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Abstract

Purpose – Failed deliveries (i.e. deliveries not accomplished due to the absence of customers) represent a
critical issue in B2C (Business-to-consumer) e-commerce last-mile deliveries, implying high costs for
e-commerce players and negatively affecting customer satisfaction. A promising option to reduce them would
be scheduling deliveries based on the probability to find customers at home. This work proposes a solution
based on presence data (gathered through Internet of Things [IoT] devices) to organise the delivery tours,
which aims to both minimise the travelled distance and maximise the probability to find customers at home.
Design/methodology/approach – The adopted methodology is a multi-method approach, based on
interviews with practitioners. A model is developed and applied to Milan (Italy) to compare the performance of
the proposed innovative solution with traditional home deliveries (both in terms of cost and delivery
success rate).
Findings –Theproposed solution implies a significant reduction ofmissed deliveries if compared to the traditional
operating mode. Accordingly, even if allocating the customers to time windows based on their availability profiles
(APs) entails an increase in the total travel time, the average delivery cost per parcel decreases.
Originality/value – On the academic side, this work proposes and evaluates an innovative last-mile delivery
(LMD) solution that exploits newAI (Artificial Intelligence)-based technological trends. On themanagerial side,
it proposes an efficient and effective novel option for scheduling last-mile deliveries based on the use of smart
home devices, which has a significant impact in reducing costs and increasing the service level.
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1. Introduction
B2C e-commerce is the online sale of products and services, directly to the final consumer.
In spite of the burst of the “dot com bubble” in the early two thousands, many countries have
first-hand experienced the dramatic rise of the electronic commerce since then. Online sales
have been steadily growing during the last decade, and the number of online shoppers has
been increasing in different industries. This widespread trend is expected to continue in the
future, also due to the changing shopping behaviour of customers (Kandula et al., 2021).

Despite the intangible nature of online transactions, the management of logistics plays a
crucial role in determining the success of companies selling products online (Mangiaracina
et al., 2019). Moreover, the logistics service offered by e-tailers has emerged to be one of the
key factors influencing the customers’ decision to shop with them (Ma et al., 2022). Many
works may be found in literature addressing the different logistics issues that B2C
e-commerce opens for companies if compared to traditional commerce. Some authors focus on
the design of the distribution network, to find the right number, type and location of
infrastructures needed to deliver products to the final consumers (Arnold et al., 2018).
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Other works analyse instead the activities that are performed within the warehouses to
deal with the fulfilment of B2C orders, e.g. picking (H€ubner et al., 2016). Though, within
the logistics field, it is the last-mile delivery (LMD) that has captured the most the attention
of both academics (whose contributions on the topic have been flourishing) and
practitioners (who have been striving to find strategies to efficiently and effectively
manage it).

LMD represents the “last stretch” of the order fulfilment, aimed at delivering the
products ordered online to the final consumers, either at their home or at a collection point
(Lim et al., 2018). It has a significant impact on both efficiency – since it is very expensive –
and effectiveness – since it constitutes the interface with the final customers, who directly
perceive the associated service level performance (Pan et al., 2017). In all the major
markets, the dominant B2C delivery mode is represented by the so-called “attended home
delivery”, which requires the customers to be at home to collect the parcel and sign a
delivery receipt before the courier leaves for the next destination (Han et al., 2017). This
being the context, the eventual absence of the customer makes the couriers not able to
accomplish the delivery. This phenomenon – referred to as “failed deliveries” – is
addressed by both academic and managerial efforts, since it has strong negative effects on
LMD performance. On the one hand, it implies high costs for e-commerce players, which
need to re-schedule the missed deliveries in subsequent tours; on the other hand, it
significantly affects the satisfaction of customers, who are typically bothered not to
receive their parcel. The failure rate of deliveries may reach 25% according to different
authors (Edwards et al., 2010; Song et al., 2009; Van Duin et al., 2016). As a result, it often
happens that parcels need to be moved two or even three times before being successfully
delivered.

A possible way to reduce the occurrence of this problem could be scheduling the deliveries
trying to maximise the probability to find the customers at home when parcels arrive, thus
defining the delivery tours based on the probability profiles of the customers being at home.
In order to build these probability profiles, data about their presence at home should be
collected, aggregated and processed. A promising solution for gathering this type of data is
represented by Internet of Things (IoT) smart home devices, whose diffusion has been
significantly growing in recent years, also in less mature markets. The extensive use of these
devices opens fruitful work area, since they allow for the development of innovative and
sustainable logistics solutions in the urban freight logistics context (Al-Turjman et al., 2022;
Pan et al., 2021).

Driven by the continuous growth of e-commerce, the significance of the failed delivery
issues and the ability of smart home objects to easily collect customer data, this research aims
to exploit the potentialities of such devices in improving LMD performance (in terms of both
efficiency and effectiveness). More specifically, it proposes a solution to schedule delivery
tours based on customers’ presence data (gathered through IoT devices), which aims to
concurrently minimise the travelled distance and maximise the probability to find customers
at home. Amodel is developed and applied toMilan (Italy), to compare the performance of the
proposed innovative solution with traditional home deliveries (in terms of both costs and
delivery success rate). On the academic side, this research proposes an innovative data-driven
LMD solution that exploits new IoT-based technological trends and introduces
advancements in literature concerning routing for B2C e-commerce. On the managerial
side, this solution represents an efficient and effective novel option for scheduling last-mile
deliveries relying on the use of smart home devices, which has a significant impact in
reducing costs and increasing the service level.

The remainder of this paper is organised as follows: the second section presents the results
of the literature review; the third section defines the research questions and the adopted
methodologies; the fourth and fifth sections illustrate the model development and its
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application (including the sensitivity analysis); the sixth and last section summarises the
conclusions stemming from the work.

2. Literature review
There is strong agreement in recognising how failed deliveries hugely impact both
efficiency – increasing the operative costs faced by companies – and effectiveness – reducing
the service level perceived by the customer (Wang et al., 2018) – of LMD. As a matter of fact,
missed deliveries must be assigned to a subsequent delivery tour, and sometimes two or even
three attempts may be necessary to succeed (Van Duin et al., 2016). Henceforth, scientific
literature shows many attempts to develop strategies aimed at maximising the so-called “hit
rate”, i.e. the rate of successful deliveries in LMD.

Multiple authors propose unattended deliverymodes, which do not require the presence of
the customer, such as parcel lockers (Tsai and Tiwasing, 2021), pickup points (Bjerkan et al.,
2020) or the more innovative in-car delivery (with parcels being delivered within the trunk of
the customer’s car while it is parked in public places) (Reyes et al., 2017). Nonetheless, home
delivery still represents the preferred option for themajority of e-customers, who typically see
this service as one of themain advantages of online shopping (Kedia et al., 2017). Accordingly,
both practitioners and academics are focussed on optimising such a solution. An emerging
and promising trend in this direction is referred to as “data-driven last-mile delivery
innovation”, and it applies data mining and data analytics tools to collect and process data
aimed to improve the performance of LMD. Table 1 showcases the selected literature in this
direction, classifying the major contribution along relevant axes, thus allowing to display the
main differences compared to the present work.

The two earliest – and major –works are those by Pan et al. (2017) and Florio et al. (2018).
Pan et al. (2017) propose exploiting data about electrical energy consumption to build
customer home attendance profiles. More specifically, the model detects the presence or
absence of the customer at home through a binary function, based on the combination of
peaks or significant variations in electricity consumption. Though, the increasing diffusion of
more innovative households, often integrated with automated devices, may make this option
not very reliable. Moreover, the considered number of customers to be visited is limited (only
15). In the paper by Florio et al. (2018) customer home attendance is instead estimated based
on historical data about past deliveries and preferential time windows. Both these methods
introduce unreliability issues, since the time needed to gather the needed amount of data may
be significant, and during such a long period, people may change their habits. Furthermore,
cases with no information availability are associated with a 100% attendance probability,
and this introduces biases in the results. Finally, the objective function only aims tomaximise
hit rate, while the travel time is introduced as a constraint, thus not considering the trade-off
between the two dimensions. In addition, both the contributions consider home deliveries
only, without contemplating the – somewhere diffused – practice to ask for collection at a
workplace or at addresses different from the customer’s house.

This issue is overcome in the following work by Praet and Martens (2020), who instead
propose analysing GPS (Global Positioning System) data about the position of the customer
throughout the day, collected through their mobile. In this solution, all the potential positions
where the customers spend more than 5 min are registered and used to predict future
locations, with the ultimate goal to propose them a convenient location-time combination for
the subsequent deliveries. Therefore, the considered problem is different from the traditional
home deliveries, since it requires on-appointment deliveries, which drastically increase the
LMD cost. As amatter of fact, when customers choose the preferred delivery time option, they
influence the sequence of destinations to be reached in the tour and, as a consequence,
companies are not able to optimise the delivery route (Boyer et al., 2009). Moreover, the paper
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Paper Data considered

Objective
Number of
customers in
experiment

Candidate delivery
locations Industry

Main – additional –
limits

Data-based
routing
generation

VRP objective
function

Pan et al.
(2017)

Electrical consumption Yes Max (hit rate)
Constraint (travel
time)

15 (general
coordinates)

Home delivery Grocery - Not suitable with
automated
devices

Florio et al.
(2018)

Past deliveries and
preferential time
windows

Yes Max (hit rate)
Constraint (travel
time)

100 (general
coordinates)

Home delivery General - Time needed to
gather long, and
they may change
habits

- No data: 100%
availability

- Euclidean
distance

Praet and
Martens
(2020)

Mobile GPS data of
customer position

No No VRP, measure of
accuracy of predicted
locations

30 (not
reported)

Every position where the
customer stays for longer
than 5 min

General - Weekly-based
schedule

- On appointment
Kandula
et al. (2021)

Historical order delivery
data and location data

Yes Min (total travel time)
Constraint (hit rate-
based time windows)

>2000 (real
position)

Multiple (including
stores)

General - Unequal
distribution of
orders among
delivery agents

- Order priority
Chu et al.
(2021)

Multiple data (distance,
weather, season, driver’s
profile, and real-time
traffic data from mobile
applications)

Yes Min (total travel
costþ operating cost)

15 (not
reported)

Home delivery On-
demand
food
delivery

- Different logistics
problem, more
riders (3 x 5
customers)

Present
research

Multiple smart-home
devices collected data

Yes Min (cost) AND Max
(hit rate)

128 (real
position)

Home deliveryþDelivery
at workplace

General To be discussed

Source(s): Author’s work
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simply introduces this location-prediction solution, but does not directly apply it to the
routing, i.e. no VRP (vehicle routing problem) models are developed or applied. Finally, a
weekly time-horizon is set to plan the schedule, which does not well suit most e-commerce
deliveries: online players are increasingly moving towards super-fast deliveries (usually no
more than 72 h from the order), adhering to the standards launched by the top-players in
order to stay competitive on the market.

The research by Kandula et al. (2021) makes significant advancements in multiple
directions if compared to the previous works, especially considering the complexity of the
numerical experiments (i.e. from a computational viewpoint). The model is in fact applied to a
vast number of customers and includes a wide variety of candidate delivery locations (not
only customers’ houses). Nonetheless, the data considered to estimate the presence
probability are still aligned with less innovative and earlier works, since the proposed
solution develops the VRP based on historical order delivery and location data. In addition, as
recognised by the authors themselves, the obtained outcome results in an unequal
distribution of orders among the different delivery agents, and this is an issue online players
need to avoid in order to saturate – and thus reduce – the number of used vehicles (Reyes et al.,
2017). Furthermore, according to the proposed model, the orders need to be assigned a
priority scale a priori in order to allow the algorithm to schedule them. Also this procedure is
not applicable to most of real deliveries, which are deemed to be “equally important”
(Mangiaracina et al., 2019).

Making an additional step forward, the recent contribution by Chu et al. (2021)
recommends collecting multiple data from multiple sources (including the distance among
different customers, weather conditions, the season, the profile and expected behaviour of
drivers, as well as real-time traffic data) to predict the travel time between two subsequent
customers.While different cost components are included in the objective function (not limited
to those associated with the travel time), the major discrepancy with the other works –
including the present research – is that it focusses on on-demand food delivery (i.e. the
delivery of freshly prepared meals from restaurants). The specificities of this platform-based
industry generate a LMD problem that is completely different from the traditional one (pick-
up and delivery problem vs VRP). Among them, there are rigid precedence constraints to be
respected for pickups and deliveries (i.e. the order pickup at the restaurant must happen
before the delivery to the customer, so the restaurant needs to be reached before getting to the
associated customer) (Yildiz and Savelsbergh, 2019). Moreover, the delivery lead times for on-
demand food delivery are very short, as the meal must typically be delivered very quickly
from the moment it has been cooked (often within 15 min). Henceforth, the solution and
outcomes of this work are not applicable to traditional LMD.

In linewith these premises, despite the advancements made by the presented papers in the
data-driven LMD field, much remains to be done in this respect; accordingly, there are still
somemajor gaps, which the present research aims to overcome along the identified directions.
More in detail, there seems to be a lack of works concurrently:

(1) proposing solutions that go well beyond the analysis of traditionally collected-
and-used data about past deliveries and envisaging more innovative data-driven
options;

(2) developing VRP variants building on these data;

(3) applying the experiment to a high number of real customer positions, that are

(4) not only referred to houses but also alternative locations such as the workplace and

(5) which are not targeting a specific food-related sector, but may be applied to the
generic B2C parcel delivery industry.
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3. Objectives and methodologies
Based on the above, this work proposes a solution aimed at reducing missed deliveries
through the analysis of the customer presence profiles, based on data collection performed by
smart home devices (e.g. smart speakers), which are technically able to detect people presence
at home. The main goals of the research are two: first, understanding how the probability
distribution to find customers at homemay be integrated into the VRP, overcoming the limits
of the models currently proposed in literature and second, evaluating the effect on both
effectiveness (hit rate) and efficiency (LMD cost) of implementing such a solutionwith respect
to traditional VRPs. In other words, the following research questions are addressed:

RQ1. How can customers’ home attendance profiles be integrated into the VRP for LMD?

RQ2. What is the impact of this innovative VRPAP on LMD performance?

In order to answer these research questions, two main steps were performed. First, an
innovative VRPAP (vehicle routing problem with availability profile) – based on both the
travelled distance and the expected probability to find the customer at home –was developed.
It aims at maximising successful deliveries and computing the associated delivery cost and
hit rate. Second, the developed model was applied to a realistic scenario in Milan area (Italy),
where costs and hit rates are estimated both for the proposed innovative VRPAP and for the
traditional VRP cases, to compare the performance of the two options. The used two-step
methodology (development of analytical model and implementation to a realistic context) is
widely adopted in literature dealingwith LMD innovations (e.g. Qi et al., 2018). Similarly to the
previous works in this direction (e.g. Pan et al., 2017), the application of the model does
consider the optimal solutions for both the VRP and VRPAP (and no solving algorithms are
applied).

The VRP formulated in this work may be considered as half way between a traditional
VRP and a VRPTW: it schedules deliveries in specific time-windows, which are not imposed
by the customers, but are found by the model itself based on the maximisation of the
probability to find the customer at home in that period of time. Further details follow in the
Model section. For literature about the VRPTW, the interested reader is referred to Baldacci
et al. (2012) for a review of exact methods, to Br€aysy and Gendreau (2005a) for route
constructions and local search algorithms and to Br€aysy and Gendreau (2005b) for
metaheuristic methods.

Three additional methodologies were employed to support the development and
application of the model:

� Literature review, with a twofold objective. On the one side, to get a deep
understanding about the LMD process, the associated failed delivery issue and the
main solutions proposed and analysed by the academic community, thus grounding
the research in the extant knowledge and setting the right research objectives. On the
other side, to provide methodological support in themodel development phase, since it
allowed understating how the methodologies and models used in literature could be
integrated into the present work (review about the VRP).

� Interviews with practitioners operating in the business (e-commerce retailers and
logistics service providers, such as express couriers), in three different moments.
(i) First, during the model development: qualitative one-to-one interviews were
conducted to gain insights about the considered innovative solution, to build a solid
base for the cost modelling phase. These interviews were semi-structured, as they
allow the rising of ideas and the identification of parameters and variables not
previously recognised by the authors. (ii) Second, during the model application:
structured interviews were performed to gather quantitative data to feed the model.
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These data collection interviews were supported by checklists reporting all the main
variables and parameters for which numerical values were needed (Nutting et al.,
2002). (iii) Third, to validate the results: once the results (both for the base case and the
sensitivity analyses) were found, group interviews – in which all the practitioners
discussed together guided by amoderator – allowed to both validate the outcomes and
better read and interpret them. The group interview is more effective than single
interviews as the participants’ simultaneous interviewing allows to combine and
stimulate their mutual contribution (Urciuoli and Hintsa, 2017).

� Analysis of secondary sources (e.g. case studies performed by other researchers,
websites of logistics service providers, journals for logistics practitioners, reports) to
triangulate information coming from the literature and the interviews (Jick, 1979).

A consideration should be made about the nature of this work. Both the model itself and the
application (based on actual optimisation and not on the use of solving algorithms) may be
considered as not advanced if compared to other works addressing VRPs. This choice is
grounded on both academic and managerial bases. On the academic side, the reason is
twofold. First, this work is aligned with literature addressing the use of AI solutions to
innovate LMD, whose analytical component is typically rather simple. As amatter of fact, the
main aim of these works is to present a first evaluation of AI innovations for LMD and not to
make an advancement in the operational research applied to distribution. An example is the
work by Pan et al. (2017) – with respect to which the present research moves different steps
forward – where the solution is found by optimally solving a VRP on only 15 customers.
Second, as anticipated, the target academic audience of the model and of the subsequent
analysis pertains to the operations management domain and not to the operational research
one. Accordingly, the value of the research does not lie in the analytical component of the
model itself, but in the idea behind it and in the conclusions and implications that may be
drawn from the outcomes. Considering the managerial perspective, the work was developed
in strict collaboration with (and is addressed to) practitioners from the sector, for whom a
simple tool is more user-friendly and more easily understandable. As reported in section 6,
this could be a starting point to be further developed.

4. Model development
In line with prior contributions addressing the implementation of data-driven tools for LMD,
this work first briefly proposes a solution to collect and process data about the presence of
customers (section 4.1) and then focusses on the definition of the new VRPAP to schedule
deliveries based on those data and on the analysis of the performance of such a
solution compared to the traditional VRP in terms of both delivery cost and hit rates
(section 4.2).

4.1 The solution
The proposed IoT-based solution relies on five different ways through which smart home
devices may detect the presence of customers at home:

(1) Home Assistant interaction with customers or detection of any conversation in the
house;

(2) smart appliances interaction with customers or detection of customer presence
(e.g. thermostat);

(3) smartphone pairing with the Home Assistant via Bluetooth connection;

Smart home
devices and

B2C
e-commerce



(4) smartphone pairing with the Home Assistant via Wi-Fi (“Wireless Fidelity”,
i.e. wireless high-speed Internet) connection and

(5) smartphone localisation detection via GPS (Global Positioning System).

These interactions can be monitored in a discrete way (suggested unit of analysis: one
minute), and the customer home attendance is marked as positive if at least one of the five
conditions is verified. Based on the collected data, customer home availability profiles (APs)
may be built (associating to each moment of the day the probability of the customer being at
home) and periodically updated. This process is shown in Figure 1. The APs of those
customers to be visited in a delivery tour should be provided as an input to the VRP, to let the
algorithm select the optimal sequence of deliveries (i.e. the sequence maximising the hit rate).

4.2 The model – VRPAP (vehicle routing problem with availability profile)
This work proposes a VRPAP model, to integrate the APs when organising the delivery
tours. This model is composed by two sub-stages (please refer to Figure 2).

(1) First, the model performs a pre-allocation of customers to different time-windows
(in which the day is divided) based on their APs, maximising the probabilities to find
the customers at home.

Figure 1.
The solution
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(2) Second, it finds the overall optimal sequence of customers to be visited during the
different time-windows, thus defining the overall daily routing.

Details about both steps may be found in the following.
4.2.1 Step 1 – pre-allocation.The pre-allocation consists in creating clusters of customers to

be served in specific time-windows: it aims to maximise the probability to find the customers
at home in the time-window in which the delivery is performed. The output of this stage is a
set of NC clusters of customers, each of which associated with a specific time-window when
the deliveries have to be performed.

The choice to include the pre-allocation step has both academic and managerial reasons.
On the academic side, the pre-allocation step is commonly applied in papers addressing data-
driven last mile delivery innovations. In the recent – and representative – work by Kandula
et al. (2021), the routing is preceded by a pre-allocation of customers to time windows, based
on a defined delivery success probability threshold. From the managerial perspective,
including this step was deemed valuable by the interviewed practitioners for a twofold
reason: on the one hand, it dramatically reduces the required computational complexity, thus
allowing for a much easier and faster real-world implementation. On the other hand, online
players explicitly stated their strong interest in granting good effectiveness levels to the
customers, thus suggesting the maximisation of the delivery success as a priority.

Two considerations about the way the pre-allocation is executed are needed.
First, about the total considered planning horizon. The horizon is 2 days with 8 working

hours each (from 9 a.m. to 1 p.m. and from 2 p.m. to 6 p.m., considering a 1-h break between 1
and 2 p.m.). This is in line with fast e-commerce deliveries, which are typically accomplished
within two days from the moment the order is issued.

Second, about the proxy selected to describe the presence of customers within a time
window, starting from the probability values associated with the single time interval τ. The
considered alternatives were three:

(1) The average among all the probability values associated with the different intervals
within the time window; it could result in a biased measure in case of (positive or
negative) peaks within the time window.

Figure 2.
The model
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(2) Themaximumamong those probability values; it would overestimate the probability.

(3) The maximum among the average probability values, each computed on a specific
number (Tb) of time intervals included in the timewindow c. For instance, if Tb is 5, the
average probability associated with a time interval τ is computed considering not only
the probability value at τ, but also the probabilities associated with the two previous
and the two subsequentmoments (from τ�2 to τþ2). This approach is themost able to
detect longer intervals of high probability. Details follow in the next section.

4.2.1.1 Main variables and parameters. The used indexes – which are all discrete integer
values – are the following: i departure node; j arrival node; τ time bucket; t time; c cluster; �τ
time interval (in which the cluster is divided). The main variables and parameters are shown
in Table 2.

4.2.1.2 Objective function. The objective function is the following:

max

 XNT
i¼1

XC
c¼1

Zi;c$MaxAvgi;c

!

where:

MaxAvgi;c ¼ max
�
FPAi;�τ

�
; ∀1≤ i≤NC; τ∈ c where 1≤ c≤C

FPA
i;τ−ðTb−1Þ

2

¼
AP

i;τ−ðTb−1Þ
2

þ AP
i;�τ−ðTb−1Þ

2
þ1

þ ½:::� þ APi;�τ þ APi;�τþ1 þ ½:::� þ AP
i;�τþðTb−1Þ

2

Tb
;

∀1≤ i≤NC; �a�τ þ ðTb� 1Þ
2

< τ < �b�τ � ðTb� 1Þ
2

The objective is to create cluster which have themaximumprobabilities tomeet the customer.
Thus, the sum of the proxy of probabilities per each customer considered in the assigned time
window (computed as anticipated) has to be optimised.

Main parameters
NN Overall number of customers to be visited
NC Number of customers to be visited in one time-window
NV Number of available vehicles
τMAX Number of time buckets in one day
Tb Number of time buckets per each time intervals on which the average probability is computed
C Maximum number of clusters considered for the planning horizon
D Maximum number of days considered in the probability grid
DD Duration of the day
�τMAX Number of time intervals considered as proxy of the maximum probability in a time window
APi;Tw Average presence probability of the i-th customer in time window Tw
�a�τ Array (�τMAX) reporting the lower bound of the time window
�b�τ Array (�τMAX) reporting the upper bound of the time window

toj Order time of j-th customer
FPAi;�τ Matrix (NT, �τ$C) reporting the floating partial average of the attendance probability of the i-th

customer per each time bucket. Details are reported in the following section

Main variables
Zi,c Matrix (NT,C) of Boolean variables. If xi,c5 1 the i-th customer is grouped in the cluster c; otherwise,

Zi,c 5 0 denotes the i-th customer is not grouped in the cluster c

Source(s): Author’s work

Table 2.
Main variables and
parameters – pre-
allocation
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4.2.1.3 Constraints. Different constraints are set.

XNT
i¼1

Zi;c ¼ 1 ; ∀1≤ c≤C (1)

XC
c¼1

Zi;c ¼ NC ∀1≤ i≤NC (2)

if toj ≥ � 2∙DayDuration∧toj ≤ � DayDuration →

XC=2
c¼1

Zi;c ¼ 1∀ 1≤ i≤NC

if toj ≥ � DayDuration∧toj ≤ 0 →

XC
c¼1

Zi;c ¼ 1∀ 1≤ i≤NC

if toj ≥ 0∧toj ≤DayDuration →

XC
c¼C

2
þ1

Zi;c ¼ 1∀ 1≤ i≤NC (3)

Equation (1) ensures that each customer is visited once. Equation (2) forces each cluster c to
contain exactly NC customers. The set of equations (3) ensures that each customer is visited
within two days from the order.

4.2.2 Step 2 – routing.The routing step consists in the definition of the route to be followed
during the delivery tour, i.e. the sequence of customers to be visited. As for step 1, the routing
phase is composed by two sub-stages. More in detail: (1) first, the clusters of customers
associated with the different time-windows – i.e. the output of the pre-allocation phase – are
separately considered, and the optimal sub-routing is defined for each of them. (2) Second, the
different sub-routings are combined to define the overall delivery tour.

The sub-routings are the output of the developed core model, which solves a minimisation
problem on a multi-objective function that includes both the maximisation of the probability
to find the customer and the minimisation of the travel time, under specific
constraints. Details about the main variables and parameters, the objective function and
the constraints are included in the following.

4.2.2.1 Main variables and parameters. The main variables and parameters of the core
model are shown in Table 3.

4.2.2.2 Objective function. The objective function is the following:

min

("XK
k¼1

XN
i¼1

XN
j¼1

Cvarδ3;ijTwkDistDcij
�
1þ wjTw

�# ð1Þ þ Cve$
XK
k¼1

gkð2Þ
)

The first element of formula (1) computes the overall variable cost of the delivery tour for
each used van k. The overall variable cost depending on the travel time is multiplied by
(1 þ wjTw); this expression works as a penalty that deters the scheduling of deliveries in
moments in which they would most likely fail. The higher the failed delivery probability,
the higher the associated distance to be travelled in order to successfully deliver the order to
the i-th customer. The second element (2) represents the fixed cost for each activated
vehicle.

4.2.2.3 Constraints. Different constraints are set.

XNV
k¼1

XNN
j¼2

xijk ≤ 1 ; ∀2≤ i≤NN (4)
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XNV
k¼1

XNN
i¼2

xijk ≤ 1 ; ∀2≤ j≤NN (5)

XNN
i¼1

xilk �
XNN
j¼1

xljk ¼ 0 ; ∀1≤ l≤NN; 1≤ k≤NV (6)

xiik ¼ 0 ; ∀1≤ i≤NN ; 1≤ k≤NV (7)

XNN
j¼2

x1jk ¼ gk ; ∀1≤ k≤NV (8)

Main parameters
Q Capacity of the vehicles
ST Service Time, i.e. time required to park the vehicle, reach the customer’s home, ring the bell, wait

for the client, deliver the parcel, come back to the vehicle
Tw Unit of time considered for the optimisation (i.e. unit of time in which the daily delivery time is

divided, and for which the probability of the customers to be at home are estimated)
TwMAX Number of time intervals considered as proxy of the attendance probability in a time interval per

each cluster
aTw

Array (TwMAX) reporting the lower bound of the Tw time interval
bTw

Array (TwMAX) reporting the upper bound of the Tw time interval
Tijk Matrix (NN, NN, NV) of integer variables indicating the time atwhich vehicle k has accomplished

the delivery to node j (which is reached after having left node i); it considers both travel time and
service time

DistDcij Travel time between each couple of i-j customers. Since the routing is defined for each cluster,
this travel times are reported into matrixes that are different for each cluster (i.e. there is one
matrix (NN, NN) for each time-window, associated to the customers to be visited in that time-
window)

wjTw Estimated probability of unsuccessful home delivery for the i-th customer visited during Tw (i.e.
estimated probability that the delivery has to be rescheduled in a subsequent delivery tour)

qj Volume of products ordered by customer j
Tinfj,
Tsupj

Lower and upper boundaries of the delivery time window associated to customer j

Cve “Activation” cost per van
Cvar Variable cost per minute for each travelling vehicle k (including both fuel and the driver)

Main variables
xijk Matrix (NN, NN, NV) of Boolean variables indicatingwhether an arch connecting customer i and

customer j is travelled by vehicle k (i.e. if the vehicle moves from the i-th customer to the j-th
customer)

δ1,ijTwk Matrix (NN,NN,TwMAX) of Boolean variables. The case δ1ijTw 5 1 means that the arch (i,j) is
traversed in t < bTw. This is a necessary condition to guarantee that t < Tw. Otherwise, xijk5 0
denotes the arch is not traversed in Tw

δ2,ijTwk Matrix (NN,NN,TwMAX) of Boolean variables. The case δ2ijTw 5 1 means that the arch (i,j) is
traversed in t > aτ. This is a necessary condition to guarantee that t > τ. Otherwise, xijk 5 0
denotes the arch is not traversed in Tw

δ3,ijTwk Matrix (NN,NN,TwMAX) of Boolean variables. The case δ3ijTw 5 1 means that both the Boolean
variables δ2ijTw and δ3ijTw are activated, i.e. that the arch i-j (connecting two subsequent
customer locations i and j) is travelled by van k within the time interval Tw

gk Array (NV) of k boolean variables, to the value 1 is assigned in case van k is used during the tour,
0 otherwise

Source(s): Author’s work

Table 3.
Main variables and
parameters –
core model
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XNN
i¼1

xiNNk ¼ gk ; ∀1≤ k≤NV (9)

XNV
k¼1

XNN
i¼1

xijk ¼ 1 ; ∀2≤ j≤NC (10)

XNN
j¼1

xijk ≤ gk ; ∀1≤ i≤NN; 1≤ k≤NV (11)

XNN
j¼2

XNN
i¼1

xijkqj ≤Q ; ∀1≤ k≤NV (12)

XNV
k¼1

XNN−1

i¼1

Tijk ≥Tinfj ;
XNV
k¼1

XNN−1

i¼1

Tijk ≤Tsupj; ∀2≤ j≤NN (13)

Tijk ¼
XNN
l¼1

Tlik þ xijk ðDistDcij þ STÞ (14)

XNN
i¼1

XNN
j¼1

xijkðDistDcij þ STÞ ≤DD ∀1≤ k≤NV (15)

XNV
k¼1

Tijk�bTw
�ðTMAX �bTw

ÞþðTMAX �bTw
Þδ1 ijTw

≤0;
XNV
k¼1

Tijk�bTw
�εþðbTw

þεÞδ1 ijTw
≥0;

∀1≤ i≤NN ; 1≤ j≤NN ; 1≤Tw ≤TwMAX (16)

aTw
�
XNV
k¼1

ðTijkÞ � aTw

�
1−δ2 ijTw

�
≤ 0; aTw

�
XNV
k¼1

ðTijkÞ � ε� ðaTw
þ TMAX � εÞδ2 ijTw

≥ 0;

∀1≤ i≤NN ; 1≤ j≤NN ; 1≤Tw ≤TwMAX (17)

δ3 ijTw
� δ1 ijTw

≤ 0; δ3 ijτ � δ2 ijTw
≤ 0; δ1 ijTw

þ δ2 ijTw
� 1� δ3 ijTw

≤ 0;

∀1≤ i≤NN ; 1≤ j≤NN ; 1≤Tw ≤TwMAX (18)

Equation (4) ensures that each node has at most one outgoing arch activated by just one
vehicle. This consideration is valid for each node except for the first one (i.e. the depot), which
has as many outgoing and ingoing active links as many vans are used. Equation (5) ensures
that, if a node has an entrant arch, it also has an outgoing one (i.e. if the van visits one
customer, it also has to start again and move from that customer to the next one). According
to equation (6), if a node does not have an entrant arch, it must not have an outgoing arch.
This rule is valid for every node, including the depot. In fact, if in the morning the van leaves
the warehouse, at the end of the tour it must come back to the depot. Equation (7) excludes the
possibility of creating loop connections: an arch that has the same node as incoming and
outgoing node cannot exist. Equation (8) ensures that each van, if activated, has a connection
from the first node to a customer. If instead the vehicle is not active, the connection cannot
exist. On the other side, equation (9) ensures that each van, if activated, must have a
connection between a customer and the break node (j5NN),meaning that all the vans have to
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go back to the depot. Also in this case, if the vehicle is not active, the connection cannot exist.
By equation (10) each node – beside the depot and the break ones – is forced to have one and
only one ingoing arch activated by just one vehicle. It means that each customer order has to
be visited. Equation (11) links the arch variables to the activation of vans. A van is active only
if it travels at least one arch. Equation (12) introduces capacity constraints, stating that the
load of each vehicle cannot exceed themaximumallowed value. Equations (13) introduce time
constraints, since they ensure that each order is delivered within two days. This
consideration is valid for each node except for the depot (j 5 1) and the break node
(i5NN). Equation (14) sets the precedence rules among orders (each order has to be delivered
exactly after the previous one), taking into account both the time needed to perform the
delivery (Service Time) and the time needed to travel from the previous customer to the next
one. Equation (15) bounds the overall time needed to perform all the deliveries up to the total
duration of the time slot. Finally, equations (16), (17) and (18) link the probabilities associated
with a time window Tw and delivery time Tijk.

Once the sub-routings thatminimise the cost function have been defined for all the clusters
of customers, the overall daily routing is derived based on the combination of the sub-
routings in subsequent time-windows (the ending point – i.e. the last customer to be visited
– for cluster Ci is set as the departing point for cluster Ciþ1).

After the LMD problem has been solved, the associated performance may be computed,
both in terms of hit rate and cost (to make the comparison between the VRPAP and the
traditional VRP, i.e. to answer RQ2). The cost per delivery is estimated dividing the overall
cost (fixed cost of the vanþ variable cost depending on the travelled time) by the number of
successful deliveries. The reason behind the choice of these two performance measures is
twofold. On the one hand, they are widely used in literature addressing LMD solutions aimed
to reduce failed deliveries, especially if considering the earliest – and seminal – papers in the
field (for instance Pan et al. (2017)). Considering the delivery costs, both academics and
practitioners in the LMD domain recognise how they are the major performance logisticians
are interested in when evaluating an innovative solution. As a matter of fact, online players
usually consider service level targets as constraints they necessarily have to meet to stay
competitive on the market, and they adhere to the standards launched by the top-players
(e.g. delivery time lower than or equal to 72 h). As a result, they are “pushed (. . .) to cut their
operational costs to the minimum” (Arnold et al., 2018). Considering the hit rate, since the
major goal of the proposed solution is to reduce failed deliveries (that in other words is
increasing the hit rate), it results to be a complementary useful measure to have a complete
view of the overall performance. Furthermore, as Mangiaracina et al. (2019) state in their
review of innovative LMD solutions aimed to reduce costs, the probability of occurrence of
failed deliveries is one of the main driver of the delivery cost.

5. Model application
5.1 Base case application
The main goal of the model application is to evaluate the effect of the proposed VRPAP on
LMDperformance, in terms of both efficiency (delivery cost) and effectiveness (hit rate) and to
compare it with a traditional VRP (only based on distances). The model has been applied to a
realistic context in Milan (Italy). The context of application has been defined based on the
following assumptions and data (which – as anticipated in section 3 – were mainly derived
from interviews to logistics service providers, combined with the analysis of literature and
secondary sources).

(1) The 2-day (9 a.m.–1 p.m.; 2 p.m.–6 p.m.) is divided in 4 2-h slots (corresponding to the
clusters for the pre-allocation), associated with 16 customers each. The time bucket
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considered for the optimisation (and thus for the computation of the customers’
attendance probability), i.e. Tw, is 30min (thus having a daily total number of buckets
τMAX 5 98), while the number of consecutive probability value to compute the
average Tb 5 7.

(2) The delivery area is a 5 km2 area in Milan (Italy), in which the total number of
customers to be visited in two days is 128. These destinations are served by one
transit point, located outside the delivery area –3.3 km far from the perimeter, in
correspondence of a real e-commerce depot. The distances between the depot and the
customers and those among the different customers, needed to build the travel time
matrix DistDcij, are the real ones, estimated thanks to integration of GoogleMapsAPI
(differently from different previous works in the field, e.g. Pan et al., 2017).

(3) Customers, who are associated with specific APs/presence probability values, have
been clustered according to three main AP profile: (α) people receiving products in a
place where the delivery is almost always successful, e.g. house with concierge or
offices (average attendance probability 99%); (β) people who issue orders based on
when they are expected – barring unforeseen circumstances – to be at home to collect
the parcel (average attendance probability 83%); (γ) people who place orders
independently of the probability of incurring in failed deliveries (average attendance
probability 53%). The split of the customers into these three groups was the
following: 50% α, 30% β, 20% γ. Example of APs of customers belonging to the three
classes for two days are reported in Figure 3.

(4) The performance and characteristics of the van are the following: fuel consumption
7 litres/100 km; fuel cost 1.52V/litre; average speed 23.6 km/h; fixed daily “activation”
cost per van 150V (thus resulting in a variable 0.05V cost per minute).

Based on these data assumptions, the LMD problem has been solved both through a
traditional VRP (only aimed at minimising the travelling distances/time) and through the
innovative VRPAP (considering both the minimisation of distances and the maximisation of
the probability to find the customer at home). In both cases, as previously stated, the optimal
solution was found.

Table 4 shows the results of the application to the base case scenario, which leads to two
main considerations. First, the total travelled time per tour is higher in the innovative VRPAP
case compared to the traditional VRP. In fact, the objective function of the traditional VRP
minimises the overall travelled distance – and consequently the associated time – for a
specific delivery tour. The VRPAP combines instead the distance minimisation with the hit
rate maximisation. Accordingly, if a customer is associated with a very low probability to be
at home in a specific moment of the day, the delivery is moved to a previous/subsequent time-
window (where this probability is higher), even if it results in a higher travelled distance.
Second, the innovative VRPAP allows to significantly reduce missed deliveries compared to
the traditional operating mode (97.9% successful deliveries vs 82%), thus dramatically
improving effectiveness performance.

The positive effect stemming from the reduction of missed deliveries overcomes the
disadvantage linked to the higher travelled time and implementing theVRPAP thus results to
be beneficial. As a matter of fact, the delivery cost per parcel is lower in the innovative
VRPAP case with respect to the traditional VRP (about �16%).

5.2 Sensitivity analyses
After the application to the base case, in order to evaluate the robustness of the outcomes,
additional sensitivity analyses were performed in two main directions.
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(1) First, two further criteria to pre-allocate customers to time-windows were tested, in
order to compare the stemming performance. More in detail – differently from the
base case in which customers are allocated to clusters/time-windows only based on
their probability to be at home (i.e. policy A, probability-based) – the two tested
criteria integrate the evaluation of the probability to be at home with that of the
travelled distance even during the pre-allocation phase. Both the criteria rely on two
sub-steps. Policy B (distance first, probability second) first creates clusters of
customers in order tominimise the overall distance and then creates sub-groups of NC
nodes each, so that their attendance probability is maximised. The first clustering
process defines a number of G groups, and the second one splits each group in lists of
nodes to be visited in the same time-window. Policy C (probability first, distance
second) is very similar to policy B, but what changes is the sequence of the two
optimisation processes. First, customers are grouped in order to maximise their
attendance probability; second, sub-groups made by NC nodes are created, in which
the distance is minimised. This analysis was also useful to evaluate whether the
choice to pre-allocate customers based on the expected hit rate implies great
disadvantages when considering the distance among those who do not live near each
other.

(2) Second, the percentages of customers belonging to the different clusters were varied,
in order to analyse how different distributions of customer types impact the
performance of the developed solution. 6 additional scenarios were considered with
respect to the base case –which is referred to as scenario 0: (scenario 1: α 45%, β 30%,
γ 25%; scenario 2: α 45%, β35%, γ 20%; scenario 3: α 50%, β 40%, γ 10%; scenario 4:
α 60%, β 25%, γ 15%; scenario 5: α 60%, β 30%, γ 10%; scenario 6: α 70%, β 20%, γ
10%).

The sensitivity analysis was performed in a combined manner, i.e. all the customer
attendance probability scenarios have been tested on all the three pre-allocation policies.

Figure 4 and Figure 5 show the trends of the three different pre-allocation policies in terms
of average hit rate and average delivery cost per parcel respectively, along all the explored
customer distribution scenarios. These results allow to draw different conclusions.

First, policy B (distance first, probability second) is the one associated with the best
performance in terms of delivery cost. As a matter of fact, on the one hand, it allows to reduce
travel time with respect to policy A, since policy A only creates clusters based on the
probability to find the customers at home. Accordingly, two very close customers with
different APs would be allocated to different time-windows, thus forcing the driver to travel
to the same area in two differentmoments. On the other hand, the probability to incur in failed
deliveries is lower if compared to policy C, which favours theminimisation of distances rather
than themaximisation of attendance probability. Still, with all the three pre-allocation policies
VRPAP performs better than traditional VRP, in terms of delivery cost per parcel. The
outcomes of the analysis, especially for Policy B (distance first, probability second) also
proved that the pre-allocation step as selected in the developed model is effective, and the

Traditional VRP Innovative VRPAP

Total travelled time [min] 408 446
Average hit rate [%] 82 97.9
Delivery cost [V/parcel] 3.05 2.57

Source(s): Author’s work

Table 4.
Results of the model

application
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disadvantages of pre-allocating customers based on the expected hit rate does not imply
great disadvantages also in case of customers who do not live near each other. The
interpretation of such outcome in the group interviews revealed that the negative effects of
the higher travel time is somehow mitigated also due to the fact that in generic e-commerce
deliveries the density is typically so high that vans end up to be assigned delivery areas that
are not too vast.

Second, independently of the specific pre-allocation policy and from the customer base, the
VRPAP outperforms the traditional VRP. The average hit rate is always higher, and the
saving associated with the delivery is always positive. Second, the relative performance of
the three pre-allocation policies is not significantly affected by the distribution of customers
in the three attendance clusters. Besides small differences, policy A and policy B present
similar results (in terms of both average hit rate and delivery cost), and they both perform
better than policy C, independently of the considered scenario. The reason behind this lies in
the pre-allocation logic of policy C: the second phase, which in the very end creates the
clusters of customers starting from the first grouping step, is based on the minimisation of
travelled distances.

Third, the lowest delivery cost for the VRPAP corresponds to scenarios 6, 5 and 3.
Though, the most significant savings with respect to traditional VRP are found in scenarios
0,1 and 2. In fact, in these three cases there is the lowest number of class α customers (i.e. those
with the lowest probability of failed deliveries). These are the customers for which the

Figure 4.

Figure 5.
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traditional VRP is already associated with “good” hit rates; therefore, the VRPAP – which
mainly acts on this parameter – has lower room for improvement. As expected, the benefits of
the VRPAP increase in contexts for which the probability of a delivery to fail is high.

Besides the specific considerations about the differences of the three policies and of the
various analysed scenarios, the sensitivity analysis shows how, independently of the selected
pre-allocation policy and from the distribution of customers in the different clusters, the
innovative VRPAP performs better than the traditional one. This is true in terms of both hit
rate (and thus of effectiveness improvements) and delivery cost per parcel (efficiency
improvement).

6. Conclusions
LMD for B2C e-commerce is one of the most expensive processes within the whole supply
chain. Among the main issues, a very significant one is represented by the so-called “failed
deliveries”, i.e. the deliveries not accomplished due to the absence of the customers. They
imply both high costs – since missed deliveries need to be re-scheduled – and a decrease in
service level – since customers are bothered if they do not receive their parcels. As a result,
both e-commerce retailers and logistics service providers have been striving to find ways to
increase the rate of successful deliveries, in order to improve both efficiency and
effectiveness.

This paper has reached the set objectives, while answering the formulated research
questions. It proposes and evaluates the performance of an innovative solution that collects
data about customers’ presence at home, to integrate them in scheduling last-mile deliveries.
An innovative VRPAPwas designed that first clusters customers based on the probability to
find them at home and then defines the optimal sub-routes – i.e. the sequences of customers to
be visited – for each cluster. Based on these results, the model then finds the overall optimal
routing to serve the whole set of customers (RQ1). The application of the model to realistic
cases in Milan (Italy) shows that the proposed solution implies a significant reduction of
missed deliveries with respect to the traditional operating mode, in which the probability of
finding the customer at home is not considered while scheduling the deliveries, and that it
allows reducing the average delivery cost per parcel (RQ2). Besides the base case application,
sensitivity analyses were performed on two significant elements. First, two additional pre-
allocation policies (combining the maximisation of the hit rate and the minimisation of
travelled distance) were evaluated. Second, different distributions of customers associated
with different APs were analysed. Both these analyses show that the proposed VRPAP
performs better than the traditional one, in all the considered scenarios.

This work has both academic and managerial implications. On the academic side, it
contributes to the literature developing an innovative probability-based VRP that, differently
from other existing works, exploits new technological trends (i.e. the diffusion of smart home
devices) and that overcomes some limits of prior papers in this direction (e.g. higher number
of customers to be visited, real distances among the locations, integration of probability to be
at home and travelled distance when defining the sequence of destinations to be visited). On
themanagerial side, it proposes a novel solution for scheduling B2C last-mile deliveries with a
significant impact in both reducing operating costs and increasing the service level.

This work has some limits, which could be overcome through further developments. First,
the model was applied finding the optimal solution for both the VRP and the VRPAP, and no
solving algorithms were applied. As a result, the solving time for the VRP case was very
significant. It could be interesting to employ some commonly-used VRP solving algorithms to
perform a higher number of simulations. Second, the clusters in the pre-allocation step are
created aiming tomaximise the probability to find the customers at home in the delivery time-
window, thus mainly focussing on the delivery density. Further works could apply
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hierarchical clustering methods (e.g. Ward’s method), in order to implement a multi-criteria
approach that would allow to concurrently consider multiple objectives. Third, the use of a
vast amount of data about the presence of customer at home (collected through smart home
devices) is not easy to be achieved and could also raise concerns related to privacy issues.
On the one hand, this suggests reading the proposed urban delivery solutions in the light of
the smart cities paradigm, where different data sources should be available for a responsible
city-wide resource planning, based on the contribution all the stakeholders (Pan et al., 2021).
A conscious and informed decision-making process should be made by all the parties
involved, especially municipalities, in promoting efficient, effective and sustainable city
logistics solutions while granting customers – and thus citizens – adequate privacy levels
(Al-Turjman et al., 2022). On the other hand, the data collection and processing solution
should be analysed and designed in order to be compliant with the active regulations in terms
of privacy and data protection, based the specific country of interest (e.g. the General Data
Protection Regulation in the European Union). This would include basic principles tied to
transparency (clear statement of the objective), correctness (in terms of both rightness of the
procedures and accuracy of the data) and privacy (concerning confidentiality), to grant the
rights of the customers. Such suggestion is aligned with what recommended as further
development also for otherworks proposing data-driven solutions in the logistics field (see for
instance Konstantakopoulos et al. (2021)).
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