circles
in the middle of the plot, corresponding to the Formula 5 of Table 5 checked on
an array of size 2 containing numbers of increasing bitvector-size. For the case of
numbers of bitvector-size of 3, 4, 5, and 6 bits, the solving time of POMC is of
8, 40, 199, and 956 seconds, respectively, while the time required by the SMT-
based approach is of 13, 18, 16 and 16 seconds, respectively. Moreover, while for
bitvector-size greater than 6 bits POMC reaches always the timeout for Formula
5, the SMT-based approach solves the benchmarks of all bitvector-size (i.e., up
to 16 bits) in time always less than 23 seconds.

A similar consideration can be done for the Jensen and the Stack categories.
Take, for example, the blue circles in Fig. 3 (c) corresponding to Formula 14 in
Table 5. For this case, the solving times of the SMT-based approach are con-
sistently better than the ones of POMC. The reason may be that this formula
contains hierarchical operators, which tend to yield to automata that make more
non-deterministic guesses. This, in turn, causes the explicit-state model checker
to perform, in general, many steps of backtracking during its depth-first model
checking algorithm. Conversely, in the SMT-based approach, this part is man-
aged (efficiently) by the DPLL algorithm inside the SMT-solver.

The exponential trend of POMC is reflected also in the survival plot (Fig. 4).
Here, the x-axis represents the time (in seconds) while the y-axis represents
the percentage of solved benchmarks. From the blue and yellow lines in Fig. 4,
which correspond to the categories Stack and Jensen, respectively, it is clear
that the POMC tool gets stuck solving (approximately) the 80% and the 60%
of the benchmarks in the corresponding category. Conversely, the SMT-based
approach solves all benchmarks in these two categories. If we take a look to
the survival plot only for the Quicksort category in Fig. 5 (which reports the
absolute number of solved benchmarks), we observe that the POMC tool gets
stuck solving (approximately) 330 benchmarks, while the SMT-based approach
solves circa 430 benchmarks.
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(a) Scatter plot for category Quicksort.
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(b) Scatter plot for category Jensen.
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(c) Scatter plot for category Stack.
Fig. 3: Scatter plots
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Fig. 4: Survival plot

In our benchmarks, we found only one case in which the solving time of
POMC is always better than the one of the SMT-based approach. It corre-
sponds to the green squares on the scatter plots in Fig. 3 (c) for the Stack
category, corresponding to Formula 12. The reason is that this formula requires
very few nondeterministic transitions in the explicit-state automaton. This, in
turn, makes the search of the state-space a (almost) deterministic step, and
thus very efficient for the depth-first algorithm of POMC. On the contrary, the
breadth-first algorithm of the SMT-based approach seems to perform worse.

6 Conclusions

We have introduced a tree-shaped tableau for the future fragment of the tem-
poral logic POTL on finite-word semantics, and encoded it in SMT to perform
symbolic model checking of procedural programs. This is the first time both
of these techniques have been used for checking a temporal logic with context-
free modalities. The experimental evaluation shows that our symbolic approach
scales better than the state-of-the-art explicit-state one.

Extending the tableau to past POTL operators and to infinite words seems
a promising future direction, which should be achievable through an approach
similar to related work on the tree-shaped tableau for LTL [18].



20 M. Chiari et al.

0 500 1000 1500 2000 2500 3000 3500

280

300

320

340

360

380

400

420
Tool

SMT
POMC

Time (sec.)

N
um

be
r 

of
 s

ol
ve

d 
be

nc
hm

ar
ks

Fig. 5: Survival plot for the Quicksort category.
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