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Reproducing a decision-making
network in a virtual visual
discrimination task

Alessandra Trapani*†, Francesco Jamal Sheiban†,

Elisa Bertone, Serena Chiosso, Luca Colombo,

Matteo D’Andrea, Francesco De Santis, Francesca Fati,

Veronica Fossati, Victor Gonzalez and Alessandra Pedrocchi

NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan,

Italy

We reproduced a decision-making network model using the neural simulator

software neural simulation tool (NEST), and we embedded the spiking neural

network in a virtual robotic agent performing a simulated behavioral task.

The present work builds upon the concept of replicability in neuroscience,

preserving most of the computational properties in the initial model

although employing a di�erent software tool. The proposed implementation

successfully obtains equivalent results from the original study, reproducing

the salient features of the neural processes underlying a binary decision.

Furthermore, the resulting network is able to control a robot performing an in

silico visual discrimination task, the implementation ofwhich is openly available

on the EBRAINS infrastructure through the neuro robotics platform (NRP).

KEYWORDS

NEST, decision-making, network model, reproducibility, working memory,

neurorobot

1. Introduction

Given the complex hierarchical organization of the brain, a holistic understanding

of the biological mechanisms underlying brain functions still pose a huge challenge. For

instance, deciding between two alternatives is a basic but essential task the brain has to

perform, and very little is known about its biological implementation. Computational

neuroscience models can partially address the quest for an algorithmic comprehension

of the different neural mechanisms. A simple biophysically-based spiking network

model was presented in Brunel et al. (2001) and Wang (2002), reproducing salient

characteristics of decision-correlated neural activity observed in vivo, such as the slow

time integration of sensory stimuli (how evidence is accumulated for choosing between

the alternatives) and the winner-take-all mechanism (underlying the formation of

categorical choices). The model developed by the authors was intended to reproduce

studies on visual motion discrimination tasks (Britten et al., 1996; Shadlen andNewsome,

2001; Roitman and Shadlen, 2002), in which primates are trained to fixate a screen

displaying randomly-moving dots and make a binary decision based on the perceived
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point cloud movement direction, reporting their choice with

a saccadic eye movement. Britten et al. (1996), Shadlen and

Newsome (2001), and Roitman and Shadlen (2002) performed

multiple experiments using different levels of coherence,

intended as the percentage of coherently moving (e.g., with the

same direction) dots, and observing the relative changes in the

behavioral outcomes.

These physiological and micro-stimulation studies helped

shed light on the anatomical and functional basis of decision-

making processes in the brain, suggesting that neurons in the

middle temporal (MT) and medial superior temporal (MST)

areas (MT/MST) encode the visual motion stimulus, while

the decision process itself occurs downstream in the posterior

parietal cortex (LIP area). During visual motion discrimination

tasks, the LIP area receives inputs from MT/MST and guides

the subsequent saccadic eyemovements (Shadlen andNewsome,

1996, 2001). In particular, the LIP area shows a slow ramping

activity during stimulus presentation and persistent activity

throughout a delay between the stimulus onset and the primate’s

saccadic response. Furthermore, activity in LIP is correlated with

the decision process and neither with stimuli exhibition nor

with motor responses, as it presents a faster ramping activity

with higher coherence even if the motor output is the same

(Shadlen and Newsome, 2001). Thus, pieces of evidence suggest

that LIP represents the biological substrate in the brain in which

decisions are formed.

In order to reproduce the LIP activity during visual

motion discrimination tasks, Wang (2002) designed a recurrent

balanced excitatory-inhibitory (E-I) network of spiking neurons

dividing the excitatory neuron population into two sub-

populations, with synapses within the same population stronger

than those across populations. Thanks to this connection

scheme, the model is able to describe the winner-take-

all competition mediated by feedback inhibition and the

corresponding attractor dynamics: the two excitatory sub-

populations compete with each other depending on the external

input they receive, and the population with stronger activity

suppresses the other, aided by the inhibitory population. When

this happens, the balance is broken, and the network activity

shifts toward an attractor state. Moreover, by including slow

synaptic reverberation mediated by NMDA receptors via a

specific time-constant in the synaptic input current, the model

is also able to capture the elevated persistent activity during

the delay period after the stimulus onset (e.g., the primate’s

working memory). Thus, the model offers a solid computational

explanation of how the brain is able to carry out decision-making

tasks based on simple neuron models and their connectivity.

However, any scientific model is bound to be proved

wrong or incomplete and replaced by a more accurate one as

our understanding of physical phenomena increases. For such

replacement to happen, models must be reproducible to be

tested, evaluated, criticized, and ultimately modified, replaced,

or even rejected. If a model cannot be reproduced, different

research groups will have to produce similar models from

scratch to get to similar (or slightly more advanced) conclusions

each time, preventing incremental knowledge from being

acquired and consolidated (Topalidou et al., 2015). It is therefore

of paramount importance for computational neuroscientists to

be able to reproduce and replicate studies published in the

literature, notwithstanding the years passed since they were

initially carried out. The concept of reproducibility has indeed

witnessed a growing interest among the scientific community

over recent years, leading to the proposal of 10 standard

guidelines for reproducible computational research (Sandve

et al., 2013).

Although “replicability” and “reproducibility” bear similar

meanings, these terms have different definitions, according

to the Association for Computing Machinery: a study is

said to be “replicable” if its measurements can be obtained

with stated precision by a different team using the same

measurement procedure, the same measuring system, under the

same operating conditions, in the same or different location on

multiple trials (e.g., independent groups can obtain the same

result(s) using the study’s original artifacts); a study is instead

“reproducible” if measurements can be obtained with stated

precision by a different team, a different measuring system, in a

different location on multiple trials (e.g., an independent group

can obtain the same result(s) using artifacts which they develop

completely independently) (Plesser, 2018).

The aim of this work is to reproduce the cortical decision-

making network presented in Wang (2002) in a more efficient

and systematic way using the neural simulation tool (NEST), a

computer program for simulating large heterogeneous networks

of point neurons (Gewaltig and Diesmann, 2007). NEST is

especially suited for modeling large networks of spiking neurons

to investigate the dynamics, size, and structure of neural systems;

moreover, one of the key principles of NEST is replicability itself,

as it is designed to generate analogous results independently of

the hardware a spiking network simulation is run on Brette et al.

(2007).

By reproducing the decision-making network model using

NEST, this study also implements a saccadic eye-movement

task in silico reconstruction using the NeuroRoboticsPlatform

(NRP). The NRP is a software tool that allows running digital

experiments embedding NEST-based spiking neural networks

in virtual robots operating through a 3D physical simulator

(GAZEBO) (Falotico et al., 2017). The platform lets users

handle the flow of information between the two simulators

(NEST and GAZEBO) by writing custom Python scripts called

“transfer functions” that encode sensory stimuli as network

inputs and transform the firing rates of different neural

populations into motor commands. Thus, other than probing

the reproducibility of the computational model proposed in

Wang (2002), the present study investigates its translational

value in the field of virtual embodied neuroscience (Mascaro

et al., 2020).
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The key contribution of this work can be summarized

as follows: we provide a new software implementation for

the well-established model proposed by Wang in 2002 and

make the simulation code easily accessible and usable for the

scientific community (on github). This new implementation

takes advantage of the implementation in NEST and improve

the simulation of the network by keeping the computational

load low enough to embed the network in a virtual neurorobot

and simulate the behavioral task used to study the decision-

making process in primates. As a consequence, we have

embedded the spiking network in an in silico experiment that

closely replicates the behavioral task performed in vivo. To

our knowledge, this is the first time a spiking neural network

model for the decision-making process has been observed inside

in silico experiments that closely replicate the behavioral task

performed in vivo.

2. Materials and methods

2.1. Network model

The cortical network modeled here is composed of two

subpopulations of excitatory pyramidal neurons, each of

them selective to one of the two Poisson generators that

encode the directional stimulus. An inhibitory population gives

shared feedback to the two excitatory populations and allows

competition between them. The network architecture described

in Figure 1 is taken from Brunel et al. (2001).

As in Wang (2002), the network is composed of 2,000

neurons, 80% of which belong to the excitatory populations

(A = 800;B = 800 in Figure 1) and 20% to the inhibitory

interneurons (I = 400). Different from Brunel et al. (2001)

and Wang (2002), where only a small subset (f = 0.15) of the

excitatory populations are respectively activated by the stimulus,

in our network, all pyramidal (excitatory) neurons receive

external inputs. Although such a difference may introduce a

saturated spiking activity, this alteration is compensated by the

fact that our network is not fully connected as in Wang (2002),

but comprises a more physiological connection probability

between the neural groups.

2.2. External inputs

All neurons receive a Poisson background noise whose firing

rate is drawn from a Gaussian distribution of mean µnoise and

variance σnoise, during all the simulation time. The stimuli are

modeled by stochastic Poisson generators, one for each motion

direction. They are representative of the MT neurons response

that increases with the stimulus coherence c in its preferred

direction and decreases with c for stimulus in the opposite

direction (Britten et al., 1996).

The firing rate of the two Poisson generators randomly

changes during the stimulus presentation (updated every 25

ms) following a Gaussian distribution, with mean µA or

µB, respectively, and SD σ0. As in Wang (2002), we use a

symmetrical linear relationship µA = µ0 ∗ 0.5 − (0.5 ∗ c) and

µB = µ0 ∗ 0.5+ (0.5 ∗ c) (Figure 1). Therefore, if the coherence

level is positive, for instance, 3.2%, the stimulus delivered on

population B would be stronger than the stimulus delivered on

population A, µB = 771 ∗ 0, 516 = 397, 8Hz and µA =

771 ∗ 0, 484 = 373, 2Hz.

2.3. NEST implementation

We performed the simulations on common laptop

computers (8–16 GB of RAM, Intel(R) Core(TM) i7 CPU @

1.80GHz) running Linux OS, as NEST allows computationally

efficient implementation. The simulation real-time factor

was on average 0.2 s, meaning that to simulate 3 s of the

experimental protocol, with a simulation step of dt = 0.1 s, it

took approximately 15 s.

2.3.1. Neuron model

Both pyramidal neurons and interneurons are modeled

as leaky integrate-and-fire neurons with exponential-shaped

postsynaptic currents (PSCs) (Tsodyks et al., 2000). To

account for the different receptor dynamics, we used

“iaf_psc_exp_multisynapse” model (Brette and Gerstner,

2005; Schutter, 2010) that allows setting different decay

time constant τsyn. The following equation describes the

membrane potential:

C
dV

t
= −gL(V − EL)+ gL · 1t · exp((Vm − Vth)1t)

+ Isyntot (V , t)− w+ Ie (1)

Where

Isyntot (V , t) =
∑

i

gi(t)(V − Erev,i) (2)

The synapse i is excitatory or inhibitory depending on the value

of Erev,i. The spike adaptation currentw and the external current

Ie are set to zero. All the neuron model parameters shown in

Table 1, are the same reported as in Wang (2002) since they

replicate the cortical neurons’ biophysical properties.

2.3.2. Connectivity

The synapses within the neural populations are all static

synapses defined by a weight, a delay time constant, and a

connection probability ǫ (“pairwise_bernoulli” rule in NEST,

as defined in Lefort et al., 2009). As shown in Table 1, all

synapses are characterized by a latency of 0.5 [ms] except
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FIGURE 1

Network architecture and stimulus model: (A) Schematic representation of the model proposed by Brunel et al. (2001). The two neural

populations that contain excitatory pyramidal cells are represented in red, pop A responsive to stimulus A, and blue, pop B responsive to

stimulus B. The gray circle represents the interneurons, i.e., the inhibitory population. All inputs, stimuli and noise, are Poisson generator

represented by the triangles in the picture. A bigger circle represents numerous populations, while thicker connectors represent higher

connection weights. (B) Stimulus model: here six levels of coherence are reported. How the inputs vary in time (central plots), the Gaussian

distributions from which the values are sampled every 25 ms (upper lateral plots), and the correspondent representation of the physical visual

stimulus (bottom lateral images).
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TABLE 1 Network and neuron models parameters.

Vm –70[mV] J 0.04[mV] τsyn noise 5[ms]

Vth –50[mV] µ0 ± σ0 772± 48[Hz] τsyn AMPA 2[ms]

Vreset –55[mV] µnoise ± σnoise to exc 7719± 38[Hz] τsyn NMDA 100[ms]

τm excitatory 20[ms] µnoise ± σnoise to inh 5789± 28[Hz] τsyn GABA 5[ms]

τm inhibitory 10[ms] w+ 1.7 τdelay noise 0.5[ms]

Cm excitatory 500[pF] w− 0.8 τdelay AMPA 0.5[ms]

Cm inhibitory 200[pF] wNMDA 4.25 τdelay NMDA 2.5[ms]

τref excitatory 2[ms] τdelay GABA 0.5[ms]

τref inhibitory 1[ms]

FIGURE 2

Neurorobotics platforms (NRP) experimental setting: In the proposed NRP implementation of a visual discrimination task, an iCub humanoid

robot (left) is placed in front of a screen displaying fifty random moving green dots (center), occupying most of the robot’s field of view (right).

During each trial, the robotic subject is required to fixate the screen and report the perceived coherent motion of the point cloud with a

saccadic eye movement, as in the corresponding primate experiments reported in the literature (Britten et al., 1996; Shadlen and Newsome,

2001; Roitman and Shadlen, 2002).

the ones mediated by NMDA receptor that have a time delay

constant of 2.5 ms, to account for the 2 ms rise time of NMDA

currents, that cannot be otherwise specified as a parameter of the

neuron model.

The weights of the synapses are defined by the amplitude

of the postsynaptic receptor-specific currents multiplied by

a dimensionless parameter w that represents the strength of

the potentiated (w+) or depressed (w−) synapses and remain

fixed throughout the simulation. The values were chosen

after tuning the network to reach an adequate firing rate

level and avoid saturation. As in Wang (2002), the recurrent

connections mediated by the NMDA receptor (wNMDA = 4.25)

and connections projecting from the excitatory population to

the inhibitory one and viceversa (w+ = 1.7) are strongly

potentiated. Strong recurrent connections within a neural group

are required in order to generate persistent self-sustained

activity. On the other hand, the connection between the two

excitatory populations is weakened by a factor of w− = 0.8.

The synaptic currents are normalized by J
receptor
norm such that

the amplitude of the postsynaptic potential is equal to the

parameter J. For the computation of J
receptor
norm , refer to Brunel

(2000).

Excitatory connections between and within populations are

mediated by AMPA and NMDA receptors; inhibitory synapses

on pyramidal cells and recurrent inhibitory connections

are mediated by GABA receptors. Connection with Poisson

generators for the background noise and the stimuli are

mediated by AMPA receptors only.

2.4. NRP experiment reconstruction

Custom experiments on the NRP require users to organize

the experimental setting, choose a robotic subject among

different available templates, and design the transfer functions

interfacing the brain model with the environment.

To replicate the task proposed in Britten et al. (1996),

an iCub humanoid robot (Sandini et al., 2007) is placed in

a virtual room in front of a screen displaying 50 random

moving green dots Figure 2. The brain model embedded in the

robot is the same network described in Section 2.1 downscaled

to 1,000 neurons to reduce its computational load due to

the NRP functional requirements (consuming more resources

than NEST).
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FIGURE 3

Network activity at di�erent coherence levels: Population A response is reported on the left panels, population B response on the right. In (A–C),

top panels report the raster plot for the spiking activity for all neurons, while the bottom plots report frequency rates of the two populations.

Gray vertical lines indicate the start and end of the stimulus delivery. (A) Simulation output for a trial where 0.0% coherence level was provided

and population A wins. (B) Trial with 12.8% of stimulus coherence. (C) Trial with 51.2% of stimulus coherence.
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The simulated task is organized as follows: at the beginning

of each trial, the green dots are distributed across a screen

occupying most of the robot’s field of view; then, the dots are

moved around the central area of the screen (receptive field) for

5 s with an arbitrary coherence value, varying at each repetition.

Randomly moving dots follow linear trajectories with different

orientations and directions, while coherently moving dots all

move from left to right following a straight horizontal line. This

FIGURE 4

Decision space: Decision space representation of the three trials

report in Figure 3. Darker lines represent a higher level of

coherence: light red, 0.0%; red, 12.8%; and dark red, 51.2%.

way, a transfer function encodes the intensity of the sensory

stimulus computing the optical flow of the moving dots from

the frames captured by the robot’s cameras. The optical flow,

defined as the apparent motion of individual pixels on the

image plane (Turaga et al., 2010), is computed using the Lucas-

Kanade registration algorithm (Lucas and Kanade, 1981), and

the coherence value is encoded as the ratio between the number

of horizontal flows (represented as two-dimensional vectors)

and the total number of flows detected. This value is then used

to set the firing rate of the network inputs as described for the

Poisson generators in Section 2.2.

A second transfer function converts the firing rate of the

two excitatory populations to saccadic motor commands:

the robot’s cameras are moved to the left or the right by

a quantity proportional to population A and population

B firing rates, respectively. Finally, 5 s after the stimulus

onset, the moving dots are stopped and cleared from

the screen before starting a new trial. A 10 s interval

separates each trial; during this interval, any external

input to the network ceases, and its activity return to the

baseline state.

3. Results

To test the network’s performance and compare the results

obtained in Wang (2002), we ran 1,000 trials over the different

coherence levels. We employed the same coherence levels as

in Wang (2002): population B was stimulated using coherence

values of 3.2, 6.4, 12.8, 25.6, and 51.2%, while the values for

population A were –3.2, –6.4, –12.8, –25.6, and –51.2%.

FIGURE 5

E�ects of strong recurrent connection and NMDA slow reverberation: (A) Simulation output for decreased recurrent weights. (B) Simulation

output without NMDA slow dynamics. We reported in blue population B activity in the altered simulations, light blue the standard simulation

output. For population A we reported in red the activity in altered simulation and light red the standard response.
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3.1. Reproduced relevant features

The spiking network model presented in this study is

able to mimic the salient features of the LIP neurons firing

patterns during delayed visual motion discrimination task as

reported in Shadlen and Newsome (2001) and modeled by

Brunel et al. (2001) and Wang (2002). In Figure 3, we select

three trials where population A wins over population B when

stimulated at three different coherence levels. Even at low

stimulus coherence, the network dynamic leads to one of the

two attractor states, showing an elevated persistent activity of

the winning population during a prolonged period after the

stimulus ends, which suppresses the activity of the other neural

group. This slow progressing winner-takes-all competition relies

on the recruitment of the inhibitory neurons, which show a

ramping activity similar to the one of the winning population

(not shown). At an increased level of coherence in the stimulus,

the winning population firing rate is slightly higher (Figure 3C).

Moreover, from the decision space represented in Figure 4,

we can see that the network’s dynamic reaches the attractor

state faster when stimulus coherence is higher. In contrast,

there is a longer random walk around the decision space

diagonal at low coherence, meaning that it takes more time

for the two populations’ activities to diverge. This reflects

the physiological behavior of the cortical network, which

accumulates faster evidence about the input, the stronger the

input signal. Therefore, we observe a relationship between the

coherence level and the steepness of the slope in the activity

of the winning population that is almost identical to the one

reported in Wang (2002).

E�ect of recurrent excitation and NMDA
mediation

In Wang (2002), the author found that the strong synaptic

excitation on the recurrent connections is the main drive for

neural integration and the slow reverberation depends mainly

on the slow dynamics of the NMDA receptors. First, the network

FIGURE 6

“Coin toss” decision: Here represented two trials where 0.0% coherence level is given to the network. In the left panels, population A wins over

B, on the right, population B wins over A. (A) Raster plots for all excitatory neurons in the network color coded with respect to the population

they belong to: in red Population A, in blue population B. (B) Firing rates across time for the two neuronal groups. (C) Input stimuli time course.

In blue the stimulus is given to population B, in red the stimulus is given to population A. (D) The time integral of the two inputs.
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FIGURE 7

Network performance and reaction time: (A) Neurometric function reported as the percentage of the correct choice. In blue for population B, in

red for population A and in black the weibull fit as reported by Wang (2002). (B) Response of population B (median filter applied to the original

trace) in trials with 0.0% (left) and 51.2% (right) stimulus coherence. Green line represents the mean along trials. (C) Dark purple plot is the

decision time histogram for trials where the network was stimulated with 51.2% coherence. Light purple histogram, for trials with 0.0%

coherence level. (D) Evolution of population B response for four di�erent coherence levels. Black curves (correct trials): population B wins over

A and the stimulus is in the preferred direction for population B. Gray curves (error trials): population B wins but the stimulus is the

non-preferred direction for population B. Orange curves (correct trials) population B loses over A, and a non-preferred stimulus for B is

delivered. Light orange (error trials) population B loses over A, even if the stimulus was in the preferred direction for B.
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proved to decrease the recurrent excitatory weights, from w+ =

1.7 to w+ = 1.4 and observed that the ramping activity was

limited in time, and there was no persistent activity after the

stimulus. At low coherence, the network could not reach any

attractor states, being the firing activity of the two populations

at the same intensity.

We performed the same testing (Figure 5A) and found

that no categorical decision can be made in the case of a

low coherence level since the two populations share the same

activity. With a stronger stimulus being delivered, we also find

that the mnemonic ability of the network is destroyed (no

persistent activity).

When we simulate the network removing the slow time

constant of NMDA receptor (τsynNMDA=τsynAMPA see

Table 1), we no longer observe a silencing of the opponent

population, while in Wang (2002), the network is still able to

reach an attractor state even if this condition does not last

after the stimulus ends (no persistent activity). As we can see

from Figure 5B, when a 51.2% stimulus coherence is given as

input, the network is not able to integrate the stimulus for a

sufficiently long time interval to ramp up and reach a firing

rate strong enough to silence the competing population. This is

due to the fact that we remove the slow dynamic component of

the neuronal response, given originally by the NMDA receptor,

therefore only a fast response is allowed, resulting in the inability

of the neuronal population to sum up different contributions in

a progressive way (ramping activity).

3.2. “Coin toss” neuronal response

Another interesting property of the network is its ability to

take a decision even when no preferred direction for stimulus

is given. In Figure 6, we reported the results for two simulation

trials at zero coherence, along with the stimulus level.

In accordance withWang (2002), when we deliver a stimulus

with 0.0% coherence level, the two neural groups share the

same level of activity during the initial part of the stimulus

and slowly start to diverge at the end of the stimulus interval.

Eventually, one of the two populations shows a prevalent self-

sustained activity able to suppress the other population, i.e.,

taking a decision. We investigate the “nature” of the random

FIGURE 8

Dependency on stimulus duration: Top panel: neurometric function for di�erent stimulus duration compared to the weibull fit as reported by

Wang (2002) (black curve). Bottom panels: population A and population B firing rate activity in three di�erent trials, but same coherence level

(-12.8%). From the left: stimulus delivered for 500 ms, stimulus delivered for 700 ms, stimulus delivered for 900 ms.
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FIGURE 9

Decision reversal: (A) Time for stimulus reversal. Top panel: Percentage of choice for population A and population B with a –6.4% coherence

stimulus in input, that is reverted at a di�erent time (300, 500, 700, 900, and 1,000 ms). The reverted stimulus coherence is 6.4%. Central panels:

(Continued)
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FIGURE 9

population A and population B firing rate activity in three di�erent trials where the stimulus is reverted, after 300 ms (left), 700 ms (central), and

900 ms (right). Bottom panels: Corresponding input rates over time. (B) Intensity of stimulus reversal. Top panel: Percentage of choice for

population A and population B with a 12.8% coherence stimulus in input that is reverted after 1,000 ms with reverse stimuli at di�erent intensity

(–3.2, –6.4, –12.8, –25.6, –51.2, –70, and –80%). Central panels: population A and population B firing rate activity in three di�erent trials where

the reverted stimulus intensity is –12.8% (left), –51.2% (central), and –80% (right). Bottom panels: Corresponding input rates over time.

decision, arguing whether it would be caused by the variability

of the input stimulus or by the noisy nature of the background

input, as done by Wang (2002). Thus, we run 1,000 additional

simulations removing the stochastic fluctuations in the input

(σ0 = 0) and compare the percentage of choices made by the

network. We obtain that in 478 over 1,000 trials (47.8 vs. 42.0%

in the trials where σ0 =) the network chooses the preferred

direction for A, and the remaining 522 (52.2 vs. 58.0% in the

trials where σ0 =) it chooses the preferred direction for B.

Therefore, we also conclude that the main source of variability

in the decision process and its outcome is due to stochastic

fluctuations of a background noise (Churchland et al., 2011)

here modeled as Poisson inputs to the network, that could be

biologically associated with the variability of the afferent inputs

of MT neurons to the LIP area (Wang, 2002).

3.3. Network’s performance as a function
of input coherence

As already mentioned, we run 1,000 trials over different

levels of coherence and compare the percentage of the correct

choice of each population with the Weibull function fitted over

(Wang, 2002) data:

%correct = 1− 0.5× exp(−(c/α)β ), (3)

Wang (2002) reported α = 9.2 and β = 1.5, being close to

the value for psychometric functions reported in experimental

studies (Shadlen and Newsome, 2001; Roitman and Shadlen,

2002). As shown in Figure 7A, we get comparable results for the

response of population A, but slightly different for population

B’s preferred choice.

We also assess the reaction time at different coherence levels.

In Figure 7B, we compare the reaction time of population B at

0.0 and 51.2% stimulus coherence. As in Wang (2002), we set a

threshold of 15 Hz to measure the time at which we consider the

decision to be made. In this way, we can define the reaction time

as the time interval from the stimulus start until the activity of

the population reaches 15 Hz. We can notice that the response

to 0.0% is slower, and a higher variance with respect to the

response to the stimulus at 51.2% is faster and similar in each

trial. Indeed in Figure 7C, we can observe that reaction times for

high stimulus coherence tend to be smaller and distributed less

broad with respect to reaction times for 0.0% coherence level.

Reaction times do not depend only on stimulus coherence

but also on the “correctness” of choice. In Figure 7D, we

compare the time evolution of neuronal response for population

B at four coherence levels, in four different cases. (1) when the

correct choice has been made (black curves), e.g., population B

responds to its preferred stimulus; (2) when the population B

responds to a non-preferred stimulus (gray curves); (3) when

population A wins over population B in response to a preferred

stimulus for B (orange curves); (4) when population A wins over

population B when the preferred stimulus for A is given to the

network (yellow curves). In error trials, cases (2) and (3), the

neuronal activity of population B increasingly differs from the

one shown in correct trials (1) and (4), when stimulus coherence

increases. This could be due to the fact that while in correct

trials population B response changes accordingly to the levels

of coherence, responses in error trials do not change, being the

response time and the frequency level are almost the same for

different stimuli.

3.4. Stimulus duration and decision
reversal

Britten et al. (1992) tested the dependency of the decision-

making process on the duration of the stimulus, i.e., how long

the stimulus should be to formulate a net decision. We tested

the network’s performance when varying the stimulus duration,

as shown in Figure 8.

As in Wang (2002), we also found that decreasing the

stimulus duration decrease the ability of the network to take

a decision. In Figure 8, we can see that with a stimulus of

700 ms, the network is still able to accumulate evidence and

engage in a winner-take-all mechanism, although the persistent

activity during the delayed period seems to be affected. When

a 500 ms stimulus is delivered, this no longer stands, and

even if population A has a slightly higher rate after stimulus

delivery, we cannot claim that the activity of the two populations

diverges significantly.

In Wang (2002), the author questions whether the network

model is able to subtract evidence given a reverted signal and to

accumulate evidence for the initial input signal. Thus, we also

investigated this property in our model by running simulations

where the input signal was reversed during stimulation, varying

the stimulus reversal time and intensity. To test the time of

reversal, the stimulus coherence is set to –6.4% before and
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FIGURE 10

Virtual task execution: Here, reported two screenshots of the NRP interface during the first 20 s of a virtual experiment execution. The iCub

robot successfully performs a saccadic movement from its fixiation point (top) to the right (bottom), when shown random moving dots with a

coherence value of 51,2%. The 3D renderings show both a frontal view of the iCub with its left camera frustum and the subject’s field of view in

which a red dot indicates the gaze target; the raster plot on the right is updated in real-time and shows the activity of the brain model

embedded in the robot, marked with the corresponding timestamps. Note that, when using the NRP, the raster plot slides from right to left, thus

the instantaneous value is only depicted on the rightmost edge and only past activity values are shown on screen. For the sake of clarity, the

raster plots depicted in the figure only show a subset of excitatory neurons, and colored boxes have been overlaid to mark rows belonging to

di�erent populations (in red those of population A and in blue those of population B); it can be seen that starting from a balanced state (top), the

network engages in a winner-take-all competition upon stimulus onset (bottom), after the 14 s mark.

+6.4% after the reversal. From Figure 9A, we can see that if

the reversion happens after 800 ms, the network reaches the

attractor dynamics. Thus, there are no effects on behavioral

decision performance. While, if the reverse stimulus onset is

early enough, the percentage of choice for the population A

depends on the time of reversal.

However, we can still reverse the behavioral outcome after

1 s stimulus if we provide the network with a stronger reverse

stimulus for a prolonged time interval. As we can see from

Figure 9B, when the reverse stimulus is above 70% coherence

level, the network accumulates enough new evidence to change

the previously made decision.
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FIGURE 11

Robotic subject’s reaction times: Whisker plot showing the reaction time (i.e., the time needed by the iCub to rotate its cameras by an angle

greater than 0,08 rad after the stimulus onset) during 10 di�erent trials and with di�erent stimulus coherence values. The red dots on the upper

right corner represent failed trials, in which either the reaction time exceeded 2 s or the saccadic movement didn’t surpass the threshold (hence,

no decision was taken).

3.5. Virtual behavioral task analysis

We carried out different experiments on the NRP

to test the ability of the network model to let a virtual

robotic subject perform a visual discrimination task once

embedded in a sensory-rich environment. Indeed, the

iCub robot, while controlled by the excitatory population

firing rates, was able to correctly perform saccadic

movements following the direction of the coherently moving

dots (Figure 10).

We were also able to verify that the network’s activity closely

matched that of its NEST implementation when running on a

different software tool (Figure 10), thanks to a real-time raster

plot displayed on the NRP interface. Then, to validate the

simulated experimental outcomes, we tested whether the robotic

subject’s eye movements speed changed in relation to stimulus

coherence levels by recording and analyzing the angular value

of the joint controlling the iCub camera rotation when changing

the stimulus strength. We considered the binary decision taken

once the angular rotation of the camera joint surpassed a

threshold value of 0.08 rad (4.6◦) from a starting position of 0◦,

after the subject was presented with the stimulus.

As seen in Figure 11, higher coherence values correspond

to faster reaction times, in accordance with in vivo visual

discrimination tasks (Britten et al., 1996; Shadlen and Newsome,

2001; Roitman and Shadlen, 2002). The average reaction time

during low coherence trials is more than two times the one

observed with high coherence stimuli.

Furthermore, a coherence value close to 0% results in failed

trials, e.g., saccade movement lower than the threshold value or

reaction times exceeding more than 2 s. While this might be

due to a fuzzier optical flow computation as a result of almost

no coherently moving dots, it also mirrors the primate subjects’

uncertainty when presented with ambiguous stimuli.

4. Discussion

This paper proposes a NEST implementation of Wang

(2002) decision-making network model and challenges it in a

virtual visual discrimination task on the NRP. We performed

multiple simulations to assess its equivalence with the original

study and validate its ability to perform an in silico behavioral

task when embedded in a digital environment.

We show that our implementation of Wang (2002) model

reproduces the salient features of LIP neurons during a visual

discrimination behavioral task (Shadlen and Newsome, 2001;

Roitman and Shadlen, 2002). The network response to the
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stimulus is characterized by an initial slow increase in the

firing rate as a consequence of the progressive accumulation of

evidence that will eventually form the final decision. We also

succeed in replicating the dependency between the coherence

level and the steepness of the ramping activity: the higher the

coherence level, the faster the ramping response.

Another fundamental mechanism needed for having two

different behavioral outputs due to the two opposite choices is

the winner-take-all competition and the persistent activity after

the stimulus ends. The winner-take-all competition allows one

excitatory population to progressively silence the other when the

decision is formed, see Figure 3. This has been achieved, thanks

to the inhibitory feedback loop that suppresses the activity of

one population over the other. The persistent activity is obtained

due to the strong recurrent weights within a population and

the presence of the slow dynamics of NMDA receptors. The

network would escape the attractor state without one of the two

contributions as soon as the stimulus terminates (see Figure 5).

In particular, when we decrease the contribution of recurrent

excitatory weights, the network still performs the winner-take-

all competition in case of a strong level of coherence in input.

However, it loses the ability to sustain its activity for a delayed

period of time, indeed losing the working memory property of

the model. In Wang (2002), when only fast AMPA receptors

mediate the excitatory connections, the network is still able to

reach attractor dynamics but cannot integrate the stimulus for

more than 10 ms. In our implementation, when we reduce the

NMDA receptor dynamics to be the same as AMPA receptors,

the network loses the ability to ramp up, i.e., integrate the

stimulus for a longer time span, as in Wang (2002). However,

then it never reaches a sufficient firing rate to engage a strong

inhibition on the opposite population. Thus, our network also

loses the ability to engage the winner-take-all competition

between the excitatory populations, along with the ramping

activity and the persistent activity after the stimulus ends.

With the “coin toss” simulation, we verify that the network

is not a mere stimulus amplifier because it correlates with

the outcome of the decision and not with the input stimulus

coherence. Moreover, with a low coherence level, we would still

observe strong responses from the non-preferred population in

some trials, as observed in the experimental protocol in Britten

et al. (1996), Shadlen and Newsome (2001), and Roitman and

Shadlen (2002).

All the major differences in the results between our

implementation and the one proposed by Wang (2002)

could be due to a non-optimized tuning of the network

parameters. Indeed, we experience some difficulties replicating

the network with the identical model architecture since the

network’s activity is often saturated (all neurons spiking at high-

frequency rates) or shows oscillatory behavior, even without

stimulation. This is the main reason for not implementing a

fully connected network and instead using a pairwise Bernoulli

probability to set the connection degree between and within

a population. Thus, a further investigation of the optimal

parameters for the network parameter could be done using ad

hoc genetic algorithms and a straightforward comparison with

experimental data.

The neuro robotics platform is a software tool publicly

available within the EBRAINS infrastructure that can be used by

any researcher with minimal software programming knowledge.

It leverages its learning curve for new users by providing simple

templates to edit and reverse engineer. Here, we show a more

sophisticated use-case of the platform. We demonstrate that

on the NRP, it is possible to implement in silico replicas of

behavioral experiments deeply investigated in literature (Britten

et al., 1996; Shadlen and Newsome, 2001; Roitman and Shadlen,

2002).

The proposed visual discrimination task reproduction is

based on our NEST implementation of the decision-making

network but required us to design both the experimental

setting and stimulus delivery in accordance with biological

mechanisms. To do so, we chose an iCub humanoid robot as

our subject since its behavioral repertoire covers the saccadic

movements needed for the experiment. Then, we replicated the

stimulus delivery method commonly used in analogous primate

studies, namely a screen displaying random moving dots with

varying coherence levels. Finally, we implemented a transfer

function able to encode stimulus coherence levels from the

images seen by the subject, akin to biological perception.

Although the transfer function we designed successfully

allowed the robotic subject to perform the visual discrimination

task, the optical flow is estimated from the iCub cameras

using a relatively simple, yet well-established image processing

algorithm (Lucas and Kanade, 1981). This design choice was

mostly due to avoid introducing a delay between the onset of

the visual stimuli and the network inputs by using an optimized

implementation of the algorithm in OpenCV (Bradski, 2000),

a real-time computer vision library already integrated into

the NRP.

Using more recent and sophisticated saliency detection

methods (as those proposed in Jian et al., 2018, 2021)

could increase the precision of the encoded visual stimulus,

but their feasibility of implementation and optimization

within the intricate architecture of the NRP shall be further

investigated further.

Finally, just as in our reference study (Wang, 2002), we

implicitly model many visual pathway structures and only

mimic the neural representation of the stimulus through a

Poisson generator with varying firing rates. Moreover, we

employ a simplified mechanism to convert the two spiking

population firing rates to saccadic commands by imposing a

rotation of the robot’s camera joint by a value proportional

to the network activity. Although these mechanisms did not

represent the scope of the present study, they still represent a

structural difference between the primates experiment and our

virtual replica.
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However, we believe that, by sharing our implementation

with the scientific community, such mechanisms could be

faithfully reproduced by other research groups, ultimately

leading to a more realistic investigation of the biological

mechanisms underlying a visual discrimination task.

Data availability statement

The datasets presented in this study can be found in

online repositories. The link of the repository can be found

below: https://github.com/alessandratrapani/decision_making_

NEST_NRP.

Author contributions

AT and FS designed the computational framework and

analyzed the data. VG performed the first implementation of

the network model. AT, FS, EB, SC, LC, MD’A, FD, FF, and

VF carried out the final implementation and performed the

simulations. AT and FS wrote the manuscript with input from

all authors. AP conceived the study and was in charge of overall

direction and planning and revised the manuscript. All authors

contributed to the article and approved the submitted version.

Funding

This project/research has received a Voucher (CEoI 4-

Rodent microcircuits: RisingNet Whole-bRaIn rodent SpikING

neural NETworks) from the European Union’s Horizon 2020

Framework Programme for Research and Innovation under

the Specific Grant Agreement No. 945539 (Human Brain

Project SGA3).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Bradski, G. (2000). The OpenCV Library. San Francisco, CA: Dr. Dobb’s Journal
of Software Tools.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-
fire model as an effective description of neuronal activity. J. Neurophysiol. 94,
3637–3642. doi: 10.1152/jn.00686.2005

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and strategies.
J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., and
Movshon, J. A. (1996). A relationship between behavioral choice and the
visual responses of neurons in macaque mt. Vis. Neurosci. 13, 87–100.
doi: 10.1017/S095252380000715X

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon,
J. A. (1992). The analysis of visual motion: a comparison of
neuronal and psychophysical performance. J. Neuroscie. 12, 4745–4765.
doi: 10.1523/JNEUROSCI.12-12-04745.1992

Brunel, N. (2000). Dynamics of sparsely connected networks of
excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Brunel, N., Sup, E. N., and Wang, X.-J. (2001). Effects of neuromodulation
in a cortical network model of object working memory dominated by recurrent
inhibition. J. Comput. Neurosci. 11, 63–85. doi: 10.1023/A:1011204814320

Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., and
Shadlen, M. N. (2011). Variance as a signature of neural computations during
decision making. Neuron 69, 818–831. doi: 10.1016/j.neuron.2010.12.037

Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez
Tieck, J. C., et al. (2017). Connecting artificial brains to robots in a comprehensive
simulation framework: the neurorobotics platform. Front. Neurorobot. 11, 2.
doi: 10.3389/fnbot.2017.00002

Gewaltig, M., and Diesmann, M. (2007). NEST (NEural simulation tool).
Scholarpedia 2, 1430. revision #130182. doi: 10.4249/scholarpedia.1430

Jian, M., Wang, J., Yu, H., and Wang, G.-G. (2021). Integrating object proposal
with attention networks for video saliency detection. Inf. Sci. 576, 819–830.
doi: 10.1016/j.ins.2021.08.069

Jian, M., Zhang, W., Yu, H., Cui, C., Nie, X., Zhang, H., et al. (2018).
Saliency detection based on directional patches extraction and principal local
color contrast. J. Vis. Commun. Image Represent 57, 1–11. doi: 10.1016/j.jvcir.2018.
10.008

Lefort, S., Tomm, C., Sarria, J.-C. F., and Petersen, C. C. (2009). The excitatory
neuronal network of the c2 barrel column inmouse primary somatosensory cortex.
Neuron 61, 301–316. doi: 10.1016/j.neuron.2008.12.020

Lucas, B. D., and Kanade, T. (1981). “An iterative image registration technique
with an application to stereo vision,” in Proceedings of 7th Intl Joint Conf on
Artificial Intelligence (IJCAI) (Vancouver), 674–679.

Mascaro, A. L. A., Falotico, E., Petkoski, S., Pasquini, M., Vannucci,
L., Tort-Colet, N., et al. (2020). Experimental and computational study on
motor control and recovery after stroke: toward a constructive loop between
experimental and virtual embodied neuroscience. Front. Syst. Neurosci. 14, 31.
doi: 10.3389/fnsys.2020.00031

Plesser, H. E. (2018). Reproducibility vs. replicability: a brief history of a
confused terminology. Front. Neuroinform11, 76. doi: 10.3389/fninf.2017.00076

Roitman, J. D., and Shadlen, M. N. (2002). Response of neurons in the lateral
intraparietal area during a combined visual discrimination reaction time task. J.
Neurosci. 22, 9475–9489. doi: 10.1523/JNEUROSCI.22-21-09475.2002

Sandini, G., Metta, G., and Vernon, D. (2007). “The icub cognitive humanoid
robot: an open-system research platform for enactive cognition,” in 50 Years of
Artificial Intelligence (Berlin: Springer), 358–369.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E. (2013). Ten simple
rules for reproducible computational research. PLoS Comput. Biol. 9, e1003285.
doi: 10.1371/journal.pcbi.1003285

Schutter, E. D. (2010). Computational Modeling Methods for Neuroscientists.
Cambridge, MA: The MIT Press.

Frontiers in IntegrativeNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnint.2022.930326
https://github.com/alessandratrapani/decision_making_NEST_NRP
https://github.com/alessandratrapani/decision_making_NEST_NRP
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1017/S095252380000715X
https://doi.org/10.1523/JNEUROSCI.12-12-04745.1992
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1011204814320
https://doi.org/10.1016/j.neuron.2010.12.037
https://doi.org/10.3389/fnbot.2017.00002
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.ins.2021.08.069
https://doi.org/10.1016/j.jvcir.2018.10.008
https://doi.org/10.1016/j.neuron.2008.12.020
https://doi.org/10.3389/fnsys.2020.00031
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1523/JNEUROSCI.22-21-09475.2002
https://doi.org/10.1371/journal.pcbi.1003285
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Trapani et al. 10.3389/fnint.2022.930326

Shadlen, M. N., and Newsome, W. T. (1996). Motion perception: seeing and
deciding. Proc. Natl. Acad. Sci. U.S.A. 93, 628–633. doi: 10.1073/pnas.93.2.628

Shadlen, M. N., and Newsome, W. T. (2001). Neural basis of a perceptual
decision in the parietal cortex (area lip) of the rhesus monkey. J. Neurophysiol. 86,
1916–1936. doi: 10.1152/jn.2001.86.4.1916

Topalidou, M., Leblois, A., Boraud, T., and Rougier, N.
P. (2015). A long journey into reproducible computational
neuroscience. Front. Comput. Neurosci. 9, 30. doi: 10.3389/fncom.2015.
00030

Tsodyks, M., Uziel, A., and Markram, H. (2000). Synchrony generation in
recurrent networks with frequency-dependent synapses. J. Neurosci. 20, RC50.
doi: 10.1523/JNEUROSCI.20-01-j0003.2000

Turaga, P., Chellappa, R., and Veeraraghavan, A. (2010). “Advances in
video-based human activity analysis: challenges and approaches,” in Advances in
Computers, volume 80 of Advances in Computers, ed M. V. Zelkowitz (Amsterdam:
Elsevier), 237–290.

Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in
cortical circuits. Neuron 36, 955–968. doi: 10.1016/S0896-6273(02)01092-9

Frontiers in IntegrativeNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnint.2022.930326
https://doi.org/10.1073/pnas.93.2.628
https://doi.org/10.1152/jn.2001.86.4.1916
https://doi.org/10.3389/fncom.2015.00030
https://doi.org/10.1523/JNEUROSCI.20-01-j0003.2000
https://doi.org/10.1016/S0896-6273(02)01092-9
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org

	Reproducing a decision-making network in a virtual visual discrimination task
	1. Introduction
	2. Materials and methods
	2.1. Network model
	2.2. External inputs
	2.3. NEST implementation
	2.3.1. Neuron model
	2.3.2. Connectivity

	2.4. NRP experiment reconstruction

	3. Results
	3.1. Reproduced relevant features
	Effect of recurrent excitation and NMDA mediation

	3.2. ``Coin toss'' neuronal response
	3.3. Network's performance as a function of input coherence
	3.4. Stimulus duration and decision reversal
	3.5. Virtual behavioral task analysis

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


