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Abstract. We consider adaptations of the Mumford-Shah functional to graphs. These are based on
discretizations of nonlocal approximations to the Mumford-Shah functional. Motivated by applications in
machine learning we study the random geometric graphs associated to random samples of a measure. We
establish the conditions on the graph constructions under which the minimizers of graph Mumford-Shah
functionals converge to a minimizer of a continuum Mumford-Shah functional. Furthermore we explicitly
identify the limiting functional. Moreover we describe an efficient algorithm for computing the approximate
minimizers of the graph Mumford-Shah functional.
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1. Introduction

Our investigation of graph based Mumford-Shah functionals is motivated by problems arising in
machine learning. Given a point cloud in euclidean space with (noisy) real-valued labels, or a graph with
labeled vertices, we investigate a model to denoise the labels while allowing for jumps (discontinuities) in
label values. As with the classical Mumford-Shah functional this allows one to identify the locations
of sharp transitions of label values. Our primary focus is on graphs arising as neighborhood graphs of
point clouds in a euclidean space, in dimension two or higher, where we can carry out rigorous analysis.
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However some of the functionals we study can be formulated purely in the setting of weighted graphs and
may be useful in applications.

The model we study is based on ideas from image processing and go back to the celebrated Mumford
and Shah [MS89] variational model for image segmentation. To adapt the Mumford–Shah functional to
point clouds and graphs we rely on the work of Gobbino [Gob98] and Gobbino and Mora [GM01] who
introduced a family of nonlocal models which approximate the Mumford–Shah functional. Ruf [Ruf19]
has recently adapted these nonlocal models to random discrete setting and studied them in the setting of
stochastic lattices. Here we study such functionals in the setting of random geometric, and related, graphs
relevant to machine learning.

General graph setting. Consider an undirected weighted graph with vertices V = {1, . . . .n} and edge
weights matrixW = [wij ]i,j=1,...,n. Edge weights are considered to be nonnegative and symmetric. Let
f : V → R be the observed noisy labels. Let ζ : [0,∞)→ [0,∞) be concave and such that ζ(0) = 0,
0 < ζ ′(0) <∞. For p > 1 we define the Graph Mumford–Shah functional acting on u : V → R as

GMSf (u) :=
λ

n

n∑
i=1

|ui − fi|2 +
1

εn2

n∑
i,j=1

ζ

(
1

ε
|ui − uj |2

)
wij (1.1)

We note that when the differences ui − uj are relatively small the functional is similar to the graph
dirichlet energy, while for large values of ui − uj the functional saturates and in some ways considers u
to be discontinuous over the edge. It then just penalizes the size of the set of discontinuities. Minimizing
the functional allows one to find the sharp transitions in the data by detecting edges where ui − uj is
large compared to ε. That is the parameter ε > 0 sets the scale for what differences of the values are
considered “large”. We note that the functional is nonconvex.

Geometric graph setting. We now consider the setting of point clouds and the random geometric
graphs generated by them. The ability to measure the distance between vertices allow us to create a larger
family of graph Mumford–Shah functionals. Let Vn = {x1, . . . , xn} be a set of points in Rd. The points
xi are typically random samples of a measure describing the data distribution, but this interpretation is
not essential in defining the functional. Given these points we define a graph by setting the edge weights
to be wi,i = 0 and for i 6= j

wij = ηε(|xi − xj |) (1.2)
where η is a nonnegative, nonincreasing function which decays to 0 faster than a specified algebraic rate.
Let f : Vn → R be the observed noisy labels and let ζ be as in the graph setting above. For p ∈ [1, d) and
q ∈ [0, p− 1] we define the Graph Mumford–Shah functional acting on u : Vn → R as

GMSf,ε,n(u) :=
λ

n

n∑
i=1

|u(xi)− fi|2 +
1

ε

1

n2

n∑
i,j=1

ζ

(
ε1−p+q |u(xi)− u(xj)|p

|xi − xj |q

)
ηε(|xi − xj |). (1.3)

We note that taking q = 0 reduces this functional to one considered in the pure graph setting.

We rigorously study of the asymptotics of GMSε,n(u) as n→∞ and ε→ 0 and establish in Theorem
2.1 that its minimizers converge to to minimizers of a Mumford–Shah functional posed in continuum
euclidean domain. We note that related results for a stochastic lattice model have been obtained recently
by Ruf [Ruf19], see Remark 2.5. The conditions of the Theorem 2.1 are optimal in terms of scaling of
εn on n for which the convergence holds for all dimensions d ≥ 2. To show the result we follow the
general strategy of [GTS16] and use a number of results of calculus of variations, in particular the works
of Gobbino and Mora [Gob98, GM01]. There are two notable advances:

I. We introduce a strategy to overcome the issues that arise from the lack of control of the denominator
in (1.3). Namely the discrepancy in the quotients inside of ζ may seem large if the standard tools
to compare the discrete and continuum functionals using a transport map are used directly. In
Remark 4.6 we outline the steps we take to account for that.

II. Unlike in [GTS16], our results have optimal scaling in 2D. Using Lemma 3.1 and Lemma 3.2
we develop an approach to Γ-convergence that uses a more relaxed way to compare the discrete
and continuum measures. In particular the approach outlined at the beginning of Subsection
4.2 would allow one to obtain optimal estimates for total variation, Laplacian, andf p-Laplacian
functionals considered in [GTS16], [GTS18] and [ST19] respectively. We note that for the graph
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total variation optimal estimates in 2D were recently obtained by Müller and Penrose [MP18].
The approach here is simpler, but does use the insight of Müller and Penrose that binning at an
intermediate scale can be advantageous.

Organization. In Subsection 1.1 we review theworks on related problems, primarily on themathematical
aspects of related data science questions. In Section 2 we introduce the graph based and the continuum
functionals and state the main results. in Section 3 we recall the mathematical notion of Γ-convergence
and its main properties and we recall the TLp space and its main properties. We introduce the relaxed
way to compare measures with the empirical measures of their samples. In Section 4 we prove the
main results on Γ-convergence, while in Section 5 we prove the accompanying compactness result. In
Section 7 we describe an algorithm for computing the approximate (local) minimizers of the graph
Mumford–Shah functional and perform numerical experiments on synthetic data to showcase its properties
and on real-estate sales data to highlight its applicability in prediction problems. In Appendices A and B
we prove two technical results needed in Section 4.

1.1. Related works. Here we review the related models in data analysis. The background about the
Mumford-Shah functional and has been provided in the introduction and the mathematical works which
serve as the basis for our proofs are recalled as we present our approach in the introduction and Sections 3
and 4.

Regularizing and denoising functions given on graphs has been studied in variety of contexts in machine
learning. Here we focus on regularizations which still allow for the jumps in the regularized function.
There are two lines of research which have led to such functionals. One, as is the case with our approach, is
in using inspiration from image processing where variational approaches have been widely used for image
denoising and segmentation. Particularly relevant in the context of imaging are the works of Chan and
Vese [CV01, VC02], who proposed a piecewise constant simplification of the Mumford-Shah functional
and have shown its effectiveness in image segmentation, and Rudin, Osher, and Fatemi [ROF92] who
proposed a TV (total variation) based regularization for the image denoising. In analogy with Chan and
Vese, [HSB15] Hu, Sunu, and Bertozzi formulated the piecewise-constant Mumford functional on graphs.
They also developed an efficient numerical approach to compute the minimizers and used it to study a
(multi-class) classification problem. A ROF functional on graphs, with L1 fidelity term, was studied by
García Trillos and Murray [GTM17].

TV based regularizations have also been developed in statistics community. Mammen and van de
Geer [MvdG97] have considered it is the setting of nonparametric regression and have shown that the TV
regularization provides an estimator that achieves the optimal min-max recovery rate in one dimension
over noisy samples of functions in unit ball with respect to the BV norm. TV based regularizations in
hifher dimensions have been considered by by Tibshirani, Saunders, Rosset, Zhu, and Knight [TSR+05]
who call the functional fused LASSO. Hütter and Rigollet [HR16], show that, up to logarithms, in
dimension d ≥ 2, the TV regularization on grids achieves the optimal min-max rate over the unit ball
with respect to the BV norm. Recently, Padilla, Sharpnack, Chen and Witten [PSCW18] show for random.
geometric graphs and for KNN graphs that up to logarithms, in dimension d ≥ 2, TV regularization again
achieves the optimal min-max rate.

The paper [HLB15] by Hallac, Leskovec, Boyd extends fused LASSO to the graph setting and considers
some further functionals which are closely related to the graph Mumford–Shah functional we consider
here. In particular the initial models of the paper deal with convex functionals which include graph
total-variation based terms, and are thus called “Network LASSO”. The second part of the paper modifies
the total-variation term, which leads to nonconvex functionals. Here we interpret some of these nonconvex
functionals, in particular model (7) of [HLB15]), as the graph-based Mumford–Shah functional, which,
together with out asymptotic results, explains the behavior of these models. Wang, Sharpnack, Smola,
and Tibshirani [WSST16] consider higher order total variation regularizers on graphs. further extensions.
We also note that the use of total variation penalization for signal denoising and filtering has also been
considered in the signal processing community, see for example the work of Chen, Sandryhaila, Moura,
and Kovačević [CSMK15].
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2. Setting and Main Results

2.1. Continuum Mumford–Shah functional and its nonlocal approximation. In their celebrated
paper [MS89], Mumford and Shah proposed a variational approach for image segmentation. Given
a domain Ω ⊂ Rd and a potentially noisy image with intensity f they sought to approximate it by a
piecewise smooth function u, whose discontinuities delineate the segments of the image.

We recall their functional using the formulation in the space of special functions of bounded variation.
For background on spaces of (special) functions of bounded variation we refer the reader to the book
[AFP00]. For u ∈ SBV (Ω)

MSf (u) := λ

∫
Ω
|u− f |2dx+

∫
Ω
|∇u|2dx+Hd−1(Su) (2.1)

where f ∈ L∞(Ω) is the noisy image, ∇u is the absolutely continuous (in the measure theoretic sense,
and with respect to the Lebesgue measure) part of the gradientDu (which is a measure) of the function u,
Su is the jump set of u, andHd−1 is the (d− 1)−dimensional Hausdorff measure. The first term of the
functional ensures the closeness of the approximation u to the original image f while the next two terms
reward the regularity of u. The idea is that natural images are piecewise smooth, but often do have jumps
in intensity between different regions. Thus the terms of the functional reward the regularity of u, while
still allowing jumps in the intensity.

Thanks to the work of Ambrosio in [Amb89] and to the lower-semicontinuity ofMSf with respect to
the topology of the space SBV (Ω), the direct method of calculus of variation ensures us that a minimum
u0 ∈ SBV (Ω) for the functional (2.2) is always attained.

For the considerations we have in mind the fidelity term λ
∫

Ω |u− f |
2dx is quite straightforward to

treat. Hence, for readability, we introduce the functional without it and focus mainly on this functional:

MS(u) :=

∫
Ω
|∇u|2dx+Hd−1(Su). (2.2)

As shown in [BDM97] any functional of the form of (2.2) cannot be approximated in the sense of
Γ-convergence by local integral functional of the type∫

Ω
hε(∇u(x))dx

for u ∈ W 1,2(Ω). De Giorgi conjectured that the Mumford-Shah functional can be approximated by
nonlocal functionals. The conjecture was proved by Gobbino in [Gob98], who showed that (2.2) can be
approximated by the functionals

Gε(u) :=
1

εd+1

∫
Rd×Rd

arctan

(
|u(y)− u(x)|2

|y − x|

)
e−
|y−x|2

ε2 dxdy (2.3)

defined for u ∈ L1
loc(Ω). He shows that for appropriate dimensional constants θ, σ

Γ- lim
ε→0

Gε = θ

∫
Ω
|∇u|2dx+ σHd−1(Su)

where the Γ-limit is considered with respect to L1 topology. The work in [Gob98] has been then
generalized in [GM01] to functionals defined on SBV (Ω) of the form

F (u) :=

∫
Ω
ϕ (|∇u(x)|) dx+

∫
Su

ψ(|u+(x)− u−(x)|)dHn−1(x) (2.4)

where u+(x) and u−(x) denote the so-called approximate lim inf and lim sup of u at the point x:

u+(x) = sup

{
t ∈ R : lim

r→0+

1

rn
|{y ∈ B(x, r) : u(y) > t}| > 0

}
. (2.5)

They show that for suitable ϕ,ψ the functional can be approximated in the Γ-convergence sense with the
family of non-local functionals of the form

Fε(u) :=

∫
Rd×Rd

ϕ|x−y|

(
|u(x)− u(y)|
|x− y|

)
ηε (x− y) dxdy (2.6)

where {ϕε}ε is a family of functions related to ϕ,ψ and {ηε}ε>0 ⊂ L1(Ω) is a kernel.
4



2.2. Point cloudMumford–Shah functional. The above nonlocal approximation to the Mumford–Shah
functional can be adapted to the graph setting. We consider the setting of random geometric graphs
formulated on random samples of a measure µ with density ρ, which describes the underlying data
distribution. Consider an open, bounded set with Lipschitz boundary Ω. The density ρ is assumed to
satisfy: ρ ∈ C1(Ω) ∩ C0(Ω) and

0 < c ≤ min
x∈Ω

ρ(x) ≤ max
x∈∈Ω

ρ(x) ≤ C <∞. (2.7)

We consider ζ : [0,∞)→ [0,∞) such that
(A1) ζ is concave and differentiable at 0;
(A2) ζ is non decreasing;
(A3) ζ ′(0) <∞ and

Θ := lim
x→∞

ζ(x). (2.8)

We fix p ≥ 1, q ∈ [0, p) and we assume that the kernel η : [0,∞)→ [0,∞) satisfies
(B1) η is a nonincreasing L1 function, non identically 0;
(B2) 0 <

∫∞
0 (td + tp−q+d−1)η(t)dt <∞.

In the sequel, we always assume the functions η, ζ and ρ to satisfy the above assumption.
Let x1, . . . , xn ∈ Ω a set of n i.i.d random points on Ω chosen according to µ = ρdx. The empirical

measure of the sample is defined by

µn :=
1

n

n∑
i=1

δxi

Given a Borel measure σ on Ω, the space Lp(Ω, σ) is the space of equivalence classes of measurable
functions u : Ω → R with

∫
Ω |u|

pdσ finite. Notice that, under this assumption on ρ, we have that
L1(Ω; ρ) = L1(Ω). For that reason we often write u ∈ L1(Ω) in place of u ∈ L1(Ω; ρ).

The graph Mumford–Shah functional we devote the most attention to is the functional (1.3) without
the fidelity term. Namely for a function u ∈ L1(Ω;µn) let

GMSε,n(u) :=
1

ε

1

n2

n∑
i,j=1

ζ

(
ε1−p+q |u(xi)− u(xj)|p

|xi − xj |q

)
ηε(|xi − xj |) (2.9)

Here ηε(s) := ε−dη(s/ε).

2.3. Main results. We prove a Γ-convergence result (see Theorem 2.1) stating that the Graph Mumford–
Shah functional (2.9) Γ-converges (in the TL1 sense, recalled in subsection 3.1 below), along suitable
sequence {εn}n∈N (see Remark 2.2) to

MSη,ζ(u; ρ) := ϑη(p, q)ζ
′(0)

∫
Ω
|∇u(x)|pρ(x)2dx+ σηΘ

∫
Su

ρ(y)2dHd−1(y) (2.10)

defined for all u ∈ SBV p(Ω) and where Θ is defined by (2.8) and
ϑη(p, q) := 2ωd−1

Γ(p/2 + 1/2)Γ(d/2 + 1/2)

Γ(p/2 + d/2)

∫ ∞
0

tp−q+d−1η(t)dt

ση := 2ωd−1

∫ ∞
0

tdη(t)dt.
(2.11)

We point out that assumption (B2) on η is the one that guarantees the finiteness of ση, ϑη(p, q). With all
these in mind we are able to show the validity of the following statement.

Theorem 2.1 (Γ-convergence). Let Ω be an open set and ρ be a probability density satisfying (2.7).
Consider ζ, η satisfying the assumptions (A1)-(A3) and (B1)-(B2).

Let {xi}i∈N be a sequence of i.i.d. random points chosen accordingly to the density ρ and {εn}n∈N be
a sequence of positive number converging to 0 such that

lim
n→∞

(log(n))1/d

εnn1/d
= 0 for d ≥ 2. (2.12)

5



Then GMSεn,n, defined in (2.9), Γ−converges toMSη,ζ(·; ρ), defined in (2.2), in the TL1 sense.

We refer to [GTS16] for detailed introduction of the TLp topology. For the reader’s convenience we
retrieve the main concepts in Subsection 3.1 below.

Remark 2.2. The condition (2.12) of Theorem 2.1 comes from the following fact. Given random samples
{x1, . . . , xn} as above, we show in Lemma 3.1 that there exists a sequence of probability measures µ̃n,
absolutely continuous with respect to Lebesgue such that dµ̃n

dµ ⇒ 1 and whose∞-Wasserstein distance
from the empirical measure of the sample µn is decaying faster than εn. More precisely, there exist
Tn : Ω→ {x1, . . . , xn} transport maps between µ̃n = ρnLd and µn = 1

n

∑n
i=1 δxi , such that

lim
n→∞

‖Tn − Id‖∞
εn

= 0. (2.13)

In Section 5 we discuss compactness of the functionals. In particular we establish the following
theorem:

Theorem 2.3. Let Ω, ρ, ζ, η, and xi, i = 1, . . . , n satisfy the assumptions of Theorem 2.1. Consider a
sequence of {εn}n∈N satisfying (2.12). If un ∈ L∞(Ω;µn) satisfy

sup
n∈N
{‖un‖∞ + GMSεn,n(un)} <∞,

then the sequence {(µn, un)}n∈N it is TL1-relatively compact.

Remark 2.4. Note that we ask for an L∞ bound on the sequence, instead of a weaker L1 bound (as it is
done in [GTS16, Theorem 1.2]). Here L1 bound would not be sufficient as we show in Section 5 and
Remark 5.1. On the other hand since the signal f in (2.1) is bounded in applications, the minimizers are
also bounded by the same bound.

Remark 2.5. Recently Ruf [Ruf19] has studied the convergence of graph Mumford–Shah functionals on
random lattices to the continuum Mumford–Shah functional. These interesting results are closely related,
but also substantially different both in terms of their nature and the techniques used. One difference
is the nature of randomness of the structure considered. Here we consider random samples, or in fact
any discrete sets of points whose empirical measures weakly approximate the continuum measure. Ruf
considers random lattices in 2D, which have precise requirements of the distribution of points. The
disordered structure of the points we allow forces us to require that the typical degree of a vertex converges
to infinity faster than log n, while Ruf is able to work with graphs of bounded degree. On the flip side
we identify the Γ limit explicitly, while, due to the graph construction, Ruf only identifies the functional
up to a constant. In a sense he is able to work under homogenization type graph-behavior where the
compactness arguments show that Γ limit exists without fully identifying it.

2.3.1. Convergence of functionals with the fidelity term. The Theorems 2.1 and 2.3 enable us to show the
convergence of the Mumford–Shah functional with the fidelity term as well. We establish two results.
The first one is in the setting without noise. In order to be able to evaluate the signal at sample points we
assume that f is a bounded piecewise continuous function, that is that the set of discontinuities Jf is of
finite d− 1 dimensional Hausdorff measure,Hd−1(Jf ) <∞.

Corollary 2.6. Let Ω, ρ, ζ, η, and xi, i = 1, . . . , n satisfy the assumptions of Theorem 2.1 and assume
that p ≥ q + 1. Assume f : Ω → R is a bounded, piecewise continuous function. Assume also that
p ≥ q + 1. Consider a sequence of {εn}n∈N satisfying (2.12). Then the functional GMSf,ε,n defined
in (1.3), considered with fi = f(xi) for i = 1, . . . , n, Γ-converges in TL2 topology toMSη,ζ(u; ρ) +∫
|u− f |2ρ(x)dx, whereMSη,ζ(u; ρ) is defined in (2.10). Furthermore any sequence of minimizers un

of GMSf,ε,n, converge along a subsequence to a minimizer ofMSη,ζ(u; ρ) +
∫
|u− f |2ρ(x)dx.

We note that due to the fidelity term the topology of Γ convergence in the corollary is TL2 instead of
TL1. We remark that the change of the topology when considering the fidelity term was not needed in
[Gob98] since Gobbino could rely on the Fubini’s theorem. However due the fact that we also deal with
the discrete-to-continuum passage, the stronger topology is needed.
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More importantly and more interestingly we are able to establish the convergence of minimizers of the
graph Mumford–Shah functional when the labels are noisy. We note that the limit is a minimizer of a
deterministic variational problem, even though the amount of noise does not vanish as n→∞.

Corollary 2.7. Let Ω, ρ, ζ , η satisfy the assumptions of Theorem 2.1 and assume that p ≥ q + 1. Assume
f : Ω→ R is a bounded, piecewise continuous function. Let β be a measure on R modeling the noise.
We assume β has compact support and mean zero. Let (xi, yi) for i = 1, . . . , n be i.i.d. samples of the
measure µ× β. Consider a sequence of {εn}n∈N satisfying (2.12).

Then the functional GMSf,ε,n defined in (1.3), considered with

fi = f(xi) + yi for i = 1, . . . , n,

Γ-converges in TL2 topology toMSη,ζ(u; ρ)+
∫
|u−f |2ρ(x)dx+Var(β), whereMSη,ζ(u; ρ) is defined

in (2.10). Furthermore any sequence of minimizers un of GMSf,ε,n, converge along a subsequence to a
minimizer ofMSη,ζ(u; ρ) +

∫
|u− f |2ρ(x)dx.

We make several observations. Note that while the minimizers of the random functional converge to
the minimizers of a deterministic functional, and that the limit of the minimizers does not depend on the
amount of noise. In a sense noise does not create a bias. The randomness affects the limit in that the
actual values of the random discrete functionals are higher when there is more noise which leads to the
presence of Var(β) in the deterministic limit. We note that while we do not allow for Gaussian noise this
is purely for technical reasons, to make the proof of compactness easier. On the other hand we do not
require the noise to have continuous density with respect to Lebesgue measure.

Remark 2.8. Let us contrast the result of Corollary 2.7 to results on min-max recovery rates in
nonparametric regression that we mentioned in the introduction (see [HR16, MvdG97, PSCW18,
WSST16]). In the setting of regression one is concerned with recovering a function f † in some functional
class (e.g., BV unit ball) whose noisy samples are available. Thus the fidelity term is made stronger as
n→∞. Namely λ in (1.3) is taken to infinity at appropriate rate as n increases. The works obtain rates
at which minimizers of functionals like (1.3), with TV regularization instead of the Mumford–Shah term,
converge to f †. We conjecture that for the functions f † in BV ball the functional (1.3) also achieves the
optimal min-max rate. One difference between the Mumford–Shah and the TV regularization is that
the Mumford–Shah one does not decrease the contrast over sharp edges as TV regularization does. See
Example 7.1. In the context of regression our contribution is that by taking the limit n→∞ as λ is fixed
we shed the light on what is the precise amount of regularization introduced by the Mumford–Shah term
at finite λ.

2.3.2. Extension to data on a manifold. In machine learning it is often relevant to consider data that lie in
a potentially high dimensional space, but have an intrinsic low dimensional structure. Here we remark
that it is straightforward to extend our results to the setting where data are sampled from a measure µ
whose support is a d-dimensional C2 manifold, without boundary,M, embedded in RD for some D > d.
We require that the measure µ has a continuous density ρ with respect to the volume form of the manifold
M: dµ = ρdVolM. The form of the graph Mumford–Shah functional remains the same, while the only
change in the limiting functional (2.10) is that∇u is replaced by the manifold gradient gradM u. We note
that the scaling of ηε and the definition of ση depend on the intrinsic dimension d, but not the ambient
dimension D. Full details of how related statements are extended to the manifold setting can be found in
[GTGHS18].

2.3.3. Extension to vector valued functions. We note that in machine learning it is also natural to consider
functions on graphs which are vector valued. The graph Mumford-Shah functional (1.3) can be considered
for functions u with values in Rm. In fact such functionals have been used in the work of Hallac,
Leskovec, and Boyd [HLB15]. We do not rigorously treat the limits of vector-valued functionals in this
paper. Nevertheless we remark that we expect that the Γ-limit of the vector valued graph Mumford-Shah
functional for p = 2 is the following Mumford-Shah type functional: for u ∈ SBV (Ω)m

MSmη,ζ(u; ρ) := ϑη(2, q)ζ
′(0)

∫
Ω
|∇u(x)|2ρ(x)2dx+ σηΘ

∫
Su

ρ(y)2dHd−1(y)
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where Su is the union of jump sets for each of coordinate functions, u = (u1, . . . , um) and Su =
⋃m
j=1 Sui ,

and where Θ is defined by (2.8) and ϑη and ση by (2.11). We furthermore expect that one can prove this
using similar techniques that we use. We note that this would require a careful verification of the slicing
argument in multiple dimensions.

3. Γ-convergence and topology in the space of configuration

Given a sequence of functionals Fn : X → R and a metrizable (and separable) topology T on X we
say that Fn Γ-converges at F : X → R with respect to the topology T if the following two conditions are
satisfied:

(i) For every sequence {xn}n∈N ⊂ X such that xn
T−→ x it holds that

lim inf
n→∞

Fn(xn) ≥ F (x);

(ii) For all x ∈ X there exists a sequence {xn}n∈N ⊂ X such that xn
T−→ x and for which

lim sup
n→∞

Fn(xn) ≤ F (x).

In this case we write
Γ- lim
n→0

Fn = F.

Notice that, if Γ- lim
n→∞

Fn = F then the following assertions also hold:

(i) F is lower semi-continuous and

F (x) = inf
{

lim inf
n→∞

Fn(xn)
∣∣∣ {xn}n∈N ⊂ X, xn T−→ x

}
= inf

{
lim sup
n→∞

Fn(xn)
∣∣∣ {xn}n∈N ⊂ X, xn T−→ x

}
;

(ii) If {xn}n∈N is a sequence of minima of Fn on X , namely

Fn(xn) = min
y∈X
{Fn(y)},

converging to some x ∈ X in the topology T then x is a minimum of F on X:

F (x) = min
y∈X
{F (y)}.

3.1. The TLp topology: brief overview. The TLp space has been introduced in [GTS16] Given a
bounded open set Ω let P(Ω) be the set of Borel probability measures on Ω. The space TLp(Ω) is defined
by

TLp(Ω) := {(µ, f) : µ ∈ P(Ω) f ∈ Lp(Ω;µ)}. (3.1)

Given (µ, f), (ν, g) ∈ TLp(Ω) their TLp distance is defined as follows

dTLp((µ, f), (ν, g)) :=

infπ∈Γ(µ,ν)

(∫
Ω×Ω |x− y|

p + |f(x)− g(y)|pdπ(x)
) 1
p if p ∈ [1,∞),

infπ∈Γ(µ,ν) ess sup(x,y)∈supp π |x− y|+ |f(x)− g(y)| if p =∞

where the infimum is taken among all transport plans π between µ and ν:

Γ(µ, ν) := {γ ∈ P(Ω× Ω) : (∀A Borel) γ(A× Ω) = µ(A), γ(Ω×A) = ν(A)}.

Given µ ∈ P(Ω) and a measurable mapping T : Ω→ Ω, we recall that ν = T#µ is the push-forward
of µ by T , namely the measure on Ω such that for any A Borel ν(A) = µ(T−1(A)). A consequence of
the definition is the following change of variables identity∫

Ω
f(T (x))dµ(x) =

∫
Ω
f(y)dν(y). (3.2)
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Well-known results of the theory of optimal transportation, [Bre87] for p = 2, [GM96] for p <∞ and
[CDPJ08], for p =∞, provide that when µ is absolutely continuous with respect to Ld then there exists
an optimal transport map between µ and ν, namely T : Ω→ Ω such that T#µ = ν and

dpp(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Ω×Ω
|x− y|pdγ(x, y) =

∫
Ω
|T (x)− x|pdµ(x) when p <∞,

d∞(µ, ν) := inf
γ∈Γ(µ,ν)

ess sup
(x,y)∈supp(γ)

|x− y| = ess sup
x∈supp(µ)

|T (x)− x| when p =∞.
(3.3)

In particular the transport plan induced by T , namely π := (Id, T )#µ, is optimal. The distance dp(µ, ν)
we define in the expressions above is called the p-transportation metric (sometimes referred to as the
p-Wasserstein distance).

When considering convergence of a sequence (µn, fn) toward (µ, f), the following sufficient criterion
will be useful. We say that a sequence of transportation maps is stagnating if

Tn#µ = µn and ‖I − Tn‖pLp(µ) =

∫
Ω
|x− Tn(x)|p dµ(x)→ 0 (3.4)

as n → ∞. To show TLp convergence it thus suffices to find a stagnating sequence of transportation
maps such that

∫
|f(x)− fn(Tn(x))|pdµ(x) converges to zero as n→∞.

We now introduce the new results that allow us to obtain the optimal scaling of εn for Γ-convergence
in 2D. Namely while d∞(µ, µn) ∼ (lnn)3/4

√
n

when d = 2 we introduce an auxiliary measure µ̃n which is

absolutely continuous with respect to Lebesgue measure and satisfies both that d∞(µ̃n, µn) ∼
√

(lnn)
n

when d = 2 and that its density with respect to measure µ uniformly converges to 1. These two facts are
enough to pass to the limit in the functionals we consider, and many others (like total variation or dirichlet
energy). Lemma 3.2 is a technical result needed to transfer the TLp convergence to the desired measures.

Lemma 3.1. Let µ be a probability measure with continuous density ρ, supported on Ω, where Ω is a
bounded open set with Lipschitz boundary in Rd, d ≥ 2 and which satisfies the assumption (2.7). Let εn
be a sequence of positive numbers converging to zero and satisfying (2.12). Let {xi}i∈N be a sequence of
i.i.d. random points chosen according to the density ρ, and let µn = 1

n

∑n
i=1 δxi . Then there exists a

sequence of probability measures µ̃n which are absolutely continuous with respect to the measure µ and
satisfy

(i) Almost surely `n := d∞(µn, µ̃n)� εn

(ii) As n→∞, dµ̃n
dµ

almost surely as converges to 1 uniformly on Ω.

Proof. Let us first consider the case that Ω = [0, 1]d. Given a sequence εn satisfying the assumptions of
the lemma let {bn}n∈N and {cn}n∈N be increasing sequences of positive numbers such that

(
bn

lnn
n

)−1/d

is integer and

bn →∞, εn �
(
bn

lnn

n

)1/d

and c2
n � bn � cn as n→∞. (3.5)

Let, for n ≥ 2,

δd = bn
lnn

n
and t = cn

lnn

n

We divide [0, 1]d intom =
(
bn

lnn
n

)−1 disjoint cubesKj , j = 1, . . . ,m with side length δ. Note that the
probability pj that a point xi is in the boxKj is equal to µ(Kj) and that

cδd ≤ pj ≤ Cδd.
9



Bernstein’s inequality [Ber24] gives

P (|µn(Kj)− pj | ≥ t) < 2 exp

(
−

1
2nt

2

pj(1− pj) + 1
3 t

)
< 2 exp

(
−nt

2

3pj

)
≤ 2 exp

(
−c

2
n lnn

3Cbn

)
= 2n−

c2n
3Cbn .

(3.6)

It follows, by union bound, that the probability that in all boxes |µn(Kj)− pj | < t satisfies

P ({(∀j = 1, . . . ,m) |µn(Kj)− pj | < t) ≥ 1−m2n−
c2n

3Cbn ≥ 1− n−2, (3.7)

for all n large enough. By Borel–Cantelli Lemma we conclude that almost surely for n sufficiently large
for all boxes it holds that |µn(Kj)− pj | < t.

Define the measure µ̃n as follows:

dµ̃n =

m∑
j=1

1Kj

µn(Kj)

δd
dx

Since µ̃n(Kj) = µn(Kj), the distance d∞(µ̃n, µn) is at most the diameter of the boxes, namely

d∞(µ̃n, µn) ≤
√
d δ.

For large n and arbitrary x ∈ Ω letKj be such that x ∈ Kj . Using (3.6) we obtain∣∣∣∣dµ̃ndµ (x)− 1

∣∣∣∣ ≤
∣∣∣∣∣
µn(Kj)

δd
− ρ(x)

ρ(x)

∣∣∣∣∣
≤ |µn(Kj)− µ(Kj)|

δd ρ(x)
+

∫
Kj
|ρ(z)− ρ(x)|dz
δd ρ(x)

≤ t

cδd
+

1

c
ω(
√
d δ) ≤ cn

cbn
+

1

c
ω(
√
d δ),

where ω is the modulus of continuity of ρ. The uniform convergence follows since the terms on the
right-hand side converge to zero.

Extending the argument to general Ω with smooth boundary is straightforward using the partition
procedure detailed in Section 3 of [GTS15]. To general case of Ω with Lipschitz boundary can be reduced
to are domains with smooth boundary using the result of Ball and Zarnescu [BZ17], as was done is the
Step 2 of the proof of Theorem 1.2 in [GTS15]. �

Lemma 3.2. Let µ be a probability measure with density ρ supported on a compact set in Rd. Let µ̃n be
a sequence of probability measures which are absolutely continuous with respect to µ such that

dµ̃n
dµ
→ 1 uniformly on the support of µ.

Assume fn → f in Lp(µ) as n→∞. Then

(µ̃n, fn)→ (µ, f) in TLp as n→∞. (3.8)

Proof. From the assumption that dµ̃ndµ uniformly converges to 1 follows that the Lévy–Prokhorov metric
between µ̃n and µ converges to zero. Since the Levy-Prokhorov and the p-transportation metric, dp,
defined by (3.3), both metrize the weak convergence of measures on compact sets we conclude that
dp(µ, µ̃n)→ 0 as n→∞. Thus there exists a sequence of transportation plans πn ∈ Π(µ, µ̃n) such that∫

|x− y|pdπn(x, y)→ 0 as n→∞.

Since Lipschitz continuous functions are dense in Lp(µ) there exists a sequence of Lipschitz continuous
functions gm which converges to f in Lp(µ). Let ρn be the Lebesgue density of µ̃n. Since ρn

ρ uniformly
10



converges to 1, there exists n1 such that for all n ≥ n1, 1
2 ≤

ρn
ρ ≤ 2. For n ≥ n1∫

|fn(y)− f(x)|pdπn(x, y) ≤ 2p
(∫
|fn(y)− f(y)|pdµ̃n(y) +

∫
|f(y)− f(x)|pdπn(x, y)

)
.

We estimate the terms separately:∫
|fn(y)− f(y)|pdµ̃n(y) ≤ 2

∫
|fn(y)− f(y)|pdµ(y),

which converges to zero as n→∞.∫
|f(y)− f(x)|pdπn(x, y) .

∫
|f(y)− gm(y)|p + |gm(y)− gm(x)|p + |gm(x)− f(x)|pdπn(x, y)

. ‖f − gm‖pLp(µ) +

∫
Lip(gm)|x− y|pπn(x, y).

We observe that the right hand can be made arbitrarily small by takingm large enough and then taking n
sufficiently large. Consequently

∫
|fn(y)− f(x)|pdπn(x, y) converges to zero as n→∞, which implies

that (3.8) holds. �

4. Proof of the Γ-convergence (Theorem 2.1)

We prove Theorem 2.1 by separately proving the Γ-liminf bound and by building a recovery sequence.
The proof of Γ-liminf bound relies on slicing (i.e. one dimensional decomposition) as used by Gobbino
[Gob98] and the techniques of [GTS16] to deal with randomness of the sample. However since the spatial
coordinates appear also in a denominator within the functional (2.9), the way [GTS16] deals with space
is not precise enough and new ideas are needed to overcome this challenge. These are discussed in
Subsection 4.3. In the subsection below we introduce notation and present the one-dimensional slicing of
the continuum Mumford–Shah functional.

4.1. One dimensional slicing. We will argue on the one dimensional slices in order to achieve the
desired bounds. We repeatedly use the following computation, which we sketch for a generic function f .

Let f : Ω× Ω→ R be a integrable function. Then, for ε > 0 it holds∫
Ω×Ω

f(x, y)dxdy = εd
∫

Ω
dx

∫
Ω−x
ε

f(x, x+ εξ)dξ

= εd
∫
Rd

dξ

∫
Ω∩(Ω−εξ)

f(x, x+ εξ)dx

(4.1)

where we exploited the identity

1Ω(x)1(Ω−x)/ε(ξ) = 1Rd(ξ)1Ω−εξ(x)

and then Fubini’s Theorem (here 1E(x) stands for the characteristic function of the set E and takes
value 1 for x ∈ E and 0 otherwise). Given A ⊆ Rd and ξ ∈ Rd we define, for and for z ∈ ξ⊥, the one
dimensional slice

[A]z := {t ∈ R : z + tξ/|ξ| ∈ A}. (4.2)
Above we are omitting the dependence on ξ, since it will be clear from the context. We proceed to
consider one dimensional slices as follows∫

Ω×Ω
f(x, y)dxdy = εd

∫
Rd

dξ

∫
Ω∩(Ω−εξ)

f(x, x+ εξ)dx

= εd
∫
Rd

dξ

∫
ξ⊥

dz

∫
[Ω∩(Ω−εξ)]z

f

(
z + t

ξ

|ξ|
, z + (t+ ε|ξ|) ξ

|ξ|

)
dt.

(4.3)

When using one dimensional decompositions we will make several uses of the following notation.
Given g : Rd → R, ξ ∈ Rd and z ∈ ξ⊥ we define

gξ(t; z) := g

(
z + t

ξ

|ξ|

)
. (4.4)

We now state and prove two technical lemmas that we use in the sequel.
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Lemma 4.1. Let u ∈ SBV (Ω)p. Then

MSη,ζ(u; ρ) = ζ ′(0)

∫
Rd
|ξ|p−qη(|ξ|)dξ

∫
ξ⊥

dz

∫
[Ω]z

∣∣u′ξ(t; z)∣∣p ρξ(t; z)2dt

+ Θ

∫
Rd
|ξ|η(|ξ|)dξ

∫
ξ⊥

dz

∫
Suξ(·;z)

ρξ(t; z)
2dH0(t) (4.5)

= ζ ′(0)

∫
Rd
|ξ|p−qη(|ξ|)dξ

∫
Ω

∣∣∣∣∇u(x) · ξ
|ξ|

∣∣∣∣p ρ(x)2dx

+ Θ

∫
Rd
|ξ|η(|ξ|)dξ

∫
Su

∣∣∣∣Nu(y) · ξ
|ξ|

∣∣∣∣ ρ (y)2 dHd−1(y). (4.6)

where Nu(y) is any vector field normal to Su.

Proof. We can rewrite the right-hand side of (4.5) as follows

ζ ′(0)

∫
Rd
|ξ|p−qη(|ξ|)dξ

∫
ξ⊥

dz

∫
[Ω]z

∣∣u′ξ(t; z)∣∣p ρξ(t; z)2dt

+ Θ

∫
Rd
|ξ|η(|ξ|)dξ

∫
ξ⊥

dz

∫
Suξ(·;z)

ρξ(t; z)
2dH0(t)

= ζ ′(0)

∫
Rd
|ξ|p−qη(|ξ|)dξ

∫
ξ⊥

dz

∫
[Ω]z

∣∣∣∣∇u(z + t
ξ

|ξ|

)
· ξ
|ξ|

∣∣∣∣p ρ(z + t
ξ

|ξ|

)2

dt

+ Θ

∫
Rd
|ξ|η(|ξ|)dξ

∫
ξ⊥

dz

∫
Suξ(·;z)

ρ

(
z + t

ξ

|ξ|

)2

dH0(t)

= ζ ′(0)

∫
Rd
|ξ|p−qη(|ξ|)dξ

∫
Ω

∣∣∣∣∇u(x) · ξ
|ξ|

∣∣∣∣p ρ(x)2dx

+ Θ

∫
Rd
|ξ|η(|ξ|)dξ

∫
Su

∣∣∣∣Nu(y) · ξ
|ξ|

∣∣∣∣ ρ (y)2 dHd−1(y).

The last equality above follows from the Coarea formula, using a well known relation between the
one-dimensional slices of an SBV function and the total length of its jump set (see for instance [Amb89]).
Notice that ∫

Rd
|ξ|η(|ξ|)

∣∣∣∣Nu(y) · ξ
|ξ|

∣∣∣∣dξ =

∫ ∞
0

tdt

∫
∂Bt

η(t)

∣∣∣∣Nu(y) · ξ
t

∣∣∣∣dHd−1(ξ)

=

∫ ∞
0

tdη(t)dt

∫
∂B1

|Nu(y) · v|dHd−1(v)

= 2ωd−1

∫ ∞
0

tdη(t)dt = ση

where we have exploited the relation∫
∂B1

|Nu(y) · v|dHd−1(v) = 2ωd−1.

Moreover ∫
Rd
|ξ|p−qη(|ξ|)

∣∣∣∣∇u(x) · ξ
|ξ|

∣∣∣∣p dξ

=

∫ ∞
0

tp−q+d−1η(t)dt

∫
∂B1

|∇u(x) · v|pdHd−1(v)

= 2|∇u(x)|pωd−1
Γ(p/2 + 1/2)Γ(d/2 + 1/2)

Γ(p/2 + d/2)

∫ ∞
0

tp−q+d−1η(t)dt

= |∇u(x)|pϑη(p, q)
12



where we made use of∫
∂B1

|w · v|pdHd−1(v) = 2|w|pωd−1
Γ(p/2 + 1/2)Γ(d/2 + 1/2)

Γ(p/2 + d/2)
.

In particular

ζ ′(0)

∫
Rd
|ξ|p−qη(|ξ|)dξ

∫
ξ⊥

dz

∫
[Ω]z

∣∣u′ξ(t; z)∣∣p ρξ(t; z)2dx

+ Θ

∫
Rd
|ξ|η(|ξ|)dξ

∫
ξ⊥

dz

∫
Suξ(·;z)

ρξ(t; z)
2dH0(t)

= ζ ′(0)

∫
Rd
|ξ|p−qη(|ξ|)dξ

∫
Ω

∣∣∣∣∇u(x) · ξ
|ξ|

∣∣∣∣p ρ(x)2dx

+ Θ

∫
Rd
|ξ|η(|ξ|)dξ

∫
Su

∣∣∣∣Nu(y) · ξ
|ξ|

∣∣∣∣ ρ (y)2 dHd−1(y)

= ϑη(p, q)ζ
′(0)

∫
Ω
|∇u(x)|pρ(x)2dx

+ σηΘ

∫
Su

ρ (y)2 dHd−1(y) = MSη,ζ(u; ρ).

�

4.2. Auxiliary functionals. We introduce two auxiliary functionals: GMS and GAMS . The first one
is motivated by the calculation below and allows us to switch the auxiliary measure µ̃n, constructed in
Lemma 3.1 by the measure µ. The functionals GAMS moves a step further towards to local, limiting,
functional by replacing the integral over the product measure by one with weight ρ(x)2. We will first
establish the lim inf and lim sup bounds on an auxiliary energy GAMS , and then, by exploiting Lemma
4.2 apply these bounds to GMS. Thanks to (4.7) we can then prove the statement of Theorem 2.1 for
GMS .

Consider the setting of Theorem 2.1 and let µ̃n be the measures constructed in Lemma 3.1. Let
Tn : Ω → Ω be the d∞ optimal transport from µ̃n to µn. Let `n = d∞(µ̃n, µn) = ‖T − Id‖L∞ . By
exploiting the change of variable (3.2), we can rewrite the Mumford–Shah functional on the point clouds
in the following integral form:

GMSε,n(u) :=
1

ε

1

n2

n∑
i,j=1

ζ

(
ε1−p+q |u(xi)− u(xj)|p

|xi − xj |q

)
ηε(|xi − xj |)

=
1

ε

∫
Ω×Ω

ζ

(
ε1−p+q |u(x)− u(y)|p

|x− y|q

)
ηε(|x− y|)dµn(x)dµn(y)

=
1

ε

∫
Ω×Ω

ζ

(
ε1−p+q |u(x)− u(y)|p

|x− y|q

)
ηε(|x− y|)d(Tn#µ̃n)(x)d(Tn#µ̃n)(y)

=
1

ε

∫
Ω

∫
Ω
ζ

(
ε1−p+q |u(Tn(x))− u(Tn(y))|p

|Tn(x)− Tn(y)|q

)
ηε(|Tn(x)− Tn(y)|)dµ̃n(x)dµ̃n(y)

≤ sup
x∈Ω

∣∣∣∣ρnρ
∣∣∣∣2 1

ε

∫
Ω

∫
Ω
ζ

(
ε1−p+q |u(Tn(x))− u(Tn(y))|p

|Tn(x)− Tn(y)|q

)
ηε(|Tn(x)− Tn(y)|)dρ(x)dρ(y).

Analogously

GMSε,n(u)

≥ inf
x∈Ω

∣∣∣∣ρnρ
∣∣∣∣2 1

ε

∫
Ω

∫
Ω
ζ

(
ε1−p+q |u(Tn(x))− u(Tn(y))|p

|Tn(x)− Tn(y)|q

)
ηε(|Tn(x)− Tn(y)|)dρ(x)dρ(y).
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In the light of the above computation, we consider three different functionals, which, as we show, share
the same Γ-limit. We consider

GMSε,n(u) :=
1

ε

1

n2

n∑
i,j=1

ζ

(
ε1−p+q |u(xi)− u(xj)|p

|xi − xj |q

)
ηε(|xi − xj |)

GMSε,n(u) :=
1

ε

∫
Ω

∫
Ω
ζ

(
|u(Tn(x))− u(Tn(y))|p

εp−q−1|Tn(x)− Tn(y)|q

)
ηε(|Tn(x)− Tn(y)|)dρ(x)dρ(y)

GAMSε,n(u) :=
1

ε

∫
Ω

∫
Ω
ζ

(
|u(Tn(x))− u(Tn(y))|p

εp−q−1|Tn(x)− Tn(y)|q

)
ηε(|Tn(x)− Tn(y)|)ρ(x)2dxdy.

Notice that since ρn
ρ uniformly converges to 1 (by Lemma 3.1)

Γ- lim
n→+∞

GMSεn,n = Γ- lim
n→+∞

GMSεn,n. (4.7)

The next Lemma shows that, in case of a compactly supported kernel η, the auxiliar energy GAMS is
asymptotically equivalent to GMS .

Lemma 4.2. Let {εn}n∈N be any sequence satisfying (2.12). Le {un}n∈N be a sequence in L1(Ω;µn)
and assume that the kernel η is compactly supported. Then

lim inf
n→+∞

GMSεn,n(un) = lim inf
n→+∞

GAMSεn,n(un)

lim sup
n→+∞

GMSεn,n(un) = lim sup
n→+∞

GAMSεn,n(un)

Proof. We introduce the following definitions, subordinated to the proof in order to compress the notations
Rn(un) :=

1

εn

∫
Ω×Ω

ζ

(
|un(Tn(x))− un(Tn(y))|p

εp−q−1
n |Tn(x)− Tn(y)|q

)
ηεn(|Tn(x)− Tn(y)|)[ρ(y)− ρ(x)]ρ(x)dxdy.

Notice that
GMSεn,n(un) = GAMSεn,n(un) +Rn(un).

Moreover, due to the properties of ρ, we can find a constant L > 1 such that
1

L
GMSεn,n(u) ≤ GAMSεn,n(u) ≤ LGMSεn,n(u)

for all u ∈ L1(Ω;µn) and for all n ∈ N. In particular
GMSεn,n(un) = 0 ⇔ GAMSεn,n(un) = 0

GMSεn,n(un) = +∞ ⇔ GAMSεn,n(un) = +∞.
For the purpose of our proof we can hence restrict to

0 < GAMSεn,n(un) < +∞ for all n ∈ N.
since otherwise the seek equality trivially hold. With this assumption in mind we consider the finite ratio
Dn := Rn(un)/GAMSεn,n(un) so that

GMSεn,n(un) = GAMSεn,n(un)(1 +Dn). (4.8)
Since η is compactly supported, and since

|Tn(x)− Tn(x)| ≥ |x− y|+ 2`n

we have that ηεn(|Tn(x)− Tn(x)|) = 0 for all x, y such that |x− y| ≥Mεn for someM ∈ R. Moreover
if |x− y| < Mεn we have |ρ(x)− ρ(y)| ≤ Lip(ρ)Mεn. Thus, since ρ is bounded from below, we get

Rn(un) ≤ Lip(ρ)Mεn
c

GAMSεn,n(un).

Hence
lim

n→+∞
Dn = 0
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that, combined with (4.8) completes the proof. �

4.3. The liminf inequality. This subsection is devoted to the proof of the liminf inequality claim of the
Γ-convergence of Theorem 2.1:

Proposition 4.3. Let {εn}n∈N be any sequence satisfying (2.12). Let un ∈ L1(Ω;µn), u ∈ L1(Ω) such
that (µn, un)→ (µ, u) in TL1. Then

lim inf
n→∞

GMSεn,n(un) ≥MSη,ζ(u; ρ).

The proof relies on the following result, which can be obtained following ideas of [GM01, Corollary
3.3]. Its proof is provided in the Appendix A.

Lemma 4.4. Let A ⊂ R be a finite union of intervals and f ∈ C1
0 (A) ∩ C0(A) be such that

0 < c ≤ min
x∈A
{f(x)} ≤ max

x∈A
{f(x)} ≤ C <∞.

Define for every ξ ∈ Rd the one-dimensional functional

Eδ(u; ξ, A) :=
1

δ

∫
A
ζ

(
|u(x+ δ|ξ|)− u(x)|p

δp−1|ξ|q

)
f(x)dx (4.9)

and

E(u; ξ, A) := ζ ′(0)|ξ|p−q
∫
A
|u′(x)|pfdx+ Θ|ξ|

∫
Su∩A

f(y)dH0(y)x (4.10)

for u ∈ SBV p(R). Then
lim inf
δ→0

Eδ(uδ; ξ, A) ≥ E(u; ξ, A) (4.11)

for all {uδ}δ>0 ⊂ L1(A), u ∈ SBV p(A) such that uδ → u in L1.

We also need the following lemma.

Lemma 4.5. Let un : {x1, . . . , xn} → R be a sequence of function Lp(µn) such that (µn, un)→ (µ, u)
in TL1. Let µ̃n be the sequence of measures yield by Lemma 3.1 and consider Tn : Rd → Rd to be the
associated transport maps between µ̃n and µn. Fix ξ ∈ Rd, z ∈ ξ⊥ and define the sectional functions

t 7→ ũn,ξ(t; z) := un ◦ Tn
(
z + t

ξ

|ξ|

)
.

Then, forHd−1−a.e. z ∈ ξ⊥, the function ũξ,n(t; z) converge to uξ(t; z) in L1(R; ρξ(·; z)L1).

Proof. Assume by contradiction that there is a vector ξ and a set E ⊂ ξ⊥ withHd−1(E) > 0 such that,
for all z ∈ E it holds

lim inf
ε→0+

∫
R
|ũξ,n(t; z)− uξ(t; z)|ρξ(t; z)dt > 0.

Thanks to the TL1 convergence of the sequence (µn, un) and to the properties of our measures µ̃n
given by Lemma 3.1 we can infer (un ◦ Tn, µ̃n)→ (µ, u) in TL1. In particular thanks also to [GTS16,
Assertion 5, Proposition 3.12]) we know that

lim
n→∞

∫
Rd
|un ◦ Tn(x)− u(x)|ρ(x)dx = 0. (4.12)

We can rearrange and estimate the above integral as∫
Rd
|un◦Tn(x)− u(x)|ρ(x)dx =

∫ ∞
0

dt

∫
{
x·ξ
|ξ| =t

} |un ◦ Tn(x)− u(x)|ρ(x)dHn−1(x)

=

∫ ∞
0

dt

∫
ξ⊥
|ũξ,n(t; z)− uξ(t; z)|ρξ(t; z)dHn−1(z)

≥
∫
E

dHn−1(z)

∫ ∞
0
|ũξ,n(t; z)− uξ(t; z)|ρξ(t; z)dt.

15



In particular, Fatou’s Lemma implies

lim inf
n→∞

∫
Rd
|un ◦ Tn(x)− u(x)|ρ(x)dx > 0

which contradicts (4.12). �

Remark 4.6. The strategy adopted to prove the lim inf inequality is based on the integral form of the
functional GMS (more precisely on its asymptotic counterpart GAMS). Substantially we exploit such
an integral form and the monotonicity of η, ζ to compare our energy with the energy∫

Rd
η(|ξ|)dξ

∫
ξ⊥
Eεn(ũξ,n(·; z); ξ; Ω)dHd−1(z)

in order to apply Lemma 4.5 and Lemma 4.4. To achieve this goal we need to compare |Tn(x)− Tn(y)|
and |x − y|, as well as 1

|Tn(x)−Tn(y)| and
1
|x−y| . Notice that |Tn(x) − Tn(y)| ≈ |x − y| ± 2`n and in

particular due to the fact that `n � εn it is not difficult to compare |Tn(x)− Tn(y)| to |x− y| for couples
such that |x− y| ≈ εn. The problems arise for all those points x, y that lie very close to one another. The
strategy we adopt to overcome this difficulty is to create a hole of fixed size r around the origin in the
kernel η. That is to replace η by

ηr(t) := η(t)(1− 1[0,r)(t))

and thus to neglect all the, small, contributions we cannot compare and then progressively recover the full
energy by shrinking the hole in a limit process at the end of our proof. In the sequel we will often write
GMSεn,n(un; r),GAMSεn,n(un; r)to denote the corresponding energies having ηr in place of η.

Proof of Proposition 4.3. We can assume, without loss of generality, that

sup
n∈N
{GMSεn,n(un)} <∞. (4.13)

Notice that it is enough to assume that η is compactly supported. Indeed we can always replace η with
ηR := η(t)1[0,R)(t) and notice that, by meaning of Lemma 4.2 and (4.7) we have

lim inf
n→+∞

GMSεn,n(un) ≥ lim inf
n→+∞

GMSεn,n(un) ≥ lim inf
n→+∞

GAMSεn,n(un; ηR)

where GAMSεn,n(un; ηR) denotes the usual energy GAMSεn,n with ηR in place of η. In particular if
we can prove that, for compactly supported kernel, it holds

lim inf
n→+∞

GAMSεn,n(un; ηR) ≥MSηR,ζ(u)

then the continuity of the constants inMS allows us to send R to infinity and recover

lim inf
n→+∞

GMSεn,n(un) ≥MSη,ζ(u).

We thus focus on proving the Theorem for a compactly supported kernel η.

With this assumption in mind we invoke again Lemma 4.2 and (4.7) to infer

lim inf
n→∞

GMSεn,n(un) ≥ lim inf
n→∞

GAMSεn,n(un; r) for all r > 0. (4.14)

For the reader’s convenience in what follows we write ε and ` := ` := ‖Tn − Id‖∞ in place of εn and `n
by omitting the dependence on n. Thanks to (2.13) we have

|x− y|
ε

− 2`

ε
≤ |Tn(x)− Tn(y)|

ε
≤ |x− y|

ε
+

2`

ε
. (4.15)

On the set {|Tn(x)− Tn(y)| ≥ rε} we thus have

|x− y|
1 + 2`

εr

≤ |Tn(x)− Tn(y)| ≤ |x− y|
1− 2`

εr

.
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In particular, since the function t→ ζ(a/tq)ηrε(t) is non-increasing for all ε, r, a ∈ R, we conclude that

GAMSε,n(u; r) ≥ 1

ε

∫
Ω×Ω

ζ

 |un(Tn(x))− un(Tn(y))|p
εp−q−1

(1− 2`
εr )

q |x− y|q

 ηrε

(
|x− y|
1− 2`

εr

)
ρ(x)2dxdy

=
1

ε

∫
Ω×Ω

ζ

 |un(Tn(x))− un(Tn(y))|p
εp−q−1

(1− 2`
εr )

q−p+1

(
1− 2`

εr

)1−p |x− y|q
 ηr

(
|x− y|

ε
(
1− 2`

εr

)) ε−dρ(x)2dxdy

≥ 1

ε

∫
Ω×Ω

ζ

(
|un(Tn(x))− un(Tn(y))|p[
ε
(
1− 2`

εr

)]p−q−1 |x− y|q

)
ηr

(
|x− y|

ε
(
1− 2`

εr

)) ε−dρ(x)2dxdy.

By setting

δ = δε := ε

(
1− 2`

εr

)
and

Gδ,n(un, r) :=
1

δ

∫
Ω×Ω

ζ

(
|un(Tn(x))− un(Tn(y))|p

δp−q−1|x− y|q

)
ηrδ (|x− y|) ρ(x)2dxdy

=
1

δ

∫
Rd
ηr (|ξ|) dξ

∫
Ω∩(Ω−δξ)

ζ

(
|un(Tn(x+ δξ))− un(Tn(x))|p

δp−1|ξ|q

)
ρ(x)2dx

(where we applied the change of variable (4.1)) we obtain(
1− 2`

εr

)−d−1

GAMSε,n(u; r) ≥ Gδ,n(un, r). (4.16)

Notice that, since `� ε, we have δ = δε → 0 and
(
1− 2`

εr

)−d−1 → 1. We now focus our attention on
the energy Gδ,n and more precisely on

Eδ,n(un; ξ) :=
1

δ

∫
Ω∩(Ω−δξ)

ζ

(
|un(Tn(x+ δξ))− un(Tn(x))|p

δp−1|ξ|q

)
ρ(x)2dx.

Clearly

Gδ,n(un, r) =

∫
Rd
ηr(|ξ|)Eδ,n(un; ξ)dξ. (4.17)

Fix ξ and consider an open bounded set with finite perimeter and smooth boundary A ⊂⊂ Ω and notice
that, for δ small enough, we have

A ⊂ Ω ∩ (Ω− δξ).

In particular

Eδ,n(un; ξ) ≥ 1

δ

∫
A
ζ

(
|un(Tn(x+ δξ))− un(Tn(x))|p

δp−1|ξ|q

)
ρ(x)2dx

=
1

δ

∫
ξ⊥

dHn−1(z)

∫
[A]z

ζ

(
|ũξ,n(t+ δ|ξ|; z)− ũξ,n(t; z)|p

δp−1|ξ|q

)
ρξ(t; z)

2dt

=

∫
ξ⊥
Eδ(ũξ,n(·; z); ξ, [A]z)dHd−1(z)

Thanks to the co-area formula we have that for,Hd−1 almost every z ∈ ξ⊥, the set [A]z must be a finite
union of open intervals. Moreover, by applying Lemma 4.5 and the boundedness of ρ we conclude
ũξ,n(·; z) → uξ(·; z) in L1 for Hd−1 almost every z ∈ ξ⊥. Thus, by applying Lemma 4.4 and Fatou’s
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Lemma we reach

lim inf
n→∞

Eδ,n(un; ξ) ≥ |ξ|p−qζ ′(0)

∫
ξ⊥

∫
[A]z

|u′ξ(t; z)|pρξ(t; z)2dtdHd−1(z)+

+ Θ|ξ|
∫
ξ⊥

∫
Suξ(·;z)∩[A]z

ρξ(t, z)
2dH0(t)dHd−1(z). (4.18)

In particular, from (4.6), (4.18), (4.17) and Fatou’s Lemma we get

lim inf
n→∞

Gδ,n(un; r) ≥ ζ ′(0)

∫
Rd
|ξ|p−qηr(|ξ|)dξ

∫
A

∣∣∣∣∇u(x) · ξ
|ξ|

∣∣∣∣p ρ(x)2dx

+Θ

∫
Rd
|ξ|ηr(|ξ|)dξ

∫
Su∩A

∣∣∣∣Nu(y) · ξ
|ξ|

∣∣∣∣ ρ(y)2dHd−1(y)

which, being valid for all A ⊂⊂ Ω , allows us to conclude

lim inf
n→∞

Gδ,n(un; r) ≥ ζ ′(0)

∫
Rd
|ξ|p−qηr(|ξ|)dξ

∫
Ω

∣∣∣∣∇u(x) · ξ
|ξ|

∣∣∣∣p ρ(x)2dx

+Θ

∫
Rd
|ξ|ηr(|ξ|)dξ

∫
Su

∣∣∣∣Nu(y) · ξ
|ξ|

∣∣∣∣ ρ(y)2dHd−1(y).

Thanks to (4.6), we have that

lim inf
n→∞

GAMSεn,n(un; r) ≥ lim inf
n→∞

Gδn,n(un; r) ≥MSηr,ζ(u; ρ)

and by exploiting once again the continuity in r of the constants ϑηr(p, q), σηr we can take the limit as
r → 0. This, considered also (4.14), achieves the proof. �

4.4. The limsup inequality. We now prove the limsup inequality part of Theorem 2.1:

Proposition 4.7. Let {εn}n∈N be any sequence satisfying (2.12). Let u ∈ SBV (Ω). Then there exists
un ∈ L1(Ω;µn) such that (µn, un)→ (µ, u) in TL1 and

lim sup
n→∞

GMSεn,n(un) ≤MSη,ζ(u; ρ).

We prove the proposition by providing a recovery sequence for regular functions and argue by
approximation. We start by showing how to recover the energy of a function u ∈ SBV (Rd) having the
following properties:
(H1) Su is the union of a finite number of (d− 1)-dimensional simplexes,Hd−1(Su \ Su) = 0;
(H2) u ∈ C∞(Ω \ Su) ∩W 1,∞(Ω \ Su);
(H3) MSη,ζ(u) <∞

We then use of the following density theorem which is a consequence of a well known result of Cortesani
and Toader [CT99].

Theorem 4.8. Let Ω be an open bounded set with Lipschitz boundary and u ∈ SBV (Ω)p. Then there
exists a sequence of function uj ∈ SBV (Ω)p satisfying (H1),(H2) and (H3) such that:

(i) lim sup
j→∞

∫
Suj

ρ(y)2dHd−1(y) ≤
∫
Su

ρ(y)2dHd−1(y);

(ii) ∇uj
Lp−→ ∇u and uj

L1

−→ u, where ∇u is, as before, the absolutely continuous part of the
gradient Du.

The following Lemma is used to compare the energy of u(Tn) with the energy of u.

Lemma 4.9. Let {xi}ni=1 be a sequence of i.i.d. points chosen according to the density ρ. Let µ̃n be the
measures provided by Lemma 3.1 and Tn : Ω→ {x1, . . . , xn} be the transport maps between µ̃n and µn.
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Let {εn}n∈N be a sequence satisfying (2.12). For any u ∈ SBV (Ω) satisfying (H1)-(H2), ξ ∈ Rd, ` > 0
and ε > 0 define

(Su)` := {x ∈ Ω : d(x, Su) ≤ `},
(Su − εξ)` = {x ∈ Ω : d(x, Su − εξ) ≤ `},

D(ε,`) := (Su)` ∪ (Su − εξ)`.

Let `n = ‖Tn − Id‖∞. Then for any x ∈ Ω \D(εn, `n) it holds

|u(Tn(x+ εnξ))− u(Tn(x))| ≤ |u(x+ εnξ)− u(x)|+ 2`n‖∇u‖∞. (4.19)

Moreover

lim
n→∞

|D(εn, `n)|
εn

= 0. (4.20)

The proof is presented in Appendix B.

Proposition 4.10. Let {εn}n∈N be any sequence satisfying (2.12). Let u ∈ SBV (Ω) satisfying (H1)-(H3).
Then there exists a sequence of function {un}n∈N ⊂ L1(Ω;µn) such that (µn, un)→ (µ, u) in TL1 and

lim sup
n→∞

GMSεn,n(un) ≤MSη,ζ(u; ρ). (4.21)

Proof. We start by noticing that, since Ω has Lipschitz boundary, for any polyhedral set A ⊃⊃ Ω, there
exists an extension ũ ∈ SBV (Rd), still satisfying hypothesis (H1)-(H3), such that |Dũ|(∂Ω) = 0 and
ũ = 0 outside A (see for example [AFP00, Proposition 3.21]). We thus fix A ⊃ Ω and consider such an
extension (still denoted, with a slight abuse of notation, by u). We also extend ρ(x) = 0 on Rd \ Ω. For
every n, consider µ̃n of Lemma 3.1. Let Tn, as before be the d∞ optimal transport map between µ̃n and
µn and `n = ‖T − Id‖L∞(Ω). Notice that, sinceMSη,ζ(u; ρ) <∞ we can infer that, for Ld-a.e. ξ ∈ Rd

andHd−1-a.e. z ∈ ξ⊥ it holds∫
R
|u′ξ(t; z)|ρξ(t; z)2dt+

∫
Suξ(·;z)

ρξ(t; z)
2dH0(t) <∞. (4.22)

We define un : {xi}ni=1 → R as

un(xi) =

{
u(xi) if xi ∈ Ω \ Su;
u+(xi) if xi ∈ Su

(4.23)

where u+ is defined in (2.5). We now divide the proof in two steps.

Step one: lim sup bound on GAMS . We first prove that the lim sup bound holds for the auxiliary energy

GAMSεn,n(un) =
1

εn

∫
Ω×Ω

ζ

(
|un(Tn(x))− un(Tn(y))|
εp−q−1
n |T (x)− Tn(y)|q

)
ηεn(|Tn(x)− Tn(y)|)ρ(x)2dxdy

From now on, we will omit, as in other proofs, the dependence on n of εn and `n. Define, for t ∈ R, the
kernel η(t) := η(max{t− 2`/ε, 0}) (where we are omitting to explicitly denote the dependence on ε).
Since

|x− y| − 2` ≤ |Tn(x)− Tn(y)| ≤ |x− y|+ 2`

and since η is non-increasing, we deduce

η

(
|Tn(x)− Tn(y)|

ε

)
≤ η

(
max

{
|x− y|
ε

− 2`

ε
, 0

})
≤ η

(
|x− y|
ε

)
.

Since ζ is non-decreasing we have

GAMSε,n(un) ≤ 1

ε

∫
Ω×Ω

ζ

(
ε1−p+q |un(Tn(x))− un(Tn(y))|p

(|x− y| − 2`)q+

)
ηε(|x− y|)ρ(x)2dxdy

≤ 1

ε

∫
Rd

dξ

∫
Ω
ζ

(
|un(Tn(x+ εξ))− un(Tn(x))|p

εp−1(|ξ| − 2`/ε)q+

)
η(|ξ|)ρ(x)2dx
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For any fixed ξ ∈ Rd consider

Fε,n(un; ξ) =
1

ε

∫
Ω
ζ

(
|un(Tn(x+ εξ))− un(Tn(x))|p

εp−1(|ξ| − 2`/ε)q

)
ρ(x)2dx

so that

GAMSε,n(un) ≤
∫
Rd
η(|ξ|)Fε(un; ξ)dξ. (4.24)

Let D(ε, `) be the set defined in Lemma 4.9. Notice that

Fε,n(un; ξ) =
1

ε

∫
Ω\D(ε,`)

ζ

(
|un(Tn(x+ εξ))− un(Tn(x))|p

εp−1(|ξ| − 2`/ε)q+

)
ρ(x)2dx (4.25)

+
1

ε

∫
D(ε,`)

ζ

(
|un(Tn(x+ εξ))− un(Tn(x))|p

εp−1(|ξ| − 2`/ε)q+

)
ρ(x)2dx. (4.26)

The second integral (4.26) can be easily estimated as

1

ε

∫
D(ε,`)

ζ

(
|un(Tn(x+ εξ))− un(Tn(x))|p

εp−1(|ξ| − 2`/ε)q+

)
ρ(x)2dx ≤ C2Θ

|D(ε, `)|
ε

(4.27)

which, thanks to (4.20), is decaying to 0 as n→∞ (recall that ε = εn → 0).

Let us now treat the first term (4.25) in the light of Lemma 4.9. Since ζ is non-decreasing

1

ε

∫
Ω\D(ε,`)

ζ

(
|un(Tn(x+ εξ))− un(Tn(x))|p

εp−1(|ξ| − 2`/ε)q+

)
ρ(x)2dx

≤ 1

ε

∫
Ω
ζ

(
| |u(x+ εξ)− u(x))|+ 2`‖∇u‖∞|p

εp−1(|ξ| − 2`/ε)q+

)
ρ(x)2dx. (4.28)

From now on, we use the same arguments of of the proof of Gobbino [Gob98, Theorem 3.4, Proposition
3.5, Theorem 3.6], suitably adapted to our situation (see also [GM01]). By slicing along ξ⊥ we get

1

ε

∫
Ω
ζ

(
| |u(x+ εξ)− u(x))|+ 2`‖∇u‖∞|p

εp−1(|ξ| − 2`/ε)q+

)
ρ(x)2dx

=
1

ε

∫
ξ⊥

dHd−1(z)

∫
[Ω]z

ζ

(
| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp−1(|ξ| − 2`/ε)q+

)
ρξ(t; z)

2dt.

and, for the sake of clarity we introduce the notation

Fε(uξ(·; z); ξ, [Ω]z) :=
1

ε

∫
[Ω]z

ζ

(
| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp−1(|ξ| − 2`/ε)q+

)
ρξ(t; z)

2dt.

We define
[S]z := {t ∈ [Ω]z : [t, t+ ε|ξ|) ∩ Suξ(·;z) 6= ∅} (4.29)

and, for a fixed ξ ∈ Rd \ {0}, z ∈ ξ⊥, we split once again Fε(uξ(·; z); ξ, [Ω]z) as (notice that, for any
fixed ξ we can find ε > 0 small enough such that |ξ| − 2`/ε > 0)

1

ε

∫
[Ω]z\[S]z

ζ

(
| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp−1(|ξ| − 2`/ε)q+

)
ρξ(t; z)

2dt

+
1

ε

∫
[S]z

ζ

(
| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp−1(|ξ| − 2`/ε)q+

)
ρξ(t; z)

2dt

≤ ζ ′(0)

(|ξ| − 2`/ε)q

∫
[Ω]z\[S]z

| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp
ρξ(t; z)

2dt (4.30)

+ Θ
1

ε

∫
[S]z

ρξ(t; z)
2dt (4.31)
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Notice that, if t ∈ [Ω]z \ [S]z , we have

| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp
≤ ε−p

[∫ ε|ξ|

0

(
|u′ξ(t+ τ ; z)|+ `

ε|ξ|
‖∇u‖∞

)
dτ

]p

≤ ε−1|ξ|p−1

∫ ε|ξ|

0

[
|u′ξ(t+ τ ; z)|+ `

ε|ξ|
‖∇u‖∞

]p
dτ

= ε−1|ξ|p−1

∫ t+ε|ξ|

t

[
|u′ξ(s; z)|+

`

ε|ξ|
‖∇u‖∞

]p
ds

hence
ζ ′(0)

(|ξ| − 2`/ε)q

∫
Ωz\[S]z

| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp
ρξ(t; z)

2dt

≤ ζ ′(0)|ξ|p−1ε−1

(|ξ| − 2`/ε)q

∫
R

∫ t+ε|ξ|

t

[
|u′ξ(s; z)|+

`

ε|ξ|
‖∇u‖∞

]p
dsρξ(t; z)

2dt

=
ζ ′(0)|ξ|p−1ε−1

(|ξ| − 2`/ε)q

∫
R

[
|u′ξ(s; z)|+

`

ε|ξ|
‖∇u‖∞

]p ∫ s

s−ε|ξ|
ρξ(t; z)

2dtds (4.32)

where we used the identity

1R(t)1[t,t+ε|ξ|](s) = 1R(s)1[s−ε|ξ|,s](t).

Notice now that, for L1−a.e. s ∈ R, we have

lim
ε→0

(ε|ξ|)−1

[
|u′ξ(s; z)|+

`

ε|ξ|
‖∇u‖∞

]p ∫ s

s−ε|ξ|
ρξ(t; z)

2dt = |u′ξ(s; z)|pρξ(s; z)2.

In particular by exploiting the dominated convergence Theorem (the sequence is dominated by twice its
limit for example, which, for Ld-a.e. ξRd is summable forHd−1−a.e. z ∈ ξ⊥ due to (4.22)) we obtain
for Ld-a.e. fixed ξ andHd−1-a.e. fixed z ∈ ξ⊥

lim
ε→0+

ζ ′(0)

(|ξ| − 2`/ε)q

∫
[Ω]z\[S]z

| |uξ(t+ ε|ξ|; z)− uξ(t; z))|+ 2`‖∇u‖∞|p

εp
ρξ(t; z)

2dt

≤ ζ ′(0)|ξ|p−q
∫
R
|u′ξ(s; z)|pρξ(s; z)2ds

= ζ ′(0)|ξ|p−q
∫

[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds (4.33)

since ρ is defined to be zero outside Ω. Let ω be the modulus of continuity of ρ2 on Ω. That is, for r > 0

ω(r) = sup{|ρ2(x)− ρ2(y)| : x, y ∈ Ω, |x− y| < r}.

From the definition of [S]z in (4.29) follows that

Θ

ε

∫
[S]z

ρξ(t; z)
2dt ≤

∫
Suξ(·;z)

∫
(y−ε|ξ|,y]∩[Ω]z

ρξ(t; z)
2dt dH0(y)

≤ Θ|ξ|
∫
Suξ(·;z)∩[Ω]z

ρξ(y; z)2 + ω(ε|ξ|) dH0(y)

(4.34)

By collecting together (4.33) and (4.34) we get, for Ld-a.e. ξ ∈ Rd and forHd−1-a.e z ∈ ξ⊥, that

lim sup
ε→0

Fε(uξ(·; z); ξ, [Ω]z) ≤ ζ ′(0)|ξ|p−q
∫

[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+Θ|ξ|
∫
Suξ(·;z)∩[Ω]z

ρξ(t; z)
2dH0(t).
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In particular we can apply the reverse Fatou’s Lemma (again for every ξ, Fε is dominated by twice its
limit which is summable in z due toMSη,ζ(u) <∞) and conclude

lim sup
ε→0

∫
ξ⊥
Fε(uξ(·; z); ξ, [Ω]z)dHd−1(z) ≤ζ ′(0)|ξ|p−q

∫
ξ⊥

dHd−1(z)

∫
[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+ Θ|ξ|
∫
ξ⊥

dHd−1(z)

∫
Suξ(·;z)∩[Ω]z

ρξ(t; z)
2dH0(t).

By collecting (4.25), (4.26), (4.27), (4.28) the definition of Fε and Lemma 4.9 we get, for Ld-a.e. ξ ∈ Rd,
that

lim sup
n→∞

Fε,n(un; ξ) ≤ζ ′(0)|ξ|p−q
∫
ξ⊥

dHd−1(z)

∫
[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+ Θ|ξ|
∫
ξ⊥

dHd−1(z)

∫
Suξ(·;z)∩[Ω]z

ρξ(t; z)
2dH0(t).

A further application of the reverse Fatou’s Lemma on (4.24), combined with the fact that η(t) =
η(max{t− 2`/ε, 0})→ η(t) in L1 as ε→ 0, leads to

lim sup
n→∞

GAMSεn,n(un) ≤ζ ′(0)

∫
Rd
η(|ξ|)|ξ|p−qdξ

∫
ξ⊥

dz

∫
[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+ Θ

∫
Rd
η(|ξ|)|ξ|dξ

∫
ξ⊥

dz

∫
Suξ(·;z)∩[Ω]z

ρξ(t; z)
2dH0(t)

which, thanks to (4.5) achieves the proof of Step one.

Step two: lim sup bound on GMS. Consider ηM := 1[0,M)(t)η(t) and notice that, by exploiting the
notation of the proof of Lemma 4.2, we have

GMSεn,n(un) = GAMSεn,n(un) +Rn(un)

= GAMSεn,n(un) +Rn(un; ηM ) +Rn(un; η − ηM )

where, withRn(un; ηM ),Rn(un; η − ηM ) we mean the energyRn(un) with ηM , η − ηM in place of η.
SinceRn(un; ηM ) = GMSεn,n(un; ηM )− GAMSεn,n(un; ηM ), by virtue of Lemma 4.2 we have

lim
n→+∞

Rn(un; ηM ) = 0.

From the other side, since ρ is bounded from above and below we have that

|Rn(un; η − ηM )| ≤ CGAMSεn,n(un; η − ηM )

for a universal constant C. Thanks to the step one and to Proposition 4.3 we thus have

lim
n→+∞

|Rn(un; η − ηM )| ≤ C
[

lim
n→+∞

GAMSεn,n(un)− lim
n→+∞

GAMSεn,n(un; ηM )

]
= C(MSη,ζ(u)−MSηM ,ζ(u)).

SinceMSη,ζ(u) < +∞ by taking the limit asM → +∞ and by exploiting the continuity of the constants
inMS we get

lim
M→+∞

lim
n→+∞

|Rn(un; η − ηM )| = 0,

yielding
lim

n→+∞
Rn(un) = 0.

In particular, by invoking (4.7), we reach

lim sup
n→+∞

GMSεn,n(un) ≤ lim sup
n→+∞

GMSεn,n(un) = lim sup
n→+∞

GAMSεn,n(un) ≤MSη,ζ(u).

�
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Proof of Proposition 4.7. Assume now that u ∈ SBV (Ω). Let uj be the sequence given by Theorem
4.8. Then uj → u in L1 which means that dTL1((µ, uj), (µ, u))→ 0. Set (up to a subsequence)

L := lim sup
j→∞

MSη,ζ(uj)

Notice that thanks to assertions (i) and (ii) of Theorem 4.8 we have that L ≤MSη,ζ(u). For all k ∈ N,
consider jk such that

dTL1((µ, ujk), (µ, u)) ≤ 1/(2k)

MSη,ζ(ujk) ≤ L+ 1/(2k).

In particular it also holds that

MSη,ζ(ujk) ≤ L+ 1/(2k) ≤MSη,ζ(u) + 1/(2k).

For every jk chosen as above let {unjk}n∈N be the sequence given by Proposition 4.10 relative to ujk . By
exploiting Proposition 4.3 we can infer

MSη,ζ(ujk) = lim
n→∞

GMSεn,n(unjk).

Choose now nk such that

dTL1((µn, u
n
jk

), (ujk , µ)) <1/(2k)

GMSεn,n(unjk) <MSη,ζ(ujk) + 1/(2k) for all n ≥ nk(
< MSη,ζ(u) +

1

k
for all n ≥ nk

)
.

Define now the following recovery sequence

wn := unjk , if n ∈ [nk, nk+1), k ∈ N (4.35)

This means that, for any n ∈ [nk, nk+1) we have

dTL1((µn, u
n
jk

), (µ, u)) < 1/k,

GMSεn,n(unjk) ≤MSη,ζ(u) +
1

k
.

Implying

dTL1((µn, wn), (µ, u)) < 1/k, for all n ∈ [nk, nk+1)

GMSεn,n(wn) ≤MSη,ζ(u) +
1

k
for all n ∈ [nk, nk+1).

In particular, (µn, wn)→ (µ, u) in TL1 and

lim sup
k→∞

GMSεn,n(wn) ≤MSη,ζ(u).

�

5. Proof of the compactness result (Theorem 2.3)

This section is devoted to the proof of Theorem 2.3 that establishes a compactness result for sequences
of functions with uniformly bounded GMSεn,n where εn is any sequence satisfying (2.12).

Remark 5.1. Let us point out that, in contrast to [GTS16] where anL1 bound is assumed, our compactness
Theorem 2.3 requires an L∞ bound on the sequence un. Namely due to the fact that in GMSεn,n(un)
the differences in un are inside a bounded concave function ζ a uniform bound on GMSεn,n(un) is, in
general, not translatable into a uniform bound on GTVε,n. This is not just a technical issue and in fact an
L1-type bound is not sufficient for compactness. Here we provide a counterexample to compactness if one
only assumes an L1 bound on un. Choose ρ = 1 and Ω = Q the unit cube centered at 0. Let {Qki }2

kd

i=1
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be a di-adic division of Q in cubes of edges-size 2−k and let {xki }2
kd

i=1 be the uniform grid given by the
baricenter of each cube Qki . Consider the sequence of functions uk : {xki }2

kd

i=1 → R defined as

uk(x
k
j ) :=

1Brk (0)(x
k
j )

ωdr
d
k

with rk := 2−k/2. Notice that xki ∈ Brk(0) implies Qki ⊂ B2rk(0) and thus

#({i : xki ∈ Brk(0)}) ≤ #({i : Qki ⊂ B2rk(0)}) = 2dωd2
dk/2.

On the other hand

#({i : Qki ⊂ Brk(0)}) = 2kd

∣∣∣∣∣∣
⋃

Qki⊂Brk (0)

Qkj

∣∣∣∣∣∣ ≥ 2kd|Brk/2(0)| = 2−dωd2
kd/2.

Since Qki ⊂ Brk(0) implies xki ∈ Brk(0), we conclude

2−dωd2
dk/2 ≤ #({i : xki ⊂ Brk(0)}) ≤ 2dωd2

dk/2.

In particular, setting νk := 2−kd
∑2kd

i=1 δxki
, we have∫

Q
ukdνk = 2−kd

2kd∑
i=1

uk(x
k
i ) = 2−kd

#({i : xki ∈ Brk(0)})
ωdr

d
k

=
#({i : xki ∈ Brk(0)})

ωd2kd/2

and so
2−d ≤

∫
Q
ukdνk ≤ 2d for all k ∈ N. (5.1)

This means that uk ∈ L1 (Q; νk) and that

sup
k∈N
{‖uk‖L1} ≤ 2d (5.2)

Consider now εk := 2−kα for some 1/2 < α < 1 and notice that it satisfies (2.12), since

lim
k→∞

log(nk)
1/d

εkn
1/d
k

= 0

(here nk = 2kd and we are also considering d > 2). Now we choose ζ as

ζ(x) =

{
x for x ≤ 1,
1 for x ≥ 1.

(5.3)

With all these choices in mind, for any kernel η satisfying the assumptions (B1)-(B2), we can conclude

GMSεk,nk(uk) =
1

εkn
2
k

nk∑
i,j=1

ζ

(
ε1−p+q
k

|uk(xki )− uk(xkj )|p

|xki − xkj |q

)
ηεk(|xki − xkj |)

≤ 2

εkn
2
k

∑
xki ∈Brk (0)c

∑
xkj∈Brk (0)

ηεk(|xki − xkj |) = 2GTVεk,nk(1Brk (0)).

Notice that supk{GTVεk,nk(1Brk (0))} <∞ and so

sup
k∈N
{GMSεk,nk(uk)} <∞. (5.4)

By collecting (5.2) and (5.4) we are finally lead to
sup
k∈N
{‖uk‖L1 + GMSεk,nk(uk)} <∞.

Nonetheless we cannot expect any sort of TL1 compactness for the sequence (νk, uk). Indeed, the only
possible pointwise limit for uk ◦ Tnk : Q→ {0, r−dk /ωd} can be u = 0 but∫

Q
uk(Tnk(x))dx =

∫
Q
ukdνk ≥ 2−d > 0
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because of (5.1).

Our proof is based on the approach to the compactness theorem for general non-local functional
established in [GM01, Theorem 5.1]. With a careful application of such a Theorem we can indeed obtain
the following proposition.

Proposition 5.2. Let p ≥ 1 and consider an open set A ⊂ Rd with Lipscthiz boundary. Let uε ∈ L1(Rd)
be a sequence of function such that

inf

{∫
Rd×Rd

|uε(xi)− u(y)|
|x− y|

Jε(|x− y|)dxdy + ‖uε‖∞
}
< +∞

where J is any kernel such that {ξ : J(ξ) > c} has non-empty interior for some c > 0. Then the sequence
uε is compact in L1(Rd).

Before proceeding to the proof of Theorem 2.3 and in order to apply Proposition 5.2 (which holds for
functions defined on the whole Rd) we need the following extension Lemma in the same spirit of [GTS16,
Lemma 4.4].

Lemma 5.3. Suppose that Ω is abounded open set with C2 boundary. Let η be a compactly supported,
non-increasing kernel which is not identically equal to zero. Let {uε}ε>0 ⊂ L1(Ω) be a sequence. Then
there exists a sequence of function {vε}ε>0 ⊂ L1(Rd) such that

(i) vε = uε Ld-a.e. on Ω;
(ii) There exists a kernel Jη such that {ξ : Jη(|ξ|) > c} has not empty interior for some c > 0 and

such that if

sup
ε>0

{∫
Ω×Ω

|uε(x)− uε(y)|
|x− y|

ηε(|x− y|)
(
|x− y|
ε

)p
dxdy + ‖uε‖∞

}
<∞,

then

sup
ε>0

{∫
Rd×Rd

|vε(x)− vε(y)|
|x− y|

Jηε (|x− y|)dxdy + ‖vε‖∞
}
<∞

Proof. Since Ω has C2 boundary we can find δ > 0 for which the projection operator x→ Px ∈ Ω is
well defined on U := {x ∈ Rd | d(x,Ω) ≤ δ} and satisfies

|x− Px| = d(x,Ω).

We moreover consider a smooth cut off function τ(s) ≤ 1, such that τ(s) = 1 for s ≤ δ/8 and τ(s) = 0
for s ≥ δ/4 and we consider the reflection Rx := 2Px− x. Set also

W := {z ∈ Rd \ Ω | d(x,Ω) < δ/4}

V := {z ∈ Rd \ Ω | d(x,Ω) < δ/8}.

It has been shown in the proof of [GTS16, Lemma 4.4] that
1

4
|x− y| ≤ |Rx−Ry| ≤ 4|x− y| for all x, y ∈W ; (5.5)

|Rx− y| ≤ 2|x− y| for all x ∈W , y ∈ Ω; (5.6)

Since η can be extended continuously at 0 with η(0) > 0, up to decreasing the value of δ, we can also
guarantee that

Jη(t) := tpη (4t)
(
1− 1[0,δ](t)

)
is such that {t | Jη(t) > c} has not empty interior for some c > 0. Notice also that

|Rx− y| ≥ 3

4
|x− y| for x, y ∈W , |x− y| ≥ δ. (5.7)

In the light of this fact, we introduce the functions ṽε := uε(Rx) and vε(x) := τ(|Px−x|)ṽε(x). Clearly
(i) is satisfied. Notice that for y ∈ Ω

|x− y|
ε

≥ d(x,Ω)

ε
.
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Thus, if d(x,Ω) ≥ δ/8, for ε small enough and thanks to the fact that η is compactly supported, we
conclude that

ηε(4|x− y|) = 0.

Consequently∫
(Rd\Ω)×Ω

|vε(x)− vε(y)|
|x− y|

Jηε (|x− y|)dxdy

=

∫
(Rd\Ω)×Ω

|vε(x)− vε(y)|
|x− y|

ηε(4|x− y|)
(
|x− y|
ε

)p(
1− 1[0,δ)

(
|x− y|
ε

))
dxdy

=

∫
V×Ω

{|x−y|≥δε}

|ṽε(x)− ṽε(y)|
|x− y|

ηε(4|x− y|)
(
|x− y|
ε

)p
dxdy

≤ C
∫

V×Ω
{|x−y|≥δε}

|uε(Rx)− uε(y)|
|Rx− y|

ηε(4|x− y|)
(
|Rx− y|

ε

)p
dxdy

≤ C
∫
V×Ω

|uε(Rx)− uε(y)|
|Rx− y|

ηε(2|Rx− y|)
(
|Rx− y|

ε

)p
dxdy

≤ C
∫

Ω×Ω

|uε(z)− uε(y)|
|z − y|

ηε(2|z − y|)
(
|z − y|
ε

)p
dzdy

≤ C
∫

Ω×Ω

|uε(z)− uε(y)|
|z − y|

ηε(|z − y|)
(
|z − y|
ε

)p
dzdy (5.8)

Where we have exploited (5.5), (5.6), (5.7) the change of variableRx = z and the fact thatR is bi-Lipscthiz
onW . From the other side, for (x, y) ∈W ×W we have

|vε(x)− vε(y)|
|x− y|

≤ τ(|Px− x|)(|ṽε(x)− ṽε(y)|) + τ(|Px− x|)− τ(|Py − y|)|ṽε(y)|
|x− y|

≤ |uε(Rx)− uε(Ry)|
|x− y|

+ ‖vε‖∞Lip(τ) ≤ 1

4

|uε(Rx)− uε(Ry)|
|Rx−Ry|

+ ‖vε‖∞Lip(τ).

Moreover

ηε(4|x− y|)
(
|x− y|
ε

)p(
1− 1[0,δ)

(
|x− y|
ε

))
≤ ηε(4|x− y|)

(
|x− y|
ε

)p
≤ Cηε(|Rx−Ry|)

(
|Rx−Ry|

ε

)p
In particular with the same change of variable as above we achieve∫

(Rd\Ω)×(Rd\Ω)

|vε(x)− vε(y)|
|x− y|

Jηε (|x− y|)dxdy

≤ C
(

1 +

∫
Ω×Ω

|uε(x)− uε(y)|
|x− y|

ηε(|x− y|)
(
|x− y|
ε

)p
dxdy

)
(5.9)

By collecting (5.8), (5.9) and the definition of vε we prove (ii). �

Proof of Theorem 2.3. Since ρ is always bounded from above and below, without loss of generality we
can assume ρ = 1. Moreover we can always assume that η is compactly supported since, by replacing η
with η1[0,M ] for suitableM , we are decreasing the energy. Without loss of generality we may also assume
that η is supported on [0, 1]. Moreover, as usual, we will omit the dependence on n of the sequences εn
and `n = ‖Tn − Id‖∞.
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Due to the properties of ζ we can always find real constants ζ2 and c2 > 0 such that{ ζ′(0)
2 ≤ ζ(t)

t for t ≤ ζ2

c2 ≤ ζ(t) for t ≥ ζ2.
(5.10)

Set ũn(x) := un ◦ Tn, where Tn : Ω→ {x1, . . . , xn} is the map that transports µ̃n to µn; the measures
given by Lemma 3.1. We define

Aε :=

{
(x, y) ∈ Ω× Ω

∣∣∣ ε1−p+q |ũn(x)− ũn(y)|p

|Tn(x)− Tn(y)|q
≥ ζ2

}
. (5.11)

We immediately see that

GMSε,n(un) ≥ 1

ε

∫
Aε

ζ

(
ε1+q−p |ũn(x)− ũn(y)|p

|Tn(x)− Tn(y)|q

)
ηε(|Tn(x)− Tn(y)|)dxdy

≥ c2

ε

∫
Aε

ηε(|Tn(x)− Tn(y)|)dxdy.

Moreover since η is non increasing and non identically 0 we can find a positive r > 0 such that
η(t+ r)1[0,1)(t) is not identically 0. Set η̄(t) := η(t+ r)1[0,1](t) and notice that η̄ is still a non increasing
kernel, supported on [0, 1− r]. Since for ε small enough we can always guarantee that

|Tn(x)− Tn(y)|
ε

≤ |x− y|
ε

+ r ⇒ η

(
|Tn(x)− Tn(y)|

ε

)
≥ η̄

(
|x− y|
ε

)
.

We can also infer, for |x− y|/ε ≤ (1− r)(
|x− y|
ε

)p
η̄ε(|x− y|) ≤ (1− r)p−1 |x− y|

ε
ηε(|Tn(x)− Tn(y)|).

Thus we can conclude(∫
Aε

|ũn(x)− ũn(y)|
|x− y|

(
|x− y|
ε

)p
η̄ε(|x− y|)dxdy

)p
≤ C‖un‖p∞GMSε,n(un)p (5.12)

for a universal constant C > 0. For the remaining part we notice the following thing. On (Ω×Ω) \Aε it
holds

ζ

(
ε1−p+q |ũn(x)− ũn(y)|p

|Tn(x)− Tn(y)|q

)
≥ εζ

′(0)

2

|ũn(x)− ũn(y)|p

|x− y|p
εq

|Tn(x)− Tn(y)|q

(
|x− y|
ε

)p
and for ε small enough we have

εq

|Tn(x)− Tn(y)|q
≥ 1(

|x−y|
ε + 2`

ε

)q ≥ 1(
|x−y|
ε + 1

)q .
This yields, by recalling that η̄ε(|x− y|) = 0 for |x− y| ≥ (1− r)ε, that

GMSε,n(un) ≥ ζ ′(0)

2

∫
(Ω×Ω)\Aε

|ũn(x)− ũn(y)|p

|x− y|p

(
|x−y|
ε

)p(
|x−y|
ε + 1

)q η̄ε(|x− y|)dxdy

≥ Λ1−pC

(∫
(Ω×Ω)\Aε

|ũn(x)− ũn(y)|
|x− y|

(
|x− y|
ε

)p
η̄ε(|x− y|)dxdy

)p
(5.13)

where

Λ :=

∫
(Ω×Ω)\Aε

(
|x− y|
ε

)p
η̄ε(|x− y|)dxdy ≤

∫
Ω×Ω

(
|x− y|
ε

)p
η̄ε(|x− y|)dxdy

≤ 2|Ω|
∫
Rd
|ξ|pη̄(|ξ|)dξ ≤ 2|Ω|

∫
B1(0)

|ξ|pη̄(|ξ|)dξ < +∞.

By collecting (5.12) and (5.13) we conclude that

sup
n∈N

{∫
Ω×Ω

|ũn(x)− ũn(y)|
|x− y|

(
|x− y|
εn

)p
η̄εn(|x− y|)dxdy + ‖ũn‖∞

}
< +∞. (5.14)
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We now divide the proof in three steps.

Step one: Ω has C2 boundary. In this case, by applying Lemma 5.3 we can find a sequence of
{vn}n∈N ⊂ L1(Rd) such that vn = ũn Ld-a.e. on Ω. Moreover, due to (5.14) there exists a kernel J η̄
such that {ξ : J η̄(|ξ|) ≥ c} has not empty interior for some c > 0 and for which

sup
n∈N

{∫
Rd×Rd

|vn(x)− vn(y)|
|x− y|

J η̄εn(|x− y|)dxdy + ‖vn‖∞
}
< +∞.

Then, by applying Proposition 5.2 we deduce that {vn}n∈N is compact in L1(Rd) and thus {ũn}n∈N is
compact in L1(Ω).

Step two: Ω has Lipschitz boundary. Thanks to [BZ17, Remark 5.3] there exists a bi-Lipscthiz map
Ψ : Ω̂ → Ω where Ω̂ is a domain with smooth boundary. Consider ûn := ũn ◦ Ψ : Ω̂ → R. Clearly
‖ûn‖∞ ≤ ‖ũn‖∞. Moreover∫

Ω̂×Ω̂

|ûn(x)− ûn(y)|
|x− y|

(
|x− y|
εn

)p
η̄ε(Lip(Ψ)−1|x− y|)dxdy

≤ C
∫

Ω×Ω

|ũn(x)− ũn(y)|
|Ψ(x)−Ψ(y)|

(
|Ψ(x)−Ψ(y)|

εn

)p
η̄εn(Lip(Ψ)−1|Ψ(x)−Ψ(y)|)dxdy

≤ C
∫

Ω×Ω

|ũn(x)− ũn(y)|
|x− y|

(
|x− y|
εn

)p
η̄εn(|x− y|)dxdy.

By exploiting (5.14), Lemma (5.3) and by arguing as in Step one we conclude that {ûn}n∈N is compact in
L1(Ω̂). Since Ψ is bi-Lipschitz, a simple change of variable shows that {ũn}n∈N is compact in L1(Ω).

Step three: Compactness of (µn, un) in TL1. Thanks to Steps one and two we obtained that {ũn :=
un ◦ Tn}n∈N is compact in L1(Ω) and converges to some u up to a subsequence. Thanks to Lemma 3.2
we deduce that (µ̃n, un ◦ Tn)→ (µ, u) in TL1 as well. In particular, since d∞(µn, µ̃n)→ 0, we have

dTL1((µn, un), (µ, u)) ≤ dTL1((µn, un), (µ̃n, un ◦ Tn) + dTL1((µ̃n, un ◦ Tn), (µ, u))

= d∞(µn, µ̃n) + dTL1((µ̃n, un ◦ Tn), (µ, u))→ 0.

�

6. Proofs of corollaries

We now prove the Corollary 2.6.

Proof. Let un : Vn → R be a sequence of functions such that (µn, un) converges in TL2 towards (µ, u).
Let Tn be the∞-optimal transport map between µ and µn. To show the liminf inequality needed for
Γ-convergence, it suffices to establish the convergence of the fidelity term, as the other terms are same as
in Theorem 2.1. Note that

1

n

n∑
i=1

|un(xi)− f(xi)|2 =

∫
Ω
|un ◦ Tn − f ◦ Tn|2ρ(x)dx.

We claim that since f is piecewise continuous f ◦ Tn converges to f in L2(µ). Namely let Jf be
the set of discontinuities of f and let J̃f = Jf ∪ ∂Ω. Let J̃f,δ = {x ∈ Ω : d(x, J̃f ) < δ}. Since
Hd−1(J̃f ∪ ∂Ω) < ∞, µ(J̃f,δ) → 0 as δ → 0. To establish the convergence let ε > 0. Let δ be such
that 4‖f‖L∞µ(J̃f,δ) < ε. Let n be so large that ‖Tn − I‖L∞ < 1

2δ. Since f is uniformly continuous on
Ω \ J̃f,δ/2 and ‖Tn − I‖L∞ → 0 as n→∞, f ◦ Tn converges uniformly to f on Ω \ J̃f,δ. Therefore for
all n large enough∫

Ω
|f − f ◦ Tn|2ρ(x)dx ≤ 2µ(J̃f,δ|)‖f‖L∞ +

∫
Ω\J̃f,δ

|f − f ◦ Tn|2ρ(x)dx <
ε

2
+
ε

2
.

Since (µn, un)→ (µ, u) in TL2, and Tn is a stagnating sequence of transport maps we conclude that we
conclude that un ◦ Tn → u in L2(µ). Combining with the convergence for f ◦ Tn obtained above we
conclude that

∫
Ω |un ◦ Tn − f ◦ Tn|

2ρ(x)dx→
∫

Ω |u− f |
2ρ(x)dx as n→∞.
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Establishing the limsup inequality is straightforward by using the same approximation argument and
recovery sequence as in the proof of Theorem 2.1.

To establish the compactness of the sequence of minimizers, let un be a minimizer of GMSf,ε,n.
By truncation it is immediate that ‖un‖L∞(µn) ≤ ‖f‖L∞(µ). Therefore the compactness claim of the
Theorem 2.3 implies that (µn, un) converges along a subsequence in TL1 to (µ, u) for some u ∈ L∞(µ).
The boundedness in L∞ implies, via interpolation, that the convergence is in TL2. The fact that u is a
minimizer follows from Γ-convergence. �

We now prove the Corollary 2.7.

Proof. Let us first establish the liminf inequality. Let un : Vn → R be a sequence of functions such that
(µn, un) converges in TL2 towards (µ, u). Given the results of Theorem 2.1 and assumptions on β, it
suffices to show that the fidelity term converges, that is that

1

n

n∑
i=1

|un(xi)− f(xi)− yi|2 →
∫∫

Ω×R
|u(x)− f(x)− y|2ρ(x)dxdβ(y) (6.1)

as n → ∞. Note that 1
n

∑n
i=1 |un(xi) − f(xi)|2 →

∫
Ω |u(x) − f(x)|2ρ(x)dx follows from the proof

of Corollary 2.6. The fact that 1
n

∑n
i=1 δyi weakly converges to β follows from Glivenko–Cantelli

lemma. Due to boundedness of moments we conclude that 1
n

∑n
i=1 δyi converges to β is q−Wasserstein

distance for all q ≥ 1. Using the boundedness of β we conclude that 1
n

∑n
i=1 |yi|2 converges to∫

R y
2dβ(y) =

∫∫
Ω×R y

2ρ(x)dxdβ(y) since
∫

Ω ρ(x)dx = 1. Note that γn := 1
n

∑n
i=1 δ(xi,yi) converges

to γ := µ × β in Wasserstein distance, again due to Glivenko-Cantelli lemma. Let κn be the optimal
transport plan for the Wasserstain distance between γ and γn. Let πn := Π1,3]κn where Π1,3 is the
projection to the first and the third variable. By definition πn is a stagnating sequence of transport
plans. Therefore, by Proposition 3.12 of [GTS16], since (µn, un − f)

TL2

−→ (µ, u − f) by the proof of
Corollary 2.6,

∫∫∫∫
|x − x̃|2 + |un(x̃) − f(x̃) − u(x) + f(x)|2dκn(x, y, x̃, ỹ) → 0 as n → ∞. Thus

(γn, un − f)
TL2

−→ (γ, u − f) as n → ∞. Similarly (γn, y)
TL2

−→ (γ, y) as n → ∞. Consequently
(γn, (un − f)y)

TL1

−→ (γ, (u− f)y) as n→∞. Thus

1

n

n∑
i=1

(un(xi)− f(xi))yi −
∫∫

Ω×R
(u(x)− f(x))y ρ(x)dxdβ(y)

=

∫∫∫∫
(un(x̃)− f(x̃))ỹ − (u(x)− f(x))y dκn(x, y, x̃, ỹ)→ 0 as n→∞.

Combining with the limits above establishes (6.1).
The proofs of limsup inequality, compactness and the converge of minimizers are as before. �

7. Numerical algorithm and experiments

Here we desribe an efficient numerical algorithm for computing the, approximate, minimizers of the
graph Mumford-Shah functional and illustrate its behavior on a real world set of data. We note that similar
functionals were minimized using the ADMM algorithm by Hallac, Leskovec, and Boyd by [HLB15].
Here we minimize (1.1), where ζ is non convex. We use a standard “Iterated Reweighted Least Square”
approach which in this context dates back at least to [GR92] (cf also the implementation in [Cha99]).
In our case, the idea is to perform several iteration, linearizing each time the problem with respect to ζ
around the previous value.

This can be presented as follows: we assume that ζ is concave, with ζ ′(0) = 1 and ζ(+∞) = 1,
for instance ζ(t) = t/(1 + t) for t > 0. Then, using the Legendre transform, one can write for
t > 0 ζ(t) = minz∈[0,1] zt + Ψ(z) for some convex function Ψ. (One has ζ(t) = −Ψ∗(−t) and
Ψ(z) = maxt ζ(t) − tz, where Ψ∗ denotes the classical convex conjugate of Ψ.) The minimum (if
unconstrained) is reached at z which solves t+ Ψ′(z) = 0, hence z = (Ψ∗)′(−t) = ζ ′(t).
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We consider the edge weights given by kernel η(s) = e−
s2

2σ2 where σ is a parameter that can be tuned.
Minimizing (1.1) is equivalent to solving:

min
u,z

n∑
i=1

|u(xi)− fi|2 +
1

λεn

n∑
i,j=1

(
zi,j

1

ε
|u(xi)− u(xj)|2 + Ψ(zi,j)

)
1

εd
exp

(
−|xi − xj |

2

2σ2ε2

)
(7.1)

where the new variable (zi,j) is defined on the active edges. This is computed by alternatively minimizing
the problem with respect to u and z: in u, the problem is quadratic and can be minimized efficiently,
depending on the graph, by inverting the graph Laplacian (plus identity) or a conjugate gradient method.
In z, the solution is explicitly given by

zi,j = ζ ′
(
|u(xi)− u(xj)|2

ε

)
.

In practice, we have implemented the following cases:

ζ(t) =
2

π
arctan

(
πt

2

)
, ζ ′(t) =

1

1 + π2t2

4

(7.2)

ζ(t) =
√
δ2 + t, ζ ′(t) =

1

2
√
δ2 + t

, (7.3)

ζ(t) = t, ζ ′(t) = 1, (7.4)

The choice (7.3) leads as δ → 0 to a consistent approximation of the graph Total Variation which
was first proposed in [VO96]. The choice ζ(t) = t corresponds to regularization by Dirichlet energy,
which corresponds to (unnormalized) graph Laplacian. Our implementation is available on bitbucket:
https://bitbucket.org/AntoninCham/ms_on_graphs/

7.1. A synthetic example. We consider denoising and detecting edges in the signal given by piecewise
linear function u on domain [0, 1]2, shown on Figure 7.1a. The signal is sampled at 10,000 points,X10,000,
and corrupted by Gaussian noise with variance 0.2. We build the graph using η as in (7.1) with σ = 5
and ε = 0.0225 and with the maximum number of neighbors k = 8. We considered three models for
denoising and edge detection given by ζ in (7.2)–(7.4). Namely on Figure 7.1c we display the computed
minimizer of the graph Mumford-Shah for ζ given by (7.2) and λ = 162. On Figure 7.1d we display
the minimizer of the approximation of the graph TV functional for ζ given by (7.3) with δ = 0.001
and λ = 438. On Figure 7.1e we show the minimizer of the functional with dirichlet regularization,
corresponding to ζ given by (7.4) and λ = 248. For comparison, for each of the models we display
the result for parameter λ which minimizes the L1(µ10,000) error between the minimizer and the clean
signal u restricted to X10,000. The errors observed for optimal lambdas were ‖uMS − u‖L1 = 0.0258,
‖uMS − u‖L1 = 0.0297, and ‖uL − u‖L1 = 0.0392. We note that the recovery by Mumford-Shah is
somewhat better than for graph TV. We think that the main reason is that the graph TV tends to decrease
contrast (as is well known in image processing, see page 30 of [CCC+10]) while the Mumford-Shah does
not have this bias.

We also observe to what extent the minimizers recover the edges of the domains by labeling the graph
edges that have a relatively large difference between values at the nodes. These are shown in red on the
plots. The critical jump size was set manually for visually the best results for each model. We note that
Mumford-Shah and TV give similar results, while the Laplacian smoothing blurs the edges as expected.
Taking the difference between the minimizers uMS − uTV shows, on Figure 7.1f that indeed jumps across
the edges are typically larger for the Mumford-Shah minimizers that for Total-Variation regularization.

7.2. Denoising housing prices. Here we present an example of minimization of Mumford-Shah func-
tionals on graphs arising from real-world data samples. This example is given as an illustration of the
nature of minimizers.

We consider denoising the real estate prices in King County, WA. The housing prices in the period May
2014 to May 2015 are obtained from the Kaggle website: https://www.kaggle.com/harlfoxem/
housesalesprediction.

We removed the geographical outliers (east of longitude −121.68o) and data rows missing square
footage. The recorded price per square foot is shown on the left. This left 21594 usable records. The
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(a) Noiseless function. (b) Function sampled at 10,000 random points and
corrupted by gaussian noise with σ = 0.2.

(c) Minimizer uMS of (1.1) for λ = 162. Edges with
jump over 0.075 are red.

(d) Minimizer uTV of the graph TV functional for
λ = 438. Edges with jump over 0.14 are red.

(e) Minimizer uL for ζ given by (7.4) with λ = 248.
Edges with jump over 0.09 are red.

(f) The difference uMS − uTV tends to be positive on
the upper side of jumps and negative on the lower side.

Figure 7.1. Denoising (regression) and edge detection

maximum price per square foot was $810.14. We normalized the input prices per square foot by dividing
by the maximal price. On Figure 7.2 we present the computed minimizers of the graph Mumford–Shah
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functional with ε = 0.04, λ = 14, and σ = 1. We also allow one to limit the maximal degree of a vertex
considered, which we set to k = 15. On a 2018 Macbook Pro, the computation takes 31s, including the
construction of the graph. The denoised data allow one to visualize by how much the typical price per
square foot depends on the location.

(a) The recorded price per square foot. (b) The minimizer of the graph Mumford–Shah func-
tional computed.

(c) Detail of the image above (d) Detail of the image above.

Figure 7.2. Denoising of housing prices. The maximum price per square foot
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Appendix A. Proof of Lemma 4.4

The proof of Lemma 4.4 is obtained as a slight modification of the proof contained in [GM01] for
f = 1. In particular we apply [GM01, Theorem 3.1, Theorem 3.2] on the family of functions

ϕε(r) :=
|ξ|
ε
ζ

(
εrp

|ξ|q−p+1

)
.

Indeed we note the following facts

(i) ϕδ|ξ|
(
|u(x+ δ|ξ|)− u(x)|

δ|ξ|

)
=

1

δ
ζ

(
|u(x+ δ|ξ|)− u(x)|p

δp−1|ξ|q

)
;
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(ii) lim
ε→0+

ϕε(r) = ζ ′(0)|ξ|p−qrp;
(iii) lim

ε→0+
εϕε(r/ε) = Θ|ξ|;

In particular, by combining (i)-(iii) and with a slight variation of the proof of [GM01, Theorem 3.1] (as in
[Cha99, Section 3.2] ) we conclude that

lim inf
δ→0+

1

δ

∫
A
ζ

(
|u(x+ δ|ξ|)− u(x)|p

δp−1|ξ|q

)
≥ ζ ′(0)|ξ|p−q

∫
A
|u′(x)|pdx+ Θ|ξ|H0(Su ∩A). (A.1)

We now proceed to the proof of Lemma 4.4.

Proof of Lemma 4.4. For every k ∈ N consider a partition of A in small intervals {Ikj }
|A|/k
j=1 . Then

1

δ

∫
A
ζ

(
|u(x+ δ|ξ|)− u(x)|p

δp−1|ξ|q

)
f(x)dx ≥

|A|/k∑
j=1

min
Ikj

{f}1

δ

∫
A
ζ

(
|u(x+ δ|ξ|)− u(x)|p

δp−1|ξ|q

)
dx.

In particular, by applying (A.1) on each intervals Ikj we reach

lim inf
δ→0

1

δ

∫
A
ζ

(
|u(x+ δ|ξ|)− u(x)|p

δp−1|ξ|q

)
f(x)dx ≥ ζ ′(0)|ξ|p−q

|A|/k∑
j=1

∫
Ikj

|u′(x)|p min
Ikj

{f}dx

+

|A|/k∑
j=1

Θ|ξ|
∫
Su∩Ikj

min
Ikj

{f}dH0(y).

Since f is a Lipschitz function we now notice that, given ε > 0, we can find ρ such that

|x− y| < ρ ⇒ |f(x)− f(y)| < ε.

In particular, for any fixed ε > 0, we can find a k ∈ N big enough such that

min
Ikj

{f} ≥ max
Ikj

{f} − ε ≥ f(x)− ε for all x ∈ Ikj

Thus,

lim inf
δ→0

1

δ

∫
A
ζ

(
|u(x+ δ|ξ|)− u(x)|p

δp−1|ξ|q

)
f(x)dx ≥ ζ ′(0)|ξ|p−q

|A|/k∑
j=1

∫
Ikj

|u′(x)|p min
Ikj

f(x)dx

+

|A|/k∑
j=1

Θ|ξ|
∫
Su∩Ikj

min
Ikj

f(x)dH0(y)

≥ ζ ′(0)|ξ|p−q
∫
A
|u′(x)|p(f(x)− ε)dx

+ Θ|ξ|
∫
Su∩A

(f(y)− ε)dH0(y).

Since the above holds for arbitrarily small positive ε, we conclude that (4.11) holds. �

Appendix B. Proof of Lemma 4.9

Proof. Note that for all x ∈ Ω \D(εn, `n) it holds that
(i) {x+ s(Tn(x)− x) : s ∈ [0, 1]} ∩ Su = ∅.
(ii) {x+ εnξ + s(Tn(x+ εnξ)− x+ εξ) : s ∈ [0, 1]} ∩ Su = ∅;

Indeed, assume by contradiction that x+ t0(Tn(x)− x) ∈ Su. Then d(x, Su) ≤ t0‖Tn(x)− x‖ ≤ t0`n
which would imply x ∈ (Su)`n . Thus a) holds. Analogously assume that for some t0 ∈ [0, 1] we have
x+ εnξ + t0(Tn(x+ εnξ)− x+ εnξ) ∈ Su. Then

d(x, Su − εnξ) ≤ ‖x− (x+ εnξ + t0(Tn(x+ εnξ)− x+ εnξ)− εnξ)‖
= t0‖(Tn(x+ εnξ)− x+ εnξ)‖ ≤ `n
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again contradicting x ∈ Ω \D(εn, `n). In particular

|u(Tn(x+ εξ))− u(Tn(x))| ≤ |u(x+ εξ)− u(x)|+ |u(Tn(x+ εξ))− u(x+ εξ)|
+ |u(Tn(x))− u(x)|

and, since u is regular outside Su,

|u(Tn(x+ εξ))− u(x+ εξ)| ≤ `n
∫ 1

0
|∇u((x+ εξ)s+ (1− s)Tn(x+ εξ))|ds

|u(Tn(x))− u(x)| ≤ `n
∫ 1

0
|∇u(xs+ (1− s)Tn(x)))|ds,

which is proving (4.19). In order to prove (4.20) we just notice that

|(Su− εnξ)`n | = |(Su)`n |
and that, since Su is a ployhedral set, for big n

|(Su)`n | = 2`nHd−1(Su) + o(`n).

This, combined with (2.13), implies (4.20). �
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