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THE ENERGY-DISSIPATION PRINCIPLE FOR

STOCHASTIC PARABOLIC EQUATIONS

LUCA SCARPA AND ULISSE STEFANELLI

Abstract. The Energy-Dissipation Principle provides a variational tool for the anal-
ysis of parabolic evolution problems: solutions are characterized as so-called null-
minimizers of a global functional on entire trajectories. This variational technique
allows for applying the general results of the calculus of variations to the underly-
ing differential problem and has been successfully applied in a variety of deterministic
cases, ranging from doubly nonlinear flows to curves of maximal slope in metric spaces.
The aim of this note is to extend the Energy-Dissipation Principle to stochastic par-
abolic evolution equations. Applications to stability and optimal control are also
presented.

1. Introduction

This note is concerned with a global variational approach to the Cauchy problem for
the abstract stochastic parabolic evolution equation

du+ ∂φ(u) dt ∋ F (·, u) dt+G(·, u) dW, u(0) = u0. (1)

The trajectory u : Ω× [0, T ] → H is defined on the stochastic basis (Ω,F , (Ft)t∈[0,T ],P)
and the bounded time interval [0, T ] and takes values in the separable Hilbert space H.
The functional φ is assumed to be convex and lower semicontinuous, the nonlinearities
F and G are taken to be suitably smooth, and W is a cylindrical Wiener process on a
second separable Hilbert space U . More precisely, solutions u of equation (1) are asked
to be Itô processes of the form

u(t) = ud(t) +

∫ t

0
us(s) dW (s), t ∈ [0, T ], (2)

where ud is an absolutely continuous process and us is a W -stochastically integrable
process. In particular, we look for solutions u of equation (1) in the space U con-
sisting of all Itô processes of the form (2) with ud ∈ L2

P
(Ω;H1(0, T ;H)) and us ∈

L2
P
(Ω;L2(0, T ;L 2(U, V ))). Here, L 2(U, V ) indicates the set of Hilbert-Schmidt opera-

tors from U to V , where V is a separable reflexive Banach space, densely and compactly
embedded into H.

Existence, uniqueness, and continuous dependence on the initial data for stochastic
evolution problems in the form (1) are addressed within the classical variational theory
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by Pardoux [44, 45] and Krylov & Rozovskĭı,[32] in the sense of analytically weak or
martingale solutions: we refer also to the monographs [19, 47] for a general presentation.
In the context of analytically strong solutions, existence for stochastic equations in the
subdifferential form (1) has been obtained by Gess [27]. Well-posedness results in a
weak sense have also been obtained under more general conditions in the monograph
[34] and in the papers [37, 35, 36, 50].

Following the seminal remarks by De Giorgi [1], one can variationally characterize
solutions of the Cauchy problem (1) in terms of trajectories minimizing the Energy-
Dissipation-Principle (EDP) functional I : U → [0,∞] defined as

I(u) = Eφ(u(T ))− Eφ(u(0)) +
1

2
E

∫ T

0
‖∂tu

d‖2 ds+
1

2
E

∫ T

0
‖∂φ(u) − F (·, u)‖2 ds

− E

∫ T

0
(∂tu

d, F (·, u)) ds −
1

2
E

∫ T

0
TrH L(u) ds

+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds+ E‖u(0)− u0‖2V (3)

if u ∈ C([0, T ];L2(Ω,F ;V )) and I(u) = ∞ otherwise. Here, L(u) := us(us)∗DG∂φ(u)
and ud, us are associated to u via the decomposition (2). The symbols (·, ·) and ‖ · ‖
stand for the scalar product and the norm in H, respectively, and ∂φ(u) denotes the
subdifferential of φ, here assumed to be Gateaux-differentiable from V to V ∗. The
constant Cφ > 0 depends on φ and is defined in (5) below. Within our assumption
setting, we will have that L(u) ∈ L 1(V, V ), where the latter is the space of trace-class
operators from V to V . The symbol TrH hence denotes the trace of the operator with
respect to an orthonormal system of H in V . The fact that I takes nonnegative values
hinges on the validity of an Itô formula for φ, see Proposition 3.1 below.

The focus of this note is to discuss the equivalence of solutions of equation (1) and
null-minimizers of the EDP functional I. Under general assumptions on φ, F , and G,
our main result, Theorem 2.1, states that

u solves (1) ⇔ 0 = I(u) = min
U

I.

The core of this characterization resides on the nature of the EDP functional I, which
in the present setting corresponds to the squared residual of the system

∂tu
d + ∂φ(u) = F (·, u), us = G(·, u), u(0) = u0,

as illustrated in Proposition 3.2 below. The approach in (3) is however more general and
can be adapted in Banach spaces and doubly nonlinear problems as well, see Remark
3.3 below.

The residual nature of the EDP functional entails that the EDP variational principle
0 = I(u) = minU I is not a mere minimization problem, for one is asked to check that
the minimum is actually 0, motivating the use of the term null-minimization. This issue
is not uncommon for global variational approaches and can be traced back to celebrated
Brezis-Ekeland-Nayroles principle [16, 17, 42, 43]. In the current stochastic case, the
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existence of a unique null-minimizer follows from the well-posedness of the differential
problem (1). Still, minimization cannot be tackled directly, for the functional I shows
some limited semicontinuity properties, see Section 4. Apart from the case when Ω is
atomic, this prevents us from providing an alternative existence theory for problem (1).
On the other hand, we make use of the EDP characterization for proving stability of
the Cauchy problem for equation (1) under perturbations of the data (u0, φ, F,G) in
Section 5 and for discussing the penalization of an optimal control problem constrained
to (1) in Section 6.

Before moving on, let us mention two alternative global variational principles for
SPDEs of the class (1). The mentioned Brezis-Ekeland-Nayroles principle has been
indeed extended to the stochastic case. Following some specific application in [5, 6,
8], a general theory has been presented by Barbu & Röckner [7, 9, 10] in the linear
multiplicative case and by Boroushaki & Ghoussoub [14] in the nonlinear multiplicative
case. In our notation, the stochastic Brezis-Ekeland-Nayroles functional from [14] reads

u 7→ E

∫ T

0

(

φ(u) + φ∗(F (·, u) − ∂tu
d)− (F (·, u) − ∂tu

d, u)
)

ds

+
1

2
E

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds+ E‖u(0)− u0‖2.

Here, φ∗ stands for the Legendre conjugate of φ. Recall that φ(u) + φ(v) ≥ (v, u) for
all u, v ∈ H and that equality holds if and only if v ∈ ∂φ(u). Hence, a null-minimizer
of the latter necessarily solves the Cauchy problem for (1). By resorting to the far-
reaching theory of anti-self dual Lagrangians, the existence of null-minimizers of the
Brezis-Ekeland-Nayroles functional has been ascertained in [14].

In the additive case, a different global variational approach to (1) is in [53], where
the Weighted-Energy-Dissipation functional

u 7→ E

∫ T

0
e−s/ε

(ε

2
‖∂tu

d‖2 + φ(u) − (F, u)
)

ds+ E

∫ T

0
e−s/ε 1

2
‖us −G‖2

L 2(U,V ) ds

is investigated. This strictly convex functional admits a unique minimizer uε over tra-
jectories with given initial value u0. At all levels ε > 0, such minimizers solve an elliptic-
in-time regularization of equation (1), complemented by an extra Neumann boundary
condition at the final time T . In particular, the minimization of the Weighted-Energy-
Dissipation functional corresponds to a noncausal differential problem. As ε → 0 one
can prove [53] that uε converge to the solution to the Cauchy problem (1). In particular,
causality is restored in the limit.

Compared with the Brezis-Ekeland-Nayroles approach, the null-minimization of the
EDP functional is a priori not restricted to the case of a convex φ (although we limit
ourselves to convex φ in this note, for simplicity) and is easily adapted to more nonlinear
situations, see Remark 3.3 below. With respect to the Weighted-Energy-Dissipation
approach, the null-minimization of the EDP functional does not require to take the
extra limit ε→ 0 and is causal. It is hence better suited to discuss convergence issues.

We collect notation, assumptions, and the statement of the characterization, i.e., The-
orem 2.1, in Section 2. Section 3 is devoted to the proof of a generalized Itô formula,
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which is crucial for studying the EDP functional and brings to the proof of the character-
ization. We discuss in Section 4 the coercivity and the restricted lower-semicontinuity of
the EDP functional, as well as the fact that minimizers of I are actually null-minimizers.
We then obtain a stability result with respect to data perturbations in Section 5. Even-
tually, in Section 6 we discuss a general penalization procedure for an optimal control
problem based on (1).

2. Setting and statement

In preparation of the statement of our main result, let us collect here the assumptions
on spaces and nonlinearities, which will be tacitly assumed throughout the paper.

Let (Ω,F , (Ft)t∈[0,T ],P) be a stochastic basis, with right-continuous and saturated
filtration (Ft)t∈[0,T ], H and U be separable Hilbert spaces, and W be a cylindrical
Wiener process on U . Moreover, let V be a separable and reflexive Banach space, with
V ⊂ H densely and compactly, so that V ⊂ H ⊂ V ∗ (dual) is a Gelfand triplet. We
recall that the symbols (·, ·) and ‖ · ‖ denote the scalar product and the norm in H.
Moreover, 〈·, ·〉 stands for the duality product between V ∗ and V . The norm in any
other Banach space E will be denoted by ‖ · ‖E .

In the following, we use the classical notation L (V,H), L 2(U, V ), and L 1(V, V )
to indicate the space of linear and continuous operators from V to H, the space of
Hilbert-Schmidt operators from U to V , and the space of trace-class operators on V ,
respectively. The symbols Ls(V,H) and Lw(V,H) indicate that the space L (V,H) is
endowed with the so-called strong, resp. weak operator topology. For all L ∈ L 1(V, V )
we denote by TrH L the trace of the operator with respect to an orthonormal system
(ek)k∈N of H contained in V , namely,

TrH L =
∞
∑

i=1

(Lek, ek).

We denote by P the progressive σ-algebra on Ω × [0, T ] and write Ls(Ω;E) and
Ls(0, T ;E) for the spaces of strongly measurable Bochner-integrable E-valued functions
on Ω and (0, T ), for all s ∈ [1,∞] and a Banach space E. For s, r ∈ [1,∞) we use the
symbol Ls

P
(Ω;Lr(0, T ;E)) to indicate that measurability is intended with respect to

the progressive σ-algebra P.

In the following, we will make use of the space U of Itô processes given by

U = {u ∈ L2(Ω;C([0, T ];H)) : the decomposition (2) holds for

ud ∈ L2
P(Ω;H1(0, T ;H)), us ∈ L2

P(Ω;L2(0, T ;L 2(U, V )))}.

Note that the representation u = ud + us ·W is unique and defines an isomorphism

U ≃ L2
P(Ω;H1(0, T ;H)) × L2

P(Ω;L2(0, T ;L 2(U, V ))).

In the following, we will systematically (and tacitly) use such isomorphism by identi-
fying u ∈ U with the corresponding pair of processes (ud, us) ∈ L2

P
(Ω;H1(0, T ;H)) ×
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L2
P
(Ω;L2(0, T ;L 2(U, V ))). We will also make use of the the subspace V ⊂ U given by

V := U ∩ C([0, T ];L2(Ω,F ;V )}.

We ask φ : H → [0,∞] to be a convex and lower semicontinuous with φ(0) = 0 and
essential domain D(φ) = {u ∈ H : φ(u) < ∞} = V , and require the subdifferential
∂φ : D(∂φ) ⊆ H → H, where D(∂φ) = {u ∈ H : ∂φ(u) 6= ∅}, to be single-valued and
coercive in the following sense:

∃ cφ > 0 : (∂φ(u1)− ∂φ(u2), u1 − u2) ≥ cφ‖u1 − u2‖
2
V ∀u1, u2 ∈ D(∂φ). (4)

We moreover ask φ to be continuous at some point of its domain , so that the subdif-
ferential ∂(φ|V ) : V → V ∗ of the restriction φ|V : V → [0,∞] is maximal monotone and
coincides with ∂φ on V . We further assume ∂φ : V → V ∗ to be Gâteaux-differentiable
with Gâteaux-differential DG∂φ ∈ C(V ;Ls(V, V

∗)) fulfilling

∃Cφ > 0 : ‖DG∂φ(u)‖L (V,V ∗) ≤ Cφ ∀u ∈ V. (5)

Note that the latter entails that ∂φ is linearly bounded from V to V ∗. Indeed, we have
that

‖∂φ(u)‖V ∗ =

∥

∥

∥

∥

∫ 1

0
〈DG∂φ(ru), u〉dr

∥

∥

∥

∥

V ∗

≤

∫ 1

0
‖DG∂φ(ru)‖L (V,V ∗)‖u‖V dr ≤ Cφ‖u‖V

and we can compute that

cφ
2
‖u‖2V ≤ φ(u) =

∫ 1

0
(∂φ(ru), u) dr ≤

∫ 1

0
rCφ‖u‖

2
V dr =

Cφ

2
‖u‖2V ∀u ∈ V. (6)

Moreover, we have the control

∀u ∈ U : TrH L(u) ≤ Cφ‖u
s‖2

L 2(U,V ) a.e. in Ω× (0, T ), (7)

where we recall that L(u) := us(us)∗DG∂φ(u).

We require the map F : [0, T ]×H → H to be Carathéodory with F (·, 0) ∈ L2(0, T ;H)
and to be Lipschitz continuous, uniformly with respect to t. More precisely, we assume
that

∃ cF > 0 : ‖F (t, u1)− F (t, u2)‖ ≤ cF ‖u1 − u2‖

∀u1, u2 ∈ H, for a.e. t ∈ (0, T ). (8)

The latter specifically implies that the process F (·, u) belongs to L2
P
(Ω;L2(0, T ;H)) for

all u ∈ L2
P
(Ω;L2(0, T ;H)).

The map G : [0, T ]× V → L 2(U, V ) is also asked to be Carathéodory with G(·, 0) ∈
L2(0, T ;L 2(U, V )) and uniformly Lipschitz continuous and linearly bounded with re-
spect to t, namely,

∃ cG > 0 : ‖G(t, u1)−G(t, u2)‖L 2(U,H) ≤ cG‖u1 − u2‖

∀u1, u2 ∈ H, for a.e. t ∈ (0, T ), (9)

and
∃ cG,2 > 0 : ‖G(·, u)‖L 2(U,V ) ≤ cG,2 (1 + ‖u‖V ) ∀u ∈ V. (10)

In particular, G(·, u) ∈ L2
P
(Ω;L2(0, T ;L 2(U, V ))) for all u ∈ L2

P
(Ω;L2(0, T ;V )).
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Eventually, we prescribe the initial datum

u0 ∈ L2(Ω,F0;V ). (11)

The Cauchy problem for (1) can hence be specified as

u(t) = u0 +

∫ t

0
(F (·, u) − ∂φ(u)) ds +

∫ t

0
G(·, u) dW ∀ t ∈ [0, T ], P-a.s. (12)

where the latter is intended as an equation in H.

Under the above assumptions, one can adapt the theory from [52] and [27] in order
to prove that equation (12) admits a unique solution u ∈ V which in addition belongs
to

L2
P(Ω;L∞(0, T ;V )) :=

{

v : Ω → L∞(0, T ;V ) weakly* progressively measurable

with E‖v‖2L∞(0,T ;V ) <∞
}

,

and can be obtained as limits of approximations arising from Yosida-regularizing ∂φ.
As such, when referring to a solution of equation (12) the regularity u ∈ V will be
always assumed in the following. Note that this is not restrictive, for all strong-in-
time solutions of (12), namely, ud ∈ L2(Ω;W 1,1(0, T ;H)), can a posteriori be proved to
belong to V , see Remark 3.4 below.

The central observation of this note is the following characterization.

Theorem 2.1 (Energy Dissipation Principle). u ∈ U solves (12) if and only if 0 =
I(u) = minU I.

This characterization is proved in the next Section 3, by resorting to a generalized
Itô formula for φ.

3. Itô formula and proof of Theorem 2.1

In the deterministic case, the Energy-Dissipation Principle hinges on the validity of
the chain rule for the functional φ. In the stochastic case, this corresponds to a specific
Itô formula, which we now present.

Proposition 3.1 (Itô formula). Let u ∈ V and assume that ∂φ(u) ∈ L2
P
(Ω;L2(0, T ;H)).

Then,

φ(u(t)) = φ(u(0)) +

∫ t

0
(∂tu

d, ∂φ(u)) ds +

∫ t

0
(∂φ(u), us dW )

+
1

2

∫ t

0
TrH L(u) ds ∀t ∈ [0, T ], P-a.s. (13)

In particular, t 7→ Eφ(u(t)) ∈W 1,1(0, T ) and

d

dt
Eφ(u(t)) = E(∂tu

d, ∂φ(u)) +
1

2
ETrH L(u) for a.e. t ∈ (0, T ). (14)
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Proof. The Itô formula (13) is proved in [52, Lemma 3.2] for φ replaced by its Moreau-
Yosida approximation φλ at level λ > 0 [15]. In particular, for all λ > 0 we have
that

φλ(u(t)) = φλ(u(0)) +

∫ t

0
(∂tu

d, ∂φλ(u)) ds +

∫ t

0
(∂φλ(u), u

s dW )

+
1

2

∫ t

0
TrH(us(us)∗DG∂φλ(u)) ds ∀t ∈ [0, T ], P-a.s. (15)

In order to check for (13), we hence aim at taking the limit λ→ 0 in (15). The pointwise
convergence of φλ to φ on D(φ) [15, Prop. 2.11, p. 39] ensures that φλ(u(t)) → φ(u(t))
and φλ(u(0)) → φ(u(0)). Moreover, from ‖∂φλ(u)‖ ≤ ‖∂φ(u)‖ a.e. and the fact that
∂φ(u) ∈ L2

P
(Ω;L2(0, T ;H)) we conclude that ∂φλ(u) ⇀ ξ in L2

P
(Ω;L2(0, T ;H)) by

possibly extracting a not relabeled subsequence. On the other hand, one readily check
that ξ = ∂φ(u) a.e. by passing to the limit λ→ 0 into (∂φλ(u), w−u) ≤ φλ(w)−φλ(u)
a.e. for all w ∈ L2

P
(Ω;L2(0, T ;H)). Hence, extracting a subsequence was actually not

needed. Eventually, the first two integrands in the right-hand side of (13) converge to
the corresponding limits.

We are hence left to check the limit of the trace term. To this aim, we recall from
[52, Lemma 3.1] that

DG∂φλ(u) = DG∂φ(Jλ(u))DGJλ(u)

where we have denoted by Jλ : V ∗ → V the resolvent Jλ := (I+λ∂φ)−1. The coercivity
assumption (4) ensures that Jλ is Lipschitz continuous. Moreover, one can enhance the
usual a.e. convergence Jλu→ u in H to

cφ‖Jλu− u‖2L2

P
(Ω;L2(0,T ;V )) ≤ E

∫ T

0
(∂φ(Jλu)− ∂φ(u), Jλu− u) ds→ 0,

so that Jλu→ u in V a.e. Recalling that DG∂φ ∈ C(V ;Ls(V, V
∗)) one gets that

us(us)∗DG∂φ(Jλ(u)) → us(us)∗DG∂φ(u) in L
1
s (V, V ) a.e.

On the other hand, from [52, Lemma 3.1] one has that DGJλ(h) → I in Ls(H,H) for
all h ∈ H. In fact, under the coercivity assumption (4), the argument of [52, Lemma
3.1] can be straightforwardly extended to ensure that the convergence DGJλ(v) → I
actually holds in Lw(V, V ) for all v ∈ V , as well. In particular, for all k ∈ N we have
that

(

us(us)∗DG∂φ(Jλ(u))DGJλ(u)ek, ek
)

=
(

DGJλ(u)ek,DG∂φ(Jλ(u))u
s(us)∗ek

)

→
(

ek,DG∂φ(u)u
s(us)∗ek

)

= (L(u)ek, ek).

In order to use the latter and pass to the limit in

TrH (us(us)∗DG∂φ(Jλ(u))DGJλ(u)) =
∞
∑

k=1

(

us(us)∗DG∂φ(Jλ(u))DGJλ(u)ek, ek
)

(16)

we now provide a bound on the series, independently of λ. We recall the invariance of
the trace under permutations, namely,

TrH (us(us)∗DG∂φ(Jλ(u))DGJλ(u)) = TrU ((us)∗DG∂φ(Jλ(u))DGJλ(u)u
s),
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where now TrU is the trace in L 1(U,U), related to a given (hence any) orthonormal
basis (vk)k∈N ⊂ U . In particular, we have that

TrH (us(us)∗DG∂φ(Jλ(u))DGJλ(u)) =
∞
∑

i=1

(

DG∂φ(Jλ(u))DGJλ(u)u
svk, u

svk
)

and we can argue as follows

∣

∣

(

DG∂φ(Jλ(u))DGJλ(u)u
svk, u

svk
)∣

∣

≤ ‖DG∂φ(Jλ(u))‖L (V,V ∗)‖DGJλ(u)‖L (V,V )‖u
svk‖

2
V

≤
Cφ

cφ
‖usvk‖

2
V ∈ ℓ1.

By the Dominated Convergence Theorem we have hence proved that

TrH (us(us)∗DG∂φ(Jλ(u))DGJλ(u)) → TrH L(u) a.e.

as well as

|TrH (us(us)∗DG∂φ(Jλ(u))DGJλ(u))| ≤
Cφ

cφ
‖us‖2

L 2(U,V ) a.e.

As ‖us‖2
L 2(U,V ) ∈ L1

P
(Ω;L1(0, T )) one can use again the Dominated Convergence The-

orem, pass the limit in (15) as λ→ 0, and get (13).

We now localize formula (13) to a subinterval [s, t] ⊂ (0, T ) in order to get that

Eφ(u(t)) = Eφ(u(s)) + E

∫ t

s
(∂tu

d, ∂φ(u)) ds +
1

2
E

∫ t

s
TrH L(u) ds ∀ 0 < s < t < T

This proves that t 7→ Eφ(u(t)) is absolutely continuous, and the differential Itô for-
mula (14) follows by the arbitrariness of s and t. �

We now use Proposition 3.1 in order to give an equivalent formulation of the EDP
functional I in terms of squared residuals.

Proposition 3.2 (Equivalent formulation). For u ∈ V with ∂φ(u) ∈ L2
P
(Ω;L2(0, T ;H))

one has

I(u) =
1

2
E

∫ T

0
‖∂tu

d + ∂φ(u)− F (·, u)‖2 ds+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds

+ E‖u(0) − u0‖2V . (17)
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Proof. Under the assumptions u ∈ V and ∂φ(u) ∈ L2
P
(Ω;L2(0, T ;H)) the Itô formula

(13) holds and we can compute

I(u) = Eφ(u(T ))− Eφ(u(0)) +
1

2
E

∫ T

0
‖∂tu

d‖2 ds+
1

2
E

∫ T

0
‖F (·, u) − ∂φ(u)‖2 ds

−
1

2
E

∫ T

0
TrH L(u) ds− E

∫ T

0
(∂tu

d, F (·, u)) ds

+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,H) ds+ E‖u(0)− u0‖2V

(13)
=

1

2
E

∫ T

0
‖∂tu

d‖2 ds+
1

2
E

∫ T

0
‖F (·, u) − ∂φ(u)‖2 ds

+ E

∫ T

0
(∂tu

d, ∂φ(u) − F (·, u)) ds + 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds

+ E‖u(0) − u0‖2V

=
1

2
E

∫ T

0
‖∂tu

d + ∂φ(u)− F (·, u)‖2 ds+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds

+ E‖u(0) − u0‖2V . �

Owing to the equivalence from Proposition 3.2 we are now in the position of checking
the characterization Theorem 2.1.

Proof of Theorem 2.1. Let u ∈ U be such that I(u) = 0. The boundedness of I
in particular entails that u ∈ V and that the difference ∂φ(u) − F (·, u) belongs to
L2

P
(Ω;L2(0, T ;H)). As u ∈ L2

P
(Ω;L2(0, T ;H)) one has F (·, u) ∈ L2

P
(Ω;L2(0, T ;H))

owing to (8). This implies that ∂φ(u) is in L2
P
(Ω;L2(0, T ;H)). We can hence use

equation (17) and obtain that

1

2
E

∫ T

0
‖∂tu

d + ∂φ(u)− F (·, u)‖2 ds+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds

+ E‖u(0)− u0‖2V
(17)
= I(u) = 0.

This proves that ∂tu
d+∂φ(u) = F (·, u) and us = G(·, u) a.e. in Ω×(0, T ) and u(0) = u0

P-a.s. Hence, u solves equation (12).

Let now u ∈ V solve equation (12). In particular, we have that ∂tu
d+∂φ(u) = F (·, u)

and us = G(·, u) a.e. in Ω × (0, T ) and u(0) = u0 P-a.s. As ∂tu
d ∈ L2

P
(Ω;L2(0, T ;H))

and F (·, u) ∈ L2
P
(Ω;L2(0, T ;H)) from (8), we have that ∂φ(u) ∈ L2

P
(Ω;L2(0, T ;H))

as well. Again, the equivalence (17) holds and we have that

I(u)
(17)
=

1

2
E

∫ T

0
‖∂tu

d + ∂φ(u)− F (·, u)‖2 ds+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds

+ E‖u(0)− u0‖2V = 0.

This concludes the proof of the theorem. �
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Remark 3.3. The equivalence (17) reveals that the EDP functional is indeed nothing
but the square residual of the system

∂tu
d + ∂φ(u) = F (·, u), us = G(·, us), u(0) = u0.

In particular, the expression in (17) could have been used as alternative and possibly
more informative definition for I. On the other hand, definition (3) is the direct sto-
chastic extension of the classical one [1, 20] and has the advantage of making sense also
out of the purely Hilbertian setting. Without going into the greatest generality, which
would call for considering stochastic integrals in Banach spaces, let us mention that the
present results (in particular, the validity of Theorem 2.1) could be extended to the
EDP functional

I(u) = Eφ(u(T )) − Eφ(u(0)) + E

∫ T

0
ψA(∂tu

d,−∂φ(u) + F (·, u)) ds

− E

∫ T

0
(∂tu

d, F (·, u)) ds − E

∫ T

0
TrH L(u) ds

+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds+ E‖u(0) − u0‖2V . (18)

Here, ψA : H ×H → (−∞,∞] is a convex function representing the maximal monotone
operator A : H → H in the sense of the Fitzpatrick theory [23], see also [56, 57] for
additional material and details. In particular,

ψA(v,w) ≥ (v,w) ∀v, w ∈ H, (19)

ψA(v,w) = (v,w) ⇔ w ∈ A(v). (20)

An example for such ψA is the so-called Fitzpatrick function

ψA(v,w) = sup{(v̂, w) + (v, ŵ)− (v̂, ŵ) : v̂, ŵ ∈ H, ŵ ∈ A(v̂)}.

If A is cyclic, namely A = ∂η for some η : H → (−∞,∞] convex, proper, and lower
semicontinuous, a second example for ψA is the Fenchel function

ψA(v,w) = η(v) + η∗(w)

where η∗ is the Legendre conjugate of η.

By using (19)-(20) one can prove that null-minimizers of I from (18) solve the doubly
nonlinear equation

A(∂tu
d) dt+ us dW + ∂φ(u) dt = F (·, u) dt+G(·, u) dW

where A : H → H is maximal monotone, nondegenerate, and linearly bounded but not
necessarily cyclic. The latter, under suitable assumptions, has been proved to admit
martingale solutions in [52].

Remark 3.4. By adapting the argument of Proposition 3.1 one can check that strong-
in-time solutions with ud ∈ L2(Ω;W 1,1(0, T ;H)) of equation (12) are actually in V , so
that assuming u ∈ V is actually not restrictive. Indeed, given ud ∈ L2(Ω;W 1,1(0, T ;H))
and taking (8)–(9) into account one has that ∂φ(u) ∈ L2

P
(Ω;L1(0, T ;H)), F (·, u) ∈

L2
P
(Ω;L2(0, T ;H)), and G(·, u) ∈ L2

P
(Ω;L2(0, T ;L 2(U, V ))). In order to conclude for

u ∈ U it hence suffices to prove that indeed ∂φ(u) ∈ L2
P
(Ω;L2(0, T ;H)). At some
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approximation level (for instance, that of Yosida approximations uλ from the proof of
Proposition 3.1), the Itô formula holds for ∂φ(u) in L2

P
(Ω;L1(0, T ;H)), as well. On

solutions of the equation (12) one can hence replace ∂tu
d in the Itô formula (14) by

F (·, u)− ∂φ(u) and easily check that indeed ∂φ(u) ∈ L2
P
(Ω;L2(0, T ;H)). In fact, by a

standard application of the Burkholder-Davis-Gundy inequality one additionally obtains
that solutions of (12) belong to L2

P
(Ω;L∞(0, T ;V )), as well.

4. Some properties of the EDP functional

As mentioned above, under the assumptions of Section 2 equation (12) admits a
unique solution u. In particular, the null-minimization problem for I is uniquely solv-
able.

In this section, we comment on the possibility of tackling the null-minimization prob-
lem for I directly. We prove that I is coercive in V (Proposition 4.1) and that minimizers
are actually null-minimizers (Proposition 4.3). Moreover, we check that I is lower semi-
continuous, up to possibly changing the underlying stochastic basis (Proposition 4.2).
Unfortunately, this lower semicontinuity property is too weak to allow for an applica-
tion of the Direct Method, preventing us from obtaining a complete alternative existence
proof for (12).

The case of an atomic Ω is special. Here, no change in the stochastic basis is needed
for lower semicontinuity and the null-minimization of I can be directly carried out,
bringing to a fully variational existence proof for (12).

Proposition 4.1 (Coercivity). The sublevels of I are bounded in V .

Proof. Assume I(v) < ∞. Then v ∈ V ⊂ L2
P
(Ω;L2(0, T ;H)) and we have F (·, v) ∈

L2
P
(Ω;L2(0, T ;H)) and G(·, v) ∈ L2

P
(Ω;L2(0, T ;L 2(U ;V ))) from (8)-(9). As I(v) is

finite, we deduce that ∂φ(v) ∈ L2
P
(Ω;L2(0, T ;H)) as well. Applying the Itô formula

(14) and integrating on the interval [0, t] for t ∈ [0, T ] we deduce that

Eφ(v(t))− Eφ(v(0)) +
1

2
E

∫ t

0
‖∂tv

d‖2 ds+
1

2
E

∫ t

0
‖∂φ(v) − F (·, v)‖2 ds

− E

∫ t

0
(F (·, v), ∂tv

d) ds−
1

2
E

∫ t

0
TrH L(v) ds+ 2CφE

∫ T

0
‖vs −G(·, v)‖2

L 2(U,V ) ds

=
1

2
E

∫ t

0
‖∂tv

d + ∂φ(v) − F (·, v)‖2 ds+ 2CφE

∫ t

0
‖vs −G(·, v)‖2

L 2(U,V ) ds

≤ I(v). (21)
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We now use the coercivity (6) in order to get that

cφ
2
E‖v(t)‖pV +

1

4
E

∫ t

0
‖∂tv

d‖2 ds+
1

2
E

∫ t

0
‖∂φ(v) − F (·, v)‖2 ds

+
3Cφ

2
E

∫ T

0
‖vs‖2

L 2(U,V ) ds

≤ Eφ(v(0)) + E

∫ t

0
‖F (·, v)‖2 ds+

1

2
E

∫ t

0
TrH L(v) ds

+ 8CφE

∫ t

0
‖G(·, v)‖2

L 2(U,V ) ds+ I(v).

By the Lipschitz continuity of F and the linear boundedness of G from (8)–(10) and
the bounds (6)-(7) we get

cφ
2
E‖v(t)‖2V +

1

4
E

∫ t

0
‖∂tv

d‖2 ds+
1

2
E

∫ t

0
‖∂φ(v) − F (·, v)‖2 ds

+
3Cφ

2
E

∫ T

0
‖vs‖2

L 2(U,V ) ds

≤
Cφ

2
E‖v(0)‖2V + C

∫ t

0
E‖v‖2V ds+

Cφ

2

∫ t

0
E‖vs‖2

L 2(U,V ) ds+ C + I(v).

for some positive constant C, depending on the data cφ, Cφ, cF , cG, cG,2, ‖u
0‖V , and

‖F (·, 0)‖L2(0,T ;H), but independent of v. An application of the Gronwall Lemma ensures
that

max
[0,T ]

E‖v‖2V + E

∫ T

0
‖∂tv

d‖2 ds+ E

∫ T

0
‖vs‖2

L 2(U,V ) ds ≤ C(1 + I(v)),

possibly by updating the constant. The assertion follows. �

In order to discuss lower limits, we make the notation for the EDP functional more
precise by explicitly indicating the background stochastic structure and the given initial
value. When needed in the following, we use the extended notation

u 7→ Î(Ω,F , (Ft)t∈[0,T ],P,W, u
0, u)

instead of u 7→ I(u). Correspondingly, we specify the dependence on the stochastic

basis of the space of Itô processes by using the notation Û (Ω,F , (Ft)t∈[0,T ],P,W ).
Our lower-semicontinuity result reads as follows.

Proposition 4.2 (lim inf tool). For all uε
∗
⇀ u in V one can find a stochastic basis

(Ω̂, F̂ , (F̂t)t∈[0,T ], P̂), a not relabeled sequence of measurable maps ηε : (Ω̂, F̂ ) → (Ω,F )

with P ◦ ηε = P̂, a cylindrical Wiener process Ŵ on U , a process

û ∈ Û (Ω̂, F̂ , (F̂t)t∈[0,T ], P̂, Ŵ ) ∩ C([0, T ];L2(Ω̂, F̂ ;V )),

and an initial value û0 ∈ L2(Ω̂, F̂0;V ) such that uε ◦ ηε → û in C([0, T ];H) a.e. in Ω̂
and

Î(Ω̂, F̂ , (F̂t)t∈[0,T ], P̂, Ŵ , û0, û) ≤ lim inf
ε→0

I(uε). (22)
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Proof. As (uε)ε>0 is bounded in V , the classical result [24, Lemma 2.1] ensures that

ιε :=

∫ ·

0
usε dW

is uniformly bounded in L2
P
(Ω;Hµ(0, T ;V )) for some µ ∈ (0, 1/2). Since V is compact

in H, the Aubin-Lions Lemma [55] ensures that

Hµ(0, T ;V ) ⊂⊂ L2(0, T ;H),

H1(0, T ;H) ⊂⊂ C([0, T ];V ∗),

L2(0, T ;V ) ∩
(

H1(0, T ;H) +Hµ(0, T ;V )
)

⊂⊂ L2(0, T ;H).

This entails that the laws of (uε, u
0, udε , ιε,W ) are tight in

L2(0, T ;H) × V × C([0, T ];V ∗)× L2(0, T ;H) × C([0, T ];U1),

where U1 is a separable Hilbert space such that the inclusion U →֒ U1 is Hilbert-Schmidt.
By the Skorohod Theorem [31, Thm. 2.7] one can hence find another probability space

(Ω̂, F̂ , P̂), a sequence of measurable maps ηε : (Ω̂, F̂ ) → (Ω,F ) with P ◦ ηε = P̂ for all
ε > 0, and some measurable

(û, û0, ûd, ι̂, Ŵ ) : (Ω̂, F̂ ) → L2(0, T ;H)×V ×C([0, T ];V ∗)×L2(0, T ;H)×C([0, T ];U1),

such that, letting ûε := uε ◦ ηε, û
d
ε := udε ◦ ηε, ι̂ε := ιε ◦ ηε, and Ŵε :=Wε ◦ ηε,

ûε → û in L2(0, T ;H), P̂-a.s., (23)

ûε(0) → û0 in V, P̂-a.s., (24)

ûdε → ûd in C([0, T ];V ∗), P̂-a.s., (25)

ι̂ε → ι̂ in L2(0, T ;H), P̂-a.s., (26)

Ŵε → Ŵ in C([0, T ];U1), P̂-a.s. (27)

In fact, as ηε preserves the laws, we also have, setting ûsε := usε ◦ ηε, that

∂tû
d
ε ⇀ ∂tû

d in L2(Ω̂;L2(0, T ;H)), (28)

ûsε ⇀ ûs in L2(Ω̂;L2(0, T ;L 2(U, V )), (29)

ûε(0) ⇀ û0 in L2(Ω̂, F̂0;V ), (30)

∂φ(ûε)⇀ ξ̂ in L2(Ω̂;L2(0, T ;H)), (31)
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The combination of convergences (25) and (31) entail that ξ̂ = ∂φ(û) a.e. Moreover,
the Lipschitz continuity of F and G gives

F (·, ûε) → F (·, û) in L2(Ω̂;L2(0, T ;H)), (32)

G(·, ûε) → G(·, û) in L2(Ω̂;L2(0, T ;L 2(U,H)), (33)

G(·, ûε)⇀ G(·, û) in L2(Ω̂;L2(0, T ;L 2(U, V )). (34)

Setting (F̂ε,t)t∈[0,T ] as the filtration generated by (ûε, û
d
ε , ι̂ε, Ŵε), using again the fact

that ηε preserves laws, one has that

I(uε) = Î(Ω̂, F̂ , (F̂ε,t)t∈[0,T ], P̂, Ŵε, û
0
ε, ûε). (35)

Moreover, setting (F̂t)t∈[0,T ] as the filtration generated by (û, ûd, ι̂, Ŵ ), a classical ar-

gument (see [51, 52]) ensures that Ŵ is a U -cylindrical Wiener process, ι̂ = ûs · Ŵ ,
and

û = û0 +

∫ ·

0
∂tû

d(s) ds+

∫ ·

0
ûs(s) dŴ (s).

Now, since we have that û ∈ Û (Ω̂, F̂ , (F̂t)t∈[0,T ], P̂) ∩ C([0, T ];L2(Ω̂, F̂ ;V )), ∂φ(û) ∈

L2
P̂
(Ω̂;L2(0, T ;H)), as well as ûε ∈ Û (Ω̂, F̂ , (F̂ε,t)t∈[0,T ], P̂) ∩ C([0, T ];L2(Ω̂, F̂ ;V )),

∂φ(ûε) ∈ L2
P̂ε

(Ω̂;L2(0, T ;H)), we can apply the equivalence (17) and pass to the lim inf

owing to convergences (28)-(33) getting

Î(Ω̂, F̂ , (F̂t)t∈[0,T ], P̂, Ŵ , û0, û)

(17)
=

1

2
Ê

∫ T

0
‖∂tû

d + ∂φ(û)− F (·, û)‖2 ds+ 2CφÊ

∫ T

0
‖ûs −G(·, û)‖2

L 2(U,V ) ds

+ Ê‖û(0) − û0‖2V

≤ lim inf
ε→0

(

1

2
Ê

∫ T

0
‖∂tû

d
ε + ∂φ(ûε)− F (·, ûε)‖

2 ds

+ 2CφÊ

∫ T

0
‖ûsε −G(·, ûε)‖

2
L 2(U,V ) ds+ Ê‖ûε(0)− û0‖2V

)

(17)
= lim inf

ε→0
Î(Ω̂, F̂ , (F̂ε,t)t∈[0,T ], P̂, Ŵε, û

0
ε, ûε)

(35)
= lim inf

ε→0
I(uε). �

The combination of Propositions 4.1 and 4.2 still does not allow to prove the existence
of minimizers of the EDP functional I, for the stochastic basis is changed in the limit.
In the special case of an atomic Ω, however, no change in the basis is actually required
and one can find a minimizer of I via the Direct Method.

We conclude this section by proving that minimizers u of I are actually null-minimizers
(I(u) = 0), hence solve (12). The reader is referred to [3, 29, 48] for some similar argu-
ment, although in different variational settings.

Proposition 4.3 (Minimizers are null-minimizers). Assume that F (t, ·) and G(t, ·) are
Gateaux-differentiable for all t ∈ [0, T ] and let u ∈ U minimize I. Then, I(u) = 0.
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Proof. In order to check that I(u) = 0 let us start by considering the linear problem

dv +DG∂φ(u)v dt =
(

DGF (·, u)v − f
)

dt+
(

DGG(·, u)v − g
)

dW, v(0) = z, (36)

where f ∈ L2
P
(Ω;L2(0, T ;H)), g ∈ L2

P
(Ω;L2(0, T ;L 2(U, V ))), and z ∈ L2(Ω,F0;V )

are given. Owing to our assumptions, we have that the latter is uniquely solvable, for
the time-dependent positive linear operator DG∂φ(u) is coercive, uniformly with respect
to time.

We now use the equivalence of Proposition 3.2 in order to rewrite

Î(u) =
1

2
E

∫ T

0
‖∂tu

d + ∂φ(u)− F (·, u)‖2 ds

+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds+ E‖u(0)− u0‖2V . (37)

Let now v be the solution of (36) and compute the variation of I at u in direction v
by letting 0 = g′(0) for g(t) = I(u+ tv). Owing to the Gateaux differentiability of ∂φ,
F (t, ·), and G(t, ·) we obtain that

0 = E

∫ T

0

(

∂tu
d + ∂φ(u)− F (·, u), ∂tv

d +DG∂φ(u)v −DGF (·, u)v
)

ds

+ E

∫ T

0

(

us −G(·, u), vs −DGG(·, u)v
)

L 2(U,V )
ds+ 2E(u(0)− u0, v(0))V

= E

∫ T

0

(

∂tu
d + ∂φ(u)− F (·, u), f

)

ds

+ E

∫ T

0

(

us −G(·, u), g
)

L 2(U,V )
ds+ 2E(u(0) − u0, z)V .

Since f , g, and z are arbitrary we have proved that û solves ∂tu
d + ∂φ(u) = F (·, u),

ûs = G(·, u), and u(0) = u0 a.e. Hence, usolves (12). In particular, Î(u) = 0. �

5. Application to stability

Let us now give an application of Theorem 2.1 to the analysis of the stability of
problem (12) with respect to data perturbations. In the deterministic case, such stability
results have to be traced back to Attouch [2]. See also [58] for some recent developments.
In the stochastic regime, the reader is referred to Gess & Tölle [28], where the case
φn → φ is discussed.

Assume to be given a sequence (u0ε, φε, Fε, Gε)ε>0 of data, as well as a limiting data
set (u00, φ0, F0, G0), all fulfilling the assumptions of Section 2, uniformly with respect to
ε ∈ [0, 1). We are interested in qualifying the convergences u0ε → u00, φε → φ0, Fε → F0,
and Gε → G0 in such a way that solutions uε of equation (12) with data (u0ε, φε, Fε, Gε),
namely,

uε(t) = u0ε +

∫ t

0
(Fε(·, uε)− ∂φε(uε)) ds+

∫ t

0
Gε(·, uε) dW ∀t ∈ [0, T ], P-a.s. (38)
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converge to solutions u0 of equation (12) with data (u00, φ0, F0, G0), that is

u0(t) = u00 +

∫ t

0
(F0(·, u0)− ∂φ0(u0)) ds+

∫ t

0
G0(·, u0) dW ∀t ∈ [0, T ], P-a.s. (39)

The reformulation of these problems in terms of null-minimization of EDP functionals
allows to readily treat the stability question. In the case of gradient flows, the ap-
proach dates back to Sandier & Serfaty [49, 54]. Recently, this variational treatment of
limiting processes has been applied to different kind of parameter-dependent nonlinear
dissipative evolution problems and has been originating the concept of EDP convergence
[20, 25, 39, 40]. To the best of our knowledge, we present here the first application of
this technique in the stochastic setting.

Let Iε and I0 indicate the EDP functionals (3) defined with data (u0ε, φε, Fε, Gε)ε>0

and (u00, φ0, F0, G0), respectively. In order to prove that u0 solves (39) one has to check
that I0(u0) = 0. Since I0 is nonnegative, this would follow from

I0(u0) ≤ lim inf
ε→0

Iε(uε) = 0. (40)

This is nothing but a Γ-lim inf inequality for Iε [18], which we check below, by extending
the argument of Proposition 4.2. In fact, the EDP functional approach is flexible enough
to deliver convergence also for approximate minimizers vε of Iε, namely for Iε(vε) → 0.
The main result of this section is the following.

Theorem 5.1 (Stability). Let (u0ε, φε, Fε, Gε)ε>0 and (u00, φ0, F0, G0) fulfill the assump-
tions of Section 2, uniformly with respect to ε. Moreover, assume that, as ε→ 0,

u0ε → u00 in L2(Ω,F0;V ), (41)

φε → φ in the Mosco sense in H, (42)

and that for all wε
∗
⇀ w0 in V the following convergences hold

Fε(·, wε)⇀ F0(·, w0) in L2
P(Ω;L2(0, T ;H)), (43)

Gε(·, wε)⇀ G0(·, w0) in L2
P(Ω;L2(0, T ;L 2(U ;V ))). (44)

If Iε(vε) → 0 than vε
∗
⇀ u0 in V , where u0 solves (39).

Proof. As Iε(vε) → 0, the sequence (vε)ε is bounded in V by Proposition 4.1. This
implies that ∂tv

d
ε and F (·, vε) are bounded in L2

P
(Ω;L2(0, T ;H)) and vsε and G(·, vsε)

are bounded in L2
P
(Ω;L2(0, T ;L 2(U, V ))). Moreover, since Iε(vε) are bounded we have

that ∂φε(vε) are bounded in L2
P
(Ω;L2(0, T ;H)) as well.

Define ιε :=
∫ ·

0 v
s
ε dW . By adapting the argument of Proposition (4.2), possibly

passing to a not relabeled subsequence we find a probability space (Ω̂, F̂ , P̂), a sequence

of measurable maps ηε : (Ω̂, F̂ ) → (Ω,F ) with P ◦ ηε = P̂ for all ε > 0, and some
measurable

(û0, û
0
0, û

d
0, ι̂, Ŵ ) : (Ω̂, F̂ ) → L2(0, T ;H)×V ×C([0, T ];V ∗)×L2(0, T ;H)×C([0, T ];U1),
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such that, letting v̂ε := vε ◦ ηε, ι̂ε := ιε ◦ ηε, and Ŵε := Wε ◦ ηε, and the following
convergences hold

v̂ε
∗
⇀ û0 in C([0, T ];L2(Ω̂, F̂ ;V )), (45)

v̂ε → û0 in L2(0, T ;H), P̂-a.s., (46)

v̂dε → ûd0 in C([0, T ];V ∗), P̂-a.s., (47)

∂tv̂
d
ε ⇀ ∂tû

d
0 in L2(Ω̂;L2(0, T ;H)), (48)

v̂sε ⇀ ûs0 in L2(Ω̂;L2(0, T ;L 2(U, V )), (49)

v̂ε(0) ⇀ û00 in L2(Ω̂, F̂0;V ), (50)

∂φε(v̂ε)⇀ ξ̂0 in L2(Ω̂;L2(0, T ;H)). (51)

The Mosco convergence (42) together with convergences (46) and (51) ensures that

ξ̂0 = ∂φ0(û0) a.e., hence

∂φε(v̂ε)⇀ ∂φ0(û0) in L2(Ω̂;L2(0, T ;H)). (52)

Eventually, the weak-continuous-convergence properties (43)-(44) entail that

Fε(·, v̂ε)⇀ F0(·, û0) in L2(Ω̂;L2(0, T ;H)), (53)

Gε(·, v̂ε)⇀ G0(·, û0) in L2(Ω̂;L2(0, T ;L 2(U ;V ))). (54)

We set now (F̂ε,t)t∈[0,T ] as the filtration generated by (v̂ε, v̂
d
ε , ι̂ε, Ŵε), and (F̂t)t∈[0,T ] as

the filtration generated by (û0, û
d
0, ι̂, Ŵ ). As in the previous section, a classical argument

(see [51, 52]) ensures again that Ŵ is a U -cylindrical Wiener process, ι̂ = ûs · Ŵ and

û0 = û00 +

∫ ·

0
∂tû

d
0(s) ds+

∫ ·

0
ûs0(s) dŴ (s).

Using the equivalence (17), the convergence of the initial data (41), and convergences

(48)-(50) and (53)-(54) we can pass to the liminf in Iε(vε) = Iε(Ω̂, F̂ , (F̂ε,t)t∈[0,T ], P̂, Ŵ , v̂ε)
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and check that

Î0(Ω̂, F̂ , (F̂t)t∈[0,T ], P̂, Ŵ , û0)

(17)
=

1

2
Ê

∫ T

0
‖∂tû

d
0 + ∂φ0(û0)− F0(·, û0)‖

2 ds

+ 2CφÊ

∫ T

0
‖ûs0 −G0(·, û0)‖

2
L 2(U,V ) ds+ Ê‖û0(0)− û00‖

2
V

≤ lim inf
ε→0

1

2
Ê

∫ T

0
‖∂tv̂

d
ε + ∂φε(v̂ε)− Fε(·, v̂ε)‖

2 ds

+ 2CφÊ

∫ T

0
‖v̂sε −Gε(·, v̂ε)‖

2
L 2(U,V ) ds+ Ê‖v̂ε(0)− û0ε‖

2
V

(17)
= lim inf

ε→0
Îε(Ω̂, F̂ , (F̂ε,t)t∈[0,T ], P̂, Ŵε, v̂ε) = 0.

As Î0(Ω̂, F̂ , (F̂t)t∈[0,T ], P̂, Ŵ , û0) = 0, Theorem 2.1 guarantees that û0 is a martin-
gale solution of (12). As already commented, the pathwise uniqueness of martingale
solutions of (12) ensures that all the limits above hold in the original stochastic basis
(Ω,F , (Ft)t∈[0,T ],P), as well, without the need of passing to a different basis. In par-
ticular, the weak∗ limit u0 of vε fulfills I0(u0) = 0 and solves (12). Eventually, since
solutions of (12) are unique, no extraction of subsequences is actually needed. �

6. Application to optimal control

Consider now the equation

du+ ∂φ(u) dt ∋ f dt+G(·, u) dW. (55)

This corresponds to equation to (1), where the nonlinearity F (·, u) is replaced by f ∈
L2(0, T ;H). The datum f is interpreted as a control, which for simplicity we assume
to be deterministic. Given the initial value u0, the Cauchy problem for equation (55)
corresponds to find a process u ∈ U such that

u(t) = u0 +

∫ t

0
(f − ∂φ(u)) ds +

∫ t

0
G(·, u) dW ∀ t ∈ [0, T ], P-a.s. (56)

Under our assumptions, for all f ∈ L2(0, T ;H) there exists a unique solution u ∈
U ∩ L2

P
(Ω;L∞(0, T ;V )) of (56). This defines the solution operator

S : L2(0, T ;H) → U ∩ L2
P(Ω;L∞(0, T ;V )), S(f) := u.

We are interested in the following optimal control problem

min
f∈A

{J(f, u) : u = S(f)}. (57)

Here, A represent the set of admissible controls, which we assume to be nonempty and
weakly compact in L2(0, T ;H), and J : L2(0, T ;H) × V → [0,∞) is an abstract target
functional, here considered to be lower semicontinuous with respect to the weak∗ topol-
ogy in L2(0, T ;H)× V . An f∗ solving (57) is called optimal control, the corresponding
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u∗ = S(f) is an optimal state, and the pair (f∗, u∗) is an optimal pair. Let us start from
the following.

Proposition 6.1 (Existence). There exists an optimal pair (f∗, u∗) for problem (57).

Proof. Let fn ∈ A be a infimizing sequence for problem (57). As A is weakly compact in
L2(0, T ;H) we can extract a not relabeled subsequence such that fn ⇀ f∗ in L2(0, T ;H).

By letting un := S(fn) and using Theorem 5.1 we have that un
∗
⇀ u∗ in V , where

u∗ ∈ S(f∗). Owing to the lower semicontinuity of J we get

J(f∗, u∗) ≤ lim inf
n→∞

J(fn, un) = inf
f∈A

{J(f, u) : u = S(f)}

so that (f∗, u∗) is an optimal pair. �

By the characterization of Theorem 2.1, one readily finds that

u = S(f) ⇔ I(f, u) = 0,

where the controlled EDP functional I : L2(0, T ;H) × U → [0,∞] is defined as

I(f, u) = Eφ(u(T ))− Eφ(u(0)) +
1

2
E

∫ T

0
‖∂tu

d‖2 ds+
1

2
E

∫ T

0
‖∂φ(u) − f‖2 ds

− E

∫ T

0
(∂tu

d, f) ds−
1

2
E

∫ T

0
TrH L(u) ds

+ 2CφE

∫ T

0
‖us −G(·, u)‖2

L 2(U,V ) ds+ E‖u(0) − u0‖2V (58)

if u ∈ C([0, T ];L2(Ω,F ;V )) and I(u) = ∞ otherwise. The controlled EDP functional
can be used to penalize the SPDE constraint u = S(f) in problem (57). We consider
the penalized optimal control problems

min
A ×U

Fδ with Fδ(f, u) := J(f, u) +
1

δ
I(f, u) (59)

where δ > 0 is the penalization parameter. Let us mention that the penalization of
optimal control problems via weighted residuals is classical and can be traced back to
Lions [33]. Indeed, it has already been applied to different stationary and evolutive
situations, see [11, 12, 13, 26, 30, 41] for a collection of results. In the deterministic
setting, this penalization method via EDP functionals has been discussed in [46].

By combining the coercivity and the lower-limit tool from Propositions 4.1-4.2 one
can find a minimizer of Fδ for each fixed δ > 0, at the price of possibly changing the
underlying stochastic basis.

In the limit δ → 0 one recovers optimal pairs for the original problem (57) as limit of
approximate optimal pairs at level δ, without redefining the stochastic basis. The main
result of this section is the following.

Theorem 6.2 (Limit δ → 0). Let (fδ, uδ)δ>0 ∈ A × U be such that

lim inf
δ→0

(

Fδ(fδ, uδ)− inf
A ×U

Fδ

)

= 0. (60)
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Then, up to a not relabeled subsequence we have that (fδ, uδ)
∗
⇀ (f∗, u∗) in L2(0, T ;H)×

V where (f∗, u∗) is an optimal pair for (57).

Proof. Choose f0 ∈ A and let u0 = S(f0), so that I(f0, u0) = 0. Owing to the weak
compactness of A into L2(0, T ;H) we can extract without relabeling so that fδ ⇀ f in
L2(0, T ;H). From (60) we get that

lim inf
δ→0

1

δ
I(fδ, uδ) ≤ lim inf

δ→0
Fδ(fδ, uδ) ≤ lim sup

δ→0
inf

A ×U
Fδ ≤ J(f0, u0).

Again by extracting some not relabeled subsequence, this entails that

1

δ
I(fδ, uδ) ≤ 1 + J(f0, u0).

As δ → 0 one has that I(fδ, uδ) → 0 and we are in the setting of Theorem 5.1. In

particular, uδ
∗
⇀ u∗ in V and u∗ = S(f∗). Moreover, owing to the lower semicontinuity

of J , for any u ∈ S(f) we find

J(f∗, u∗) ≤ lim inf
δ→0

J(fδ, uδ) ≤ lim inf
δ→0

Fδ(fδ, uδ) ≤ lim sup
δ→0

inf
A ×U

Fδ ≤ J(f, u)

which proves that the (f∗, u∗) is an optimal pair for problem (57). �

Acknowledgement

LS is partially supported by the Austrian Science Fund (FWF) through the Lise-
Meitner project M2876. US is partially supported by the Austrian Science Fund (FWF)
through projects F 65, W1245, I 4354, I 5149, and P 32788, and by the OeAD-WTZ
project CZ 01/2021.

References
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