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a b s t r a c t

We study the Darcy boundary value problem with lognormal permeability field. We
adopt a perturbation approach, expanding the solution in Taylor series around the
nominal value of the coefficient, and approximating the expected value of the stochastic
solution of the PDE by the expected value of its Taylor polynomial. The recursive deter-
ministic equation satisfied by the expected value of the Taylor polynomial (first moment
equation) is formally derived. Well-posedness and regularity results for the recursion
are proved to hold in Sobolev space-valued Hölder spaces with mixed regularity. The
recursive first moment equation is then discretized by means of a sparse approximation
technique, and the convergence rates are derived.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In many applications, the input parameters of the mathematical model describing the system behavior are unavoidably
ffected by uncertainty, as a consequence of the incomplete knowledge or the intrinsic variability of certain phenomena.
ncertainty Quantification (UQ) conveniently incorporates the input variability or lack of knowledge inside the model,
ften by describing the uncertain parameters as random variables or random fields, and aims to infer the uncertainty in
he solution of the model, or the specific output quantities of interest, by computing their statistical moments.

The physical phenomenon we are interested in this work is the single-phase flow of a fluid in a bounded heterogeneous
aturated porous medium. In particular, we consider the following stochastic partial differential equation (PDE), named the
arcy problem, posed in the complete probability space (Ω,F,P) and in the bounded physical domain D ⊂ Rd (d = 2, 3):

− div
(
eY (ω,x)

∇u(ω, x)
)

= f (x) for x ∈ D and a.e. ω ∈ Ω (1)

endowed with suitable boundary conditions on ∂Ω , where u(ω, x) represents the hydraulic head, the forcing term
f (x) ∈ L2(D) is deterministic, and the permeability coefficient eY (ω,x) is modeled as a lognormal random field, Y (ω, x) being
a centered Gaussian random field with small standard deviation. The lognormal diffusion problem (1) is widely used in
geophysical applications (see, e.g., [1–4] and the references there), and has been studied mathematically, e.g., in [5–8].

Under suitable assumptions on the covariance of the random field Y (ω, x), it is possible to show that the Darcy problem
is well-posed (see [7]).

Given complete statistical information on the Gaussian random field Y (ω, x), and assuming that each realization Y (ω, ·)
is almost surely Hölder continuous with parameter γ , the aim of the present work is to construct an approximation for
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the expected value of the stochastic solution E [u]. To this end, we adopt a perturbation approach, in which the stochastic
solution u is viewed as the map u : C0,γ

(
D̄
)

→ H1(D) which associates to each realization Y (ω, ·) ∈ C0,γ
(
D̄
)
, the unique

solution u(ω, ·) of (2), and is expanded in Taylor series w.r.t. Y , i.e.,
∑

+∞

k=0
Dku(0)[Y ]

k

k! , Dku(0)[Y ]
k being the kth Gateaux

erivative of u in Y = 0 evaluated along the vector (Y , . . . , Y )  
k times

. The expected value of u is then approximated as

E [u] (x) ≃ E
[
T Ku

]
(x) =

K∑
k=0

E
[
Dku(0)[Y ]

k
]
(x)

k!
,

here T Ku(Y , x) denotes the K th degree Taylor polynomial. We refer to E
[
Dku(0)[Y ]

k
]
as the kth order correction to the

expected value of u, and to E
[
T Ku

]
as the K th degree approximation of the expected value of u.

In [6,9,10] the authors show that, as K goes to infinity, the K th order approximation of the expected value of u may
actually diverge, for any positive value of the standard deviation σ :=

√
1

|D|

∫
D E

[
Y 2
]
(x)dx of the random field Y (ω, x).

Nevertheless, for σ and K small enough, E
[
T Ku

]
provides a good approximation of E [u]. The work [6] also provides an

stimate of the optimal degree of the Taylor polynomial achieving minimal error, for any given σ > 0.
If a finite-dimensional approximation of the random field Y (ω, x) via N random variables is available (e.g., by using

the Karhunen–Loève (KL) expansion), then the (multi-variate) Taylor polynomial can be explicitly computed (see, e.g., the

geophysical literature [11–14]). However, this approach entails the computation of
(

N + K
K

)
derivatives. To alleviate

the curse of dimensionality, adaptive algorithms have been proposed in [15,16] for the case of uniform random variables.
In the present paper we consider the entire field Y (ω, x), and not a finite dimensional approximation of it, hence the

Taylor polynomial cannot be directly computed. Following [17–19], we adopt the moment equations approach, that is, we
solve the deterministic equations satisfied by E

[
Dku(0)[Y ]

k
]
, for k ≥ 0.

In [20] the authors derive analytically the recursive problem solved by E
[
Dku(0)[Y ]

k
]
, which requires the recursive

computation of the (i + 1)-points correlations E
[
Dk−iu(0)[Y ]

k−i
⊗ Y⊗i

]
, with i = k, k − 1, . . . , 1. These functions being

high dimensional, a full tensor product finite element discretization is impractical and suffer the curse of dimensionality.
To overcome this issue, in [20] the authors have proposed a low rank approximation of the fully (tensor product) discrete
problem, using the Tensor Train format. The effectiveness of the method is shown with both one and two-dimensional
numerical examples.

The present paper complements the above-mentioned results. The main achievement consists in the well-posedness
and regularity results for the recursive first moment equation. These results are developed in the framework of p-
integrable Lebesgue spaces. In particular, the key tool consists in showing that the diagonal trace of functions in the Lp(D)
space-valued mixed γ -Hölder space, belongs to Lp(D), whenever p > 2d

γ
. We also address the discretization of the moment

quations. Differently from [20], to alleviate the curse of dimensionality we propose here a sparse approximation method
ased on the Smolyak construction, which is more amenable to error analysis. We present then a complete convergence
nalysis of the proposed discretization method.
The paper is organized as follows: in Section 2 we recall the recursion solved by the kth order correction E

[
Dku(0)[Y ]

k
]

nder the assumption that every quantity is well-defined, and every problem is well-posed. In Section 3, we first introduce
he Banach space-valued maps with mixed Hölder regularity, and then study the Hölder regularity of the diagonal trace of
obolev space-valued mixed Hölder maps. These technical results will be needed in Section 4 to study the well-posedness
nd regularity of the recursion for E

[
Dku(0)[Y ]

k
]
. Section 5 is dedicated to the sparse discretization of the recursion and

its error analysis. Finally, we draw some conclusions in Section 6.

2. Analytical derivation of the first moment equation

The weak formulation of the Darcy PDE (1) endowed with homogeneous Dirichlet boundary conditions reads:∫
D
eY (ω,x)

∇u(ω, x) · ∇v(x) dx =

∫
D
f (x)v(x) dx, ∀v ∈ H1

0 (D), a.s. in Ω. (2)

We assume here that the random field Y ∈ Lθ
(
Ω; C0,γ

(
D̄
))

(0 < γ < 1/2) for all 1 ≤ θ < +∞. Then, for any f ∈ Lp(D),
1 < p < +∞, the boundary value problem (2) admits a unique solution u ∈ Lp

(
Ω;H1(D)

)
, which depends continuously

n the data (see [7]). In particular, using the Kolmogorov–Chentsov continuity theorem (see, e.g., [21]), it has been proven
hat the Hölder regularity assumption Y ∈ Lθ

(
Ω; C0,γ

(
D̄
))

(0 < γ < 1/2) for all 1 ≤ θ < +∞, is fulfilled if the covariance
unction CovY ∈ C0,t

(
D × D

)
for some 2γ < t ≤ 1 (see [6,10]). The mentioned well-posedness result extends to the

ase of uniform/non-uniform Neumann as well as mixed Dirichlet–Neumann boundary conditions. In particular, the limit
ituation of Neumann boundary conditions on ∂D leads to the uniqueness of the solution u(ω, x) up to a constant. For
larity of presentation, in this work we restrict to the case of homogeneous Dirichlet boundary conditions in the rest of
he paper.
2926
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In this section we recall (see [10,20]) the structure of the problem solved by E
[
Dku(0)[Y ]

k
]
– the kth order correction

f the expected value of u – assuming that every quantity is well-defined and every problem is well-posed. We will detail
hese theoretical aspects in the next sections.

Let D ⊂ Rd, be such that ∂D ∈ C1. Let p, q be real numbers such that 1 < p, q < ∞, with 1
p +

1
q = 1 and p > 2d

γ
, where

is the Hölder regularity of the random field Y . The requirement p > 2d
γ

will be clarified later (see Proposition 11). Given
∈ Lp(D), 1 < p < +∞, we define the linear form F ∈ (W 1,q

0 (D))⋆ as

F(v) :=

∫
D
f v dx ∀ v ∈ W 1,q

0 (D),

where (W 1,q
0 (D))⋆ denotes the dual space of W 1,q

0 . The correction of order 0, u0
:= u|Y=0, is deterministic and is the unique

weak solution of the following problem: find u0
∈ W 1,p

0 (D) such that∫
D
∇u0

· ∇v dx = F(v) ∀v ∈ W 1,q
0 (D), (3)

where 1
p +

1
q = 1. Moreover, it exists C = C(D) > 0 such thatu0

W1,p(D) ≤ C ∥f ∥Lp(D) , (4)

e refer to [22, Chapter 7] for the proof of existence and uniqueness of weak solutions for the Laplace–Dirichlet problem
n W 1,p spaces.

To lighten the notations, let uk
:= Dku(0)[Y ]

k. For k ≥ 1, the kth order correction E
[
uk
]
satisfies the following problem,

k-th order correction BVP∫
D
∇E

[
uk]

· ∇v dx = −

k∑
j=1

(
k
j

)∫
D
E
[
∇uk−jY j]

· ∇v dx ∀v ∈ W 1,q
0 (D). (5)

Eq. (5) is obtained in two steps: (i) derive the problem satisfied by uk, by taking derivatives with respect to Y of the
stochastic equation (2) (see [6] and the references therein); (ii) apply the expected value to both sides of the obtained
equation.

The function E
[
∇uk−iY i

]
appearing in the r.h.s. of (5) is the diagonal of the (i + 1)-points correlation function

E
[
∇uk−i

⊗ Y⊗i
]
, where ⊗ denotes the tensor product. In particular, it holds

E
[
uk−iY i] (x) :=

(
Tr|1:i+1E

[
uk−i

⊗ Y⊗i]) (x) = E
[
uk−i

⊗ Y⊗i] ( x, . . . , x  
(i+1)−times

),

here

• Tr is the diagonal trace operator (it will be formally defined in Definition 10);
• E

[
uk−i

⊗ Y⊗i
]
(x, y1, . . . , yi) is the (i + 1)-point correlation function defined as

E
[
uk−i

⊗ Y⊗i] (x, y1, . . . , yi) :=

∫
Ω

uk−i(ω, x) ⊗ Y (ω, y1) ⊗ · · · ⊗ Y (ω, yi)dP(ω).

n the same way,

E
[
∇uk−iY i] (x) :=

(
Tr|1:i+1E

[
∇uk−i

⊗ Y⊗i]) (x) = E
[
∇uk−i

⊗ Y⊗i] ( x, . . . , x  
(i+1)−times

),

where E
[
∇uk−i

⊗ Y⊗i
]

= ∇ ⊗ Id⊗iE
[
uk−i

⊗ Y⊗i
]
, that is, the linear operator ∇ ⊗ Id⊗i applies the gradient operator to

the first variable x and the identity operator to all other variables yj for j = 1, . . . , i.
The correlation functions themselves satisfy the following recursion:

Recursion on the correlations

Given all lower order terms E
[
uk−i−j

⊗ Y⊗(i+j)
]
for j = 1, . . . , k − i, find E

[
uk−i

⊗ Y⊗i
]
s.t.∫

D

(
∇ ⊗ Id⊗i)E [uk−i

⊗ Y⊗i] (x, y1, . . . , yi) · ∇v(x) dx

= −

k−i∑
j=1

(
k − i
j

)∫
D
Tr|1:j+1E

[
∇uk−i−j

⊗ Y⊗(i+j)] (x, y1, . . . , yi) · ∇v(x) dx

∀v ∈ W 1,q(D), for all y1, . . . , yi ∈ D.

(6)
0
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Table 1
K -th order approximation of the mean. The first column contains the input terms E

[
u0

⊗ Y⊗k
]
and the

first row contains the kth order corrections E
[
uk
]
, for k = 0, . . . , K . To compute E

[
T Ku(Y , x)

]
, we need

all the elements in the top left triangular part, that is, all elements in the kth diagonal, for k = 0, . . . , K .
u0 0 E

[
u2
]

0 E
[
u4
]

0

0 E
[
u1

⊗ Y
]

0 E
[
u3

⊗ Y
]

0 . .
.

u0
⊗ E

[
Y⊗2

]
0 E

[
u2

⊗ Y⊗2
]

0 . .
.

0

0 E
[
u1

⊗ Y⊗3
]

0 . .
.

0 . .
.

u0
⊗ E

[
Y⊗4

]
0 . .

.
0 . .

.
0

Note that problem (5) is a particular case of (6) for i = 0, since E
[
uk−0

⊗ Y⊗0
]

= E
[
uk
]
. Moreover, observe that[

u0
⊗ Y⊗k

]
= u0

⊗ E
[
Y⊗k

]
, since u0 is deterministic, and it is fully characterized by the mean solution u0 and the

ovariance structure of Y , which is an input of the problem.
The computation of the kth order correction of the expected value of u relies on the recursive solution of BVPs of the

type (6), as summarized in Algorithm 1.

Algorithm 1 Computation of the k-th order correction E
[
uk
]

1: for k = 0, . . . , K do
2: Compute u0

⊗ E
[
Y⊗k

]
.

3: for i = k − 1, k − 2, . . . , 0 do
4: Compute the (i + 1)-point correlation function E

[
uk−i

⊗ Y⊗i
]
(Eq. (6)).

5: end for
6: The result for i = 0 is the k-th order correction E

[
uk
]
to the mean E [u].

7: end for

Table 1 illustrates the computational flow of the presented algorithm. Each non-zero correlation E
[
uk−i

⊗ Y⊗i
]
, with

i < k, can be obtained only when all the preceding terms in the kth diagonal have been already computed. As a
consequence, to derive the K th order approximation E

[
T Ku

]
, it is necessary to compute all the elements in the top left

triangular part of the table. Notice that, since we assumed E [Y ] (x) = 0, all the (2k + 1)-point correlations of Y vanish,
and all odd diagonals are zero.

3. Banach space-valued mixed Hölder maps, and trace results

Within this section, we introduce the notion of V -valued Hölder maps with mixed regularity, V being a Banach space,
and we prove some useful properties. In particular, we study the regularity of the diagonal trace of Hölder mixed regular
maps when V is a Sobolev space. These properties will be needed later in Section 4 to analyze the well-posedness of the
equations in the recursion (6). Since the proofs of the Propositions in this Section are tedious and not essential for the
later developments, they have been postponed to Appendix.

3.1. Banach space-valued mixed Hölder spaces

Definition 1 (Banach Space-Valued Hölder Space). Let V be a Banach space, 0 < γ ≤ 1 be real, and k ≥ 1 integer.
The V -valued Hölder space with exponent γ , C0,γ

y
(
D̄×k

; V
)
, consists of all continuous maps ϕ : D̄×k

→ V with Hölder
γ -regularity. It is a Banach space with the norm

∥ϕ∥C0,γ
y (D̄×k;V)

:= max
{
∥ϕ∥C0

y(D̄×k;V) , |ϕ|C0,γ
y (D̄×k;V)

}
with

∥ϕ∥C0
y(D̄×k;V) := sup

y∈D̄×k
∥ϕ(y)∥V

and

|ϕ|C0,γ
y (D̄×k;V)

:= sup
y∈D̄×k,h̸=0
s.t. y+h∈D̄×k

∥ϕ(y + h) − ϕ(y)∥V

∥h∥
γ ,

here

h := (h1, . . . , hk) = (h1,1, . . . , h1,d; h2,1, . . . , h2,d; . . . ; hk,1, . . . , hk,d) ∈ Rkd,

hat is h is a vector of d components for each j = 1, . . . , k, and ∥·∥ denotes the Euclidean norm.
j

2928



F. Bonizzoni and F. Nobile Computers and Mathematics with Applications 80 (2020) 2925–2947

o

h

w

t

D
T
D

Note that, even if it is not standard, we prefer to specify the subscript y in the notation of the Banach space-valued
Hölder space C0,γ

y
(
D̄×k

; V
)
, in view of the rest of the paper, where the Banach space V will be a Sobolev space of functions

f the spatial variable x ∈ D.

Definition 2. Let hj ̸= 0. The one-dimensional difference quotient Dγ

j,hj
along the direction j and with exponent 0 < γ ≤ 1

of the function v : D̄×k
→ R is defined as

Dγ

j,hj
v(y1, . . . , yk) :=

v(y1, . . . , yj + hj, . . . , yk) − v(y1, . . . , yk)hj
γ . (7)

Definition 3. Given h = (h1, . . . , hk) ∈ Rkd, we introduce i = i(h) as the vector containing the (non repeated) indices
corresponding to the non-zero entries hj of h, and i(h)c = {1, . . . , k} \ i(h) (i.e., hj ̸= (0, . . . , 0) for all j ∈ i(h), and
j = (0, . . . , 0) for all j ∈ i(h)c). The mixed difference quotient Dγ ,mix

i,h is defined as

Dγ ,mix
i,h :=

∥h∥0∏
j=1

Dγ

ij,hij
(8)

here ∥h∥0 := #i(h).

In the following, when no confusion arises, we will denote the one-dimensional difference quotient also as Dγ

j , and
he mixed different quotient as Dγ ,mix

i , omitting to specify the increment h.

efinition 4 (Banach Space-Valued Mixed Hölder Space). Let V be a Banach space, 0 < γ ≤ 1 be real, and k ≥ 1 integer.
he V -valued mixed Hölder space with exponent γ , C0,γ ,mix

y
(
D̄×k

; V
)
, consists of all continuous maps ϕ = ϕ(y1, . . . , yk) :

¯×k
→ V with Hölder γ -regularity in each variable yj, j = 1, . . . , k, separately. It is a Banach space with the norm

∥ϕ∥C0,γ ,mix
y (D̄×k;V)

:= max
{
∥ϕ∥C0

y(D̄×k;V) , |ϕ|C0,γ ,mix
y (D̄×k;V)

}
(9)

where ∥·∥C0
y(D̄×k;V) is as in Definition 1, and

|ϕ|
C0,γ ,mix
y (D̄×k;V) := max

j=1,...,k
sup

y∈D̄×k, h̸=0,
s.t. ∥h∥0=j

and y+h∈D̄×k

Dγ ,mix
i ϕ(y)


V

,
(10)

Dγ ,mix
i being introduced in Definition 3.

Note that, for k = 1, it holds

C0,γ ,mix
y

(
D̄; V

)
= C0,γ

y

(
D̄; V

)
. (11)

3.1.1. Banach space-valued Hölder spaces with higher regularity
Let V , k and γ as in Definition 1, and let n ≥ 1 integer. Moreover, given a vector, denote as |·| its ℓ1-norm. We introduce

Cn
y
(
D̄×k

; V
)

=

⎧⎪⎨⎪⎩
ϕ : D×k

→ V s.t. ∀ α = (α1, . . . , αk) ∈ Nkd with

αℓ = (αℓ,1, . . . , αℓ,d) ∈ Nd and
∑k

ℓ=1 |αℓ| ≤ n,

∂αϕ = ∂
α1
y1 · · · ∂

αk
yk ϕ ∈ C0

y
(
D̄×k

; V
)

⎫⎪⎬⎪⎭ , (12)

which is a Banach space with the norm

∥ϕ∥Cn
y(D̄×k;V) := max

|α|=0,...,n

∂αϕ

C0
y(D̄×k;V)

. (13)

We define the Banach space-valued Hölder space with regularity n and exponent γ as

Cn,γ
y
(
D̄×k

; V
)

=

⎧⎪⎨⎪⎩
ϕ ∈ Cn

y
(
D̄×k

; V
)
s.t. ∀ α = (α1, . . . , αk) ∈ Nkd

with |α| = |α1| + · · · + |αk| = n

∂αϕ = ∂
α1
y1 · · · ∂

αk
yk ϕ ∈ C0,γ

y
(
D̄×k

; V
)

⎫⎪⎬⎪⎭ . (14)

The space Cn,γ
y
(
D̄×k

; V
)
is a Banach space with seminorm

|ϕ|Cn,γ D̄×k;V := max
∂αϕ(y)

 0,γ ¯×k (15)

y ( )

|α|=n Cy (D ;V)
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and norm

∥ϕ∥Cn,γ
y (D̄×k;V) := max

{
∥ϕ∥Cn

y(D̄×k;V) , |ϕ|Cn,γ
y (D̄×k;V)

}
. (16)

Moreover, we introduce the space

Cn,mix
y

(
D̄×k

; V
)

=

⎧⎪⎨⎪⎩
ϕ : D×k

→ V s.t. ∀ α = (α1, . . . , αk) ∈ Nkd with
αℓ = (αℓ,1, . . . , αℓ,d) ∈ Nd and 0 ≤ |αℓ| ≤ n ∀ ℓ,

∂αϕ = ∂
α1
y1 · · · ∂

αk
yk ϕ ∈ C0

y
(
D̄×k

; V
)

⎫⎪⎬⎪⎭ , (17)

hich is a Banach space with the norm

∥ϕ∥Cn,mix
y (D̄×k;V)

:= max
(α1,...,αk)∈Nkd

0≤|αℓ|≤n

∂αϕ

C0
y(D̄×k;V)

. (18)

Finally, generalizing Definition 4, we introduce the space Cn,γ ,mix
y

(
D̄×k

; V
)
as follows:

Cn,γ ,mix
y

(
D̄×k

; V
)

=

{
ϕ ∈ Cn,mix

y
(
D̄×k

; V
)
s.t. |ϕ|Cn,γ ,mix

y (D̄×k;V)
< +∞

}
. (19)

It is a Banach space with the norm

∥ϕ∥Cn,γ ,mix
y (D̄×k;V)

:= max
{
∥ϕ∥Cn,mix

y (D̄×k;V)
, |ϕ|Cn,γ ,mix

y (D̄×k;V)

}
, (20)

where the seminorm is defined as

|ϕ|
Cn,γ ,mix
y (D̄×k;V):= max

j=1,...,k
sup

y∈D̄×k, h̸=0,
s.t. ∥h∥0=j

and y+h∈D̄×k

max
α=(α1,...,αk)∈Nkd

0≤|αℓ|≤n, ∀ ℓ=1,...,k

|αℓ|=n, ℓ∈i(h)

Dγ ,mix
i,h ∂αϕ(y)


V

.
(21)

Note that, for k = 1, it holds Cn,γ ,mix
y

(
D̄; V

)
= Cn,γ

y
(
D̄; V

)
.

.1.2. Properties of Banach space-valued mixed Hölder spaces
In this section we prove some properties of Banach space-valued mixed Hölder spaces. We refer to Appendix for the

roofs.

roposition 5. Let V be a Banach space, and 0 < γ ≤ 1. Then,

C0,γ
y
(
D̄×k

; V
)

⊂ C0,γ /k,mix
y

(
D̄×k

; V
)

(22)

or all k ≥ 2.

roposition 6. The spaces C0,γ
y2

(
D̄; C0,γ

y1

(
D̄; V

))
and C0,γ

y1

(
D̄; C0,γ

y2

(
D̄; V

))
are isomorphic to the space C0,γ ,mix

y1,y2

(
D × D; V

)
for

all n ≥ 0 integer.

Remark 7. With small modifications to the proof, it is possible to prove that Proposition 5 holds for Hölder spaces with
higher regularity, yielding

Cn,γ
y
(
D̄×k

; V
)

⊂ Cn,γ /k,mix
y

(
D̄×k

; V
)

(23)

or all k ≥ 2. Moreover, Proposition 6 generalizes to higher regularity and higher dimension, yielding

Cn,γ ,mix
y

(
D̄×k

; V
)

∼ Cn,γ ,mix
y∼i

(
D̄×(k−1)

; Cn,γ
yi

(
D̄; V

))
∀i = 1, . . . , k + 1, (24)

here y∼i = (y1, . . . , yi−1, yi+1, . . . , yk).

roposition 8. Denote with C0,γ ,mix
(
D̄×k

)
the space C0,γ ,mix

y
(
D̄×k

;R
)
. Then, it holds

∥u∥C0,γ ,mix(D̄×k) =

k∏
ℓ=1

∥uℓ∥C0,γ (D̄) , (25)

for all u(y1, . . . , yk) := u1(y1) ⊗ · · · ⊗ uk(yk) ∈ C0,γ ,mix
(
D̄×k

)
.
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Remark 9. With small modifications to the proof, it is possible to prove that Proposition 8 holds for Hölder spaces with
higher regularity, yielding to:

∥u∥Cn,γ ,mix(D̄×k) =

k∏
ℓ=1

∥uℓ∥Cn,γ (D̄) , (26)

for all u(y1, . . . , yk) := u1(y1) ⊗ · · · ⊗ uk(yk) ∈ Cn,γ ,mix
(
D̄×k

)
.

3.2. Diagonal trace of Sobolev space-valued mixed Hölder maps

In this section we focus on Sobolev space-valued maps with mixed Hölder regularity, namely maps in (k+1) variables
ϕ = ϕ(x, y1, . . . , yk) : D̄×(k+1)

→ R, which we interpret as Wm,p(D)-valued maps in k variables D̄×k
∋ (y1, . . . , yk) ↦→

ϕ(·, y1, . . . , yk) ∈ Wm,p(D). From clarity, we will use the subscript x in the notation Cn,γ ,mix
y

(
D̄×k

;Wm,p
x (D)

)
.

Definition 10 (Diagonal Trace). Let p, q,N be positive integers satisfying 1 ≤ p ≤ q ≤ N , and let v be a function of N
variables. Then the diagonal trace function Tr|p:qv is a function of N − (q − p) variables, defined as(

Tr|p:q
)
v(x1, . . . , xp, xq+1, . . . , xN ) := v(x1, . . . , xp−1, xp, . . . , xp  

(q−p+1)−times

, xq+1, . . . , xN ).

In the following proposition we state the regularity of the diagonal trace of Sobolev space-valued mixed Hölder maps.
We refer to Appendix for the proof.

Proposition 11. Let ϕ = ϕ(x, y1, . . . , yk) ∈ Cn,γ ,mix
y1,...,yk

(
D̄×k

;Wm,p
x (D)

)
, with D ⊂ Rd, k ≥ 1 integer, n ≥ m ≥ 0 integers,

γ ∈ (0, 1] and p > 2d
γ
. Then, for all j = 2, . . . , k+ 1, and for all (yj, . . . , yk) ∈ D×(k−j+1), (Tr|1:jϕ)(x; yj, . . . , yk) ∈ Wm,p

x (D). In
articular, there exists Ctr > 0 such that(Tr|1:jϕ)(x; yj, . . . , yk)Wm,p

x (D)

≤ C j−1
tr

ϕ(x, y1, . . . , yj−1; yj, . . . , yk)

Cn,γ ,mix
y1,...,yj−1

(
D̄×(j−1);Wm,p

x (D)
) , (27)

for all (yj, . . . , yk) ∈ D×(k−j+1).
Moreover, Tr|1:jϕ ∈ Cn,γ ,mix

yj,...,yk

(
D̄×(k−j+1)

;Wm,p
x (D)

)
, andTr|1:jϕCn,γ ,mix

yj,...,yk

(
D̄×(k−j+1);Wm,p

x (D)
) ≤ C j−1

tr ∥ϕ∥
Cn,γ ,mix
y1,...,yk

(
D̄×k;Wm,p

x (D)
) (28)

or all j = 2, . . . , k + 1.

. Recursion on the correlations — analytical results

This section is organized as follows. We first study the mixed Hölder regularity of the input of the recursion (6) , i.e., the
k+1)-points correlation function E

[
u0

⊗ Y⊗k
]
(see Corollary 13). Then, in Section 4.2, we prove the well-posedness and

egularity of the recursion itself.

.1. Mixed Hölder regularity of the input of the recursion

The following proposition states the mixed Hölder regularity of the (k + 1)-points correlation function E
[
v ⊗ Y⊗k

]
,

here v belongs to a Banach space V .

roposition 12. Let V be a Banach space of functions on D, and Y be a centered Gaussian random field such that Y ∈

Lθ
(
Ω; Cn,γ

(
D̄
))
, n ≥ 0, for all 1 ≤ θ < +∞. Then, for every v ∈ V and every positive integer k, the (k+1)-points correlation

E
[
v ⊗ Y⊗k

]
belongs to the Hölder space with mixed regularity Cn,γ ,mix

y
(
D̄×k

; Vx
)
. Moreover, it holds:E [v ⊗ Y⊗k]

Cn,γ ,mix
y (D̄×k;Vx)

= ∥v∥V

E [Y⊗k]
Cn,γ ,mix(D̄×k) . (29)

Proof. We prove that E
[
v ⊗ Y⊗k

]
∈ Cn,γ ,mix

y
(
D̄×k

; Vx
)
in two steps.

Step 1: E
[
Y⊗k

]
∈ Cn,γ ,mix

(
D̄×k

)
We have to show that

(i) E
[
Y⊗k

]
∈ Cn,mix

(
D̄×k

)
, i.e., ∂αE

[
Y⊗k

]
= ∂

α1
x1 · · · ∂

αk
xk E

[
Y⊗k

]
∈ C0

(
D̄×k

)
for all α = (α1, . . . , αk) ∈ Nkd with⏐⏐ ⏐⏐
0 ≤ αj ≤ n, for j = 1, . . . , k.
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(ii) ∂αE
[
Y⊗k

]
∈ C0,γ ,mix

(
D̄×k

)
, for all α = (α1, . . . , αk) ∈ Nkd with

⏐⏐αj
⏐⏐ = n, for some j = 1, . . . , k.

Let us start with (i). Fix α = (α1, . . . , αk) ∈ Nkd with 0 ≤
⏐⏐αj
⏐⏐ ≤ n, for j = 1, . . . , k. Then,∂αE

[
Y⊗k]

C0(D̄×k)
= max

y∈D̄×k

⏐⏐∂αE
[
Y⊗k] (y)⏐⏐

= max
y∈D̄×k

⏐⏐∂α1
y1 · · · ∂

αk
yk E

[
Y⊗k] (y1, . . . , yk)⏐⏐

= max
y∈D̄×k

⏐⏐E [∂α1
y1 Y (y1) ⊗ · · · ⊗ ∂

αk
yk Y (yk)

]⏐⏐
≤ max

y∈D̄×k
E
[⏐⏐∂α1

y1 Y (y1) ⊗ · · · ⊗ ∂
αk
yk Y (yk)

⏐⏐] . (30)

Using the Hölder inequality, we get

(30) ≤ max
y∈D̄×k

k∏
i=1

(
E
[⏐⏐∂αi

yi Y (yi)
⏐⏐k])1/k ≤

k∏
i=1

max
yi∈D̄

(
E
[⏐⏐∂αi

yi Y (yi)
⏐⏐k])1/k .

Observe that

max
yi∈D̄

(
E
[⏐⏐∂αi

yi Y (yi)
⏐⏐k])1/k =

(
max
yi∈D̄

E
[⏐⏐∂αi

yi Y (yi)
⏐⏐k])1/k

≤

(
E
[
max
yi∈D̄

⏐⏐∂αi
yi Y (yi)

⏐⏐k])1/k

=

(
E

[(
max
yi∈D̄

⏐⏐∂αi
yi Y (yi)

⏐⏐)k
])1/k

≤

(
E
[
∥Y∥

k
Cn(D̄)

])1/k
= ∥Y∥Lk(Ω;Cn(D̄)) .

e conclude that
k∏

i=1

max
yi∈D̄

(
E
[⏐⏐∂αi

yi Y (yi)
⏐⏐k])1/k ≤ ∥Y∥

k
Lk(Ω;Cn(D̄))

< +∞.

We prove now (ii). Let α = (α1, . . . , αk) with
⏐⏐αj
⏐⏐ = n for some j = 1, . . . , k. Using Definitions 2 and 4, we have⏐⏐∂αE

[
Y⊗k]⏐⏐

C0,γ ,mix(D̄×k)
= max

j=1,...,k
sup
y,h

∥h∥0=j

⏐⏐⏐Dγ ,mix
i ∂αE

[
Y⊗k]⏐⏐⏐

= max
j=1,...,k

sup
y,h

∥h∥0=j

⏐⏐⏐Dγ

ij
· · ·Dγ

i1
∂αE

[
Y⊗k]⏐⏐⏐

= max
j=1,...,k

sup
y,h

∥h∥0=j

⏐⏐⏐Dγ

ij
· · ·Dγ

i1
E
[
∂α1
y1 Y (y1) ⊗ · · · ⊗ ∂

αk
yk Y (yk)

]⏐⏐⏐
= max

j=1,...,k
sup
y,h

∥h∥0=j

⏐⏐⏐⏐⏐⏐E
⎡⎣⨂

ℓ∈i(h)

∂
αℓ
yℓ Y (yℓ + hℓ) − ∂

αℓ
yℓ Y (yℓ)

∥hℓ∥
γ ·

⨂
ℓ′∈i(h)c

∂
αℓ′

yℓ′ Y (yℓ′ )

⎤⎦⏐⏐⏐⏐⏐⏐ . (31)

Proceeding as in the proof of (i), we conclude

(31) ≤ max
j=1,...,k

∏
ℓ∈i(h)

⎛⎝E

⎡⎣ sup
y,h

∥h∥0=j

⏐⏐⏐⏐∂αℓ
yℓ Y (yℓ + hℓ) − ∂

αℓ
yℓ Y (yℓ)

∥hℓ∥
γ

⏐⏐⏐⏐k
⎤⎦⎞⎠1/k

∏
ℓ′∈i(h)c

(
E
[⏐⏐∂αℓ′

yℓ′ Y (yℓ′ )
⏐⏐k])1/k

≤ ∥Y∥
k
Lk(Ω;Cn,γ (D̄))

< +∞.

Step 2: E
[
v ⊗ Y⊗k

]
∈ Cn,γ ,mix

y
(
D̄×k

; Vx
)

It is enough to observe that⏐⏐E [v ⊗ Y⊗k]⏐⏐
Cn,γ ,mix
y (D̄×k;Vx)

=
⏐⏐v ⊗ E

[
Y⊗k]⏐⏐

Cn,γ ,mix
y (D̄×k;Vx)

= ∥v∥V

⏐⏐E [Y⊗k]⏐⏐
Cn,γ ,mix(D̄×k)

< +∞.
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It remains us to show equality (29). By definition, it holds:E [v ⊗ Y⊗k]
Cn,mix
y (D̄×k;Vx)

= max
α

max
y

∂αE
[
v ⊗ Y⊗k] (·, y)Vx

= max
α

max
y

v(·) ⊗ ∂αE
[
Y⊗k] (y)Vx = max

α
max

y
∥v∥Vx

⏐⏐∂αE
[
Y⊗k]⏐⏐

= ∥v∥Vx

∂αE
[
Y⊗k]

Cn,mix
y (D̄×k) .

In the same way, it is possible to show that⏐⏐E [v ⊗ Y⊗k]⏐⏐
Cn,γ ,mix
y (D̄×k;Vx)

= ∥v∥Vx

⏐⏐∂αE
[
Y⊗k]⏐⏐

Cn,γ ,mix
y (D̄×k) ,

and equality (29) follows. □

Corollary 13. Applying Proposition 12 with v = u0
∈ W 1,p(D), we have

E
[
u0

⊗ Y⊗k]
∈ Cn,γ ,mix

y
(
D̄×k

;W 1,p
x (D)

)
.

4.2. Well-posedness and regularity of the recursion

To lighten the notation, from now on we denote the kth order correction E
[
uk
]
with Ek, and the (i + 1)-points

correlation E
[
uk−i

⊗ Y⊗i
]
(x, y1, . . . , yi) with Ek−i,i.

Theorem 14 (Well-Posedness of the Recursion). Let D ⊂ Rd, such that ∂D ∈ C1, and Y ∈ Lθ
(
Ω; C0,γ

(
D̄
))

for all 1 ≤ θ < +∞.
Let f ∈ Lp(D) for p > 2d

γ
, and 1 < q < ∞ such that 1

p +
1
q = 1. Then, for any k ≥ 0 and for any i = 0, . . . , k − 1, the

Laplace–Dirichlet problem: Given Ek−i−j,i+j for j = 1, . . . , k− i, find w(·, y) ∈ W 1,p
0,x (D) such that, for all y := (y1, . . . , yi) ∈ D×i,∫

D

(
∇ ⊗ Id⊗i)w(x, y) · ∇v(x) dx = Ly(v) ∀v ∈ W 1,q

0 (D) (32)

has a unique solution, with

∥w(·, y)∥W1,p
0,x (D)

≤ C
Ly


(W1,q

0 )⋆ , (33)

where C > 0 is independent of y, and the linear form Ly : W 1,q
0 (D) → R is defined as

Ly(v) := −

k−i∑
j=1

(
k − i
j

)∫
D
Tr|1:j+1∇xEk−i−j,i+j(x, y) · ∇v(x) dx. (34)

Moreover, the unique solution belongs to the space C0,γ ,mix
y1,...,yi

(
D̄×i

;W 1,p
0,x (D)

)
and coincides with Ek−i,i.

Proof. We prove the theorem by induction. Let k = 2 and i = 1. The problem we handle with is: given E0,2, find
w(·, y) ∈ W 1,p

0,x (D) s.t., for all y ∈ D,∫
D

(
∇ ⊗ Id⊗i)w(x, y) · ∇v(x) dx = Ly(v) ∀v ∈ W 1,q

0 (D), (35)

where Ly(v) := −
∫
D Tr|1:2∇xE0,2(x, y) · ∇v(x) dx.

Step 1: well-posedness of problem (35)
We have to show that Ly ∈ (W 1,q

0 )⋆. Since ∂D ∈ C1 and f ∈ Lp(D), then u0
∈ W 1,p(D), as stated in Section 2.

Applying Proposition 12 with n = 0, we have ∇xE0,2
∈ C0,γ ,mix

y1,y2

(
D × D; Lpx(D)

)
. Applying Proposition 11 with n = 0,

we get Tr|1:2∇xE0,2
∈ C0,γ

y2

(
D; Lpx(D)

)
, and, in particular,

CL := sup
y2∈D

Tr|1:2∇xE0,2

Lpx (D)

< ∞.

Hence, by the Hölder inequality, we have⏐⏐Ly(v)
⏐⏐ ≤

Tr|1:2∇xE0,2

Lpx (D)

∥∇v∥Lqx (D)
≤ CL ∥v∥W1,q

x (D) ,

so that Ly ∈ (W 1,q
0 )⋆ for all y ∈ D. Thanks to [22, Chapter 7], we conclude that problem (35) has a unique solution

w(·, y) ∈ W 1,p
0,x (D) for every y ∈ D. Moreover, there exists a positive constant C = C(p, d,D) such that

∥w(·, y)∥ 1,p ≤ C
Ly

 1,q ⋆ ≤ C CL.
W0,x (D) (W0 (D))
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s

Step 2: Hölder regularity of w(x, ·)
Let us consider the difference between problem (35) in y + h and in y:∫

D
(∇ ⊗ Id)(w(x, y + h) − w(x, y)) · ∇v(x) dx

=

∫
D
(Tr|1:2∇xE0,2(x, y + h) − Tr|1:2∇xE0,2(x, y)) · ∇v(x) dx, (36)

or all v ∈ W 1,q
0 (D). Following the same procedure as in Step 1, we conclude that problem (36) is well-posed, and

∥w(·, y + h) − w(·, y)∥W1,p
0,x (D)

≤ C
Ly+h − Ly


(W1,q

0 (D))⋆ . (37)

Hence, we have

|w|
C0,γ
y

(
D̄;W1,p

0,x (D)
) = sup

y,h

1
∥h∥γ

∥w(·, y + h) − w(·, y)∥W1,p
0,x (D)

(37)
≤ C sup

y,h

1
∥h∥γ

Ly+h − Ly

(W1,q

0 (D))⋆

= C sup
y,h

1
∥h∥γ sup

v∈W1,q
0 (D)

∥v∥
W1,q
0 (D)

=1

⏐⏐⏐⏐ ∫
D
(Tr|1:2∇xE0,2(x, y + h) − Tr|1:2∇xE0,2) · ∇v(x) dx

⏐⏐⏐⏐
≤ C sup

y,h

1
∥h∥γ

Tr|1:2∇xE0,2(·, y + h) − Tr|1:2∇xE0,2(·, y)

Lpx (D)

= C sup
y,h

Dγ

y,hTr|1:2∇xE0,2(·, y)

Lpx (D)

≤ C
⏐⏐Tr|1:2E0,2

⏐⏐
C0,γ
y

(
D̄;W1,p

0,x (D)
)

(A.7)
≤ C Ctr

E0,2

C0,γ ,mix
y1,y2

(
D×D;W1,p

0,x (D)
) < +∞,

o that w ∈ C0,γ
y

(
D̄;W 1,p

0,x (D)
)
. Moreover, since E1,1 solves problem (35) for every y ∈ D, then E1,1

∈ C0,γ
y

(
D̄;W 1,p

0,x (D)
)
is

the unique solution of (35).
We perform now the induction step. Let k ≥ 2 and 0 ≤ i ≤ k − 1 be fixed, and assume that Ek−i−j,i+j

∈

C0,γ ,mix
y1,...,yi+j

(
D̄×(i+j)

;W 1,p
0,x (D)

)
, for j = 1, . . . , k − i.

Step 1: well-posedness of problem (32)
We have to show that Ly as in (34) is in (W 1,q

0 )⋆. Since Ek−i−j,i+j
∈ C0,γ ,mix

y1,...,yi+j

(
D̄×(i+j)

;W 1,p
0,x (D)

)
, then Tr|1:j+1∇xEk−i−j,i+j

∈

C0,γ ,mix
y1,...,yi

(
D̄×i

; Lpx(D)
)
, and, in particular,

CL,j := sup
y1,...,yi∈D×i

Tr|1:j+1∇xEk−i−j,i+j

Lpx (D)

< ∞.

Hence, by the Hölder inequality, we have
⏐⏐Ly(v)

⏐⏐ ≤ CL ∥v∥W1,q(D), with CL :=
∑k−i

j=1

(
k − i
j

)
CL,j, so that Ly ∈ (W 1,q

0 )⋆.

Thanks to [22, Chapter 7], we conclude that problem (35) has a unique solution w(·, y) ∈ W 1,p
0,x (D) for a.e. y ∈ D×i.

Moreover, it holds

∥w(·, y)∥W1,p
0,x (D)

≤ C
Ly


(W1,q

0 (D))⋆ ≤ C CL.

Step 2: Hölder regularity of w(x, ·)
By considering the problem solved by Dγ ,mix

i w(x, y), we haveDγ ,mix
i w(·, y)


W1,p

0,x (D)

≤ C sup
v∈W1,q

0 (D)
∥v∥

W1,q
0 (D)

=1

⏐⏐⏐⏐⏐⏐
k−i∑
j=1

(
k − i
j

)∫
D
Dγ ,mix
i Tr|1:j+1∇Ek−i−j,i+j

· ∇vdx

⏐⏐⏐⏐⏐⏐
≤ C

k−i∑
j=1

(
k − i
j

)Dγ ,mix
i Tr|1:j+1∇Ek−i−j,i+j(·, y)


Lpx

. (38)
2934



F. Bonizzoni and F. Nobile Computers and Mathematics with Applications 80 (2020) 2925–2947
Hence, we have

|w|
C0,γ ,mix
y

(
D̄×i;W1,p

0,x (D)
) = max

ℓ=1,...,i
sup

y,h,∥h∥0=ℓ

Dγ ,mix
i w(·, y)


W1,p

0,x (D)

(38)
≤ C max

ℓ=1,...,i
sup

y,h,∥h∥0=ℓ

k−i∑
j=1

(
k − i
j

)Dγ ,mix
i Tr|1:j+1∇Ek−i−j,i+j(·, y)


Lpx

≤ C
k−i∑
j=1

(
k − i
j

) ⏐⏐Tr|1:j+1∇Ek−i−j,i+j
⏐⏐
C0,γ ,mix
y

(
D̄×i;Lpx (D)

)

≤ C
k−i∑
j=1

(
k − i
j

)
C j
tr

Ek−i−j,i+j

C0,γ ,mix
y1,...,yi+j

(
D̄×(i+j);W1,p

x (D)
) < +∞.

In particular, since Ek−i,i solves problem (32) for a.e. y ∈ D×i, then Ek−i,i
∈ C0,γ ,mix

y

(
D̄×i

;W 1,p
0,x (D)

)
is the unique solution

of (32). □

Theorem 15 (Regularity of the Recursion). Let D ⊂ Rd such that ∂D ∈ C2+r , r ≥ 0. Let f ∈ W r,p(D), and Y ∈ Lθ
(
Ω; Cn,γ

(
D̄
))
,

for all 1 ≤ θ < ∞ and n ≥ r +1. Then the correlation Ek−i,i
∈ Cn,γ ,mix

y1,...,yi

(
D̄×i

;W 2+r,p
x (D) ∩ W 1,p

0,x (D)
)
for all i = k, k−1, . . . , 0.

Moreover, there exists a positive constant Creg independent of y = (y1, . . . , yi), such thatEk−i,i(·, y)

W2+r,p(D) ≤ Creg

Ly

(W r,q)∗ , (39)

where Ly has been introduced in (34).

Proof. We prove the theorem by induction. Let k = 2 and i = 1. Since f ∈ W r,p(D), we have u0
∈ W 1,p

0 (D) ∩ W 2+r,p(D)
(see [22, Chapter 9]). Using the assumption Y ∈ Lθ

(
Ω; Cn,γ

(
D̄
))

and Proposition 12, we have

E0,2
∈ Cn,γ ,mix

y1,y2

(
D × D;W 1,p

0,x (D) ∩ W 2+r,p
x (D)

)
,

so that ∇xE0,2
∈ Cn,γ ,mix

y1,y2

(
D × D;W 1+r,p

x (D)
)

. Applying Proposition 11, we have Tr|1:2∇E0,2
∈ Cn,γ

y

(
D̄;W 1+r,p

x (D)
)
.

Following the same reasoning as in the proof of Theorem 14, we have that E1,1
∈ Cn,γ

y

(
D̄;W 2+r,p

x (D)
)
. Finally, since

we have already shown that E1,1
∈ Cn,γ

y

(
D̄;W 1,p

0,x (D)
)
, we conclude the thesis.

We perform now the induction step. Assume that the correlation

Ek−i−j,i+j
∈ Cn,γ ,mix

y1,...,yi+j

(
D̄×(i+j)

;W 1,p
0,x (D) ∩ W r+2,p

x (D)
)

,

for j = 1, . . . , k − i. Applying Proposition 11, we have

Tr|1:j+1∇Ek−i−j,i+j
∈ Cn,γ ,mix

y1,...,yi

(
D̄×i

;W r+1,p
x (D)

)
.

Following the same reasoning as in the proof of Theorem 14, we conclude that

Ek−i,i
∈ Cn,γ ,mix

y1...,yi

(
D̄×i

;W 2+r,p
x (D)

)
.

Finally, since we have already shown that Ek−i,i
∈ Cn,γ ,mix

y1...,yi

(
D̄×i

;W 1,p
0,x (D)

)
, we conclude the thesis.

Finally, the upper bound (39) follows from [22, Chapter 9], observing that Ly ∈ (W 1+r,p)∗. □

Proposition 16. Under the assumptions of Theorem 15, it holdsEk−i,i

Cn,γ ,mix
y1,...,yi

(
D̄×i;W2+r,p

x (D)
) ≤ λk−i

E0,k

Cn,γ ,mix
y1,...,yk

(
D̄×k;W2+r,p

x (D)
) (40)

for all i ≤ k, where the coefficients {λk−i}
k
i=1 are defined by recursion as λ0 := 1 and λk−i := Creg

∑k−i
j=1

(
k − i
j

)
C j
tr λk−i−j

for i < k, the constants Creg , Ctr being introduced in Theorem 15 and Proposition 11, respectively.

Proof. Let k be fixed. We prove the Theorem by induction on i. If i = k, bound (40) holds as an equality. Let now i < k
fixed. By induction, we assumeEk−ℓ,ℓ

 n,γ ,mix
(

¯×ℓ 2+r,p
) ≤ λk−ℓ

E0,k
 n,γ ,mix

(
¯×k 2+r,p

) , (41)

Cy1,...,yℓ D ;W0,x (D) Cy1,...,yk D ;W0,x (D)
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h

for all i + 1 ≤ ℓ ≤ k − 1. Thanks to (39) and Proposition 11, it holds:Ek−i,i

Cn,γ ,mix
y1,...,yi

(
D̄×i;W2+r,p

0,x (D)
)

≤ Creg

k−i∑
j=1

(
k − i
j

)
C j
tr

Ek−i−j,i+j

Cn,γ ,mix
y1,...,yi+j

(
D̄×(i+j);W2+r,p

0,x (D)
) .

Using the assumption (41), we haveEk−i,i

Cn,γ ,mix
y1,...,yi

(
D̄×i;W2+r,p

0,x (D)
)

≤ Creg

k−i∑
j=1

(
k − i
j

)
C j
tr λk−i−j

E0,k

Cn,γ ,mix
y1,...,yk

(
D̄×k;W2+r,p

0,x (D)
)

= λk−i
E0,k


Cn,γ ,mix
y1,...,yk

(
D̄×k;W2+r,p

0,x (D)
) . □

5. Recursion on the correlations — sparse discretization

Within this section we aim at deriving a discretization for the recursive problem (6). In particular, the differential
operator in the spatial variable x will be discretized by a Galerkin method, whereas the parametric dependence on the
variable y will be approximated by a sparse interpolation technique. To this end, we first introduce some assumptions on
the considered Galerkin projector πh, and the sparse interpolant operator P̂L.

5.1. Galerkin projector

Let {Wh}h≥0 be a sequence of nested finite dimensional subspaces of W 1,∞
0 (D), h being the discretization parameter.

Assume that

min
wh∈Wh

∥u − wh∥W1,p(D) ≤ Cfemhβ
|u|W2+r,p(D) ∀ u ∈ W 1,p

0 (D) ∩ W 2+r,p(D), (42)

for some β ∈ (0, r + 1). Moreover, we assume the following discrete inf–sup condition: there exists ν > 0 independent
of h such that

inf
uh∈Wh

sup
wh∈Wh

∫
D ∇uh · ∇wh dx

|uh|W1,q(D) |wh|W1,q(D)
≥ ν. (43)

Then, we can infer

∥u − πhu∥W1,p(D) ≤ Cπhh
β
|u|W2+r,p(D) ∀u ∈ W 1,p

0 (D) ∩ W 2+r,p(D), (44)

where πh : W 1,p
0 (D) ∩ W 2+r,p(D) → Wh is the Galerkin projector, i.e., the operator which associates u to its finite

dimensional approximation via the Galerkin method, and Cπh > 0 is independent of h.

emark 17. The discrete inf–sup condition (43), as well as (42), hold, for instance, for D convex C1, and continuous P1

finite elements (with β = 1 and r = 0). We refer to [23] for further cases.

5.2. Sparse interpolant operator

Let {Vℓ}l≥0 be a dense sequence of nested finite dimensional subspaces of C0,γ
(
D̄
)
, and let the discretization parameter

ℓ of Vℓ be hℓ :=
hℓ−1
2 , so that hℓ = h0 2−ℓ. Denote with {aℓ

j }
Nℓ

j=1 ⊂ D a set of interpolation points unisolvent in Vℓ, and
with {ξ ℓ

j }
Nℓ

j=1 the Lagrangian basis of Vℓ such that ξ ℓ
j (a

ℓ
i ) = δi,j for all i, j = 1, . . . ,Nℓ. Moreover, let Pℓ : C0,γ

(
D̄
)

→ Vℓ be
the Lagrangian interpolation operator, that is Pℓ(v) =

∑Nℓ

j=1 v(aℓ
j )ξ

ℓ
j , and note that Pℓ is a projector, too. Assume that Pℓ

satisfies the following property:

∥u − Pℓu∥C0,γ (D̄) ≤ C hs
ℓ ∥u∥Cn,γ (D̄) ∀u ∈ Cn,γ (D̄) , (45)

where C > 0 is independent of hℓ, and s > 0.
Following [24], we define the sparse interpolation operator as follows. Let ∆ℓ := Pℓ − Pℓ−1 be the difference operator.

Given k, L positive integers, the sparse interpolation operator of level L is defined as:

P̂L,k :=

∑
ℓ=(ℓ1,...,ℓk)∈Nk

k⨂
j=1

∆ℓj . (46)
|ℓ|≤L
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The sparse interpolation operator P̂L,k maps the Hölder space with mixed regularity C0,γ ,mix
(
D̄×k

)
onto the sparse tensor

product space V̂L,k, defined as

V̂L,k :=

⋃
ℓ=(ℓ1,...,ℓk)∈Nk

|ℓ|≤L

k⨂
j=1

Vℓj . (47)

The application of the sparse interpolation operator P̂L,k to a function implies the evaluation of the function itself in a
finite set of points – the sparse grid – denoted as HL,k. To lighten the notation, the sparse interpolation operator P̂L,k will
be simply denoted as P̂L, when no confusion occurs.

Proposition 18. Let k be a positive integer and W a Banach space of functions on D. Then it holds:̂PL,ku − u

C0,γ ,mix
y (D̄×k;Wx)

≤ CP̂L,k h
s(1−τ )
L ∥u∥Cn,γ ,mix

y (D̄×k;Wx)
(48)

for all u = u(x, y) ∈ Cn,γ ,mix
y

(
D̄×k

;Wx
)
, with y = (y1, . . . , yk) ∈ D̄×k, where 0 < τ < 1, and CP̂L,k is a positive constant

independent of hL (but blowing up when τ → 0).

Proof. The bound (48) is derived by standard computations (see, e.g., [25]). For completeness, we report here all the
steps.

Denote with ŷi ∈ D̄×(k−1) the vector (y1, . . . , yi−1, yi+1, . . . , yk). We start giving an upper bound for the norm∆ℓ ⊗ Id⊗(k−1)u(·, ŷ1)

C0,γ ,mix
y1 (D̄;Wx)

. Using the triangular inequality and (45), we have∆ℓ ⊗ Id⊗(k−1)u(·, ŷ1)

C0,γ ,mix
y1 (D̄;Wx)

≤
(Pℓ − Id) ⊗ Id⊗(k−1)u(·, ŷ1)


C0,γ ,mix
y1 (D̄;Wx)

+
(Pℓ−1 − Id) ⊗ Id⊗(k−1)u(·, ŷ1)


C0,γ ,mix
y1 (D̄;Wx)

≤
(
Chs

ℓ + Chs
ℓ−1

) u(·, ŷ1)Cn,γ ,mix
y1 (D̄;Wx)

≤ 2Chs
ℓ−1

u(·, ŷ1)Cn,γ ,mix
y1 (D̄;Wx)

≤ 2Chs
0 2

−s(ℓ−1)
u(·, ŷ1)Cn,γ ,mix

y1 (D̄;Wx)
, (49)

where we have used that hℓ ≤ hℓ−1, and hℓ−1 = h0 2−(ℓ−1).
Using (49), it follows:∆ℓ1 ⊗ ∆ℓ2 ⊗ Id⊗(k−2)u


C0,γ ,mix
y1,y2 (D×D;Wx)

=
(∆ℓ1 ⊗ Id⊗(k−1))(Id ⊗ ∆ℓ2 ⊗ Id⊗(k−2))u


C0,γ ,mix
y1,y2 (D×D;Wx)

≤ 4C2h2s
0 2−s(ℓ1−1)2−s(ℓ2−1)

∥u∥Cn,γ ,mix
y1,y2 (D×D;Wx)

.

By recursion, we have∆ℓ1 ⊗ · · · ⊗ ∆ℓku

C0,γ ,mix
y (D̄;Wx)

≤ 2kCk
(
h0

2

)sk

2−s|ℓ|
∥u∥Cn,γ ,mix

y (D̄;Wx)
. (50)

y (50), it follows that the series
∑

ℓ∈Nk ⊗
k
n=1∆ℓnu is absolutely convergent, and that

∑
|ℓ|≤L ⊗

k
n=1∆ℓnu converges to u as

→ ∞ in C0,γ ,mix
y

(
D̄×k

;Wx
)
.

Finally, we have

̂PLu − u

C0,γ ,mix
y (D̄×k;Wx)

=


∑
|ℓ|≤L

k⨂
n=1

∆ℓnu − u


C0,γ ,mix
y (D̄×k;Wx)

=


∑
|ℓ|>L

k⨂
n=1

∆ℓnu


C0,γ ,mix
y (D̄×k;Wx)

≤

∑
|ℓ|>L


k⨂

n=1

∆ℓnu


C0,γ ,mix
y (D̄×k;Wx)

≤ 2kCk
(
h0

2

)sk
⎛⎝∑ 2−s|ℓ|

⎞⎠ ∥u∥Cn,γ ,mix
y (D̄;Wx)

.

|ℓ|>L
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In [26, Lemma 6.10] the authors prove that∑
|ℓ|>L

2−s|ℓ|
≤

(
1

1 − 2−sτ

)k

2−Ls(1−τ )
=

(
1

1 − 2−sτ

)k

hs(τ−1)
0 hs(1−τ )

L ,

ith 0 < τ < 1. Hence, we conclude (48) with

CP̂L,k = 2k
(
h0

2

)sk

hs(τ−1)
0 Ck

(
1

1 − 2−sτ

)k

. □

Remark 19. The result proved in Proposition 18 holds whenever Pℓ is any operator fulfilling (45).

5.3. Sparse discretization of the recursion

As highlighted in Section 2, the input of the recursion – at the continuous level – is the (k + 1)-points correlation
E0,k. In the same way – at the discrete level – we start giving a (sparse) discretization of E0,k. It is obtained in two
consecutive steps. First, we define the finite dimensional approximation of u0 by applying the Galerkin projector πh to u0,
i.e., u0

h := πhu0. The fully-discrete sparse approximation of E0,k, denoted as E0,k
L,h , is then obtained by applying the sparse

interpolant operator P̂L,k to the semi-discrete correlation E0,k
h := u0

h ⊗ Ek, i.e.,

E0,k
L,h := P̂L,kE

0,k
h = πhu0

⊗ P̂k,LEk.

Note that the semi-discrete correlation E0,k
h is an element of Cn,γ ,mix

y
(
D̄×k

;Wh
)
, whereas the fully-discrete correlation E0,k

L,h
is an element of the tensor product space Wh ⊗ V̂L,k.

Let i = k − 1, . . . , 0 fixed. The fully-discrete sparse approximation of the correlation Ek−i,i is obtained as

Ek−i,i
L,h := P̂L,iE

k−i,i
h ,

where the semi-discrete correlation Ek−i,i
h is defined as the unique solution of the following recursive problem: given all

lower order terms Ek−i−j,i+j
L,h ∈ Wh ⊗ V̂L,i+j for j = 1, . . . , k − i, find Ek−i,i

h ∈ Cn,γ ,mix
y

(
D̄×i

;Wh
)
such that∫

D
∇Ek−i,i

h (x, y) · ∇ϕh(x) dx

= −

k−1∑
j=1

(
k − i
j

)∫
D
(Tr|1:j+1∇Ek−i−j,i+j

L,h )(x, y) · ∇ϕh(x) dx (51)

for all ϕ ∈ Wh.
In the next theorem we analyze the discretization error.

Theorem 20. Let (42), (44) and (45) hold. Moreover, let the assumptions of Theorem 15 be satisfied. Then, it holds(Ek−i,i
− Ek−i,i

L,h )(x, y)

W1,p

x (D)
= O(min{hβ , hs(1−τ )

L }), (52)

where 0 < τ < 1 has been introduced in Proposition 18.

To prove Theorem 20, we need to show some preliminary results.

Lemma 21. Let the assumptions of Theorem 20 hold, and define

θn,m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if n = m

0, if n < m

CS
∑n−m

j=1

(
n

j

)
C j
trθn−j,m, if n > m,

(53)

Ctr being as in Proposition 11. Then, it holds:(Ek−i,i
− Ek−i,i

L,h )(x, y)

W1,p

x (D)

≤ CS Cfem hβ

k−1∑
θk−i,k−m

Ek−m,m(x, y(m)
; y)

C0,γ ,mix

(m)

(
D̄×(m−i);W2+r,p

x (D)
)

m=i y

2938



F. Bonizzoni and F. Nobile Computers and Mathematics with Applications 80 (2020) 2925–2947

w

w
P

+

k−1∑
m=i

θk−i,k−m

(Ek−m,m
h − Ek−m,m

L,h )(x, y(m)
; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x (D)
)

+ θk−i,0

(E0,k
− E0,k

L,h )(x, y
(k)

; y)

C0,γ ,mix
y(k)

(
D̄×(k−i);W1,p

x (D)
) (54)

for all y := (yk−i+1, . . . , yk) ∈ D̄×i, where y(m)
:= (yk−m+1, . . . , yk−i) ∈ D̄×(m−i), for m = i, . . . , k.

Proof. Let k be fixed. We prove the result by induction on i. If i = k, then (54) holds as an equality.
Let i < k, and assume, by induction, that (54) holds for all i + 1 ≤ j ≤ k. Denote ek−i,i := Ek−i,i

− Ek−i,i
L,h , and

fk−i,i := Ek−i,i
h − Ek−i,i

L,h . By triangular inequality we have:ek−i,i(x, y)

W1,p

x
≤

Ek−i,i
− Ek−i,i

h (x, y)

W1,p

x
+
fk−i,i(·, y)


W1,p

x
. (55)

The discrete inf–sup condition (43) implies the Strang’s Lemma in the spaces W 1,p(D)-W 1,q(D). Then, there holds:(Ek−i,i
− Ek−i,i

h )(x, y)

W1,p

x

≤ CS

(
inf

ϕh∈Wh

Ek−i,i(x, y) − ϕh(x)

W1,p

x
+ sup

ϕh∈Wh

⏐⏐Ly(ϕh) − Lh(ϕh)
⏐⏐

∥ϕh∥W1,q
x

)
, (56)

here Ly,Lh : Wh → R are the functionals defining the right-hand side of problems (6) and (51), respectively. The bound
on the first term on the right-hand side of (56) follows from the approximation property (42):

inf
ϕh∈Wh

Ek−i,i(x, y) − ϕh(x)

W1,p

x
≤ Cfem hβ

⏐⏐Ek−i,i(x, y)
⏐⏐
W2+r,p

x
, (57)

ith β ∈ (0, r + 1). We bound now the second term on the right-hand side of (56). Using the Hölder inequality and
roposition 11, we have:⏐⏐Ly(ϕh) − Lh(ϕh)

⏐⏐
≤

k−i∑
l=1

(
k − i
l

) ⏐⏐⏐⏐∫
D

(
Tr|1:l+1∇(Ek−i−l,i+l

− Ek−i−l,i+l
L,h )

)
(x, y) · ∇ϕh(x) dx

⏐⏐⏐⏐
≤

k−i∑
l=1

(
k − i
l

)(Tr|1:l+1∇(Ek−i−l,i+l
− Ek−i−l,i+l

L,h )
)
(x, y)


Lpx

∥∇ϕh∥Lqx

≤

k−i∑
l=1

(
k − i
l

)
C l
tr

ek−i−l,i+l(x, y(i+l)
; y)

C0,γ ,mix
y(i+l)

(
D̄×l;W1,p

x

) ∥ϕh∥W1,q
x

. (58)

Inserting (56), (57) and (58) into (55), we have:ek−i,i(x, y)

W1,p

x
≤ CS Cfem hβ

⏐⏐Ek−i,i(x, y)
⏐⏐
W2+r,p

x

+ CS

k−i∑
l=1

(
k − i
l

)
C l
tr

ek−i−l,i+l(·, y(i+l)
; y)

C0,γ ,mix
y(i+l)

(
D̄×l;W1,p

x

)
+
fk−i,i(x, y)


W1,p

x
. (59)

Using the inductive assumption on ek−i−l,i+l, we get:ek−i,i(x, y)

W1,p

x
≤ CS Cfem hβ

⏐⏐Ek−i,i(x, y)
⏐⏐
W2+r,p

x

+ CS

k−i∑
l=1

(
k − i
l

)
C l
tr(

CS Cfem hβ

k−1∑
m=i+l

θk−i−l,k−m
Ek−m,m(x, y(m)

; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W2+r,p

x

)

+

k−1∑
θk−i−l,k−m

fk−m,m(x, y(m)
; y)

C0,γ ,mix

(m)

(
D̄×(m−i);W1,p

x

)

m=i+l y
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M

+ θk−i−l,0
e0(x, y(k); y)C0,γ ,mix

y(k)

(
D̄×(k−i);W1,p

x

)
)

+
fk−i,i(x, y)


W1,p

x
. (60)

bserve that, by definition of θk−i,0, we have

CS

k−i∑
l=1

(
k − i
l

)
C l
trθk−i−l,0 = θk−i,0. (61)

oreover, by switching the sum in l and m, and using that θk−i,k−i = 1, we have

CS

k−i∑
l=1

k−1∑
m=i+l

(
k − i
l

)
C l
tr θk−i−l,k−m = CS

k−1∑
m=i+1

m−i∑
l=1

(
k − i
l

)
C l
trθk−i−l,k−m

=

k−1∑
m=i+1

θk−i,k−m,

so that

CS

k−i∑
l=1

k−1∑
m=i+l

(
k − i
l

)
C l
tr θk−i−l,k−m

fk−m,m(x, y(m)
; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x

)
+
fk−i,i(x, y)


W1,p

x

=

k−1∑
m=i+1

θk−i,k−m
fk−m,m(x, y(m)

; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x

) +
fk−i,i(x, y)


W1,p

x

=

k−1∑
m=i

θk−i,k−m
fk−m,m(x, y(m)

; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x

) , (62)

and

C2
S Cfem hβ

k−i∑
l=1

k−1∑
m=i+l

(
k − i
l

)
C l
tr θk−i−l,k−m

Ek−m,m(x, y(m)
; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W2+r,p

x

)
+ CS Cfem hβ

Ek−i,i(x, y)

W2+r,p

x

= CS Cfem hβ

k−1∑
m=i+1

θk−i,k−m
Ek−m,m(x, y(m)

; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W2+r,p

x

)
+ CS Cfem hβ

Ek−i,i(x, y)

W2+r,p

x

= CS Cfem hβ

k−1∑
m=i

θk−i,k−m
Ek−m,m(x, y(m)

; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W2+r,p

x

) . (63)

Inserting (61), (62) and (63) into (60), we conclude the bound (54). □

Lemma 22. Under the assumptions of Theorem 20 it holds:E0,k
− E0,k

L,h


C0,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
)

≤

(
Cπhh

β
+ CP̂L,k h

s(1−τ )
L (Cπ hβ

+ 1)
) E0,k


C0,γ ,mix
y1,...,yk

(
D̄×k;W2+r,p

x (D)
) . (64)

Proof. Using the triangular inequality, we haveE0,k
− E0,k

L,h


C0,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
)

≤

E0,k
− E0,k

h


C0,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
) +

E0,k
h − E0,k

L,h


C0,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
) . (65)
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We bound the two terms at the right hand side of (65) separately. Using (44), we haveE0,k
− E0,k

h


C0,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
)

=
u0

− πhu0

W1,p(D)

Ek

C0,γ ,mix(D̄×k)

≤ Cπhh
β
⏐⏐u0
⏐⏐
W2+r,p(D)

Ek

C0,γ ,mix(D̄×k)

= Cπhh
β
E0,k


C0,γ ,mix(D̄×k;W2+r,p(D))

. (66)

Moreover, applying Proposition 18, the triangular inequality, and (44), we haveE0,k
h − E0,k

L,h


C0,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
) ≤ CP̂L,k h

s(1−τ )
L

E0,k
h


Cn,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
)

≤ CP̂L,k h
s(1−τ )
L

(E0,k
− E0,k

h


Cn,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
) +

E0,k

Cn,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
)
)

≤ CP̂L,k h
s(1−τ )
L (Cπ hβ

+ 1)
E0,k


Cn,γ ,mix
y1,...,yk

(
D̄×k;W1,p

x (D)
) . (67)

The result is then proved inserting (66) and (67) into (65). □

Theorem 20. To prove (52) we bound each term at the right-hand side of (54), separately. Applying Proposition 16, we
have:

CS Cfem hβ

k−1∑
m=i

θk−i,k−m
Ek−m,m(x, y(m)

; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W2+r,p

x (D)
)

≤ CS Cfem hβ

(
k−1∑
m=i

θk−i,k−m λk−m

)E0,k(x, y(k); y)

C0,γ ,mix
y(k)

(
D̄×(k−i);W2+r,p

x (D)
) . (68)

Applying Proposition 18, the triangular inequality, and Proposition 16, we have:
k−1∑
m=i

θk−i,k−m

(Ek−m,m
h − Ek−m,m

L,h )(x, y(m)
; y)

C0,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x (D)
)

≤

k−1∑
m=i

θk−i,k−mCP̂L,m hs(1−τ )
L

Ek−m,m
h (x, y(m)

; y)

Cn,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x (D)
)

≤ hs(1−τ )
L

k−1∑
m=i

θk−i,k−mCP̂L,m

( Ek−m,m(x, y(m)
; y)

Cn,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x (D)
)

+

(Ek−m,m
− Ek−m,m

h )(x, y(m)
; y)

Cn,γ ,mix
y(m)

(
D̄×(m−i);W1,p

x (D)
) )

≤ hs(1−τ )
L

k−1∑
m=i

θk−i,k−mCP̂L,m

(
λk−m

E0,k(x, y(k); y)

Cn,γ ,mix
y(k)

(
D̄×(k−i);W2+r,p

x (D)
)

+ Cπh h
β
Ek−m,m(x, y(m)

; y)

Cn,γ ,mix
y(m)

(
D̄×(m−i);W2+r,p

x (D)
) )

≤ hs(1−τ )
L (Cπh h

β
+ 1)

k−1∑
m=i

θk−i,k−mCP̂L,mλk−m
E0,k(x, y(k); y)


Cn,γ ,mix
y(k)

(
D̄×(k−i);W2+r,p

x (D)
) . (69)

The result follows by applying Lemma 22, and inserting (68), and (69) into (54). □

Remark 23. The finite dimensional spaces Wh and Vℓ are defined on the same physical domain D. It is then natural to
take Vℓ = Wh – Tℓ having discretization parameter hℓ – and h = hL. Then, (52) becomes:(Ek−i,i

− Ek−i,i
L,h )(x, y)


W1,p

x (D)
= O(hmin{β,s(1−τ )}).

6. Conclusions

This paper addresses the computation of an approximation for the expected value of the unique stochastic solution
u to the Darcy problem with lognormal permeability coefficient. In particular, we adopt the perturbation method –
2941



F. Bonizzoni and F. Nobile Computers and Mathematics with Applications 80 (2020) 2925–2947
approximating the solution by its Taylor polynomial T Ku – in combination with the moment equation technique –
approximating E [u] by E

[
T Ku

]
. The first moment equation is recalled, and its recursive structure is explained. In

particular, for each k = 0, . . . , K , a recursion on the (i + 1)-points correlation Ek−i,i, i = 1, . . . , k, is needed. Well-
posedness and regularity results for the recursion satisfied by Ek−i,i are proved. In particular we show that Ek−i,i

∈

Cn,γ ,mix
(
D̄×i

;W 2+r,p(D)
)
, under the assumptions Y ∈ Cn,γ

(
D̄
)
a.s. and u0

∈ W 2+r,p(D) ∩ W 1,p
0 (D). Finally, a sparse

discretization for the recursion is analyzed, and the convergence of the sparse discretization error is proved.
The procedure proposed in this paper can be used also to approximate higher moments of u. In particular, we refer

to [20] for the recursion on the two-points correlation of u, E [u ⊗ u]. Moreover, the bounds on sparse grid approximations
derived in this work could also be useful to establish convergence estimates for low rank approximations as the Tensor
Train considered in [20] (see, e.g., [27]).
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Appendix

Proposition 5. Let V be a Banach space, and 0 < γ ≤ 1. Then,

C0,γ
y
(
D̄×k

; V
)

⊂ C0,γ /k,mix
y

(
D̄×k

; V
)

(A.1)

for all k ≥ 2.

Proof. We first prove (A.1) for k = 2. Let ϕ ∈ C0,γ
y1,y2

(
D × D; V

)
. Then,

|ϕ|C0,γ /2,mix
y1,y2 (D×D;V)

= max
{

sup
y1,y2,h1

Dγ /2
1 ϕ(y1, y2)


V

, sup
y1,y2,h2

Dγ /2
2 ϕ(y1, y2)


V

,

sup
y1,y2,h1,h2

Dγ /2
1 Dγ /2

2 ϕ(y1, y2)

V

}
. (A.2)

We bound the three terms in (A.2) separately. Observe that

sup
y1,y2,h1

Dγ /2
1 ϕ(y1, y2)


V

= sup
y1,y2,h1

∥ϕ(y1 + h1, y2) − ϕ(y1, y2)∥V

∥h1∥
γ /2

= sup
y1,y2,h1

∥h1∥
γ /2 ∥ϕ(y1 + h1, y2) − ϕ(y1, y2)∥V

∥h1∥
γ

≤ max{1, diam(D)γ /2
} |ϕ|C0,γ

y1,y2(D×D;V)
, (A.3)

which is bounded by assumption, and the same holds for supy1,y2,h2

Dγ /2
2 ϕ(y1, y2)


V
. We focus now on the third term

in (A.2). Define

w(y1, y2; h1, h2) := Dγ /2
1 Dγ /2

2 ϕ(y1, y2) ∥h1∥
γ /2

∥h2∥
γ /2

= ϕ(y1 + h1, y2 + h2) − ϕ(y1 + h1, y2) − ϕ(y1, y2 + h2) + ϕ(y1, y2).

Hence, we have

sup
y1,y2,h1,h2

Dγ /2
1 Dγ /2

2 ϕ(y1, y2)

V

= sup
y1,y2,h1,h2

∥w(y1, y2; h1, h2)∥V

∥h1∥
γ /2

∥h2∥
γ /2

≤ max

{
sup

y,∥h1∥<∥h2∥

∥w(y1, y2; h1, h2)∥V

∥h1∥
γ /2

∥h2∥
γ /2 , sup

y,∥h1∥≥∥h2∥

∥w(y1, y2; h1, h2)∥V

∥h1∥
γ /2

∥h2∥
γ /2

}
.
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s
f

a

f

P

O

w

a

We start considering

sup
y,∥h1∥<∥h2∥

∥w(y1, y2; h1, h2)∥V

∥h1∥
γ /2

∥h2∥
γ /2

≤ sup
y,∥h1∥<∥h2∥

1
∥h1∥

γ /2
∥h2∥

γ /2

(
∥h1∥

γ ∥ϕ(y1 + h1, y2 + h2) − ϕ(y1, y2 + h2)∥V

∥h1∥
γ

+ ∥h1∥
γ ∥ϕ(y1 + h1, y2) − ϕ(y1, y2)∥V

∥h1∥
γ

)
≤ sup

y,∥h1∥<∥h2∥

∥h1∥
γ /2

∥h2∥
γ /2

(Dγ

1ϕ(y1, y2 + h2)

V +

Dγ

1ϕ(y1, y2)

V

)
≤ 2 ∥ϕ∥C0,γ

y1,y2(D×D;V)
.

The case ∥h1∥ ≥ ∥h2∥ is analogous. Hence, we conclude (A.1) for k = 2.
In the general case, given h = (h1, . . . , hk), let i(h) as in Definition 3, and i∗ ∈ {i(h)} such that ∥hi∗∥ ≤

hij

 for all j
uch that i∗ ̸= ij. Moreover, define w(·, y;h) := Dγ ,mix

i ϕ(·, y)
∏j

ℓ=1

hiℓ

γ /j. We bound each term of the seminorm (10) as
ollows:

sup
y,∥hi∗∥≤

hij
∥w(y;h)∥V∏j
ℓ=1

hiℓ

γ /j ≤ sup
y,∥hi∗∥≤

hij
∥hi∗∥

γ∏j
ℓ=1

hiℓ

γ /j

∥w(y;h)∥V

∥hi∗∥
γ

≤ 2j−1
|ϕ|C0,γ

y (D̄×k;Vx)
,

nd the inclusion (A.1) is then proved. □

Proposition 6. The spaces C0,γ
y2

(
D̄; C0,γ

y1

(
D̄; V

))
and C0,γ

y1

(
D̄; C0,γ

y2

(
D̄; V

))
are isomorphic to the space C0,γ ,mix

y1,y2

(
D × D; V

)
or all n ≥ 0 integer.

roof. According to definition (20), we have

∥ϕ∥C0,γ ,mix
y1,y2 (D×D;V)

= max
{
∥ϕ∥C0,mix

y1,y2(D×D;V)
, |ϕ|C0,γ ,mix

y1,y2 (D×D;V)

}
= max

{
max
y1,y2

∥ϕ(y1, y2)∥V , sup
(y1,y2),h1

Dγ

1ϕ(y1, y2)

V ,

sup
(y1,y2),h2

Dγ

2ϕ(y1, y2)

V , sup

(y1,y2),(h1,h2)

Dγ

2D
γ

1ϕ(y1, y2)

V

}
.

n the other hand, we have

∥ϕ∥
C0,γ
y2

(
D̄;C0,γ

y1 (D̄;V)
) = max

{
∥ϕ∥

C0
y2

(
D̄;C0,γ

y1 (D̄;V)
) , |ϕ|

C0,γ
y

(
D̄;C0,γ

y1 (D̄;V)
)} ,

here

∥ϕ∥
C0
y2

(
D̄;C0,γ

y1 (D̄;V)
) = max

y2
∥ϕ(·, y2)∥C0,γ

y1 (D̄;V)

= max
y2

max
{
∥ϕ(·, y2)∥C0

y1(D̄;V) , |ϕ(·, y2)|C0,γ
y1 (D̄;V)

}
= max

{
max
y1,y2

∥ϕ(y1, y2)∥V ,max
y2

sup
y1,h1

Dγ

1ϕ(y1, y2)

V

}
,

nd

|ϕ|
C0
y2

(
D̄;C0,γ

y1 (D̄;V)
) = sup

y2,h2

Dγ

2ϕ(·, y2)

C0,γ
y1 (D̄;V)

= sup
y2,h2

max
{Dγ

2ϕ(·, y2)

C0
y1(D̄;V)

,
⏐⏐Dγ

2ϕ(·, y2)
⏐⏐
C0,γ
y1 (D̄;V)

}
= max

{
max
y1

sup
y2,h2

Dγ

2ϕ(y1, y2)

V , sup

y2,h2
sup
y1,h1

Dγ

1D
γ

2ϕ(y1, y2)

V

}
.

Hence, we conclude that ∥ϕ∥C0,γ ,mix
y1,y2 (D×D;V)

= ∥ϕ∥
C0,γ
y2

(
D̄;C0,γ

y1 (D̄;V)
). In the same way, it is possible to show that

∥ϕ∥ 0,γ ,mix = ∥ϕ∥ 0,γ
(

¯ 0,γ ¯
). □
Cy1,y2 (D×D;V) Cy1 D;Cy2 (D;V)
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p

Proposition 8. Denote with C0,γ ,mix
(
D̄×k

)
the space C0,γ ,mix

y
(
D̄×k

;R
)
. Then, it holds

∥u∥C0,γ ,mix(D̄×k) =

k∏
ℓ=1

∥uℓ∥C0,γ (D̄) , (A.4)

for all u(y1, . . . , yk) := u1(y1) ⊗ · · · ⊗ uk(yk) ∈ C0,γ ,mix
(
D̄×k

)
.

Proof. Using (9), we have:

∥u∥C0,γ ,mix(D̄×k) = max
{
∥u1 ⊗ · · · ⊗ uk∥C0(D̄×k) , |u1 ⊗ · · · ⊗ uk|C0,γ ,mix(D̄×k)

}
.

Observe that:

∥u1 ⊗ · · · ⊗ uk∥C0(D̄×k) = max
(y1,...,yk)∈D̄×k

|u1(y1) ⊗ · · · ⊗ uk(yk)|

= max
(y1,...,yk)∈D̄×k

k∏
ℓ=1

|uℓ(yℓ)| =

k∏
ℓ=1

max
yℓ∈D̄

|uℓ(yℓ)| =

k∏
ℓ=1

∥uℓ∥C0(D̄) .

We focus now on the seminorm of u:

|u1 ⊗ · · · ⊗ uk|C0,γ ,mix(D̄×k) = max
j=1,...,k

sup
y∈D̄×k, h̸=0,

∥h∥0=j, y+h∈D̄×k

⏐⏐⏐Dγ ,mix
i u(y1, . . . , yk)

⏐⏐⏐
= max

j=1,...,k
sup

y∈D̄×k, h̸=0,
∥h∥0=j, y+h∈D̄×k

∏
ℓ∈{1,...,k}\{i}

|uℓ(yℓ)|
∏
ℓ∈{i}

⏐⏐Dγ

ℓ uℓ(yℓ)
⏐⏐

= max
j=1,...,k

∏
ℓ∈{1,...,k}\{i}

∥i∥0=j

sup
yℓ∈D̄

|uℓ(yℓ)|
∏
ℓ∈{i}

∥i∥0=j

sup
yℓ∈D̄,hℓ ̸=0
yℓ+hℓ∈D̄

⏐⏐Dγ

ℓ uℓ(yℓ)
⏐⏐ . (A.5)

Choosing j = k, we have

(A.5) ≥

k∏
ℓ=1

sup
yℓ∈D̄,hℓ ̸=0
yℓ+hℓ∈D̄

⏐⏐Dγ

ℓ uℓ(yℓ)
⏐⏐ =

k∏
ℓ=1

|uℓ|C0,γ (D̄) .

On the other hand, given j⋆ the index which realizes the maximum, we have

(A.5) =

∏
ℓ∈{1,...,k}\{i}

∥i∥0=j⋆

sup
xℓ∈D̄

|uℓ(yℓ)|
∏
ℓ∈{i}

∥i∥0=j⋆

sup
yℓ∈D̄,hℓ ̸=0
yℓ+hℓ∈D̄

⏐⏐Dγ

ℓ uℓ(yℓ)
⏐⏐

=

∏
ℓ∈{1,...,k}\{i}

∥i∥0=j⋆

∥uℓ∥C0(D̄)

∏
ℓ∈{i}

∥i∥0=j⋆

|uℓ|C0,γ (D̄) ≤

k∏
ℓ=1

∥uℓ∥C0,γ (D̄) .

Hence, we have proved:

∥u∥C0,γ ,mix(D̄×k) ≥ max

{
k∏

ℓ=1

∥uℓ∥C0(D̄) ,

k∏
ℓ=1

|uℓ|C0,γ (D̄)

}
=

k∏
ℓ=1

∥uℓ∥C0,γ (D̄) ,

and

∥u∥C0,γ ,mix(D̄×k) ≤ max

{
k∏

ℓ=1

∥uℓ∥C0(D̄) ,

k∏
ℓ=1

∥uℓ∥C0,γ (D̄)

}
=

k∏
ℓ=1

∥uℓ∥C0,γ (D̄) ,

and (A.4) follows. □

Proposition 11. Let ϕ = ϕ(x, y1, . . . , yk) ∈ Cn,γ ,mix
y1,...,yk

(
D̄×k

;Wm,p
x (D)

)
, with D ⊂ Rd, k ≥ 1 integer, n ≥ m ≥ 0 integers,

γ ∈ (0, 1] and p > 2d
γ
. Then, for all j = 2, . . . , k+ 1, and for all (yj, . . . , yk) ∈ D×(k−j+1), (Tr|1:jϕ)(x; yj, . . . , yk) ∈ Wm,p

x (D). In
articular, there exists Ctr > 0 such that(Tr|1:jϕ)(x; yj, . . . , yk)Wm,p

x (D)

≤ C j−1
tr

ϕ(x, y1, . . . , yj−1; yj, . . . , yk)

Cn,γ ,mix
y1,...,yj−1

(
D̄×(j−1);Wm,p

x (D)
) , (A.6)

for all (y , . . . , y ) ∈ D×(k−j+1).
j k
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W

U

f

Moreover, Tr|1:jϕ ∈ Cn,γ ,mix
yj,...,yk

(
D̄×(k−j+1)

;Wm,p
x (D)

)
, andTr|1:jϕCn,γ ,mix

yj,...,yk

(
D̄×(k−j+1);Wm,p

x (D)
) ≤ C j−1

tr ∥ϕ∥
Cn,γ ,mix
y1,...,yk

(
D̄×k;Wm,p

x (D)
) (A.7)

for all j = 2, . . . , k + 1.

Proof. We prove the results in three steps.
Step 1: inequality (A.6) for k = 1 and j = 2
Let ξ = ξ (x, y) ∈ Cn,γ

y
(
D̄;Wm,p

x (D)
)
, i.e., x ↦→ ξ (x, ·) ∈ Cn,γ

(
D̄
)
a.e., and y ↦→ ξ (·, y) ∈ Wm,p(D). Denote with

g(x) :=
(
Tr|1:2ξ

)
(x) for all x = (x1, . . . , xd) ∈ D. We want to show that g ∈ Wm,p(D), i.e., ∂α

x g =
∂ |α|g

∂α1 x1···∂αd xd
∈ Lp(D)

for all α = (α1, . . . , αd) ≥ 0 with |α| = α1 + · · · + αd ≤ m.
Let α be such that |α| ≤ m, and let x(i) = (x(i)1 , . . . , x(i)d ) ∈ D for i = 1, 2. Then, it holds∂α

x g(x)

Lpx (D)

=

 ∂ |α|g
∂α1x1 · · · ∂αdxd


Lpx (D)

=


α1∑

t1=0

· · ·

αd∑
td=0

(
α1
t1

)
· · ·

(
αd
td

)
∂ |α|ξ (x(1), x(2))

∂ t1x(1)1 ∂α1−t1x(2)1 · · · ∂ tdx(1)d ∂αd−tdx(2)d

⏐⏐⏐⏐
(x,x)


Lpx (D)

≤

α1∑
t1=0

· · ·

αd∑
td=0

(
α1
t1

)
· · ·

(
αd
td

) ∂ |α|ξ (x(1), x(2))

∂ t1x(1)1 ∂α1−t1x(2)1 · · · ∂ tdx(1)d ∂αd−tdx(2)d

⏐⏐⏐⏐
(x,x)


Lpx (D)

.

Denote ∂α
t ξ (x(1), x(2)) :=

∂ |α|ξ (x(1),x(2))
∂t1 x(1)1 ∂α1−t1 x(2)1 ·∂td x(1)d ∂αd−td x(2)d

, where t = (t1, . . . , td). Using the triangular inequality, we have∂α
t ξ (x(1), x(2))

⏐⏐
(x,x)


Lpx (D)

=
∂α

t ξ (x, x)

Lpx (D)

≤ sup
y∈D

∂α
t ξ (x, x) − ∂α

t ξ (x, y)

Lpx (D)

(A.8)

+ sup
y∈D

∂α
t ξ (x, y)


Lpx (D)

. (A.9)

e bound first the term (A.8). According to the Sobolev embedding theorem, if sp > d, then W s,p(D) ↪→ C0,β (D) for all
0 < β < s −

d
p . Hence, there exists a positive constant Cs such that

⏐⏐∂α
t ξ (x, y1) − ∂α

t ξ (x, y2)
⏐⏐ ≤ Cs |y1 − y2|β

(∫
D

∫
D

⏐⏐∂α
t ξ (x, z1) − ∂α

t ξ (x, z2)
⏐⏐p

|z1 − z2|d+sp dz1dz2

)1/p

. (A.10)

sing (A.10), we have

sup
y∈D

∂α
t ξ (x, x) − ∂α

t ξ (x, y)
p
Lpx (D)

= sup
y∈D

∫
D

⏐⏐∂α
t ξ (x, x) − ∂α

t ξ (x, y)
⏐⏐p dx

≤ Cp
s

∫
D
sup
y∈D

|x − y|βp
(∫

D

∫
D

⏐⏐∂α
t ξ (x, z1) − ∂α

t ξ (x, z2)
⏐⏐p

|z1 − z2|d+sp dz1dz2

)
dx

≤ Cp
s |D|

βp
∫
D

∫
D

∫
D

(⏐⏐∂α
t ξ (x, z1) − ∂α

t ξ (x, z2)
⏐⏐

|z1 − z2|d/p+s

)p

dz1dz2dx

= Cp
s |D|

βp
∫
D

∫
D

1
|z1 − z2|d−ε

∫
D

(⏐⏐∂α
t ξ (x, z1) − ∂α

t ξ (x, z2)
⏐⏐

|z1 − z2|ε/p+s

)p

dxdz1dz2

≤ Cp
s |D|

βp
⏐⏐∂α

t ξ
⏐⏐p
C0,ε/p+s(D̄;Lp(D))

∫
D

∫
D

1
|z1 − z2|d−ε

dz1dz2

≤ C1(ε)Cp
s |D|

βp
⏐⏐∂α

t ξ
⏐⏐p
C0,ε/p+s
y

(
D̄;Lpx (D)

)
for all 0 < ε < d, with C1(ε) :=

∫
D

∫
D

1
|z1−z2|d−ε dz1dz2 < +∞. Hence, we have shown that

sup
y∈D

∂α
t ξ (x, x) − ∂α

t ξ (x, y)

Lpx (D)

≤ (C1(ε))1/pCs |D|
s−d/p

⏐⏐∂α
t ξ
⏐⏐
C0,γ̃
y

(
D̄;Lpx (D)

) , (A.11)

or any s > d , with γ̃ = ε/p + s. Since p > 2d and ε < d, by taking s =
γ

> d , we have γ̃ < γ .
p γ 2 p
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We bound now the second term (A.9). Since |α| = α1 + · · · + αd ≤ m ≤ n, then

(A.9) ≤ ∥ξ∥
Cn
y

(
D̄;Wm,p

x (D)
) ≤ ∥ξ∥

Cn,γ
y

(
D̄;Wm,p

x (D)
) . (A.12)

utting together (A.11) and (A.12), we conclude (A.6) (for k = 1 and j = 2) with constant Ctr = 2m(C1(ε)1/pCs |D|
s−d/p

+1).
Step 2: inequality (A.6) for k > 1 and j = 2, . . . , k + 1
Let ϕ ∈ Cn,γ ,mix

y1,...,yk

(
D̄×k

;Wm,p
x (D)

)
, with k > 1 and n ≥ m. We prove the proposition by induction on j. In Step 1, we have

hown that the result holds for j = 2, namely, for all (y2, . . . , yk) ∈ D×(k−1), Tr|1:2ϕ(x; y2, . . . , yk) ∈ Wm,p
x (D). In particular,Tr|1:2ϕ(x; y2, . . . , yk)Wm,p

x (D) ≤ Ctr ∥ϕ(x, y1; y2, . . . , yk)∥Cn,γ
y1

(
D̄;Wm,p

x (D)
) ,

or all (y2, . . . , yk) ∈ D×(k−1).
By induction, we assume that

Tr|1:ℓϕ(x; yℓ, . . . , yk) ∈ Wm,p
x (D)Tr|1:ℓϕ(x; yℓ, . . . , yk)


Wm,p

x (D) ≤ Ctr
Tr|1:ℓ−1ϕ(x; yℓ−1, . . . , yk)


Cn,γ
yℓ−1

(
D̄;Wm,p

x (D)
)

or all ℓ = 3, . . . , j, and for all (yℓ, . . . , yk) ∈ D×(k−ℓ+1). Then, it holdsTr|1:jϕ(x; yj, . . . , yk)Wm,p
x (D)

≤ C j−1
tr

ϕ(x, y1, . . . , yj−1; yj, . . . , yk)

Cn,γ ,mix
y1,...,yj−1

(
D̄×j;Wm,p

x (D)
) , (A.13)

here we have used the isomorphism (24).
Denote with y = (yj+1, . . . , yk). We bound

Tr|1:j+1ϕ(x; y)

Wm,p

x (D)
as follows:Tr|1:j+1ϕ(x; y)


Wm,p

x (D)
=
Tr|1:jϕ(x, x; y)Wm,p

x (D)

≤ sup
yj∈D

Tr|1:jϕ(x, x; y) − Tr|1:jϕ(x, yj; y)

Wm,p

x (D)
+ sup

yj∈D

Tr|1:jϕ(x, yj; y)Wm,p
x (D)

. (A.14)

Using inequality (A.13) we bound the second term on the right hand side of (A.14) as:

sup
yj∈D

Tr|1:jϕ(x, yj; y)Wm,p
x (D)

≤ C j−1
tr sup

yj∈D

ϕ(x, y1, . . . , yj; y)Cn,γ ,mix
y1,...,yj−1

(
D̄×(j−1);Wm,p

x (D)
)

≤ C j−1
tr

ϕ(x, y1, . . . , yj; y)Cn,γ ,mix
y1,...,yj

(
D̄×j;Wm,p

x (D)
) .

We bound the first term on the right hand side of (A.14) by proceeding as in the case k = 1 and j = 2:

sup
yj∈D

Tr|1:jϕ(x, x; y) − Tr|1:jϕ(x, yj; y)

Wm,p

x (D)

≤ Ctr
Tr|1:jϕ(x, yj; y)Cn,γ

yj

(
D;Wm,p

x (D)
)

(A.13)
≤ C j

tr

ϕ(x, y1, . . . , yj; y)Cn,γ ,mix
y1,...,yj

(
D̄×j;Wm,p

x (D)
) ,

and the conclusion holds.
Step 3: mixed Hölder regularity of Tr|1:jϕ
Let ξ (x, y1, y2) ∈ Cn,γ ,mix

y1,y2

(
D̄×2

;Wm,p
x (D)

)
. By applying the same steps as in Step 2 to the increment in the variable y2

of the trace of ξ , Dγ

2

(
Tr|1:2ξ

)
(x; y2), we conclude (A.7) in the case k = 2 and j = 2. Then, by induction, we conclude (A.7)

for any k and j. □
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