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1. Introduction

In many applications, the input parameters of the mathematical model describing the system behavior are unavoidably
affected by uncertainty, as a consequence of the incomplete knowledge or the intrinsic variability of certain phenomena.
Uncertainty Quantification (UQ) conveniently incorporates the input variability or lack of knowledge inside the model,
often by describing the uncertain parameters as random variables or random fields, and aims to infer the uncertainty in
the solution of the model, or the specific output quantities of interest, by computing their statistical moments.

The physical phenomenon we are interested in this work is the single-phase flow of a fluid in a bounded heterogeneous
saturated porous medium. In particular, we consider the following stochastic partial differential equation (PDE), named the
Darcy problem, posed in the complete probability space (£2, F, P) and in the bounded physical domain D € R¢ (d = 2, 3):

—div (e"“¥Vu(w, x)) = f(x) forx €D andae. we 2 (1)

endowed with suitable boundary conditions on 9$2, where u(w, x) represents the hydraulic head, the forcing term
f(x) € [*(D) is deterministic, and the permeability coefficient e"“*) is modeled as a lognormal random field, Y(w, x) being
a centered Gaussian random field with small standard deviation. The lognormal diffusion problem (1) is widely used in
geophysical applications (see, e.g., [1-4] and the references there), and has been studied mathematically, e.g., in [5-8].

Under suitable assumptions on the covariance of the random field Y(w, x), it is possible to show that the Darcy problem
is well-posed (see [7]).

Given complete statistical information on the Gaussian random field Y(w, x), and assuming that each realization Y(w, -)
is almost surely Holder continuous with parameter y, the aim of the present work is to construct an approximation for
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the expected value of the stochastic solution E [u]. To this end, we adopt a perturbation approach, in which the stochastic
solution u is viewed as the map u : ¢” (D) — H'(D) which associates to each realization Y(w, -) € ¢®” (D), the unique

solution u(w, -) of (2), and is expanded in Taylor series w.r.t. Y, i.e., Z+°° M D*u(0)[Y]* being the kth Gateaux

derivative of u in Y = 0 evaluated along the vector (Y, ..., Y). The expected value of u is then approximated as
_/_/
k times
K k k
E [D*u(0)[YT¥] (x)
Eu](x) ~ E[T%u] (x) = _
[u] () [TXu] (x) Iéo m

where TXu(Y, x) denotes the Kth degree Taylor polynomial. We refer to E [D*u(0)[Y]"] as the kth order correction to the
expected value of u, and to E [T’(u] as the Kth degree approximation of the expected value of u.
In [6,9,10] the authors show that, as K goes to infinity, the Kth order approximation of the expected value of u may

actually diverge, for any positive value of the standard deviation o = /= Gl fD [ ] )dx of the random field Y(w, x).

Nevertheless, for o and K small enough, E [TK u] provides a good approximation of E [u]. The work [6] also provides an
estimate of the optimal degree of the Taylor polynomial achieving minimal error, for any given o > 0.

If a finite-dimensional approximation of the random field Y(w, x) via N random variables is available (e.g., by using
the Karhunen-Loéve (KL) expansion), then the (multi-variate) Taylor polynomial can be explicitly computed (see, e.g., the
N+K

K
the curse of dimensionality, adaptive algorithms have been proposed in [15,16] for the case of uniform random variables.

In the present paper we consider the entire field Y(w, x), and not a finite dimensional approximation of it, hence the
Taylor polynomial cannot be directly computed. Following [17-19], we adopt the moment equations approach, that is, we
solve the deterministic equations satisfied by E [D"u(O)[Y]k], for k > 0.

In [20] the authors derive analytically the recursive problem solved by E [D*u(0)[Y]*], which requires the recursive
computation of the (i + 1)-points correlations E [D*"'u(0)[Y]*' ® Y®'], with i = k,k — 1, ..., 1. These functions being
high dimensional, a full tensor product finite element discretization is impractical and suffer the curse of dimensionality.
To overcome this issue, in [20] the authors have proposed a low rank approximation of the fully (tensor product) discrete
problem, using the Tensor Train format. The effectiveness of the method is shown with both one and two-dimensional
numerical examples.

The present paper complements the above-mentioned results. The main achievement consists in the well-posedness
and regularity results for the recursive first moment equation. These results are developed in the framework of p-
integrable Lebesgue spaces. In particular, the key tool consists in showing that the diagonal trace of functions in the LP(D)
space-valued mixed y-Holder space, belongs to [P(D), whenever p > 24 \We also address the discretization of the moment
equations. Differently from [20], to alleviate the curse of dimensionality we propose here a sparse approximation method
based on the Smolyak construction, which is more amenable to error analysis. We present then a complete convergence
analysis of the proposed discretization method.

The paper is organized as follows: in Section 2 we recall the recursion solved by the kth order correction E [D"u(O)[Y]"]
under the assumption that every quantity is well-defined, and every problem is well-posed. In Section 3, we first introduce
the Banach space-valued maps with mixed Holder regularity, and then study the Hoélder regularity of the diagonal trace of
Sobolev space-valued mixed Hoélder maps. These technical results will be needed in Section 4 to study the well-posedness
and regularity of the recursion for E [D"u(O)[Y]"]. Section 5 is dedicated to the sparse discretization of the recursion and
its error analysis. Finally, we draw some conclusions in Section 6.

geophysical literature [11-14]). However, this approach entails the computation of derivatives. To alleviate

2. Analytical derivation of the first moment equation

The weak formulation of the Darcy PDE (1) endowed with homogeneous Dirichlet boundary conditions reads:
/ e" @ IVu(w, x) - Vo(x)dx = / fxv(x)dx, Vv e Hy(D), as.in £2. (2)
D

We assume here that the random field Y € L? (2; ¢®” (D )) (0<y <1/2)forall 1 <8 < +oc. Then, for any f € I”(D),
1 < p < 400, the boundary value problem (2) admits a unique solution u € [P (Q HY(D )), which depends continuously
on the data (see [7]). In particular, using the Kolmogorov-Chentsov continuity theorem (see, e.g., [21]), it has been proven
that the Hélder regularity assumption Y € L? (22; ¢ (D)) (0 < y < 1/2)forall 1 <6 < +oo, is fulfilled if the covariance
function Covy € ¢%¢ (D x D) for some 2y < t < 1 (see [6,10]). The mentioned well-posedness result extends to the
case of uniform/non-uniform Neumann as well as mixed Dirichlet-Neumann boundary conditions. In particular, the limit
situation of Neumann boundary conditions on aD leads to the uniqueness of the solution u(w, x) up to a constant. For
clarity of presentation, in this work we restrict to the case of homogeneous Dirichlet boundary conditions in the rest of
the paper.
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In this section we recall (see [10,20]) the structure of the problem solved by E [D"u(O)[Y]"] - the kth order correction
of the expected value of u - assuming that every quantity is well-defined and every problem is well-posed. We will detail
these theoretical aspects in the next sections.

Let D C RY, be such that D € C. Let p, q be real numbers such that 1 < p, g < oo, with %—i—% =1Tlandp > zy—d, where

y is the Holder regularity of the random field Y. The requirement p > 27‘1 will be clarified later (see Proposition 11). Given
f eI’(D), 1 < p < +o0, we define the linear form F € (Wol‘q(D))* as

Flv) = /fv dx Yve Wol’q(D),
D

where (Wol’q(D))* denotes the dual space of Wol’q. The correction of order 0, u® := u|y—o, is deterministic and is the unique
weak solution of the following problem: find u° € Wol‘p(D) such that

/ Vil - Vo dx = F(v) Vv e W, (D), 3)
D

where % + % = 1. Moreover, it exists C = C(D) > 0 such that

” u ”Wl,p(D) < Clif oy » (@)

We refer to [22, Chapter 7] for the proof of existence and uniqueness of weak solutions for the Laplace-Dirichlet problem
in WP spaces.
To lighten the notations, let u* := D*u(0)[Y]¥. For k > 1, the kth order correction E [u*] satisfies the following problem,

k-th order correction BVP

k

/V]E (W] - Vode=-)" ( ;‘ ) /E [Vu7iYi] - Vv dx Vv e Wy (D). (5)
D D

j=1

Eq. (5) is obtained in two steps: (i) derive the problem satisfied by u¥, by taking derivatives with respect to Y of the
stochastic equation (2) (see [6] and the references therein); (ii) apply the expected value to both sides of the obtained
equation. o

The function E[Vu""Yl] appearing in the r.h.s. of (5) is the diagonal of the (i + 1)-points correlation function

E[Vu*~ @ Y®'], where ® denotes the tensor product. In particular, it holds
e . » . i .
E[u*Y] (%) = (Tr,, E[u" @ Y*) x) = E[u* T @ Y¥'] (x,...,x),
(i+1)—times
where
o Tr is the diagonal trace operator (it will be formally defined in Definition 10);

o E[uf " ® Y®'](x,y1,....;) is the (i + 1)-point correlation function defined as

E[u @Y (x.y1.....p1) = / U (w0, %) ® Y(0,y1) ® -+ ® Y(, yi)dP(w).
2

In the same way,
E[Vu* Y] (x) = (Tr,, E[VU ' @ Y¥]) ) = E[ VU ' @ YO (x,...,x),
(i4+1)—times

where E [Vu* ® Y®;] = VQI¥E[u"® Y@”J, that is, the linear operator V ® Id®' applies the gradient operator to
the first variable x and the identity operator to all other variables y; forj =1, ..., i
The correlation functions themselves satisfy the following recursion:

Recursion on the correlations

Given all lower order terms E [u*~"~ @ Y® )] for j=1,...,k — i, find E [u*"' ® Y®] s..

/ (VOId®)E[u" @ Y] (x,y1, ..., yi) - Volx) dx
D

ki ,
=— Z ( k j_l )f Try, B [VU 7 @ YO (x, 1, .o i) - Vo(x) dx
j=1 b

Vv e Wy (D), for all yy, ...,y € D.

2927



F. Bonizzoni and F. Nobile Computers and Mathematics with Applications 80 (2020) 2925-2947

Table 1
K-th order approximation of the mean. The first column contains the input terms E [uo ® Y®"] and the
first row contains the kth order corrections E [u*], for k=0, ..., K. To compute E [T¥u(Y, x)], we need
all the elements in the top left triangular part, that is, all elements in the kth diagonal, for k =0, ..., K.
u® 0 E [u?] 0 E [u?] 0
0 Efu' Y] 0 E[w’®Y] 0
u’ @ E[Y®?] 0 E[u? ® Y®?] 0 0
0 E[u'® Y®3] 0 0
W’ @E[Y®] 0 0 0

Note that problem (5) is a particular case of (6) for i = 0, since E [u*° ® Y®°] = E[u¥]. Moreover, observe that
E[u® ® Y®] = u® ® E[Y®"], since u° is deterministic, and it is fully characterized by the mean solution u° and the
covariance structure of Y, which is an input of the problem.

The computation of the kth order correction of the expected value of u relies on the recursive solution of BVPs of the
type (6), as summarized in Algorithm 1.

Algorithm 1 Computation of the k-th order correction E [u*]
1: fork=0,...,K do

2:  Compute u° @ E [Y®].

3: fori=k—1,k—2,...,0do

4: Compute the (i 4 1)-point correlation function E [u*~' @ Y®'] (Eq. (6)).
5:  end for

6: The result for i = 0 is the k-th order correction E [u"] to the mean E [u].
7: end for

Table 1 illustrates the computational flow of the presented algorithm. Each non-zero correlation E [u"*" ® Y®], with
i < k, can be obtained only when all the preceding terms in the kth diagonal have been already computed. As a
consequence, to derive the Kth order approximation E [TK u], it is necessary to compute all the elements in the top left
triangular part of the table. Notice that, since we assumed E[Y](x) = 0, all the (2k + 1)-point correlations of Y vanish,
and all odd diagonals are zero.

3. Banach space-valued mixed Holder maps, and trace results

Within this section, we introduce the notion of V-valued Holder maps with mixed regularity, V being a Banach space,
and we prove some useful properties. In particular, we study the regularity of the diagonal trace of Holder mixed regular
maps when V is a Sobolev space. These properties will be needed later in Section 4 to analyze the well-posedness of the
equations in the recursion (6). Since the proofs of the Propositions in this Section are tedious and not essential for the
later developments, they have been postponed to Appendix.

3.1. Banach space-valued mixed Holder spaces

Definition 1 (Banach Space-Valued Hélder Space). Let V be a Banach space, 0 < y < 1 be real, and k > 1 integer.
The V-valued Holder space with exponent y, CS(,)’V (DX"; V), consists of all continuous maps ¢ : D*¥ — V with Hélder
y-regularity. It is a Banach space with the norm

1918 ey = Max {19 leg5rtavy - 10leor o |

with
”(/)”Cg([)xk;v) = sup ”(p(y)”V
pxk
yeD
and
olor le(y +h) — ¢(W)lly
& (OHY) T ks (h])” ’
st. y+heD*k
where
hi=(hi,...., ) =(hi1, ... higshans oo hogs s Bets o hia) € RY,
that is h; is a vector of d components for eachj=1,...,k, and ||-|| denotes the Euclidean norm.
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Note that, even if it is not standard, we prefer to specify the subscript y in the notation of the Banach space-valued
Hoélder space Cg”’ (DX"; V), in view of the rest of the paper, where the Banach space V will be a Sobolev space of functions
of the spatial variable x € D.

Definition 2. Let h; # 0. The one-dimensional difference quotlent along the direction j and with exponent0 < y <1
of the function v : D*¥ — R is defined as
VY1, .Y Ry — v, W)

V4 —

DY) 01, - i) = il : (1)
Definition 3. Given h = (hy, ..., hy) € R¥, we introduce i = i(h) as the vector containing the (non repeated) indices
corresponding to the non-zero entries h; of h, and i(h)® = {1,...,k} \ i(h) (ie, hj # (0,...,0) for all j € i(h), and
hj = (0, ..., 0) for all j € i(h)"). The mixed difference quotient D ™" is defined as

L

Dg/,l,lmzx = D'};,hij (8)

j=1

where |h]|y := #i(h).

In the following, when no confusion arises, we will denote the one-dimensional difference quotient also as D}, and
the mixed different quotient as Dy mix , omitting to specify the increment h.

Definition 4 (Banach Space-Valued Mixed Holder Space) Let V be a Banach space, 0 < y < 1 be real, and k > 1 integer.

The V-valued mixed Hélder space with exponent y, Cy ¥ mix (DX" V) consists of all continuous maps ¢ = ¢(y1, ..., V) :
D** — V with Hélder y-regularity in each variable ¥ij=1,...,k separately. It is a Banach space with the norm
||§0||631V~mix(bxk;v) ‘= max { ||§9||c9(bx’<;v) ’ |¢|c3‘1""'ix(bx’<;v)} ®)

where ||‘||c3(5xk;v) is as in Definition 1, and

lpl , (10)
¢ CoYmE (hxkyy = max sup Df‘mw(p(y)H )
""" k yeD*k hso, v
st. [hlg=)
and y+heD*k
D/"™ being introduced in Definition 3.
Note that, for k = 1, it holds
O.y.mix (7. /) — 0% (D)-
c)r™(D; V) = ¢y (D V). (11)

3.1.1. Banach space-valued Holder spaces with higher regularity
Let V, k and y as in Definition 1, and let n > 1 integer. Moreover, given a vector, denote as |-| its £;-norm. We introduce

p: D% 5> Vst Va=(ay,...,o) e N with
= I
C;; (DXk; V) = oy = (Otg‘], ey Olg,d) € Nd and Zlf:l log| < m, s (12)
=0y -l ecy (D*k; V)
which is a Banach space with the norm

||§0||CH(D><k V) = ITlaX ||8 (/7||C0(D><k V) (13)

We define the Banach space—valued Holder space with regularity n and exponent y as
pecy (DX"; V) st.Va=(o,...,aq) e N
¢ (D% v) = with |af = Jas| + -+ x| =1 : (14)
g =ay) kg ecy” (D V)

The space ¢y (D*¥; V) is a Banach space with seminorm

|(plcg-7(ﬁ><k;v) ‘= max Ha o( )||C3«V(D><k;v) (15)

lee|=n
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and norm
I0llp vy = max { Il ep@-sov) - [£1ep 5y |- (16)
Moreover, we introduce the space
@ :D* > Vst Va=(ay,..., o) € N with
cy™ (D% V) ={ ar=(w1,...,00a) €N'and 0 < |og| <n Ve, ¢, (17)
3% =y - dkp e (D, V)
which is a Banach space with the norm
[0l oy 3= | max [9% [ cp v - (18)
0<|u( |<n
Finally, generalizing Definition 4, we introduce the space Cg’y’mix (D*¥; V) as follows:
c;,'lwl’,mix (Dxl{; V) — {w e C}T,L,mix (DXk; V) S.t. |¢|C;’V'mix(ﬁ><k:v) < +OO} . (19)
It is a Banach space with the norm
||§0||C;,y.miX(D><k;v) = Mmax [”(p”CG'miX(EXk;V) N |¢|C;'V~mi"(f)><k;v)] N (20)
where the seminorm is defined as
lol . ; 21
¢ clrmX(pxkiy).= max  sup max ‘ Diyilmlxa"‘go(y)“ ) (21)
j=1,...k yedxk, nxo, a=(crq,.., Dtk)Ede ’ Vv

st [lhllg=j  0<|ap|<n, Vi=1,..k
and y+heD*k |og |=n. ¢eith)

Note that, for k = 1, it holds C}””’mi" (D; V) =c¢y” (D; V).
3.1.2. Properties of Banach space-valued mixed Hélder spaces

In this section we prove some properties of Banach space-valued mixed Holder spaces. We refer to Appendix for the
proofs.

Proposition 5. Let V be a Banach space, and 0 < y < 1. Then,
co7 (D% v) ¢ cv/kmix (D, v) (22)
forall k > 2.

Proposition 6. The spaces Cy;’ (D; ¢y (D V)) and ¢y (f); ¢ (D V)) are isomorphic to the space Cy;;o"™ (D x D; V) for
all n > 0 integer.

Remark 7. With small modifications to the proof, it is possible to prove that Proposition 5 holds for Holder spaces with
higher regularity, yielding

c!z;,y (ka; V) C c;,y/k,mix (ka; V) (23)
for all k > 2. Moreover, Proposition 6 generalizes to higher regularity and higher dimension, yielding

ey ™ (D V) ~ g (DD ey (D V) Vi= 1, k1, (24)
where yi = (Y1, - -, Yic1, Yit1s - -, Yi)-

Proposition 8. Denote with c%7"™* (D) the space ¢y””"™ (D*¥; R). Then, it holds

k
lutll oy mis iy = [ T el o 5y (25)
=1

for all u(yy, ..., yi) == 11 (1) ® - - - @ uk(yx) € O™ (D<),
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Remark 9. With small modifications to the proof, it is possible to prove that Proposition 8 holds for Holder spaces with
higher regularity, yielding to:

k
lutll e iy = [ T Nuellcnr 5y - (26)

=1

for all u(y1, ..., vk) = u1(y1) ® - - - Q ug(yy) € cv-mix (ka).
3.2. Diagonal trace of Sobolev space-valued mixed Holder maps

In this section we focus on Sobolev space-valued maps with mixed Hélder regularity, namely maps in (k+ 1) variables
@ = X, y1, ..., %) : ¥V — R, which we interpret as W™P(D)-valued maps in k variables D** > (yq,...,y) —
@(-, Y1, ..., Yk) € W™P(D). From clarity, we will use the subscript x in the notation ¢y”"™ (D*¥; Wy"*(D)).

Definition 10 (Diagonal Trace). Let p, q, N be positive integers satisfying 1 < p < g < N, and let v be a function of N
variables. Then the diagonal trace function Tr|, v is a function of N — (q — p) variables, defined as
(Tl‘|p:q) U(Xl, e Xpy Xg1, - - ,XN) = v(x1, cees Xp—1, Xpy ooy Xp s Xg41, - ,XN).
———
(g—p+1)—times

In the following proposition we state the regularity of the diagonal trace of Sobolev space-valued mixed Hélder maps.
We refer to Appendix for the proof.

Proposition 11. Let ¢ = ¢(X,y1,...,Vk) € C}l]ymy”k‘ (D**; WyP(D)), with D C Rd, k > 1 integer, n > m > 0 integers,
y €(0,1] and p > 27‘1. Then, for allj = 2,...,k+1, and for all (y;, ..., yx) € D**7¥D (T 0)(x; yj, ..., yi) € Wy "P(D). In
particular, there exists C,, > 0 such that

H (Trh;jq))(X; Yjs oo 7Yk)HW;er(D)

< 41 i—15 Y n,y,mix Sx(i
=Gy ”Qﬂ(xa Yis oo Yimt3 ¥is oo Vi) o (DXU’”:WX"""(D)) , (27)
for all (y;, ..., yx) € D**=+D),
Moreover, Tr|, ¢ € ¢;;7 W (D*D; WP(D)), and
) j—1 )
7105 e etsenmoiey) = Cor W0 legrme (koo (28)

forallj=2,...,k+1.
4. Recursion on the correlations — analytical results
This section is organized as follows. We first study the mixed Holder regularity of the input of the recursion (6), i.e., the

(k+ 1)-points correlation function E [u® ® Y®¥] (see Corollary 13). Then, in Section 4.2, we prove the well-posedness and
regularity of the recursion itself.

4.1. Mixed Hélder regularity of the input of the recursion

The following proposition states the mixed Holder regularity of the (k 4+ 1)-points correlation function E [v ® Y®"],
where v belongs to a Banach space V.

Proposition 12. Let V be a Banach space of functions on D, and Y be a centered Gaussian random field such that Y e
17 (£2; ¢ (D)), n >0, forall 1 <6 < 4oc. Then, for every v € V and every positive integer k, the (k+ 1)-points correlation

E [v ® Y®] belongs to the Holder space with mixed regularity oy (D**; Vy). Moreover, it holds:

[E[ve Y]

(29)

. — ®k
C;’V'mlx(ﬁXk;VX) - ”v”V H]E [Y ] Cn,y,mix(bxk) .

Proof. We prove that E[v ® Y®¥] € c;f‘y‘mix (D**; V) in two steps.
Step 1: E[Y®¥] € cnv-mix (D*k)
We have to show that
(i) E[Y®] e crmx(D*K), ie, *E[Y®] = oy - O E[Y®¥] € ®(D*¥) for all & = (a1,.... ) € N with
0<|y| <nforj=1,.... k
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(ii) 9*E [Y®K] € cOr-mix (D*K), for all & = (a1, ..., o) € N with |aj| = n, for some j=1,... k.
Let us start with (i). Fix & = (aq, ..., o) € N with 0 < |ocj| <n,forj=1,...,k Then,

32 [Y* T cogper) = max [o"E[Y*] )]

= max |9y - FE Y] (v, ...,y
yerk

= max [E[3}1Y(y1)® -~ ® 3 Y|
yerk

< max E UB"“Y()’l) -® Y| ] G0
YEDXk

Using the Holder inequality, we get
(30) < max 1_[( [ oy Y (y ]) Hmax( [ |ay: (y-)‘kD]/k
yeDX : '

Observe that

o LT\ 1k “ e
g}aX( [Iayl- ()| ]) = (ryr;ggE[layi (i)l ])
1/k k 1/k
< (E [maxl y,)l"]) = (E {(maXI yx)l) D
Vi€ Yi€

1/k
< (E[)]) " = 1¥higacnioy -
We conclude that

a KT\ 1/
nmax( [!ayi Y(.Vi)| :I) = ”Y”Lk(g I6)) < +oo.
—1 Yi€
We prove now (ii). Let a = (a1, .. ., or) with |oj| = n for some j = 1, ..., k. Using Definitions 2 and 4, we have
®k _ v mix ®k
}adE [Y ]|c0,%mix(b><k) _jiria,.),(,k S;JIP ‘Dl aaE [Y {]
Ihlig=j

= max sup ‘DV --Dl 9B [Y®]
j=1. 1

IIhIIo—J

= max sup ‘DV --DIE [071Y(y1) ® - - - ® By Y ()]

j=1,.
=i
Oy Y(ye +he) — 3y Y (ye) oo
= max sup |E ‘ : “Y(ye) ||. 31
e, 12| & Ihel” ® ho V0) Gl
Ihllg=j tei(h) ¢ei(h

Proceeding as in the proof of (i), we conclude

1/k
K
Ay Y(ye +he) — 9y Y(ye)

l[hel”
])l/k

< +00.

y,
Ihllg=j
1_[ ( [| ;;[,/Y(}’z/
eei(hy
< viy

1K(2:cn7 ()

step 2: E[v ® Y& € ¢j”™ (D*%; ;)
It is enough to observe that

|]E [U ® Y®k] |Cly;.y,mix(bxk;vx) = |v ® E [Y®k] |C,;1y,mi)<(b><k;vx)
= ”v”V UE [Y®k]|cn,y.mix(ﬁ><k) < +00.
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It remains us to show equality (29). By definition, it holds:

|E[v® Ye ”c;"“*(bxk;vx) = max max |oE[v @ Y] (. 9],

= maxmax [v() ® 8°E [y*] )], = maxmax vl [0°E [v*]|

= o, o2 ¥

Cll,'l,mix(bxk) .
In the same way, it is possible to show that

|]E [U ® Y®k] aot]E [y@k]

C}’[‘vy«mi’((ﬁxk:‘/x) = ||U||VX C;vV«miX(ka) s

and equality (29) follows. O

Corollary 13. Applying Proposition 12 with v = u® € WP(D), we have
E[u® ® Y®] € 7™ (D W, P(D)) .

4.2. Well-posedness and regularity of the recursion

To lighten the notation, from now on we denote the kth order correction ]E[u"] with E¥, and the (i + 1)-points
correlation E [~ @ Y®'| (x, y1, ..., y;) with E¥=H,

Theorem 14 (Well-Posedness of the Recursion). Let D C R%, such that 3D € C',and Y € 1° (22; ¢®¥ (D)) forall 1 < 6 < +oc.

Let f € [P(D) for p > zy—d,andl < q < oo such that%—i—% = 1. Then, for any k > 0 and forany i = 0, ...,k — 1, the

Laplace-Dirichlet problem: Given =" forj = 1,... k—i, find w(-,y) € Wol,’f(D) such that, for ally :== (y1, ..., yi) € D%},
/D (V®Id®) w(x, y) - Vo(x) dx = Ly(v) Yv e W, (D) (32)
has a unique solution, with
||w(',y)llw&,5w) <C ||£y”(w(},q), , (33)

where C > 0 is independent of y, and the linear form Ly : Wol’q(D) — R is defined as

k—i

Ly(v) = — Z( kJTi ) / Try, g, VRES (X, y) - Vu(x) dx. (34)
D

=
Moreover, the unique solution belongs to the space Cﬁlym;f (D“; WS‘f(D)) and coincides with EX="1,

Proof. We prove the theorem by induction. Let k = 2 and i = 1. The problem we handle with is: given E%2, find
w(-,y) € Wy (D) sit., for all y € D,

/ (V®Id®) w(x, y)- Vu(x) dx = £,(v) Yv e W, (D), (35)
D

where £,(v) := — [, Trj,, ViE®*(x, y) - Vu(x) dx.

Step 1: well-posedness of problem (35)

We have to show that £, € (Wol’q)*. Since 8D € C' and f € [?(D), then u® € W'P(D), as stated in Section 2.
Applying Proposition 12 with n = 0, we have V,E®? e ¢, ;7™ (D x D; L§(D)). Applying Proposition 11 with n = 0,
we get Try,, V,iE®? € ¢} (D; LY(D)), and, in particular,

Cr = Szue% ITr1,, ViE? [ o ) < 0.

Hence, by the Holder inequality, we have

ﬁy(U)| < ||Tr|1:2VxEO’2HL£(D) ”VU”L)?(D) <C ||v”W,3'q(D) >

so that £, € (Wol’q)* for all y € D. Thanks to [22, Chapter 7], we conclude that problem (35) has a unique solution
w(-,y) € Wol”f(D) for every y € D. Moreover, there exists a positive constant C = C(p, d, D) such that

I Py = € 12y ooy =€ Ce-
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Step 2: Holder regularity of w(x, -)
Let us consider the difference between problem (35) iny + h and in y:

/D(V ® Id)(w(x,y + h) — w(x, y)) - Vu(x) dx
= / (Tr),, VxE®2(x, ¥ + h) — Try,, VAiE®2(x, y)) - Vu(x) dx, (36)
D
forallv e Wol’q(D). Following the same procedure as in Step 1, we conclude that problem (36) is well-posed, and
e,y +1) = wl Py o = € [2yen = 23| ooy (37)
Hence, we have

1
e iz = 5P g MR o)
= csup i v =53]
< Csup —— | Lytn — 1.4,y
y MR oy

1
=Csup — sup
v I g,

/ (Tr},, VAE®? (X, y + h) — Try,,, VAE®?) - Vu(x) dx
D

”U”W&‘q(D):l
Csup |h||r ITr1, VXE®2(,y + B) = Ty, ViEP2 (90 | o
=C5ylllf£3 D} 1 Triy VXE®2( ”L"(D) C[TryE ’2|CSVV(D;WS~'XD(D))
(A7)
< CGCy H || OV mxX<D><D W1 p(D)) < too,

so that w € Cﬁ’y D; W&‘f(D) Moreover, since E'! solves problem (35) for every y € D, then El'! CO v (D W1 P(D)) is

the unique solution of (35). S
We perform now the induction step. Let k > 2 and 0 < i < k — 1 be fixed, and assume that EX=H ¢

o mix. (DXW) WlPD)), forj=1,... k—1i.
Step 1: well- posedness of problem (32)
We have to show that £y as in (34) is in (W,"?)*. Since E*-i4 € ¢ mix <I3X(i+j); W&‘f(D)), then Tr, . V,EK"HH e

s Yitj
¢y " (D*1; LE(D)), and, in particular,
_ it
CL,j = SuP i ||Tr|1;j+1 VXE i ]“Lg(D) < Q.
Hence, by the Holder inequality, we have |£y(v)| < C. |vlly1.q(p), With Cz = Z]I:{ ( k; : ) Ce.j» 50 that £y € (W ).

Thanks to [22, Chapter 7], we conclude that problem (35) has a unique solution w(-,y) € Wol,’f(D) for ae.y € DX,
Moreover, it holds

”w(’ y)”ng}:(D) = C HLYH(W(}’q(D))" =< CCE'

Step 2: Holder regularity of w(x, -) )
By considering the problem solved by D™ w(x, y), we have

D?/,mixw ., H
H i ¢y wy P (D)

ki
k—i mi ki i
<C sup Z( i >/DDiV mler|1:j+1VE HL L Vdx

Dg/’miXTl'h:jHVEk_i_j’H—j('» y) (38)

1
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Hence, we have

|W] 0.y.mix /(5. 1p -~y = Max  sup “D?"mi"w(~ y)”
RS GRETA (1) R iy hhjp=e | 7

k—i
(38) k—i
< C max  sup E( . )‘
R N N
k—i

< C Z < > |Tr\1:j+1 VEkiiij'H»j’C;J,%mix(bxi;]_g(D))

1,
Wo,f(D)

‘ Tr|1:j+1 VE’PFNH(” y)

4

] —
<CZ( T ) gy (o) <+

In particular, since E¥~' solves problem (32) for a.e. y € D%/, then E¥= CO "y mix <DXi W] p(D)) is the unique solution
of (32). O

Theorem 15 (Regularity of the Recursion). Let D C RY such that 9D € C**",r > 0. Let f € W"P(D), and Y € L’ (2; c™ (D)),
forall1 <6 < coand n > r+ 1. Then the correlation E*=' € ¢}, mix (DX‘ W2 (D) N W&‘f(D)) foralli=k,k—1,...,0.
Moreover, there exists a positive constant Cy,g independent of y = (yl, ..., Yi), such that
k—
HE ”( y Hw2+r -P(D) Creg H»Cy” (Wray (39)
where Ly has been introduced in (34).

Proof. We prove the theorem by induction. Let k = 2 and i = 1. Since f € W"P(D), we have u° € Wol‘p(D) N W2rP(D)
(see [22, Chapter 9]). Using the assumption Y € L? (£2; ¢™ (D)) and Proposition 12, we have

n,y,mix 1p 2+4r1,p
E°2 e cn (D X D: W P(D) N W (D)),
s0 that V,E02 e Clilmi (D < D w,}”*’(m). Applying Proposition 11, we have Tr,, ,VE®? € ¢l (D; WxHT”’(D)).
Following the same reasoning as in the proof of Theorem 14, we have that EM! ¢ C}',"V (D; Wx2+r’p(D)). Finally, since

we have already shown that E"' € ¢;'" (D; WJ‘f(D) , we conclude the thesis.
We perform now the induction step. Assume that the correlation

Ek—i—iiti c Cn y mix <[')><(i+j); Wolf(D) N er+2,p(D)) ,

s Yitj

forj=1,...,k—1i Applymg Proposition 11, we have

Followmg the same reasoning as in the proof of Theorem 14, we conclude that
k—i,i Ly mix (Qxi. yAr24r,
EXt e ep i (DX WETP(D)) .
Finally, since we have already shown that E¥~i e ¢}:" "3 <l_)“; Wolf(D)), we conclude the thesis.
Finally, the upper bound (39) follows from [22, Chapter 9], observing that £y € (WP)*. O

Proposition 16. Under the assumptions of Theorem 15, it holds

(40)

5]
=
Q
=
Y
LB
><
A
St
X
§
=
T
1
'G
\/
A
>
=
351
0,
‘<
§
X
A
Sh
S
5
L)
T
1
=
=]
=

for all i < k, where the coefficients {)Lk_i}{.‘zl are defined by recursion as Ao := 1 and Ar—j := Creg , 1 ( k— j > CJ A—izj
for i < k, the constants Creg, Cyr being introduced in Theorem 15 and Proposition 11, respectively.

Proof. Let k be fixed. We prove the Theorem by induction on i. If i = k, bound (40) holds as an equality. Let now i < k
fixed. By induction, we assume

|EF4- (41)

C; y,mix (DXZ W2+r p(D)) < )\-k—[ HEO k

............
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foralli+ 1 < ¢ < k — 1. Thanks to (39) and Proposition 11, it holds:
|

......

..... Vit

k—i
k—i . i
< Cregj_Z]< <j i )C{r ”Ek i~j.i+j ||C),,1iy,mi)f 4(Dx(i+j);ngr.p(m).

Using the assumption (41), we have
| Ek—i,i’
y

~~~~~~~

= s [E% o

ny,mix (= a2 +Tp .
RS CRT MR 0))
5. Recursion on the correlations — sparse discretization

Within this section we aim at deriving a discretization for the recursive problem (6). In particular, the differential
operator in the spatial variable x will be discretized by a Galerkin method, whereas the parametric dependence on the
variable y will be approximated by a sparse interpolation technique. To this end, we first introduce some assumptions on
the considered Galerkin projector m;, and the sparse interpolant operator Py.

5.1. Galerkin projector

Let {Whx}n>0 be a sequence of nested finite dimensional subspaces of W01’°°(D), h being the discretization parameter.

Assume that

melvr‘} lu — willwipp) < Cremh” [ulwzrrppy YU € Wol"’(D) N WD), (42)
Wh h
for some 8 € (0, r + 1). Moreover, we assume the following discrete inf-sup condition: there exists v > 0 independent
of h such that

j; Vﬁm -V%uhdx

inf sup > . (43)
un€Wh wyew;, [Unlwiapy [Whlwiap)

Then, we can infer
Ilu — 7httllwrpp) < Coph? Ulyasrppy Vi € Wy P(D) N WHTP(D), (44)

where mp, : WOLP(D) N W2+P(D) — W, is the Galerkin projector, i.e., the operator which associates u to its finite
dimensional approximation via the Galerkin method, and C;, > 0 is independent of h.

Remark 17. The discrete inf-sup condition (43), as well as (42), hold, for instance, for D convex ¢!, and continuous P!
finite elements (with 8 = 1 and r = 0). We refer to [23] for further cases.

5.2. Sparse interpolant operator

Let {V,}i=0 be a dense sequence of nested finite dimensional subspaces of ¢%” (13) and let the discretization parameter
hy of V, be hy == ’”T‘l so that hy = ho2~¢. Denote with {af}]'-i“1 C D a set of interpolation points unisolvent in V,, and
with {Sj‘{}j'.i‘] the Lagrangian basis of V, such that &'(af) = &;; for alli,j = 1,..., N,. Moreover, let P, : %7 (D) — V; be

the Lagrangian interpolation operator, that is Py(v) = 21‘21 v(af) j‘, and note that P, is a projector, too. Assume that P,

satisfies the following property: !
llu = Petllcoy 5y < Chy lulleny sy Vu €™ (D), (45)

where C > 0 is independent of hy, and s > 0.
Following [24], we define the sparse interpolation operator as follows. Let A, := P, — P;,_; be the difference operator.
Given k, L positive integers, the sparse interpolation operator of level L is defined as:

k
fﬁqkizz :E:: (gg) 434. 046)

£=(Lq,....¢)eNk j=1
|el=<L
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The sparse interpolation operator E,k maps the Hélder space with mixed regularity ¢®7-m ([_)X") onto the sparse tensor
product space V| j, defined as

k
{/\L,k = U ® Vg).. (47)

£=(q,....eg)eNk j=1
le|<L
The application of the sparse interpolation operator PL « to a function implies the evaluation of the function itself in a
finite set of points - the sparse grid - denoted as # x. To lighten the notation, the sparse interpolation operator PL © will
be simply denoted as PL, when no confusion occurs.

Proposition 18. Let k be a positive integer and W a Banach space of functions on D. Then it holds:

HPLku_uH Oymlx(DXkW) _Cf)\LkhS(1 2

”u”C;'y’miX([_)Xk;Wx) (48)
for all u = u(x,y) € cj”"™ (Dk; W,), withy = (y1.....y) € D*¥, where 0 < © < 1, and G5, , is a positive constant
independent of h; (but blowing up when t — 0). '

Proof. The bound (48) is derived by standard computations (see, e.g., [25]). For completeness, we report here all the
steps.

Denote with § Vi € D*%=1) the vector 1, -5 Yio1, Vi1 - - -» Yk)- We start giving an upper bound for the norm
| 4; ® 6%~ §)| 0.1 50, Using the triangular inequality and (45), we have

”AZ ® Id®(k 1)u .’ y] ”Cj(l)iy_mix(D;WO

= [[Pe = 1) @ 1% PuCe, §) | i
+ || (Pect — 1d) @ 1d8* Dy, 91)”(:3{"”“(D;WX)

< (Chy + Chyy) uC- 90)

n y rmx(D Wy )
<2Ch;_, |u(-, §1) M Bwy)
s 9—s(f—1) :
<2¢h5 27 u(-, §4) LT D) (49)

where we have used that hy < hy_1, and hy_; = hg 2~ 1),
Using (49), it follows:

”All ® Alz ® [d®(k 2)u|| Oy mix

(DxD:;Wy)

_ ” Ay, ® 1d®k- 1))(]d® Aé ® 1d®k- 2))u||63iyy’;"ix(m;wx)

< 4C%hg 27Dl |y 1.

(D><D Wy)
By recursion, we have
”Agl K- Q Agku”C;),y,mix(D;Wx)
h sk
kek 100 —sle| .
<2k <2> 27 Nl i (50)

By (50), it follows that the series >, .« ®ﬁ:]Alnu is absolutely convergent, and that Zmﬁ ®ﬁ:]A4nu converges to u as
L — oo in CS’V’W (L_)Xk; Wx).
Finally, we have

K
[P — u”cg,y,mix(bxk;wx) =) R Aa,u—u

|€|<L n=1 CO v, ”’“X(ka Wx)

k k
Y ® 4 N

0,y ,mix

1€|>L n=1 C;,)’y’miX(EXk;Wx) 1€|>L Il n=1 C (ka Wx)
h sk
krk 0 —s|¢|
<2 — E 2 u i = .
=% <2> =L Wilegm oy
>
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In [26, Lemma 6.10] the authors prove that
1 k 1 k
Z 2l < 9—Ls(1-1) _ hs(rfl) hs(lfr)
“\1-2 S \1-2) 0
l¢|>L

with 0 < 7 < 1. Hence, we conclude (48) with

hO sk 1 k
-~ __ ok s(t—1) ~k
=2 () e (1)

Remark 19. The result proved in Proposition 18 holds whenever P, is any operator fulfilling (45).
5.3. Sparse discretization of the recursion

As highlighted in Section 2, the input of the recursion - at the continuous level - is the (k 4+ 1)-points correlation
E%. In the same way - at the discrete level — we start giving a (sparse) discretization of E®¥. It is obtained in two
consecutive steps. First, we define the finite dimensional approximation of u° by applying the Galerkin projector 7, to u°,

ie., ug := mpu°. The fully-discrete sparse approximation of E®¥, denoted as Eg‘h‘, is then obtained by applying the sparse

interpolant operator ﬁ,k to the semi-discrete correlation E,?'k = u2 ® EX ie.,

Ei’k = PL,kE]?’k = m,uo X P/(,]_Ek.
Note that the semi-discrete correlation E,?’k is an element of C;’V’mix (D**; W), whereas the fully-discrete correlation Ef’,f
is an element of the tensor product space W, ® V. 3

Leti=k—1,...,0 fixed. The fully-discrete sparse approximation of the correlation E¥~% is obtained as
k—ii ._ 7 pk—ii

E 7 =Pk, T,
where the semi-discrete correlation E,’;_i’i is defined as the unique solution of the following recursive problem: given all
lower order terms E, ;" " € W, @ Vi forj=1,...,k —i, find Ef "' € cy”"™ (D*'; Wj,) such that

/ VES(x, y) - Veu(x) d
D

k—1
k—i i
= —Z( j ) [ VB ) Ventr b 51)
= b

for all ¢ € Wy,
In the next theorem we analyze the discretization error.

Theorem 20. Let (42), (44) and (45) hold. Moreover, let the assumptions of Theorem 15 be satisfied. Then, it holds

| gt ], = OtmIA ), .

Wy P(D)

where 0 < t < 1 has been introduced in Proposition 18.

To prove Theorem 20, we need to show some preliminary results.

Lemma 21. Let the assumptions of Theorem 20 hold, and define

1, ifn=m

0, ifn<m

(53)
e

911.111 =

Cir being as in Proposition 11. Then, it holds:

H(Ek—i,i _ Eﬁ;i,i)(& v) H

Wy P(D)
k—1
< Cs Crem h? Z Ok—i k—m ”Ek_m'm(x’ y"; Y)”c&r’l/i')mi"(DX("“*");WXZ”*”(D))
m=i
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k—1
. k—-m,m _ pk-mm (m).
+ Z Ok—i.k—m H (Eq E . X,y y) CO(;)WX(DX(’” 0w p(D))
m=i y
) 0.k _ 0k (k).
+bucio [ = NI ) (54)
y
for ally := (Yi—it, . .., yk) € DX, where y™ = (Vx_mi1s - . ., Vi) € DX form =i, ... k.
Proof. Let k be fixed. We prove the result by induction on i. If i = k, then (54) holds as an equality. 3 N
Let i < k, and assume, by induction, that (54) holds for all i + 1 < j < k. Denote e;_j; = Ek—ii Eﬁ"', and
fieii = E,’IH’l — Eﬁ"'. By triangular inequality we have:
et W)l o = | B = EEHex, y)H + [fiiiCo Wy (55)
The discrete inf-sup condition (43) implies the Strang’s Lemma in the spaces W 1-P(D)-W-9(D). Then, there holds:
Y ki
H(E M —E T (xY) Wi
Ly(on) — Ln(epn)
<G| inf [E“"(xy) = @n®)],, 1p + sup M , (56)
PhEW) oReWy ||(Ph||wxlq

where Ly, £, : W, — R are the functionals defining the right-hand side of problems (6) and (51), respectively. The bound
on the first term on the right-hand side of (56) follows from the approximation property (42):

inf [E“M0xy) = on)] 10 < Gem B [E“H 0 )] 2000 (57)

YhEWh

with 8 € (0,r + 1). We bound now the second term on the right-hand side of (56). Using the Hélder inequality and
Proposition 11, we have:

| 2y(@n) — Lalen)|

ki
I

i .
(4577 ) e

Ny

/ (Tryy,, VEFHH — BRI (x, y) - Vy(x) dx
D

T
X

Ny

o 170l

T
L

IA

< k l_i )Ct'r leririix, yO; y)Hco&Ir)nix(DX;:WXl,p) l@nllya- (58)
yl

1
Inserting (56), (57) and (58) into (55), we have:

Hek II(X Y)” ‘P =G Cfem n |Ek ” (xy |W2+TP

k—i

3] (i AT P
=1

+ [feziiCx. y) Wi - (59)
Using the inductive assumption on ey_;_j i+, We get:

|l exi.i(x. Y)”WXLp < Cs e W’ |E*"(x, Y)’WXZJrr,p
k—i .
+CSZ< kl_’ )c},

k-1
(CS Cfemh Z Ok—i—1k—m ”Ek mm (x, y(m),Y)H OV"“X(Dx(m i) W2+rp)

m=i+l
k-1
+ ZH Ok—i—tk—m | fimm.m(x, y™; y)Hcsizsmix(f)x(m—i);w)}yp)
m=t
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k).
+ Ok—i—10 | eo(x, ¥* ), Y)||C;J(.ky),mix(bx(k,,.);wxl,p) )
+ | feziiCx. y) Wi - (60)

Observe that, by definition of 6;_; ¢, we have

k—i

GCs Z ( k l_ ! ) COri—to = Orio- (61)
=1
Moreover, by switching the sum in | and m, and using that 6_; x—; = 1, we have
k=i k—1 i k=1 m—i ki
CS Z Z ( i ) C[Ir Qk—i—l,k—m = CS Z Z ( i ) Ct'r9,<_,4_,.,(_m
I=1 m=itl m=i+1 =1
k=1
= Z Ok—ik—m>
m=i+1
so that
k—i k-1 k—i
Gy Y < ! )Ctlr Oi-tm [ fiemm(x, y™; Y)||Co,y.mix(l3x<m,i),wl.p)
=1 m=itl ym o
+ |freziiCx. y) WP
k-1
= Z Ok—ik—m ||fk—m,m(X7 y™:y) “CO-%mix<D><(m—i).W1vP) + ”ﬁc—i,i(xs Y)”Wl,p
m=i+1 ym . il
k-1
= ZGk—i,k—m | fieem.m(x, ¥™; y)|| QM (Bm-i; ) (62)
m=i ym .
and
k=i k-1 ki
€5 Gm I Z Z ( ! ) Cor Ohictiem B0,y y)| <O (Box(m—; w2+
I=1 m=iti ym o
+ CS Cfem hﬁ ||Ek7i’i(x, y)||WX2+r,D
k—1
= Cs Cpem h? Z Ok—i k—m ”Ekim'm(X, v y)”CO«vai"(Dx(m—i).w2+ﬁp)
neri s "
+ CS Cfem hﬁ ”Ek_i’i(xs y)”WXZH,IJ
k—1
= Cs Com h* Z Ok—ikm | EX™M(x, y™; y)||C::(vyv)mi)‘(bx(m—i):wz+r<l7) . (63)
m=i m o

Inserting (61), (62) and (63) into (60), we conclude the bound (54). O

Lemma 22. Under the assumptions of Theorem 20 it holds:

0.k _ 0,k
HE i oy (ks (o)
1—
= (C”hhﬂ + CFL k hi( Z)(C” h + 1)) ”EO’k||c;’v1’vm}f/’l‘< (DxloWXZJrnP(D)) . (64)
g ‘1 ,,,,, ?

Proof. Using the triangular inequality, we have

Kk ROk
|e ey

0,y,mix (= 1,
ey (Dxkwy P(D))

< oo s

¥ e — B (65)

0,y.mix (Syk.ix1:P 0,y.mix (Fyk.ip 1P :
ey (DK wy P(D) cg i (Bxk wy (D))
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We bound the two terms at the right hand side of (65) separately. Using (44), we have
e

= ||u® — 7hu HWLP(D) ”E Hcovy«mﬂ(bxk)

=< Cm,hﬁ |uO|W2+r,p(D) ”Ek||00,%mi)<(bxk)

_ B 0,k
- Cnhh HE HCO,y.mix(ka;WZJrr,p(D)) . (66)
Moreover, applying Proposition 18, the triangular inequality, and (44), we have
EOK _ Ok < 1 —7) ‘EO k
“ h Lh C,\(/)llf..’.’jlx (ka Wl IJ(D)) — “Pp, k C,\r/l]lj..TlX (ka Wl P(D))
s(1—7) 0,k 0,k EOk
N P Py
1
< CPLk hs( T)(C hﬂ +1 HE H n,y,mix (ka Wl p(D)) (67)

The result is then proved inserting (66) and (67) into (65). O

Theorem 20. To prove (52) we bound each term at the right-hand side of (54), separately. Applying Proposition 16, we
have:
k=1

Gs Cfem hﬂ Z ek—i,k—m ”Ek—m,m(X’ y(m); y)”C;’(v;-)mix(Ijx(m—i);WXZJth(D))

m=i

=< CS Cfem (Z Qk i,k—m Ak— m) ”EO k y(k) || 0.y, ""X(Dx(k i). WZH P(D)) (68)

Applying Proposition 18, the triangular inequality, and Prop051ti0n 16, we have:
k—1

O ism | (EX = BT, Y5 )
Z i,k—m h 0y)m1x< Hx(m—i). Wlp(D))

m=i y(m

=
—_

1—
= Ok—ik-mCp, ,, hi( i

‘E,’f'”"”(x, y™;y)

e ORI )|

m=i y(m)
k—1
s(1-1) ) - k—m,m (m). )
=< h)_ Z ek—t,k—mcplqm ( ”E (x7 y - y)| Cn(.r}’/l,)mlx(Dx(m,i);w)z,p(m)
m=i y

+ | — gy,

o))
k-1
<n' mZ: Oci-mCa, (Fem [ E%0x v y)”c;(*ky)*'""*(Dx(k—w;w,?*""(u))
+ Cq, h? ”Ek—m,m(x, y(m); y)”C;(%‘)mix(Dx(mfi);Wx2+r,D(D)) )
k-1
=< hS(] r)(cnh hﬁ + 1 Zek i,k— meLm)hk m ||EO k(x y(k y)” ny mxx(DX(k i). W2+r p(D)) (69)

m=i

The result follows by applying Lemma 22, and inserting (68), and (69) into (54). O

Remark 23. The finite dimensional spaces W} and V, are defined on the same physical domain D. It is then natural to
take V, = Wj, — 7; having discretization parameter h, - and h = h;. Then, (52) becomes:

H(Ek—i,i — B, y)‘ — Q(R™n(BS(1=7))y,

Wy P(D)

6. Conclusions

This paper addresses the computation of an approximation for the expected value of the unique stochastic solution
u to the Darcy problem with lognormal permeability coefficient. In particular, we adopt the perturbation method -
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approximating the solution by its Taylor polynomial TXu - in combination with the moment equation technique -
approximating E [u] by IE[TKu]. The first moment equation is recalled, and its recursive structure is explained. In
particular, for each k = 0, ..., K, a recursion on the (i + 1)-points correlation E¥=*, i = 1, ...k, is needed. Well-
posedness and regularity results for the recursion satisfied by EX~%! are proved. In particular we show that E¥= e
cmy-mix (Dxi; W2rP(D)), under the assumptions Y € ¢ (D) as. and u’ € W2 P(D) N W, P(D). Finally, a sparse
discretization for the recursion is analyzed, and the convergence of the sparse discretization error is proved.

The procedure proposed in this paper can be used also to approximate higher moments of u. In particular, we refer
to [20] for the recursion on the two-points correlation of u, E [u ® u]. Moreover, the bounds on sparse grid approximations
derived in this work could also be useful to establish convergence estimates for low rank approximations as the Tensor
Train considered in [20] (see, e.g., [27]).
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Appendix

Proposition 5. Let V be a Banach space, and 0 < y < 1. Then,
CS’V (ka; V) C Cl?.y/lgmix (ka; V) (A])
for all k > 2.

Proof. We first prove (A.1) for k = 2. Let ¢ € C;,)if’yz (D x D; V). Then,

D¥/2<p(y1,yz)Hv, sup Dﬁ/zca(y],yz)Hv,

D) =max{ sup ’ o
1,52,112

|g0| 0,y /2,mix
Sy ( y1.y2:h1

sup
y1.y2,h1.hy

D¥/2D§/2<ﬂ(y1,yz)Hv} : (A.2)

We bound the three terms in (A.2) separately. Observe that

lo(y1 + h1, y2) — e(y1, y2)ll
sup D7 pyr,ys)| = sup TEILTALIEL L2
y1.y2.m Vi yiyahy lh1ll
hi,y2) — ,
— sup [h |7 le(y1 + h1, y2) ygﬂ(}ﬁ y2)lly
Y1.y2.m lhl
< max{1, diam(D)" ”‘p'c;’gyz(m;v)’ (A3)

which is bounded by assumption, and the same holds for sup,, ,, 5,
n (A.2). Define

Dg/z(p(yhyz)Hv. We focus now on the third term

w(y1, Y23 hi, h2) == DYDY P o(y1, y2) Il 11772 (| |72
= @y1+ h1,y2 +h2) — o1 + h1,¥2) — o1, ¥2 + ha) + o(y1, ¥2).

Hence, we have

24y/2 lw(yi, y2; h1, h2)lly
sup |D}/*D}’ Qﬂ(}’h)’z)H = T 2
Y1.¥2.h1.hy yivahihy el lha |l
lw(y1, y2;5 h1, ha)lly lw(y1, y2; h1, h2)lly
= max v/2 vz 0. SU /2 /2
vlnl<ihal [The 1772 1Az |l vzl T [77% Azl
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We start considering
lw(y1, y2; b1, h2)lly

vlhl<ihol |77 ho |72
< sup <|| Y lo(y1 + h1,y2 + h2) — o(y1, y2 + W)y
vl <ihol [1hell772 1o |77 K
il o1 + h1,y2) — </)(}’17}/2)||v)
(31 ke
[[hq 1772

< DYo(y1,y2 + )|, + | D} ey,
vl <l 12177 (Ipiev1. 2 + b, + [Pigtrroy2l,)

< 2 ||‘P||c}gxy2 (m;v) .
The case ||hq]| > ||h2|| is analogous. Hence, we conclude (A.1) for k = 2.

In the general case, given h = (hy, ..., hy), let i(h) as in Definition 3, and i* € {i(h)} such that ||| < |[h;]| for all j

__ pYy.mix
= Di

such that i* # i;. Moreover, define w(-,y; h) : o(-,y) ]_[Jé:] ||h,-e ”V/j. We bound each term of the seminorm (10) as

follows:
lwly; Wiy _ lhe !l llw(y; B)Ily

T T A T b s I T R L

-1
2 |¢|c3vy(bxk;vx) s

and the inclusion (A.1) is then proved. O

Proposition 6. The spaces Cy;” (f); ¢ (D V)) and ¢ (l_); ¢y’ (D V)) are isomorphic to the space ¢yy»"™ (D x D; V)
for all n > 0 integer.

Proof. According to definition (20), we have

0l pvy = max { Iellegns i) 'w'c;"@m*'«mv)}

_max{maxllw(%,h)llv, sup ”D1¢’Y1!y2 Hv
V1.¥2).m

sup [Dkptyal, . sup - DEDYetrnpe)l )
(v1.¥2): 1.y2).(h1.h2)

On the other hand, we have

i .\ = max = 0y n Y s 7 (5. 007 (5 ;
“‘p”cﬁéy (Bicyy” (B:v)) { ”(p”q‘,’z (Bicyy” (B:v)) |‘plc§’ 7 (Biey (B:v)) }
where
- .\ = max |lg(- -
||§0||C?2 (D;C)(,)iy (D;V)) y2X llo(-, yz)llcgiy (B:v)

= maxmax { leC.y2llep vy - |§0(~,yz)lcgiy(b;‘,)}

= maX{maXIlw(y1,yz)llv , Max sup ||D¥<ﬂ(y1,yz)||v},
Y1.y2 Y2 yq,hy
and

|<P|C32 (B:cr (0v)) = ;zulg ||D§/€0(',Y2)||C;>iy(b;v)

|

= max {max sup || DY p(y1.¥2)|, - sup sup ||D¥D§’<p(y1,y2)||v} .
Y1 ya.hy y2.h2 y1.1

= sup maX{”Dz(P Y2 ||c° B;v)

y2.hy

Hence, we conclude that ||(p|| on,x ”(p||c§""(b'c§"y(ﬁ-v))‘ In the same way, it is possible to show that
2 s ’

(DxD;V)

0, d
”(P” yll,/yTxx(DxDlv) ||(/)” J(’)iy (D;C;’iy (D;V))
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Proposition 8. Denote with ¢*7"™* (D*¥) the space cy”"™ (D**; R). Then, it holds

k
el gomix ey = [ T Nuellcor 5y » (A4)
(=1

for all u(yy, ..., y¢) = u1(¥1) ® - - @ u(yx) € O -mx (Bxk).

Proof. Using (9), we have:
“u”cO,y,mix(ka) = Mmax { ||u1 R ® uk”CO(ﬁxk) 5 |u1 R ® uk|cO,y,mix(D><k)} .
Observe that:

lur ® - @ ukllcopxky =  max_ |ui(y1) ® - @ uk(yi)l
31,k )ED*K

k k k
= max_ [l =] maxlu ol =[] lueleog) -
k yeeD
=1 (=1 =1

(V1---Yk)ED

We focus now on the seminorm of u:

,mix
(U1 ® - -+ ® Ukl oy mixpxky = lnaxl sup )Dly u(yq, ... ,yk)‘
=1k yeD*k, hso,
Ihllg=i. y+heDxk
V4
= max  sup [T lwGol [P} uto)
=5l yeDxk nxo, i ;
Ihlgo vihep<k Le{1,... . k}\{i} Lefi}
= max ] supluwol [T sup |Djuetye)]. (A5)
I=he Rty Ye€D teliy YesDhe#0
lillg=i lillg=j Ye+heeD

Choosing j = k, we have

k k
(A5) > sup [ D} ue(ye)| = [ ] lueleos (5 -
=1 Ye€Dhe#0 =1
Ye+hgeD

On the other hand, given j* the index which realizes the maximum, we have

(A5)= ] swplul [ sup [Dfulye)

tef1,... k)\{i) X¢€D tefiy YeeD-hg#0
llillg=i* lilg=j* Yet+heeD
k
= [ Jlueleogy [T Iueleor@y < T luellcor o) -
Le{1,.. k}\{i} Leli) =1
llillg=i* lillg=i*

Hence, we have proved:

k k k
el comix gty = max 4 [ | uellcosy - [ |uz|co.y(p)] =[] ucllcor ) -
=1 =1 =1

\%

and

IA

”U”C(J.y,mix@xk)

k k k
max { [ | luellcoy - [ ] llue ||Co,m-,)} =[] luellcos 5 -
=1 =1 =1
and (A.4) follows. O

Proposition 11. Let ¢ = @(x,y1,...,¥x) € C;'lymy”,: (D**; Wi"P(D)), with D C RY k > 1 integer, n > m > 0 integers,
y €(0,1] and p > 27‘1 Then, for all j =2, ..., k+1, and for all (y;, ..., yx) € D**FD, (Tr| @)% ¥, . .., yi) € WyP(D). In
particular, there exists C, > 0 such that

H (Trh;jﬁl))(X; Yiy oot va)”W;n‘p(D)
(A6)

J—1 Y .
<G ||§0(X, Y, oo Yi-13Yjs - - ,}’k)| c;]ym;jc_l (Dx(j—l);W;WP(D)) )
forall (y;, ..., yx) € D*(k=+D),
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Moreover, Tr|, ¢ € C)',IJV";’,:‘ (D*=+1; WyP(D)), and

”Trh:j‘p

Jj—1
; Y, m'X<D><(k—j+1) Wm p(D)) Ctr ”(ﬂ” n y mix (ka Wm p(D)) (A7)

forallj=2,...,k+1.

Proof. We prove the results in three steps.
Step 1: inequality (A.6)fork=1and j =2 ~
Let & = &(x,y) € ¢y (D; Wx"P(D)), i.e, x — &(x,-) € ¢ (D) ae, and y + £(-,y) € W™P(D). Denote with

. [
g(x) = (Tr),,&) (x) for all x = (xq,...,x4) € D. We want to show that g € W™P(D), i.e, 9¢g = d‘”x{iif"% e IP(D)
forall @ = (atq, ..., aq) > 0 with || = a1 + - ~|—a <m
Let « be such that |a| < m, and let X = (x (’)) e D for i = 1, 2. Then, it holds
gl \g
T P P
X1 Xd ll (o)
t1=0 t4=0 i ta 3t1x(]1)3a1—t1x(12) e ardx511)aad7td"£12) xx) |l 5
Ly(D)
- ZZ( e )( o ) A, A
- (1) g —t1 4(2) (2) :
i t ta ahlix; 9« t1x afdx ) gog— taxy ) 2(0)
1 2\ 3\(1\&-()((1)’,((2)) _ . . . .
Denote 92£(x), ) := D gD D where t = (ty, ..., tg). Using the triangular inequality, we have
(™, x) = [ ogEx. 0| p
|(x,x) 2(D) || t ”LX(D)
< sup [[375(x, x) — 97 E(x. V) o ) (A8)
yeD X
+sup [[87E(x, )| 12 p) - (A.9)
yeD X

We bound first the term (A.8). According to the Sobolev embedding theorem, if sp > d, then W*P(D) — ¢%# (D) for all
0<B<s— g. Hence, there exists a positive constant C; such that

|02&(x, 21) — 08E(x, )| i
dz dz, (A]O)

-2 |d+sp

|ag$(x7yl) - 8?§(X7y2)| < CS |)’1 —J’2|ﬂ (/
DJD

|21
Using (A.10), we have

sup || 97 & (x, x) — Bf‘f(x,y)”fg(m
yeD

= sup/ ‘8;"5()(, X) — 0fE(x, y)‘p dx
yeD Jp

07 E(X,z1) — OFE(x, z
SCf/suplx—yl"" //' k) di( 2l dzydz, | dx
D yeD |z1 — z,|"™P
8“ E(x,21) — 0fE(x, z
<C”|D|5p/// v d/i(s 2)| dz,dzydx
lz1 — z,|*P

P
1 0%&(x,z1) — 0%E(X, z
=c§|D|ﬂp// d_S/ |3 E0x 21) Ft/i(s 2) dxdzqdz,
pJp 121 — 22| D |z1 — z,|*'P

o 1
= G IDI |3 E|C° €/pFs (D;LP(D)) fD /D mdzldzz
< Ci(e)C? IDI |97 & [, 955

b, Lp(D))
forall 0 < ¢ < d, with Cy(¢) = [, [, Wdlldzz < 400. Hence, we have shown that
—

sup [[875(x. X) = 976X, )| oy < (Cule ))‘/PCS|D|S—"“’|af’s|co,;(f (A11)
yeD y

Bi(D )
for any s > g,with)? =¢/p+s. Since p > Zy—d and & < d, by takings = £ > % we have 7 < y.
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We bound now the second term (A.9). Since |&| = a1+ --- + ag < m < n, then
(A9) < ”EHCQ(L_);W,I”"U(D)) = ”‘g”CE’V(L_);W,E”"D(D)) . (A12)

Putting together (A.11) and (A.12), we conclude (A.6) (for k = 1 and j = 2) with constant C,, = 2™(C;(g)'/PC; IDI*=4P 4 1).
Step 2: inequality (A6)fork > landj=2,...,k+1

Let ¢ € ¢/ (D**; Wy"P(D)), with k > 1 and n > m. We prove the proposition by induction on j. In Step 1, we have

shown that the result holds for j = 2, namely, for all (y2, ..., yi) € D*®=V, Tr,o(X; y2, ..., yi) € Wy (D). In particular,
ITr,00 y2, - )|y gy < Cor (X, Y13 Y2, W & (Bwom)

for all (yo, ..., yx) € D*k=D,
By induction, we assume that

Trh;@ﬁ”(xi Yo, ... 7yk) c me,P(D)
||Tr|1;[g0(x; Ve, ... ,}’k)”wm,p D =< Ctr ||Tr|]:l71(p(x; Vo1, ... ’yk)|
x " (D)

ey (Bwy (D)

forall ¢ = 3,...,j, and for all (y,, ..., yx) € D**=¢+D_Then, it holds

| Tr 0%y - - ,yk)||WXm.p(D) <M ey, Vi Vi W) M (9w ) (A.13)
where we have used the isomorphism (24).
Denote with y = (yj;1, .. ., y&). We bound ||Try ., ¢(x; Y)”Wmvv(m as follows:
1011000 W) oy = 1T 000 X W) o
< sup || Try, (x, x:¥) = Tr 0%, 353 ) [ o) + SUP | Try 0, 35 W o - (A.14)
yjeb X yjeD x

Using inequality (A.13) we bound the second term on the right hand side of (A.14) as:

gl Dy =4 gl Wl (o)

,,,,,,

We bound the first term on the right hand side of (A.14) by proceeding as in the case k = 1 and j = 2:
sup [[Trj,, @(x. x: ) = Tryy, @(x Y V)| ymr
yjeb X

< Cu ”Trh;j(/)(xv Yj y)|

(A1

13)
= C{r ”(p(X, Y, .- Y y)||C;iy’my(5xj:W;"'p(D)) s
..... j

ey’ (D;WXW(D))

and the conclusion holds.
Step 3: mixed Holder regularity of Try ¢

Let £(x, y1,y2) € Gyl (D*2; Wx"P(D)). By applying the same steps as in Step 2 to the increment in the variable y,

of the trace of &, DZ (Trh:zé) (x; y2), we conclude (A.7) in the case k = 2 and j = 2. Then, by induction, we conclude (A.7)
forany kand j. O
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