
On a nonlinear model in domains with cavities arising from cardiac
electrophysiology

Elena Beretta *, M. Cristina Cerutti †, Dario Pierotti ‡

August 9, 2022

Abstract

In this paper we deal with the problem of determining perfectly insulating regions (cavities) from
boundary measurements in a nonlinear elliptic equation arising from cardiac electrophysiology. With
minimal regularity assumptions on the cavities, we first show well-posedness of the direct problem and
then prove uniqueness for the inverse problem.
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1 Introduction

In this paper we analyze a mathematical model arising from applications in cardiac electrophysiology. The
goal is to collect boundary data and a mathematical description of the electrical activity of the heart in order
to detect ischemic regions, characterized by having conductivity properties different from the ones in the
surrounding healthy tissue [12].
In [3], the stationary version of the monodomain model describing the electrical activity of the heart was
investigated leading to the study of a Neumann problem for a semilinear elliptic equation. Ischemic re-
gions were modeled as conductivity inhomogeneities of small size and with low conductivity compared to
the surrounding medium. The presence of the inhomogeneity alters the electrical activity generating a per-
turbation in the transmembrane potential described in terms of an asymptotic expansion in the smallness
parameter which contains information on the size and shape of the altered region. Based on the aforemen-
tioned results a topological gradient method was implemented in [4] for the effective reconstruction of the
inhomogeneities from boundary measurements of the potential.
In [5] the authors analyzed the mathematical model in the case of inhomogeneities of arbitrary shape and
size in the two-dimensional setting. In particular, the issue of reconstruction of the inhomogeneity from
boundary measurements was addressed. It is well known that this is a highly nonlinear and severely ill-
posed inverse problem. Indeed, even for its linear counterpart, the inverse conductivity problem, unique-
ness might be guaranteed only if infinitely many measurements of solutions are available and even with
smoothness a-priori information on the unknown inclusion, the continuous dependence from the data is
logarithmic.
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It has been observed that, after myocardial infarction, and completed healing process, lethal ventricular is-
chemic tachycardia can appear. This is due to the presence of the infarct scar, a non-excitable tissue (mainly
composed of collagen), that can be modeled as an electrical insulator [10], [11],[9]. The determination of
these regions and their shape is then fundamental to perform successful radiofrequency ablation for the
prevention of tachycardia.
Mathematically, this leads to model the damaged regions as perfect insulators, i.e. as a cavities. In this
case, the inverse problem is expected to be more treatable. In fact, in the linear conductivity equation one
boundary measurement is enough to recover in a stable way smooth cavities, cf. [1].
We start with analyzing the well-posedness of the direct boundary value problem under minimal regularity
assumptions on the cavities. Notably, we establish a uniqueness result for the inverse problem showing that
a single boundary measurement of the potential is enough to detect a finite collection of separated simply
connected Lipschitz cavities. More precisely, we consider the following boundary value problem −div(A(x)∇u)+u3 = f , in Ω\ D ⊂R2

∂Au

∂n
= 0, on ∂(Ω\ D) ,

(1.1)

where, in the application we have in mind, A(x) is the anisotropic conductivity tensor in the heart tissue,
∂Au

∂n
is the current flux, D ⊂Ω denotes the ischemic region. Finally, f is a given instantaneous current applied to
the heart tissue, usually in a confined region and expressing the initial electrical stimulus and u = u(D) the
transmembrane potential.
We first show well-posedness of (1.1) in a variational setting in H 1(Ω\D), where Ω\D has Lipschitz bound-
ary, together with some crucial a priori L∞ bounds for the solutions that we derive using the truncation
method of Stampacchia. Subsequently, by exploiting similar bounds for a suitable sequence of approxi-
mating problems, we prove the well-posedness of the direct problem in H 1(Ω\D), with Ω\D belonging to
a special class of finite perimeter sets. We point out that in non-Lipschitz domains Sobolev embeddings
and extension properties do not hold and therefore cannot be used to prove existence and uniqueness of
the (weak) solution. The sequence of approximating problems is precisely defined in order to avoid this
drawback. Moreover, the extension to this general class of cavities, allows us to treat the case of cavities D
touching the boundary ∂Ω, since in that case Ω\D may not be Lipschitz even ifΩ and D are smooth.
Then we deal with the inverse problem of determining cavities D from measurements of the solution u =
u(D) of (1.1) on some open arc Σ of ∂Ω. Here, we need to assume the cavities D to have Lipschitz bound-
ary. Using uniform L∞(Ω) estimates for solutions of (1.1) and unique continuation properties for elliptic
equations, [2], we prove that one measurement of u on Σ is enough to uniquely determine a cavity D .
We expect to extend the uniqueness for the inverse problem in the three-dimensional setting in a forthcom-
ing publication.
Let us finally point out that recently there has been growing interest towards inverse boundary value prob-
lems for semilinear elliptic equations, see for example [15], [16],[17],[18],[19]. In particular, we would like
to mention [15], where the authors use the nonlinear Dirichlet to Neumann map to recover simultaneously
the nonlinear term appearing in the equation and the cavity. Here, instead, the nonlinearity is given and
a collection of separated cavities have to be identified and in fact only one measurement suffices to deter-
mine them. Also, we would like to emphasize that our results could be easily extended to the case where the
conormal derivative of u on part of ∂Ω is different from zero and more general nonlinearities are considered.

The paper is organized as follows: in Section 2 we state our main assumptions. In Section 3 we analyze the
well-posedness of Problem (2.1) whenΩ\D is a Lipschitz domain. In Section 4 we extend it to the case when
D belongs to a special class of sets of finite perimeter and finally in Section 5 we prove the uniqueness of the
inverse problem in the class of Lipschitz cavities.

2



Figure 1: Example of domain with cavities

2 Notation and main assumptions

We consider the following inhomogeneous Neumann problem for a semilinear equation −div(A(x)∇u)+u3 = f , in Ω\ D
∂Au

∂n
= 0, on ∂(Ω\ D).

(2.1)

where we denote by
∂Au

∂n
the conormal derivative of u defined as A(x)∇u ·n, with n outer unit normal toΩD .

In what follows we’ll use the notation

ΩD =Ω\ D

Let’s now state our main assumptions.

Assumption 1. Ω⊂R2 is a bounded domain with Lipschitz boundary, ∂Ω.

Assumption 2. Σ ⊂ ∂Ω is an open arc, the portion of boundary which is accessible for measurement. and
Ω1 ⊂Ω is such that ∂Ω1 is Lipschitz and Σ⊂ ∂Ω1 ∩∂Ω.

Assumption 3. D ∈D defined by

D = {D =∪N
j=1D j ⊂Ω : D j compact, simply connected, int(D j ) 6= ;,dist(D,Ω1) > 0, ∀ j = 1, . . . , N }

Notice that we do not exclude the case that ∂Ω∩∂D 6= ;.

Finally, on the equation parameters we assume

Assumption 4. A(x) is a symmetric matrix of order 2 satisfying the boundedness and ellipticity conditions

0 <λ‖ξ‖2 ≤
2∑

i , j=1
ai j (x)ξiξ j ≤Λ‖ξ‖2, ∀ξ= (ξ1,ξ2) ∈R2 (2.2)

where λ,Λ are positive constants.

Assumptions on the source term f will be specified in the sequel when necessary.
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3 The direct problem - Well posedness whenΩD has Lipschitz boundary

3.1 Existence and uniqueness of the weak solution

We will first show that Problem (2.1) (in weak form) is well posed under the additional assumption that ΩD

has Lipschitz boundary. In this case, the result holds for general sources f ∈ H 1(ΩD )′, the dual space of
H 1(ΩD ).

Theorem 3.1. Assume that ΩD has Lipschitz boundary and that f ∈ H 1(ΩD )′. Then problem (2.1) has a
unique solution u ∈ H 1(ΩD ).

Proof. By multiplying the equation in (2.1) by a test functionφ, integrating by parts and using the Neumann
boundary condition, we obtain the weak formulation∫

ΩD

(A(x)∇u) ·∇φ+
∫
ΩD

u3φ=
∫
ΩD

f φ, ∀φ ∈ H 1(ΩD ). (3.1)

Now let T : H 1(ΩD ) −→ H 1(ΩD )′ be the operator defined by

〈Tu,φ〉 =
∫
ΩD

(A(x)∇u) ·∇φ+
∫
ΩD

u3φ, ∀φ ∈ H 1(ΩD )

It is readily verified that T is a potential operator, that is Tu − f is the derivative of the functional

E(u) = 1

2

∫
ΩD

(A(x)∇u) ·∇u + 1

4

∫
ΩD

u4 −
∫
ΩD

f u (3.2)

Then, the theorem will follow by showing that T is bounded, strictly monotone and coercive; in fact, by these
properties of T the functional E is coercive and weakly lower semicontinuous on H 1(ΩD ) (see e.g. [13],
theorem 26.11). Thus, E is bounded from below and attains its infimum at some u ∈ H 1(ΩD ) satisfying
Tu = f . The uniqueness of u is a consequence of the strict monotonicity of T ; for, if Tu = T v = f , equation
(3.3) below implies u = v .

i. T is bounded.

By Hölder’s inequality and ellipticity condition (2.2)

|〈Tu,φ〉| ≤Λ‖∇u‖L2(ΩD )‖∇φ‖L2(ΩD ) +‖u‖3
L6(ΩD )‖φ‖L2(ΩD )

and by Sobolev embedding theorem ‖u‖L6(ΩD ) ≤CS‖u‖H 1(ΩD ), so that

|〈Tu,φ〉| ≤Λ‖∇u‖L2(Ω)‖∇φ‖L2(ΩD ) +C 3
S‖u‖3

H 1(ΩD )‖φ‖L2(ΩD ) ≤ max
[
Λ‖u‖H 1(ΩD ),C 3

S‖u‖3
H 1(ΩD )

]
‖φ‖H 1(ΩD ).

Therefore, if u belongs to a bounded subset of H 1(ΩD ),

‖Tu‖H(ΩD )′ = sup
φ

|〈Tu,φ〉|
‖φ‖H 1(ΩD )

≤ max
[
Λ‖u‖H 1(ΩD ),C 3

S‖u‖3
H 1(ΩD )

]
=C2.

ii. T is (strictly) monotone.

〈Tu −T v,u − v〉 =
∫
ΩD

(A(x)∇(u − v)) ·∇(u − v)+
∫
ΩD

(u − v)2(u2 +uv + v2) ≥ 0.
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Furthermore

〈Tu −T v,u − v〉 = 0 ⇔ u = v. (3.3)

iii. T is coercive, that is

lim
‖u‖H1(Ω)→+∞

〈Tu,u〉
‖u‖H 1(ΩD )

=+∞ (3.4)

By using again Hölder’s inequality,

〈Tu,u〉 ≥λ
∫
ΩD

|∇u|2 +
∫
ΩD

u4 ≥λ‖∇u‖2
L2(ΩD ) +

1

|ΩD |
(∫
ΩD

u2
)2

≥λ‖∇u‖2
L2(ΩD ) +

1

|ΩD | ‖u‖4
L2(ΩD ) =

=λ
(
‖∇u‖2

L2(ΩD ) +‖u‖2
L2(ΩD )

)
+ 1

|ΩD | ‖u‖4
L2(ΩD ) −λ‖u‖2

L2(ΩD ).

Finally, by |ΩD |−1x4 −λx2 ≥−λ2|ΩD |/4, we get

〈Tu,u〉 ≥λ‖u‖2
H 1(ΩD ) −

λ2

4
|ΩD | (3.5)

hence, (3.4) follows. 2

Remark 3.2. It is worthwhile to stress that theorem 3.1 also holds when the conormal derivative of u is
different from zero on ∂ΩD . Actually, in this case the right hand side in (3.1) can be written as < f ,φ >=∫
ΩD

f0φ+∫
Γ gφ |∂ΩD , with f0 ∈ L2(ΩD ), g ∈ L2(∂ΩD ).

Remark 3.3. One can easily check that the above proof can be extended when ΩD ⊂ R3, as the Sobolev em-
bedding ‖u‖L6(ΩD ) ≤CS‖u‖H 1(ΩD ) still holds.

3.2 A priori bounds for the solution

In this section we will prove estimates of the solutions to Problem (2.1) which will be useful in the subse-
quent discussion. To begin with, we have the following stability estimate:

Proposition 3.4. Let u ∈ H 1(ΩD ) be a solution of (2.1). Then

‖u‖H 1(ΩD ) ≤
1

λ
‖ f ‖(H 1)′ +|ΩD |1/3‖ f ‖1/3

(H 1)′ ≤C (‖ f ‖(H 1)′ +‖ f ‖1/3
(H 1)′) (3.6)

where the constant C = max{ 1
λ , |ΩD |1/3} and (H 1)′ = H 1(ΩD )′.

Proof. Letting φ= u in equation (3.1) and by the ellipticity condition (2.2), we readily get

λ‖∇u‖2
L2(ΩD ) +

∫
ΩD

u4 ≤ ‖ f ‖(H 1)′‖u‖H 1(ΩD ). (3.7)

By the above inequality we first obtain

‖∇u‖2
L2(ΩD ) ≤

‖ f ‖(H 1)′

λ
‖u‖H 1(Ω).

Furthermore, by the inequality

‖u‖4
L2(ΩD ) ≤ |ΩD |

∫
ΩD

u4

5



and again by (3.7) we get
‖u‖2

L2(ΩD ) ≤
(|ΩD |‖ f ‖(H 1)′‖u‖H 1(ΩD )

)1/2.

Then

‖u‖2
H 1(ΩD ) ≤

1

λ
‖ f ‖(H 1)′‖u‖H 1(ΩD ) +

(|ΩD |‖ f ‖(H 1)′
)1/2‖u‖1/2

H 1(ΩD ). (3.8)

We can rewrite the above estimate in the form

‖u‖1/2
H 1

(
‖u‖H 1 − 1

λ
‖ f ‖(H 1)′

)
≤ |ΩD |1/2‖ f ‖1/2

(H 1)′ .

Now, either

‖u‖H 1(ΩD ) ≤
1

λ
‖ f ‖(H 1)′

or (
‖u‖H 1 − 1

λ
‖ f ‖(H 1)′

)3/2 ≤ |ΩD |1/2‖ f ‖1/2
(H 1)′

In both cases (3.6) holds. 2

Another crucial bound for the solution follows by the maximum principle, with some additional assumption
on the source f .

Theorem 3.5. Let u ∈ H 1(ΩD ) be a solution of (2.1) with f ∈ L2(ΩD ). Then(
ess inf

ΩD

f

)1/3

≤ u(x) ≤
(

ess sup
ΩD

f

)1/3

a.e. x ∈ΩD . (3.9)

Proof. We’ll use a truncation method due to Stampacchia (see [6]). Consider a function G :R→R such that
G ∈C 1(R) and

• G(t ) ≥ 0

• G(t ) = 0 for t ≤ 0

• 0 <G ′ ≤ γ for t > 0.

For some α ∈ R consider G(u −α); because of the above definition G(u −α) belongs to H 1(ΩD ) for every α
and therefore can be taken as test function in (3.1) to get∫

ΩD

G ′(u −α)(A(x)∇u) ·∇u +
∫
ΩD

u3G(u −α) =
∫
ΩD

f G(u −α); (3.10)

subtracting
∫
ΩD

α3G(u −α) from both sides we obtain∫
ΩD

G ′(u −α)(A(x)∇u) ·∇u +
∫
ΩD

(
u3 −α3)G(u −α) =

∫
ΩD

( f −α3)G(u −α). (3.11)

Now observe that the first integral on the left hand side of (3.11) is ≥ 0 because of the definition of G and the
ellipticity condition; if we now choose α= (

supΩD
f
)1/3 the right hand side is ≤ 0. Hence,∫

ΩD

(
u3 −α3)G(u −α) =

∫
ΩD

(u −α)G(u −α)(u2 +αu +α2) ≤ 0.

Since tG(t ) ≥ 0 ∀t ∈ R and also u2 +αu +α2 ≥ 0 the above inequality implies (u −α)G(u −α) = 0 a.e. and
therefore u ≤ α = (

supΩD
f
)1/3 a.e. , which is the right hand side inequality in (3.9). For the left hand side

inequality apply the same argument to −u.
2

Remark 3.6. Observe that in the proof of estimates (3.6) and (3.9) we did not use any regularity of the setΩD .

6



4 The direct problem - Well posedness when ∂D has finite Hausdorff measure

We now generalize the well-posedness of the direct problem to the more general class of cavities D ∈ D

satisfying
H (∂D) <∞ (4.1)

where H denotes the 1 dimensional Hausdorff measure, ∂D the topological boundary of D .
To this aim, we need some additional assumptions on the source term f in Problem (2.1):

Assumption 5.
f ∈ L∞(Ω), f ≥ 0, supp( f ) ⊂Ω1, (4.2)

where Ω1 is defined in the Assumption 2.

As we will see in the next section, these assumptions are also convenient in investigating uniqueness of the
inverse problem.

We recall that (measurable) subsets whose boundary satisfies (4.1) are in particular subsets of finite perime-
ter in R2 (see e.g. [14] chapter 5). Moreover, by approximation results in geometric measure theory (see e.g.
[7], [8]), for every D ∈ D satisfying (4.1) there exists a sequence of Lipschitz (in fact, smooth) domains Ωk

such that Ω1 ⊂Ωk ⊂ΩD and
lim

k→∞
|ΩD \Ωk | = 0. (4.3)

For any k ∈ N, let’s now consider the perturbed problem∫
ΩD

(A(x)∇v) ·∇φ+
∫
ΩD \Ωk

vφ+
∫
Ωk

v3φ=
∫
ΩD

f φ (4.4)

i.e. with a non-linearity of the form

v 7→ vχΩD \Ωk + v3χΩk ,

where χE denotes the indicator function of a set E .

The corresponding nonlinear operator (still denoted by T ) defined by the left hand side of (4.4) i. e.

〈
T v,φ

〉= ∫
ΩD

(A(x)∇v) ·∇φ+
∫
ΩD \Ωk

vφ+
∫
Ωk

v3φ (4.5)

is well defined in H 1(ΩD ) since the nonlinear term can still be bounded by Sobolev embedding theorem
(the boundary of Ωk is Lipschitz). Moreover, T is a potential operator being the derivative of

E(v) = 1

2

∫
ΩD

(A(x)∇v) ·∇v + 1

2

∫
ΩD \Ωk

v2 + 1

4

∫
Ωk

v4 −
∫
ΩD

f v (4.6)

Then, following the proof of Theorem 3.1 we can still show (see Appendix) that T is bounded, strictly mono-
tone and coercive. It follows that problem (4.4) has a unique solution vk ∈ H 1(ΩD ) for every k.
Moreover, it turns out that estimates in the previous section also hold for the vk ’s; note that, in establishing
the bound (4.8) below, we now exploit the positivity and the localization of the source f .

Lemma 4.1. Let vk ∈ H 1(ΩD ) be a solution to (4.4). Then,

‖vk‖H 1(ΩD ) ≤
1

λ
‖ f ‖(H 1)′ +|ΩD |1/3‖ f ‖1/3

(H 1)′ . (4.7)

Furthermore, if f satisfies Assumption 5

7



0 ≤ vk (x) ≤
(

ess sup
ΩD

f

)1/3

a.e. x ∈ΩD . (4.8)

Proof. Letting φ= vk in (4.4) and by the ellipticity condition, we get

λ‖∇vk‖2
L2(ΩD ) +

∫
ΩD \Ωk

v2
k +

∫
Ωk

v4
k ≤ ‖ f ‖(H 1)′‖vk‖H 1(ΩD ). (4.9)

In particular

‖∇vk‖2
L2(ΩD ) +‖vk‖2

L2(ΩD \Ωk ) ≤
‖ f ‖(H 1)′

λ
‖vk‖H 1(Ω)

and
‖vk‖2

L2(Ωk ) ≤
(|ΩD |‖ f ‖(H 1)′‖vk‖H 1(ΩD )

)1/2.

Summing up the two estimates term by term we get again

‖vk‖2
H 1(ΩD ) ≤

1

λ
‖ f ‖(H 1)′‖vk‖H 1(ΩD ) +

(|ΩD |‖ f ‖(H 1)′
)1/2‖vk‖1/2

H 1(ΩD )

and the bound (4.7) is proven by the same argument following (3.8).

Let us now take f ∈ L2(ΩD ) satisfying Assumption 5 and consider a function G as in the proof of Theorem
3.5. Then, choose φ=G(vk −α) in (4.4), where α≥ 0 and get∫

ΩD

G ′(vk −α)(A(x)∇vk ) ·∇vk +
∫
ΩD \Ωk

vkG(vk −α)+
∫
Ωk

v3
kG(vk −α) =

∫
Ωk

f G(vk −α) .

Subtracting on both sides the term
∫
Ωk

α3G(vk −α), we obtain the equivalent equation∫
ΩD

G ′(vk −α)(A(x)∇vk ) ·∇vk +
∫
ΩD

[
(vk −α)χΩD \Ωk + (v3

k −α3)χΩk

]
G(vk −α) =

=
∫
Ωk

( f −α3)G(vk −α)−α
∫
ΩD \Ωk

G(vk −α) . (4.10)

By choosing α= (
supΩD

f
)1/3 ≥ 0, the right hand side is ≤ 0. Hence,∫

ΩD

[
(vk −α)χΩD \Ωk + (v3

k −α3)χΩk

]
G(vk −α) =

∫
ΩD

(vk −α)
[
χΩD \Ωk + (v2

k + vkα+α2)χΩk

]
G(vk −α) ≤ 0.

Since the term in the square brackets is ≥ min{1,3α2/4} inΩD , we conclude as in Theorem 3.5 that vk ≤α=(
supΩD

f
)1/3 a.e. inΩD .

Finally, the bound from below follows by applying the same arguments to −vk . 2

By the previous estimates we can now prove:

Theorem 4.2. Assume D ∈D satisfying (4.1) and let f satisfy Assumption 5. Then problem (2.1) has a unique
solution v ∈ H 1(ΩD )∩L∞(ΩD ). Furthermore, v satisfies the bounds (4.7), (4.8).
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Proof. Let {Ωk } ⊂Ω be a sequence of domains chosen as at the beginning of the section; note that supp f ⊂
Ωk .
Thus, Lemma 4.1 holds and the solutions vk , k ∈ N, to (4.4) are uniformly bounded in H 1(ΩD ). Hence,
there is a subsequence (still denoted by vk ) and a function v such that vk * v in H 1(ΩD ) and a.e. in ΩD .
Moreover, ‖vk‖L∞(ΩD ) is uniformly bounded by ‖ f ‖1/3

L∞(ΩD ).
Then, by writing (4.4) in the form∫

ΩD

(A(x)∇vk ) ·∇φ+
∫
ΩD

v3
kφ+

∫
ΩD \Ωk

(vk − v3
k )φ=

∫
ΩD

f φ ,

we easily get, by the weak convergence and the dominated convergence theorem,∫
ΩD

(A(x)∇v) ·∇φ+
∫
ΩD

v3φ=
∫
ΩD

f φ , (4.11)

that is, v solves (3.1). Uniqueness follows from the fact that the operator defined by the left hand side of
(4.11) is strictly monotone in H 1(ΩD ).
Finally, since ‖v‖H 1(ΩD ) ≤ liminf‖vk‖H 1(ΩD ) and vk → v a.e. in ΩD , the bounds (4.7) and (4.8) also hold for
the solution v .

2

Remark 4.3. Theorem 4.2 and the above remark apply in particular to the problem with a cavity D such that
∂D ∩∂Ω 6= ;. Note that in this case the boundary of ΩD might not be Lipschitz even if ∂Ω and ∂D are regular.

Remark 4.4. Obviously, the results in this section hold for any D ∈D such thatΩD is the limit (in measure) of
Lipschitz domains Ωk , withΩ1 ⊂Ωk ⊂ΩD . It is not difficult to check that such D’s have finite perimeter.
The extension to the whole class of finite perimeter subsets D ∈D remains an open problem.

5 Uniqueness of the inverse problem

In this section we investigate the uniqueness of the inverse problem, i. e.

Problem 5.1. Assume it is possible to measure the solution to (2.1), u|Σ where Σ is an open connected portion
of ∂Ω1 ∩∂Ω. Is it possible to uniquely determine D?

The answer is yes assuming the coefficient matrix A has constant entries.

Theorem 5.2. Let Assumptions 1-5 hold, A constant matrix and D1, D2 in D where D1 = ∪N
j=1D j

1 and D2 =
∪M

j=1D j
2 and assume D1,D2 with Lipschitz boundary.

Let u1 and u2 be the corresponding solutions to the boundary value problem (2.1).
Then u1|Σ = u2|Σ implies D1 ≡ D2 (which in particular implies N = M).

Proof.
Without loss of generality we will prove the result for the Laplacian. Assume first that the cavities are strictly
contained inΩ. Let u1 = u2 on Σ; we will prove the theorem through an argument by contradiction. Assume
D1 6= D2 then setting w := u1 −u2 we have that

w |Σ = 0 and ∇w ·ν|Σ = 0 (5.1)

Moreover w is a solution to

−∆w +q(x) w = 0 inΩ\ (D1 ∪D2) (5.2)

9



D1

D2

D̃
Γ1

Γ2

Figure 2: Possible configuration: example 1

D1

D2

D̃
Γ1

Γ2

Figure 3: Possible configuration: example 2

where q(x) = u2
1 +u1u2 +u2

2. By (3.9) we have

‖q‖L∞(Ω\(D1∪D2)) ≤C ,

with C a constant depending on ‖ f ‖L∞(ΩD ). Uniqueness for the Cauchy problem together with the weak
unique continuation property (see for example [2]) implies

w ≡ 0 in G (5.3)

where G is the connected component of Ω\ D1 ∪D2 that contains Σ. Let G̃ =Ω\G and observe that:
G̃ is closed, G̃ ⊇ D1 ∪D2 and

∂G̃ = (
∂D1 ∪∂D2

)∩∂G . (5.4)

Let D̃ be a connected component of G̃ \ D2 (note that D̃ = D1 if D1 ∩D2 =;). Then we have

∂D̃ ⊆ ∂(G̃ \ D2
)⊆ ∂G̃ ∪∂D2 . (5.5)

We further note that, unless D1 ⊂ D2, we may assume that D̃ contains a subset of D1 with nonempty interior.
Otherwise, we just exchange the roles of D1 and D2.

Let us now define Γ1 ≡ ∂D̃∩∂D1∩∂G̃ and let ∂D̃ = Γ1∪Γ2. Observe that (5.4) implies that Γ1 ⊂ ∂D1∩∂G and
from (5.5) Γ2 ≡ ∂D̃ \Γ1 ⊂ ∂D2 including possibly the case where Γ2 =;. In figures 2 and 3 the shaded regions

show examples of possible geometries.

• Assume first that D̃ is Lipschitz. Observe that on ∂D̃ we have
∂u2

∂n
= 0 a.e.. Actually, on Γ1 we have

∂u1

∂n
= 0 a.e. and observing that on Γ1 ⊂ ∂G

∂u1

∂n
= ∂u2

∂n
a. e., it follows that

∂u2

∂n
= 0 a.e. on Γ1. More-

over, on Γ2 we have that
∂u2

∂n
= 0 a.e.

10



Also, u2 ∈ H 1(D̃) is solution of
−∆u2 +u3

2 = 0 in D̃ (5.6)

since D̃ ∩Ω1 = ;. Hence, multiplying the equation by u2 and integrating by parts over the set D̃ , we
have ∫

D̃
∇u2 ·∇u2 +u4

2 = 0, (5.7)

which implies that necessarily u2 = 0 a.e. in D̃ and, by unique continuation, also in G \ supp f . Now,
let K ⊂ G and K ⊃ supp f be a smooth domain. Then letting v2 = u3

2, u2 satisfies


−∆u2 + v2u2 = f , in K
∂u2

∂n
= 0, on ∂K

u2 = 0, on ∂K ,

(5.8)

Consider ψ, any solution of the Schrödinger equation

−∆ψ+ v2ψ= 0, in K ; (5.9)

we’ll show that
∫

K f ψ = 0.

To see this multiply equation in (5.8) by ψ, integrate twice by parts and use conditions on u2 in (5.8)

∫
K

f ψ =
∫

K

[−∆u2ψ+ v2u2ψ
]=−

∫
∂K

∂u2

∂n
ψ+

∫
K

[∇u2 ·∇ψ+ v2u2ψ
]=

=
∫
∂K

u2
∂ψ

∂n
+

∫
K

[−∆ψu2 + v2u2ψ
]= ∫

K
u2

[−∆ψ+ v2ψ
]= 0. (5.10)

Now choose ψ such that ψ|∂K = α < 0: then maximum principle implies that ψ < 0 in K and from∫
K

f ψ= 0 with f ≥ 0; we conclude that f ≡ 0 in K which contradicts the initial hypotheses.

• Now consider the case where D̃ is not Lipschitz. Observe that singularities on ∂D̃ can only occur at
points of intersection between Γ1 and Γ2. Let’s name them P h , h = 1, . . . ,L. Note that singularities
can only be cusps since Γ1 and Γ2 are Lipschitz. We will now construct an approximation of D̃ with
a sequence of Lipschitz domains, {D̃k } ⊂ D̃ . For each P j take two sequences {P h

k } ⊂ Γ1 and {Qh
k } ⊂ Γ2

such that both the arcs ÛP hP h
k ⊂ Γ1 and ÛP hQh

k ⊂ Γ2 have length which tends to zero as k →+∞. For

each h = 1, . . . ,L let γh
k be smooth arcs joining P h

k and Qh
k , so that the region D̃k enclosed by the (γh

k )’s

and Γ1 and Γ2 is Lipschitz. Moreover assume that length(γh
k ) → 0 and |D̃\D̃k |→ 0 as k →+∞.

Again by Assumption (5), u2 ∈ H 1(D̃k ) is a weak solution of

−∆u2 +u3
2 = 0 in D̃k (5.11)

with
∂u2

∂n
= 0 a.e. on ∂D̃k \

(
L⋃

h=1
γh

k

)
. Hence, multiplying equation (5.11) by u2, integrating by parts over

D̃k and using the fact that u2 ∈ H 3/2(ΩD2 ), see for example [21], [22], it follows that∫
D̃k

∇u2 ·∇u2 +u4
2(x) =

L∑
h=1

∫
γh

k

∂u2

∂n
u2. (5.12)
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Moreover, since D̃k is a Lipschitz domain and u2 is uniformly bounded inΩ\D2 it follows that∣∣∣∣∣
∫
γh

k

∂u2

∂n
u2

∣∣∣∣∣≤
(∫

γh
k

∣∣∣∣∂u2

∂n

∣∣∣∣2
)1/2 (∫

γh
k

|u2|2
)1/2

≤C ||u2||H 3/2(ΩD2 )(length(γh
k ))1/2

for h = 1, ...,L. So, passing to the limit as k →+∞ in (5.12) we finally get∫
D̃
∇u2 ·∇u2 +u4

2(x) = 0

which again gives u2 = 0 a.e. in D̃ and, by unique continuation, also in (Ω\ D1 ∪D2) \ supp f .

From now on we we can proceed as in the previous case and conclude the proof.

Finally, if the cavity touches the boundary ofΩ forming a cusp, it is sufficient to modify the above estimates
by replacing the norm ‖u‖H 3/2(ΩD2 ) with ‖u‖H 3/2(ΩL

D2
), whereΩL

D2
is any Lipschitz subset satisfying D̃ ⊂ΩL

D2
⊂

ΩD2 . In fact, it can be shown that the solution u2 (which is uniquely defined in ΩD2 by theorem 4.2) has the
required regularity in those subsets.

2

Remark 5.3. Note that we use the assumption of constant coefficient matrix A only in the second part of
the proof and for the case of cavities touching the boundary since we need to guarantee H 3/2 regularity of
solutions. It would be interesting to see whether it is possible to extend uniqueness to variable matrices A(x).

6 Conclusions

In this paper we analyze the inverse problem of determining insulating planar regions, cavities, from bound-
ary measurements in a nonlinear elliptic equation which arises in cardiac electrophysiology. We first show
well-posedness of the forward problem in the class of cavities with boundaries having finite one-dimensional
Hausdorff measure. Then we prove unique determination of multiple Lipschitz cavities from knowledge of
a single boundary measurement of the potential. This last result has been obtained using unique continu-
ation properties of solutions to linear elliptic equations and a-priori bounds on the solution to the forward
problem.
We plan to analyze also the three-dimensional case.
This paper is also the starting point for the implementation of a reconstruction algorithm based on a phase
field approach that will be presented in a forthcoming publication.
Although the proof of uniqueness of the solution to the inverse problem is independent on the nonlinear
structure of the equation, it would be interesting to make a comparison between the reconstruction of the
cavity in the nonlinear problem with the one obtained in the linear conductivity equation.

7 Appendix

We show that the estimates in the proof of theorem 3.1 can be repeated to show that also the operator T
defined by (4.5) is bounded, strictly monotone and coercive.

i. T is bounded.

|〈Tu,φ〉| ≤Λ‖∇u‖L2(ΩD )‖∇φ‖L2(ΩD ) +‖u‖L2(ΩD \Ωk )‖φ‖L2(ΩD \Ωk ) +‖u‖3
L6(Ωk )‖φ‖L2(Ωk ) ≤

12



≤Λ‖∇u‖L2(ΩD )‖∇φ‖L2(ΩD ) +‖u‖L2(ΩD \Ωk )‖φ‖L2(ΩD \Ωk ) +C 3
S‖u‖3

H 1(Ωk )‖φ‖L2(Ωk ) ≤

≤ max
[

(Λ+1)‖u‖H 1(ΩD ),C 3
S‖u‖3

H 1(ΩD )

]
‖φ‖H 1(ΩD ). (7.1)

Therefore, if u belongs to a bounded subset of H 1(ΩD ),

‖Tu‖(H 1)′(ΩD ) = sup
φ

|〈Tu,φ〉|
‖φ‖H 1(ΩD )

≤ max
[
Λ‖u‖H 1(ΩD ), (1+C 3

S )‖u‖3
H 1(ΩD )

]
=C4.

ii. T is (strictly) monotone.

〈Tu −T v,u − v〉 =
∫
ΩD

(A(x)∇(u − v)) ·∇(u − v)+
∫
ΩD \Ωk

(u − v)2 +
∫
Ωk

(u − v)2(u2 +uv + v2) ≥ 0.

and

〈Tu −T v,u − v〉 = 0 ⇔ u = v. (7.2)

iii. T is coercive

〈Tu,u〉 ≥λ
∫
ΩD

|∇u|2 +
∫
ΩD \Ωk

u2 +
∫
Ωk

u4 ≥

≥λ‖∇u‖2
L2(ΩD ) +‖u‖2

L2(ΩD \Ωk ) +
1

|Ωk |
‖u‖4

L2(Ωk ) ≥ (7.3)

≥ min(1,λ)‖u‖2
H 1(ΩD ) +

1

|Ωk |
‖u‖4

L2(Ωk ) −‖u‖2
L2(Ωk ).

Finally, as in the previous proof from |Ωk |−1x4 −x2 ≥−|Ωk |/4, with x = ‖u‖L2(Ωk ), we get

〈Tu,u〉 ≥ λ̃‖u‖2
H 1(ΩD ) −

1

4
|Ωk | , (7.4)

where λ̃ := min(1,λ); hence, (3.4) follows.
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