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Abstract

Cloud computing and virtualization solutions allow one to rent the virtual machines (VMs) needed to run applications on a 
pay-per-use basis, but rented VMs do not offer any guarantee on their performance. Cloud platforms are known to be 
affected by performance variability, but a better understanding is still required.
This paper moves in that direction and presents an in-depth, multi-faceted study on the performance variability of VMs. 
Unlike previous studies, our assessment cov-ers a wide range of factors: 16 VM types from 4 well-known cloud 
providers, 10 benchmarks, and 28 different metrics. We present four new contributions. First, we introduce a new 
benchmark suite (VMBS) that let researchers and practitioners systematically collect a diverse set of performance data. 
Second, we present a new indicator, called Variability Indicator, that allows for measuring variability in the performance 
of VMs. Third, we illustrate an analysis of the collected data across four different dimensions: resources, isolation, time, 
and cost. Fourth, we present multiple predictive models based on Machine Learning that aim to forecast future 
performance and detect time patterns. Our experiments provide important insights on the resource variability of VMs, 
highlighting differences and similarities between various cloud providers. To the best of our knowledge, this is the widest 
analysis ever conducted on the topic.
KEYWORDS:
Cloud computing, Virtual machines, Software performance, Software reliability

1 INTRODUCTION

Cloud computing has changed the way we conceive and operate software. Nowadays, we can easily rent the (virtual) resources
needed to run applications on a pay-per-use basis1. A Virtual Machine (VM), a remote environment that works as a stand-alone
computer with its own CPU, memory, network interface, and storage, can be accessed through proper APIs and exploited to run
very diverse software systems. While in the last years cloud providers started offering higher-level services such as container-
as-a-service2 or function-as-a-service3, VMs remain key for many users, and the aforementioned services are often based on
VMs themselves. Because the behavior of provisioned VMs impacts the quality of the software running on it4, be it a hosted
application or a higher-level service (e.g., a container engine), it is crucial to understand and predict the performance of cloud
platforms.
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Such platforms foster scalability, flexibility, lightweight infrastructures, and lower costs, but they do not guarantee any (fore-
seen) performance per se5,6. Moreover, the cloud hides a number of factors to the user: how hardware resources are managed
and shared among users (multi-tenancy), which virtualization system is employed underneath, how and when applications are
migrated to other computers, and how isolated they are. These are only a few examples of what is not transparent to the user
and that forces us to consider VMs as black-boxes. As a consequence, cloud performance exhibits inherent variability that is
challenging to comprehend and accurately predict7.

Most cloud vendors do not provide a definition of “performance”, neither do they supply a clear service level agreement
(SLA) for their VMs: to the best of our knowledge, up-time —which measures service availability— is often the only collected
and publicly available datum8,9. Some providers supply a maximum and minimum value for specific metrics: for example,
they specify the number of input/output operations per second for disk storage (IOPS), to measure the number of reads from
and writes to non-contiguous storage locations, and the throughput (per second), to state how fast the storage can read/write
data10,11,12. However, these metrics and data do not consider performance variability and do not help users gain insights on the
expected performance. Thus, assessing the qualities of service supplied by the VMs offered by the different cloud providers is a
needed step towards creating performance models6 and deriving quality indicators13. Benchmarking has been widely used in this
context: a significant number of works has already used application benchmarks14, micro benchmarks15, and even cloud-specific
benchmarks16 to evaluate the performance of VMs, but getting reliable results is not trivial and test-flawed methodologies may
lead to incorrect conclusions17.

This paper presents an in-depth analysis of VM performance that considers 16 types of VMs from 4 different cloud providers,
namely: Amazon Web Services1, Microsoft Azure2, Google Cloud Platform3, and EGI4 (European Grid Infrastructure). The
first three are public and commercial cloud platforms, whereas EGI is a European federation of cloud providers that supports re-
searchers and multinational projects. Besides studying well-known solutions, we also wanted to consider what is freely available
to European researchers and understand possible differences. While most of the studies7 available in the literature are limited
to few benchmarks and metrics (e.g., latency), our work exploits VMBS, a novel benchmark suite that we developed, that allows
for systematic and recurrent retrieval of 28 different metrics from 10 different benchmarks. VMBS probes the cloud platform fol-
lowing Randomized Multiple Trials (RMT)17, a well-known methodology for conducting repeatable experiments and enabling
fair comparisons in the cloud, where the context may change frequently.

After collecting data, we synthesized an indicator, called Variability Indicator (VI), to help quantify the variability of specific
VMs or vendors’ infrastructures in terms of breadth, frequency, and speed of performance fluctuations. The use of VI simplifies
the understanding of the performance provided by cloud platforms task and allows one to capture the main trends of VM
variability. For example, our results show that AWS and EGI are the more stable providers, while Azure and EGI are, on average,
less reliable than AWS and GCP.

We then analyzed the collected data and metrics using four different dimensions to better characterize variability: i) resources
which studies how single resources (e.g., CPU, memory) are affected by variability, ii) isolation that analyses whether cloud
providers are able to isolate resources and their performance fluctuations, iii) time that focuses on detecting recurring patterns
and cyclic behaviors, and iv) cost which analyzes whether renting more expensive VMs means obtaining better and higher
performance. Executed benchmarks allowed us to probe systematically cloud platforms and analyze the behavior of different
solutions over a significant amount of time, to identify accurate variability distributions18.

Finally, we developed multiple predictive models based on Machine Learning (ML) that allow for forecasting future per-
formance and anticipate recurring patterns. In particular, we trained multiple time-series forecasting models to predict the
performance of single resources. Furthermore, we leveraged multivariate models, such as logistic regression, to predict various
temporal factors, including the time of day, the day of the week, and weekends, based on a given set of measurements. These
predictions, on average, exhibited an accuracy that was approximately twice as high as that achieved by a random model. This
suggests that, despite the presence of noisy data, our findings confirm the existence of recurring patterns, providing valuable
insights into the underlying performance dynamics.

In summary, the contributions of this paper are the following: (i) a new tool, called VMBS, for systematically retrieving
and analyzing performance data of running VMs, (ii) an indicator called VI (Variability Indicator) for measuring performance

1https://aws.amazon.com/
2https://azure.microsoft.com/
3https://cloud.google.com/gcp/
4https://www.egi.eu



variability of VMs, (iii) a comprehensive multi-dimensional analysis of collected data, and (iv) a set of ML-based predictive
models to forecast VM performance.

The rest of this paper is organized as follows. Section 2 presents the methodology of our work. Section 3 introduces Variabil-
ity Indicator, Section 4 illustrates our multi-dimensional analysis, while Section 5 describes the ML-based predictive models.
Section 6 discusses obtained results and answers to the research questions. Section 7 surveys the state of the art, and Section 8
concludes the paper.

2 METHODOLOGY

The need for a shared, comprehensive knowledge base on VM performance variability motivated us to conduct an empirical
assessment aimed to create an open, wide, and accessible dataset and to provide relevant insights on this phenomenon. Our work
aims to answer the following research questions:
𝑹𝑸𝟏: How can one measure the performance variability of VMs? The performance of an ideal VM should not vary over

time, and the provider should work on minimizing possible fluctuations. However, as indicated in the literature, VMs frequently
exhibit unpredictable performance patterns. This question aims to identify an indicator to measure performance variability of
VMs.
𝑹𝑸𝟐: Does the performance of commonly used VMs vary w.r.t. the different resources? Besides confirming previous results,

i.e., that overall stability is not attainable, this question studies variability w.r.t the resources behind a VM (i.e., CPU, memory,
network, disk) and dis-aggregates how they contribute to variability.
𝑹𝑸𝟑: Are the resources provisioned to VMs managed in isolation? This question addresses variability isolation. Resources

cooperate to execute applications, but we do not know whether cloud providers are able to isolate the variability on a resource
with no side-effects on others in the short term.
𝑹𝑸𝟒: Is there a relationship between offered performance and time of the day or day of the week? This question investigates

how the time dimension could impact variability. If variability were governed by predictable periods, one could cope with them
and adopt proper countermeasures.
𝑹𝑸𝟓: Are the performance of similar VMs offered by different providers comparable and proportionate to their cost? This

question addresses the variability among similar VMs, that is, VMs that offer the same characteristics to the user, but that might
exploit different hardware infrastructures. If one pays a similar amount of money —with the exception of EGI that is free— and
rents similar VMs, how different measured performance is.

To answer these questions we proceeded in three steps. First, we created a benchmark suite, called VMBS, to collect data on
16 VM types offered by 4 cloud providers, employing 10 different benchmarks for a total of 28 performance metrics. Second,
we defined a variability indicator (VI) and analyzed the collected data using descriptive statistics. Third, we created a set of
ML models to understand whether VM performance are predictable, that is, their variability is not random but shows recurrent
trends and patterns.

In the remaining of this section, we describe in details our benchmark suite and the metrics it supports, the selected VMs that
we used in our evaluation, and the data collection process.

2.1 VMBS
Traditional benchmarks focus on computing few high-level indicators such as time to complete a task, throughput, and response
time. These application-oriented benchmarks may be useful to get information about the performance of a specific application,
but they lack means to understand the performance variability of single resources in isolation (e.g. CPU, memory, or network).

In this paper, we introduce VMBS5 (VM Benchmark Suite), which in contrast is created to probe the different resources
provided by VMs: namely CPU, memory, disk, and network. VMBS also follows the eight methodological principles proposed
to correctly measure and report performance-related studies in the cloud19.
Metrics
VMBS aims to help measure both hardware and application performance. The suite is intended to treat CPU, memory, disk, and
network independently. We selected and created light-weight benchmarks with a small number of dependencies to minimize

5Source code available at https://github.com/deib-polimi/VMBS-tool.

https://github.com/deib-polimi/VMBS-tool


Benchmark Metric Meaning Unit

CPU

Sysbench CPU EVENTS events (e) per second e/s
CPU LAT avg latency ms
CPU TH LAT threads avg latency ms

Nench CPU SHA256 SHA256 execution s
CPU BZIP2 bzip2 execution s
CPU AES AES execution s

CPUBench CPU DUR mean duration s
Network

Nench NET 1 DL - Cachefly CDN MiB/s
NET 2 DL - Leaseweb (NL) MiB/s
NET 3 DL - Softlayer DAL (US) MiB/s
NET 4 DL - Online.net (FR) MiB/s
NET 5 DL - OVH BHS (CA) MiB/s

Download NETB 1 DL - url 1 (1 GB) MiB/s
NETB 2 DL - url 2 (100 MB) MiB/s

Benchmark Metric Meaning Unit

Memory

Sysbench MEM SPEED speed MiB/s
MEM LAT avg latency ms

Disk

Sysbench DISK FILE R file op - read reads/s
DISK FILE W file op - write writes/s
DISK FILE F file op - fsync fsyncs/s
DISK THR R throughput - read MiB/s
DISK THR W throughput - write MiB/s
DISK LAT avg latency ms

Nench DISK SEEK ioping - avg seek rate 𝜇s
DISK SEQ R ioping - seq. read speed MiB/s
DISK SEQ W dd - avg seq. write speed MiB/s

DDBench DISKB LAT dd - s. blk (latency) MB/s
DISKB THR dd - l. blk (throughput) MB/s

App

WebBench APPB requests per second req/s

Table 1 Studied metrics.

unnecessary installation overhead. They also aimed to probe VMs and all the resources of interest thoroughly, while trying
to minimize repetitions and execution time. VMBS bundles three resource-specific benchmarks (CPUBench, DDBench, and
DownloadBench) and one application-specific benchmark we developed (WebBench), and two existing suites (Sysbench6 and
Nench7). We developed custom benchmarks to better probe the different VMs. Sysbench and Nench are two popular suites created
to assess server performance, and bundles CPU, memory, disk, and network benchmarks. Similarly, WebBench is an exemplar
benchmark application that exploits multiple resources sequentially and/or concurrently. It mimics a client-server application
and comprises a web server (gunicorn8) and a load generator (wrk9).

These benchmarks allowed us to measure 28 different metrics as reported in Table 1. Such an in-depth, multi-faceted analysis
of VM variability, along with a publicly available companion dataset, aims to help researchers and practitioners better under-
stand the complex dynamics of cloud environments and motivate new research efforts. We selected diverse benchmarks for
the same resource to get more detailed results. We used three benchmarks to assess CPU performance. SysBench is based on
the computation of prime numbers and measures: (i) the number of operations performed within a given time window (CPU
EVENTS), (ii) the average latency (CPU LAT), and (iii) the average thread latency (CPU TH LAT), given it exploits highly
concurrent threading. Nench measures CPU performance with 3 algorithms: the time to (i) hash, with algorithm SHA 256 (CPU
SHA256), (ii) compress, with algorithm bzip2 (CPU BZIP2), and (iii) encrypt, with algorithm AES (CPU AES), a 500 MB file.
Our CPUBench (CPU DUR) measures the time required to compute a trigonometric identity multiple timesto saturate the CPU.

As for memory, we exploited SysBench to collect the sequential write speed (MEM SPEED) and latency (MEM LAT). We
only used one benchmark since memory is easy to probe and we wanted to save time. We deeply tested disk performance with
three benchmarks. SysBench allowed us to measure the random read (DISK FILE R), write (DISK FILE W), and fsync (DISK
FILE F) speed on a 1GB file. We also measured the file read and write throughput (DISK THR R and DISK THR W) along with
the latency (DISK LAT). Nench allowed us to assess disk seek rate (DISK SEEK), sequential read (DISK SEQ R), and write
speed (DISK SEQ W). Our DDBench measured disk latency, by writing multiple times a small-sized block (DISKB LAT), and
throughput, by writing a large block once (DISKB THR). DDBench takes advantage of the well-known command dd used to
monitor the sequential writing performance of a disk device on a Unix-like system. Network speed is measured by downloading
a file from multiple network sources, both through Nench (NET 1-5) and DownloadBench (NETB 1-2). We used multiple
providers to better measure network speed on VM’s side, and discarded providers that showed non-negligible slowdowns in

6https://github.com/akopytov/sysbench
7https://github.com/n-st/nench
8https://gunicorn.org
9https://github.com/wg/wrk

https://github.com/akopytov/sysbench
https://github.com/n-st/nench
https://gunicorn.org
https://github.com/wg/wrk
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Figure 1 VMBS architecture.

their connectivity. We only considered one application benchmark, WebBench (APPB), to widen our analysis, even if the focus
was on isolated resources, and also to understand the comprehensive behavior of the different VMs.
Execution
To collect data from different VMs and extract the aforementioned metrics, we implemented VMBS following the architecture
presented in Figure 1. VMBS automatically run a round of experiments every hour. Each benchmark in a round is executed
multiple times, called trials. The executions exploits the Randomized Multiple Trials (RMT) methodology, a simpler version of
the Randomized Multiple Interleaved Trials (RMIT) approach17. The RMT randomly reorders the execution sequence at each
trial to mix the benchmark execution order and get more precise and unbiased results.

To minimize time and consumed resources, VMBS creates the VMs once: it then turns them on and off, but did not delete
them for the whole duration of the experimentation (configurable by the users). The initial setup is designed to be minimal and
only comprised the installation of our tool, the benchmarks, and all the dependencies required to execute them.

The experimental execution adheres to the following process. Component Manager periodically starts a round by turning on
allocated instances and launching all benchmarks on every VM through Executor. When the round completes and all results
are available, Communicator sends them to Bins (a minimal, lightweight database that contains a bin for each VM) and issues
a done signal to Manager, which turns the VMs off. Dashboard shows the information about benchmark executions and VM
status for monitoring purposes. The raw retrieved outputs are then processed by Data Parser to clean them and extract the values
obtained from each VM and for each metric. Parsed data are then fed to Data Visualizer.

2.2 VM Selection
This work targets VMs hosted in Europe, based on Ubuntu Linux, and provided by Amazon Web Services (AWS), Microsoft
Azure, Google Cloud Platform (GCP), and the European Grid Infrastructure (EGI). Table 2 shows the VMs we used and
groups them in four classes.Each class includes VMs with the same amount of CPUs and memory (RAM); the underlying non-
virtualized hardware architecture may differ. Although the VMs in a class are not identical, the goal of this classification is to
ease the comparison among similar VMs supplied by different providers. For each class (column 𝐶𝐿), we show the number
of VM instances we used for each provider, the number of virtual CPUs for each VM (column 𝑣𝐶), the amount of available
memory, its provider and code name, and its cost.10 Selected configurations are popular and general-purpose ones, and provide

10Shown prices refer to November 2022.



CL # vC RAM Provider Name Cost

C1 2 2 4 GiB
AWS a1.large $0,0582/h
Azure A2 v2 $0,0870/h
GCP E2-T1 $0,0713/h
EGI T1 free

C2 1 4 8 GiB
AWS a1.xlarge $0,1164/h
Azure A4 v2 $0,1830/h
GCP E2-T2 $0,1425/h
EGI T2 free

C3 2 2 8 GiB
AWS m5.large $0,1150/h
Azure B2MS $0,0960/h
GCP N1-T1 $0,1250/h
EGI T3 free

C4 1 4 16 GiB
AWS m5.xlarge $0,2300/h
Azure B4MS $0,1920/h
GCP N1-T2 $0,2501/h
EGI T4 free

Table 2 Selected VMs.

a balanced amount of computing, memory, and networking resources. These VMs are suited to run small and mid-sized appli-
cations, such as, micro-services, DBMS, web servers, code repositories. The main differences among the four classes are the
number of vCPUs and the amount of memory.

AWS a1 VMs are cost-saving machines designed to scale-out workloads, while m5 ones balance computing, memory, and
network resources. Azure A2 and A4 machines are affordable and general purpose VMs; B ones instead are supposed to serve
workloads that typically need low to moderate CPU power, but sometimes need to burst to significantly higher performance
when the workload increases. As for GCP, we selected E2 and N1 VMs: the former ones favor cost optimization rather than
performance; the latter are the first generation, general-purpose VMs offered by GCP. While we only used their CPUs, we
selected N1 VMs since they also offer GPUs and can thus be more versatile and appropriate for very diverse contexts. Finally,
EGI provides a set of predefined VM sizes, but they also allow one to exploit custom VMs based on specific needs. We created
special-purpose VMs that mimicked the characteristics of the others. Several independent providers contribute to the federation;
our instances were hosted at the INFN (National Institute of Nuclear Physics) center in Padua (Italy).

Cloud providers also offer different disk types. The selected ones are those recommended for most of the workloads. In
particular: the AWS General Purpose (GP2) SSD (Solid State Drive) for AWS, the Standard Azure SSD for Azure, and the
default boot-persistent SSD disk for GCP. Azure also augments its VMs with a temporary disk that provides short-term storage
for applications and processes and it is intended to only store data. EGI does not share any information about available disks.
All run benchmarks only used the local boot disk. We exploited the Command Line Interface (CLI) provided by AWS, Azure,
and GCP to interact with their VMs. Since EGI is deployed onto OpenStack, we managed its VMs through its API.

2.3 Data Collection
The analysis presented in this paper is based on one-month experiments carried out in 2020. The measurements were collected
in April, May, July/August and September/October, 2020, for AWS, Azure, GCP, and EGI, respectively. Our dataset contains
more than 1.5 million data points.11

We executed a round every hour for (a bit longer than) a month. Table 3 shows the number of times VMBS was executed on
the six different VMs of each provider (Rounds). We executed each benchmark different times (from 10 to 3 times, see below)

11The dataset we collected is available from: https://doi.org/10.5281/zenodo.8014668, and all graphs and extracted data from: https://github.com/deib-polimi/
VMBS-tool-Analyzer/.

https://doi.org/10.5281/zenodo.8014668
https://github.com/deib-polimi/VMBS-tool-Analyzer/
https://github.com/deib-polimi/VMBS-tool-Analyzer/


Provider Rounds Trials Measures ErrBe ErrPr
AWS 4,866 165,437 442,663 0.004% 0%

Azure 3,744 127,283 351,780 0.010% 9.935%
GCP 4,721 160,514 443,734 0% 0%
EGI 4,344 135,258 395,823 8.421% 0%

Table 3 Experiments, repetitions, and errors.

and also used different configurations (e.g., Download Bench was executed five times with a 1 GB file and five times with a 100
MB file). During each round, we executed DDBench and DownloadBench 10 times, 5 times for each considered configuration,
CPUBench 5 times, and Sysbench, Nench, and WebBench 3 times each, for a total of 34 trials. These numbers are a compromise
between total execution time and statistical validity of obtained results. Column Trials represents the total number of executed
trials: the numbers reported in the table are lower than expected since some trials failed (column ErrBe), and we only report
successful ones. Column Measures refers to the number of retrieved values (for all considered metrics). For example, Sysbench
returns 11 values and is repeated three times, and thus returns 33 values at each round. Also in this case, some benchmarks did
not return all values in each trial, and thus the total is lower than the theoretical value. These missed values are not reported in
column ErrBe because we did not consider as erroneous benchmarks that ran without problems but did not return some values.
For example, DISK SEEK and DISK SEQ R did not produce any value on ARM-based VMs because used libraries do not work
with those machines. Note also that some attempts to restart VMs on Azure were unsuccessful (column ErrPr). Similarly, only
EGI gave problems executing (network) benchmarks.

The mean duration —over a month— of each round (full execution of VMBS) on the different VMs was different among
providers even if we used similar VMs: some 10 minutes with AWS, 20 minutes with Azure, 14 minutes with GCP, and 22
minutes with EGI.

To exemplify the fluctuating execution times of VMBS on the different providers, Figure 2 compares the execution of VMBS
on AWS a1.xlarge and GCP E2-T1. The y-axis shows the duration in minutes while the x-axis reports the time at which the
toolkit was executed. Other VMs followed similar behaviors. The execution times on AWS remained stable during the whole
month, with a standard deviation —relative to the mean execution time— lower than 1.80 minutes for all machines. They only
presented a spike at the same time for all machines.While with more ups and downs, also the execution times on GCP were
stable, with a standard deviation always lower than 0.48 minutes for all machines.

In contrast, the duration on Azure is more variable (Figure 3): the graph shows multiple peaks at different durations of
different magnitudes. The duration of a round on B*MS machines was around 20 minutes in most of the cases (75%), while
on A* machines it was more variable: between 20.5 to 23.5 minutes. The interval between the 19th and 25th of May presented
a slowdown common to all the machines. The minimum standard deviation is 1.05 and the maximum is 7.72 minutes for the
different VMs. Due to the errors that emerged during the execution of network benchmarks on EGI, we decreased the size of one
of the downloaded file used to measure network speed. The execution time with EGI is variable and there is a sharp reduction
at the middle of the observation period. This is due to the fact that the VMs were not able to reach the online resource anymore,
thus the download benchmarks were partially skipped, and the total execution time decreased.
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19 20 21 22 23 24
0

20

40

60

80
A2-1
A2-2
A4-1
B2MS-1
B2MS-2
B4MS-1

duration [min]

%
 ro

un
ds

Figure 3 Distribution of execution times on Azure (marginal values are not shown).

3 Variability Indicator

To answer 𝑹𝑸𝟏 and to have an initial coarse-grained view of the performance variability of VM, we synthesized a Variability
Indicator (VI). VI uses historical data to quantify variability using three dimensions: i) breadth, that is, how big the observed
changes in the values were or how big the differences in the quality of the service were, ii) dispersion, that is, how scattered
collected values are, and speed, that is, how fast variations occurred. These three dimensions are helpful to understand whether
measured degradation is acceptable in the short-term. Note that, VI quantifies how variable the performance of the VM was
in a given, user defined, time window. On the contrary, it does not predict the future behavior of the VM (we present a set of
complementary predictive models in Section 2).

For each metric 𝑚 listed in Table 1, a vector 𝑋𝑚 contains the sequence of all collected values: one entry per hour since we
assumed each metric to be constant for the duration of a single round. The vector is then used to create a variation vector 𝑉𝑚,
where each element 𝑣𝑚 is the difference (as percentage) between the corresponding 𝑥𝑚 and 𝜇𝑚 (the average of all values in 𝑋𝑚),
normalized by 𝜇𝑚:

𝑣𝑚 =
𝑥𝑚 − 𝜇𝑚

𝜇𝑚
⋅ 100 (1)

𝑉𝑚 is then used to create a change vector 𝐶𝑚. For some metrics where higher is better (HIB), such as CPU EVENTS or MEM
SPEED, 𝐶𝑚 contains 𝑣𝑚 if it is lower than a threshold 𝑡, and zero otherwise. For other metrics where lower is better (LIB), such
as CPU BZIP2 or DISK LAT, 𝐶𝑚 contains 𝑣𝑚 if it is greater than 𝑡 and zero otherwise. Note that 𝑡 is used to filter out small
variations: for example, 𝑡 = 0.1 would only consider variations greater than 10% (with respect to the mean value). The result is
a vector with values that represent changes or zeros.

Breadth 𝑏𝑑𝑡ℎ𝑚 is then computed as the module of the average of the values in 𝐶𝑚. Note that, given each 𝑣𝑚 is computed as
difference with respect to the average 𝜇𝑚, this value can be interpreted as an estimation of both degradation and improvement
over the period. A 𝑏𝑑𝑡ℎ𝑚 equal to 0 would then mean a stable performance.

Dispersion 𝑑𝑖𝑠𝑚 is computed as the relative standard deviation (RSD) of the data vector 𝑋𝑚, thus the standard deviation of
𝑋𝑚 divided by its mean value 𝜇𝑣 (Formula 2) and then expressed as percentage. 0 means no variation.

𝑑𝑖𝑠𝑚 =
𝜎(𝑋𝑚)
𝜇𝑚

⋅ 100 (2)
Speed 𝑠𝑝𝑒𝑒𝑑𝑚 is computed as the standard deviation of the gradient of collected samples divided by the mean value (expressed
as percentage). The speed measures how fast the variation is, thus if the variation is null the speed should be zero.

𝑠𝑝𝑒𝑒𝑑𝑚 =
𝜎(∇(𝑋𝑚))

𝜇𝑚
⋅ 100 (3)

Our variability indicator is then computed as a weighted sum of 𝑏𝑑𝑡ℎ𝑚, 𝑑𝑖𝑠𝑚, and 𝑠𝑝𝑒𝑒𝑑𝑚 (Equation 4). Therefore, the VI of an
ideal VM should be 0 .

VI𝑚 = 𝑏𝑑𝑡ℎ𝑚 ⋅𝑤𝑏 + 𝑑𝑖𝑠𝑚 ⋅𝑤𝑑 + 𝑠𝑝𝑒𝑒𝑑𝑚 ⋅𝑤𝑠 (4)
where 𝑤𝑏, 𝑤𝑑 , 𝑤𝑠 are the weights we want to adopt to value the three indicators: 𝑤𝑏, 𝑤𝑑 , 𝑤𝑠 ∈ [0, 1] and 𝑤𝑏+𝑤𝑑 +𝑤𝑠 = 1. The
VI can be a simple and valid means to analyze the quality of provided VMs. The user may experiment with different values for
𝑤𝑏, 𝑤𝑑 , and 𝑤𝑠 to carry out what-if analyses that emphasize different aspects, but the lower a VI is, the lower the performance
variability of the VM is.



bdth dis speed VI bdth dis speed VI bdth dis speed VI bdth dis speed VI

C1
AWS - a1.large Azure - A2-v2 GCP - E2-T1 EGI - T1

2.50 6.80 3.99 4.43 16.33 41.74 25.71 27.93 3.51 8.97 6.02 6.17 5.16 14.16 9.65 9.66

C2
AWS - a1.xlarge Azure - A4-v2 GCP - E2-T2 EGI - T2

2.71 7.74 3.88 4.78 15.30 38.40 23.83 25.84 3.14 8.05 5.34 5.51 6.92 20.24 13.46 13.54

C3
AWS - m5.large Azure - B2MS GCP - N1-T1 EGI - T3

2.87 7.63 4.59 5.03 3.97 10.52 6.76 7.09 3.85 9.66 6.66 6.72 6.75 20.81 14.11 13.89

C4
AWS - m5.xlarge Azure - B4MS GCP - N1-T2 EGI - T4

2.82 7.49 4.11 4.81 3.57 9.57 6.11 6.42 3.47 8.89 6.07 6.15 5.66 18.64 12.97 12.42

Table 4 Most significant VIs (one metric for each considered resource) and mean values among all collected metrics (all values
are percentages). Best VI are highlighted in dark gray, worst in light gray.

Table 4 shows the most significant VIs, one for each considered VM, aggregated on all the metrics. 𝑉 𝐼 is computed with 𝑡 = 0
and 𝑤𝑏 = 𝑤𝑑 = 𝑤𝑠 = 1∕3, that is, they all weigh the same since the three aspects are equally important. The value is averaged
when we used multiple instances. While the VI can be calculated for every single metric, we report here the aggregated results
to simplify the discussion and to provide a high-level result that takes into consideration all the analyzed metrics. For each class,
the table uses a dark gray background to highlight the best VI, and a light gray one to identify the worst.

The results show that AWS VMs provide, on average, better and more stable performance compared to all the other providers.
In particular, for all the classes, AWS achieved the best score on 𝑏𝑑𝑡ℎ, 𝑑𝑖𝑠, 𝑠𝑝𝑒𝑒𝑑, and VI. In class C1 and C2, AWS obtained
a VI of 4.43 and 4.78 that is, respectively, 28% and 13% lower than GCP, the second best provider. EGI obtained significantly
worse results with a VI that is 54% and 64% higher than AWS. Finally, Azure with VMs A2 and A4 obtained by far the highest
VI, 81% and 84% worse than AWS.

The results obtained for classes C3 and C4 confirm that AWS provides the most stable performance but with smaller differ-
ences among the providers. AWS machines obtained a VI of 5.03 and 4.81 that is, respectively 25% and 21% better than GCP,
once again the second best provider. The performance of larger Azure machines appear to be more stable than their smaller
counterparts. They obtained results that are slightly worse than the ones of GCP with VIs that are, respectively, only 5% and 4%
higher. Finally, the worst performance for classes C3 and C4 was obtained by EGI with VIs that are almost three times higher
than the ones of AWS.

VI allows one to estimate variability in a selected time frame for a large set of metrics. The results show that the VI is able
to clearly capture the significant trends that emerged, in a much “scattered” way, from other analyses described in the following
sections. VI tells us that AWS provides the most stable performance across the cohort of analyzed cloud providers, closely
followed by GCP, while Azure and EGI were not always as stable as the first two.

4 DATA ANALYSIS

This section details our analysis on the collected data with the goal of answering the remaining research questions (𝑹𝑸𝟐-𝑹𝑸𝟓).

4.1 Resources
𝑹𝑸𝟐 concerns how single resources affect the variability of the performance of used VMs. As an example, Figure 4 shows the
results obtained for metric DISKB LAT with EGI VMs. If one assumed the mean value 𝜇 as reference, the chart shows that
measured values varied without any evident pattern for the different VM types. They also varied between different VMs of the
same type, but this is not exemplified in the figure.

Table 5 introduces the relative standard deviations (RSD) of the measured valued for the 28 metrics averaged on the 6 VMs
used for each provider. For each metric (row), the table uses a dark gray background to highlight the best provider, and a light
gray one to identify the worst. The values say that performance variation strictly depends on benchmarked resources.

As shown in the table, almost all the metrics are affected by non-trivial variations. However, the results for each provider show
that resources vary in different ways. For example AWS is affected by an average variation of around 5% on disk performance,
while more than double (12%) on networking. Moreover, while AWS is consistently the most stable provider for what concern



AWS Azure GCP EGI
Metric avg min max avg min max avg min max avg min max

CPU EVENTS 1.46% 0.92% 2.36% 4.76% 4.24% 5.75% 1.38% 1.02% 1.72% 1.19% 0.64% 1.69%
CPU LAT 3.16% 1.82% 5.14% 4.61% 3.93% 5.36% 2.18% 0.87% 2.97% 1.30% 0.31% 2.06%

CPU TH LAT 3.30% 2.32% 5.65% 9.74% 7.88% 13.17% 1.45% 1.20% 1.98% 2.60% 1.86% 4.77%
CPU SHA256 1.75% 1.01% 2.75% 5.15% 4.67% 5.69% 2.14% 1.97% 2.32% 1.71% 1.23% 2.15%

CPU BZIP2 1.92% 0.64% 3.76% 4.73% 3.75% 5.74% 2.68% 1.40% 3.18% 1.56% 1.01% 1.75%
CPU AES 4.00% 2.62% 8.94% 15.35% 13.98% 17.14% 3.35% 2.01% 4.35% 2.47% 1.94% 2.78%
CPU DUR 35.77% 25.71% 53.52% 22.66% 14.25% 31.43% 43.62% 28.51% 52.18% 21.22% 10.45% 31.44%

MEM SPEED 1.80% 0.83% 3.07% 7.93% 4.74% 9.10% 1.61% 1.05% 3.25% 9.27% 4.53% 13.38%
MEM LAT 2.88% 1.29% 5.65% 8.49% 4.84% 9.90% 1.95% 1.11% 4.08% 9.56% 3.78% 15.46%

DISK FILE R 5.38% 2.45% 9.01% 61.09% 4.65% 124.37% 9.37% 7.28% 10.58% 15.76% 1.97% 21.06%
DISK FILE W 5.38% 2.45% 9.01% 61.09% 4.65% 124.37% 9.37% 7.28% 10.58% 15.76% 1.97% 21.06%
DISK FILE F 5.38% 2.45% 9.01% 60.96% 4.65% 124.08% 9.36% 7.28% 10.57% 15.73% 1.97% 21.02%
DISK THR R 5.38% 2.45% 9.01% 61.09% 4.65% 124.37% 9.37% 7.28% 10.58% 15.76% 1.98% 21.06%

DISK THR W 5.38% 2.45% 9.01% 61.09% 4.65% 124.36% 9.37% 7.28% 10.58% 15.76% 1.98% 21.06%
DISK LAT 6.09% 2.10% 9.89% 36.61% 6.31% 69.55% 9.51% 7.44% 10.65% 18.99% 3.04% 28.94%

DISK SEEK 1.16% 1.09% 1.28% 19.01% 1.17% 36.13% 11.56% 9.80% 13.42% 98.03% 4.17% 154.95%
DISK SEQ R 0.63% 0.41% 1.03% 31.33% 0.32% 63.69% 0.27% 0.08% 0.57% 19.24% 2.21% 28.11%

DISK SEQ W 0.37% 0.15% 1.17% 0.89% 0.16% 2.67% 9.96% 7.38% 12.47% 11.49% 0.78% 16.10%
DISKB LAT 13.37% 11.96% 14.14% 87.34% 21.53% 197.30% 12.77% 10.10% 14.37% 102.98% 12.23% 141.24%
DISKB THR 5.96% 4.25% 7.49% 2.37% 0.38% 6.47% 13.04% 10.76% 16.79% 13.62% 3.62% 18.08%

NET 1 8.99% 8.65% 9.36% 29.38% 21.79% 36.65% 7.04% 6.79% 7.25% 4.51% 4.40% 4.67%
NET 2 16.13% 15.08% 16.97% 30.18% 27.94% 32.23% 27.41% 26.55% 28.59% 14.19% 13.52% 15.80%
NET 3 24.39% 19.78% 26.58% 14.94% 6.99% 23.54% 10.28% 9.61% 10.83% 1.30% 1.19% 1.46%
NET 4 10.46% 8.80% 11.75% 13.58% 10.64% 16.73% 9.51% 9.26% 9.89% 6.54% 6.03% 7.15%
NET 5 10.81% 8.34% 12.32% 7.47% 6.66% 8.96% 6.98% 6.76% 7.53% 3.82% 3.49% 4.21%

NETB 1 7.29% 6.49% 8.48% 25.88% 23.80% 28.23% 19.63% 18.51% 20.49% 78.82%∗ 71.01%∗ 86.77%∗

NETB 2 8.96% 8.49% 9.55% 19.04% 17.93% 20.18% 6.77% 6.63% 6.90% 2.85% 2.68% 3.06%
APPB 1.97% 0.80% 7.33% 4.89% 3.68% 6.39% 1.04% 0.70% 1.52% 1.74% 1.31% 2.30%

Table 5 Average, minimum, and maximum relative standard deviations among all VMs (∗ means that due to network problems,
the size of downloaded file was smaller). Best results are highlighted in dark gray, worst in light gray.
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Figure 4 DISKB LAT on EGI VMs (measure identifies the ordinal of retrieved values).

disk metrics, it is also the worst one in 2 tests over 7 related to networking. Similarly, EGI obtains the lowest variability among
all the providers on CPU- and network-related metrics, while the highest one with memory-related tests.

AWS variability ranges from a minimum value of 0.15% (DISK SEQ W) to a maximum value of 54% (CPU DUR), Azure
variability ranges from 0.16% (DISK SEQ W) to 197% (DISKB LAT), GCP variability varies from 0.08% (DISK SEQ R) to
52% (CPU DUR), and EGI variability ranges from 0.31% (CPU LAT) to 155% (DISK SEEK). If we set a threshold on variability
at 10%, we can observe that AWS and GCP are the best providers with most (80% and 67%, respectively) of the benchmarks
executed with a variability lower than the threshold. The result is worse with Azure (55%), and EGI (54%). The results show
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Figure 5 Correlation between resource metrics for AWS and GCP.
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Figure 6 Comparison between CPU BZIP2 and MEM SPEED on Azure A2 VMs.

that single metrics can only give a partial view of the problem. For example, EGI obtains the best results for CPU- and network-
related metrics (except for CPU TH LAT and NETB 1) and the worst ones in all the tests related to memory, in four out of eleven
of the metrics used to measure disk performance and NETB 1.

While the standard deviation measures how dispersed the values are with respect to the mean, it does not addresses how data
are distributed.12 To this end, and to measure the effect of the tails, we filtered the datasets with a pass-band filter, removing the
first and last 5% of the results, thus keeping the values between the 5𝑡ℎ and 95𝑡ℎ percentiles. The results, not shown here for lack
of room, show that the RSDs of the filtered datasets are on average 30% smaller than the RSDs of the complete datasets: 35%
smaller for AWS, 26% smaller for Azure and EGI, and 33% smaller for GCP. The difference among classes is negligible for all
the providers but Azure, where the A* machines show a small difference (17%), while the B* VMs a greater one (35%). On the
other hand, the mean values did not change.

Our analysis shows that if we consider a single provider, different resources are affected by different levels of variability.
The patterns of such variability appear to be difficult to understand through visual inspection and descriptive statistics. To
better understand the performance of single resources varies over time we conducted further experiments using ML methods,
as described in Section 5.



4.2 Isolation
While the resources of a VM work cooperatively at application level (e.g., if provisioned memory is not enough, the system
starts swapping and application’s performance degrades), to answer 𝑹𝑸𝟑 we assessed whether the performance variability of a
resource affects the others in the short term independently of the running application. To do so, we employed two methods, the
first based on correlation matrices and the second on gradient analysis.

Figure 5 shows the correlation matrices for AWS and GCP computed over the whole dataset and averaged over all the VMs
types for each provider. The other two providers yielded comparable results and their matrices are not included herein for the
sake of brevity. The matrix of AWS shows that most of the metrics are not correlated with one another (0.0 correlation). We
can observe that some correlation exists between metrics that measure the same resource (e.g., CPU EVENTS and CPU LAT
show a correlation equals to 0.9) but different resources appear to be almost completely independent with one another. The
matrix of GCP shows a slightly higher correlation among the metrics. For example, DISK LAT and DISK SEEK appear to be
correlated with some CPU-related metrics (e.g., 0.5 correlation with CPU AES). Similarly, MEM SPEED and MEM LAT show
a correlation CPU-TH LAT of −0.5 and 0.4, respectively.

As for the gradient-based method, we computed the mean 𝜇𝑚 of all values —collected over a month— for each metric 𝑚. For
each value 𝑥𝑚, we then computed 𝑥𝑚∕𝜇𝑚 and the gradient between each pair of subsequent values to estimate the variations.
We took the times at which each metric showed the 𝑛 highest values of the gradient, that is, the 𝑛 time points with the most
noticeable variations. We then compared the time points of every possible pair of metrics. If the number of equal time points
in the two sets is greater than 𝑛 × 𝑡, where 𝑡 is a threshold, a relationship between the changes of the two metrics (resources)
exists. We took 𝑛 = 100 and a 𝑡 = .6 (60% similarity). Note that, to avoid capturing the natural dependency among resources at
application level, we executed the benchmarks one after the other, within a short time window, to avoid parallel executions.

This analysis revealed that there is no noticeable dependence between single resources for AWS, GCP, and EGI VMs. Azure
A2 VMs suggested a (weak) relationship between CPU BZIP2 and MEM SPEED, CPU BZIP2 and MEM OPS. Figure 6 shows
the relationship between CPU BZIP2 and MEM SPEED. 61% of the gradients, highlighted in the figure, coincide (red lines),
and thus there exists a relationship between the two resources. We obtained a similar result while comparing CPU AES and
DISK FILE W/R/F, CPU AES and DISK THR W/R, CPU AES and DISK SEQ W/R, abd CPU AES and MEM LAT.

Overall, the results indicate that there is generally a weak correlation between resources in cloud providers. This suggests
that cloud providers are capable of managing resources in isolation. Furthermore, these findings emphasize the importance of
employing a multi-metric approach, as the observed correlations vary across different metrics and only specific pairs of metrics
exhibit a significant level of correlation.

4.3 Time
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(a) DISK THR R on EGI VMs.
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(b) NET 1 on AWS VMs.

Figure 7 Time analysis (measure identifies the ordinal of retrieved values).

Table 5 witnesses that performance varies, with different breadths, no matter the resource one considers. To answer 𝑹𝑸𝟒,
we then decided to study the possible presence of variability patterns and cyclic behaviors. Our data analysis demonstrated that
there are no apparent patterns between variations and particular hours, days, or weeks. Figure 7a exemplifies a common case

12For example, values can be uniformly distributed between the minimum and maximum or most of the values can sit around the mean with few values far distant from
it (also called outliers).
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(b) APPB.

Figure 8 Performance among different VM types.

(DISKB THR R on EGI) where visual inspection does not allow to recognize any recurring pattern. The performance appears to
be highly fluctuating and unpredictable behavior ranging from a disk read speed of 2 MiB/sec to more than 6 MiB/sec. However,
we were able to observe a couple of highly cyclic behaviors. NET 1 and NETB 2 exhibited a recurring behavior: Figure 7b
shows NET 1 values for AWS VMs. This should be related to the network performance of the download server since the other
network benchmarks did not show a similar behavior. The download speed is periodic and we got similar results also with Azure
and GCP, while we were not able to appreciate any periodicity with EGI due to the limited download speed.

Our comprehensive analysis indicates that the majority of resources and providers do not exhibit noticeable recurring per-
formance changes. However, we have identified a few exceptional cases where distinct patterns have emerged. In order to gain
a deeper understanding of the temporal variations of individual resources, we conducted additional experiments using various
ML methods, as elaborated in Section 5.

4.4 Cost
𝑹𝑸𝟓 started from the idea of studying whether more expensive VMs come with higher values, and thus whether investing more
money always means getting better performance and stability. On average, this appears to be not true. Our experiments suggested
that the performance of different VM types mainly depend on analyzed metrics and not on the type itself, nor the size. In this
section, we provide some examples by presenting charts of the performance of different providers. Besides the mean measured
value, the black line on top of each bar shows the standard deviation. Figure 8a (CPU DUR) shows that the performance of
VMs of different types is clearly not equal, but there is a small difference between machines of the same family, for AWS and
Azure (e.g., a1 and m5, and A* and B*MS) and differences between different instances of the VMs.13 GCP types (E2 and N1)
are comparable, while the performance of EGI VMs was quite variable and there was no strong difference between VM types.
Similarly, CPU EVENTS witnessed that the performance of a VM is not always proportional to the cost of the machine, and there
is not always a sharp difference between families. For example, AWS a1 VMs obtained higher values than the more expensive
m5 ones and the results for GCP E2 and N1 VMs are comparable. EGI T1 and T3, and T2 and T4, provided similar results. On
the other hand, there is a clear difference between different machine sizes, e.g., between AWS large and xlarge and GCP E2-T1
and E2-T2 types.

Figure 8b refers to APPB and one can observe that the performance increased proportionally to the VM size for AWS a1
and m5 and for Azure B*MS VMs, but not for Azure A* machines where the results for A2 and A4 VMs were comparable.
In addition, AWS a1.xlarge VMs performed better than m5.large ones and they have the same cost per hour. The behaviors of
GCP E2 and N1 VMs were comparable, while results with EGI VMs were variable and the highest performance was not of the
VM with more resources. Disk performance did not show any substantial difference between VMs of different sizes for AWS
and GCP while there was a clear difference for Azure, and this is true for all Sysbench disk benchmarks. DDBench (large block
size) (DISKB THR) highlighted a noticeable difference only between AWS a1 and m5 VMs. Finally, the results for network
benchmarks showed that download speed is independent of VM type and its cost.

To better relate performance and cost, we propose the cost/performance ratio (CPR) for five relevant metrics, one per resource
type. Table 6 shows the results (lower values are better). Being free of charge, we did not report any result for EGI. GCP has the
best value for CPU BZIP2 for classes C1 and C2, while it is less competitive with classes C3 and C4, where Azure and AWS are
the best ones, respectively. Looking at MEM SPEED, AWS has the best CPR with classes C1 and C2; its values are much higher

13Note that when we write VMtype/size-X, X is 1 when we only have one instance, and can be 1 or 2 with two instances.



CPU BZIP2 MEM SPEED DISK THR R NET 1 APPB

C1
AWS 558.72m 2.78𝜇 1.46m 567.89𝜇 4.89m
Azure 1.19 6.32𝜇 25.96m 615.82𝜇 5.66m
GCP 511.83m 5.32𝜇 2.91m 749.11𝜇 4.71m

C2
AWS 1.12 3.18𝜇 2.70m 1.12m 4.90m
Azure 2.50 9.23𝜇 54.06m 1.29m 7.85m
GCP 873.06m 5.62𝜇 5.70m 1.50m 4.76m

C3
AWS 589.72m 7.37𝜇 2.72m 1.16m 6.72m
Azure 574.05m 4.08𝜇 8.00m 904.81𝜇 3.48m
GCP 876.03m 9.30𝜇 4.63m 1.31m 8.26m

C4
AWS 1.13 7.80𝜇 5.65m 2.32m 6.71m
Azure 1.14 5.02𝜇 15.97m 1.87m 3.49m
GCP 1.52 9.86𝜇 9.57m 2.62m 8.34m

Table 6 Cost/performance ratio for a subset of considered metrics. Note that 𝑚 means 10−3, while 𝜇 means 10−6. The best VM
for each metric is highlighted in dark gray, the worst in light gray.

than those of the competitors. Azure’s memory performance is cheaper than AWS and EGI for C3 and C4 VMs. The best CPR
for DISK THR R is obtained by AWS that is above the competitors, while the CPRs related to networking are comparable, even
if AWS is the best for small VMs and Azure for the bigger ones. Finally, if one considers APPB, GCP offered the best CPRs
ratio for C1 and C2 VMs, and Azure for the bigger machines. The CPR tells us that AWS is possibly the most cost-effective
provider for small VMs, while one should prefer Azure for the more powerful ones.

5 PERFORMANCE PREDICTIVE MODELS

The data analysis presented in the previous section did not identify significant patterns within the VM performance data collected.
In particular, the preliminary answers to 𝑹𝑸𝟐 (relative to the stability of the performance of common VMs) and 𝑹𝑸𝟒 (on
the relationship between offered and time of the day or day of the week) suggest that VM performances are unstable and very
difficult to predict regardless of the provider. In this section, we propose an in-depth analysis of data collected using multiple
ML models for forecasting and classification. Specifically, we describe the following two experiments: time-series forecasting
to predict VMs performance based on past observations, and a series of multivariate prediction tasks based on classification to
detect recurring temporal trends.14

The main objective of the first experiment is to consider and study individually the predictability of the performance of each
measured resource for each of the four providers (AWS, Azure, GCP, EGI). This analysis allowed us to give a better answer
to 𝑹𝑸𝟐, considering that resources correctly predicted by a ML model can be considered relatively stable, or at least regular
and cyclic from a temporal point of view. Given our data analysis and previous results from literature, we are aware of the high
degree of variability of VM performances, but thanks to the quantity and diversity of the collected data, we believe that there is
enough material to extract new knowledge and adequately train multiple ML models for resource performance forecasting.

The goal of the second experiment is to understand whether a classification model is able to associate a given set of perfor-
mance values to a specific time period, either within the day (time of the day), or within the week (day of the week). The results
of this experiment allowed us to give a more precise answer to 𝑹𝑸𝟒. Accurate predictions from the models would highlight a
relationship between the performance of a VM and different times of day (or days of the week), while poor performance would
further confirm the unpredictability of VM performance.

5.1 Time-Series Forecasting
The time-series forecasting experiment required a first step of pre-processing to a) normalize data, b) fill missing values and
c) make data stationarity through a differencing process that stabilizes the mean and variance across time. We normalized data

14The code for replicating the experiments can be downloaded from: https://doi.org/10.5281/zenodo.8014668.
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with a min-max approach, filled missing values with a simple mean-based imputation technique, and finally performed a first-
order differencing to obtain a stationary series. As confirmed by the augmented Dickey–Fuller test20, a further second or higher
order of differencing was not needed for our data.

For this experiment, we considered all the four classes of VM (C1, C2, C3, C4) for each of the four providers (AWS, Azure,
GCP, EGI), for a total of 16 tests, each involving all the 28 resource metrics collected by VMBS. These metrics were considered
separately, since forecasting tasks look at one attribute at a time. We fitted and tested three different models, namely Vector
AutoRegression (VAR)21, Autoregressive Integrated Moving Average (ARIMA)22, and Seasonal AutoRegressive Integrated
Moving Average with eXogenous regressors model (SARIMAX)23. ARIMA and SARIMAX are more advanced methods from
the family of moving average models, and SARIMAX in particular is intended to better manage seasonality. For this reason,
we expect them to obtain better results compared to VAR. The performance data used for fitting the models were observed at
intervals of one hour each, for a total of consecutive observations for each resource around 700–800, depending on the VM
provider. We set the number of subsequent data points to predict to 5.

To evaluate the resulting models we considered two regression loss metrics commonly used to measure the accuracy of
forecasts: Mean Absolute Error (MAE) and Mean Absolute Scaled Error (MASE)24. MAE computes the average absolute error
between the real and the predicted values:

1
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∑

𝑖=1
|𝑥𝑟𝑒𝑎𝑙𝑖 − 𝑥𝑝𝑟𝑒𝑑𝑖 |

The closer the result is to 0, the higher is the accuracy of the forecasts. It is a popular and immediate metric, whose main
limitation is being hard to compare between different datasets and attributes. To overcome this problem, we leveraged the more
advanced MASE, a scaled indicator that compares the error of a model’s predictions with those from a naive model:
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𝑀𝐴𝐸(𝑥𝑟𝑒𝑎𝑙, 𝑥𝑛𝑎𝑖𝑣𝑒)

Again, the closer the result is to 0, the higher is the accuracy; in particular, an error <1 means that the predictions are more
accurate compared to the naive model. This allowed us to compare the results across VMs and between the different resource
metrics collected by VMBS.

Table 7 reports the detailed MASE of the predictions obtained with the ARIMA model, i.e., the model that obtained the best
results among the three. The values in the last column and the last row show, respectively, the average MASE by performance
metric, and the average MASE by VM. The first allows to identify the more predictable performance metric, regardless of the
provider: memory appears to be the more predictable resource, although it comprises only two benchmark metrics, and especially
so thanks to the extremely low MASE of AWS and GCP machines also looking at MAE; CPU is also quite predictable, and this
is confirmed by the very low MAE in a good number of cases, particularly with AWS. On the other hand, Disk and Net metrics
obtained contrasting and generally worse results, with many occurrences of MASE >1. From the point of view of providers,
AWS appears predictable in many cases, e.g., with Memory (MEM SPEED, MEM LAT), but not much with Network, especially
with NET 1, NET 3, NET 4 and NET 5. EGI also appears hard to predict with Disk metrics, but obtains good results regarding
CPU (CPU LAT, CPU TH LAT, CPU DUR). On the other hand, GCP appears more easily predictable on Disk and Memory
metrics, particularly with VMs of class C2. In general, the more predictable is GCP with an average 0.62 MASE, followed by
AWS and EGI with 0.74 and 0.77, while Azure appears to be way less predictable (1.14). On the other hand, there is no clear
difference between classes of VMs, with smaller sized machines being a little more predictable (C1 has an average MASE of
0.80 and C2 of 0.66) compared to bigger sized VMs (0.84 for C3 and 0.97 for C4).

Moreover, Table 8 reports the average MASE and MAE computed over all the considered resource metrics for each VM, for
all the three forecasting models tested. Results show that SARIMAX is on par with ARIMA, while the more simple VAR model
exhibits a larger error. The general trends of MASE for providers and VM type are invariant with respect to the employed model.
Additionally, MAE is stable regardless of the model, although this evaluation metric is less precise compared to MASE.

5.2 Multivariate Predictive Models
To assess whether or not VM performance is dependent on the time of the day or the day of the week (𝑹𝑸𝟒), we defined
three multivariate predictive tasks, namely TimeDay, DayWeek, and Weekend. All these tasks were designed as classification
problems and are trained on the entire dataset of observed resource metrics associated with a given VM provider, with each entry



AWS Azure GCP EGI
Metric C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 Overall

CPU EVENTS 0.50 0.67 0.46 † 0.44 † 1.48 1.22 0.41 0.70 0.8 0.23 † 0.55 † 0.14 ‡ 0.37 † 0.42 0.46 1.39 0.64
CPU LAT 0.54 0.34 0.67 † 0.39 1.24 1.16 0.11 ‡ 1.06 0.43 0.44 ‡ 0.62 0.00 ‡ 1.06 0.00 ‡ 0.51 4.08 0.79

CPU TH LAT 0.95 0.37 ‡ 0.56 0.63 1.15 0.88 0.89 1.30 1.06 0.51 † 0.71 0.44 0.31 † 0.46 0.54 0.77 0.72
CPU SHA256 0.71 0.20 ‡ 0.67 0.24 ‡ 1.74 1.00 0.49 1.75 0.83 0.53 0.52 0.77 0.42 0.88 0.51 0.59 0.74

CPU BZIP2 0.48 † 0.14 ‡ 0.43 ‡ 0.66 1.62 0.78 0.34 † 2.51 0.65 0.43 0.68 1.03 1.22 0.41 1.24 1.31 0.87
CPU AES 2.22 0.12 ‡ 0.42 † 0.37 ‡ 1.10 0.99 0.95 1.76 0.40 † 1.39 0.65 0.44 † 0.55 0.90 0.48 1.33 0.88
CPU DUR 0.73 0.60 0.52 0.75 0.49 0.49 0.68 1.55 0.74 0.93 0.69 1.04 1.01 0.41 0.92 0.57 0.76

MEM SPEED 0.10 ‡ 0.37 † 0.09 ‡ 0.68 1.72 1.04 0.81 0.62 0.26 ‡ 0.82 0.37 ‡ 0.69 0.22 0.71 0.81 0.55 0.62
MEM LAT 0.05 ‡ 0.45 † 0.00 ‡ 0.31 1.41 1.11 0.83 0.62 0.00 ‡ 1.05 0.00 ‡ 0.73 0.29 0.77 0.73 0.40 0.55

DISK FILE R 1.04 0.54 0.61 0.87 1.17 0.64 2.82 3.75 0.39 0.19 † 1.21 0.62 0.74 1.27 1.16 0.48 1.09
DISK FILE W 1.04 0.54 0.61 0.87 1.17 0.64 2.82 3.75 0.39 0.19 † 1.21 0.62 0.74 1.27 1.16 0.48 1.09
DISK FILE F 1.04 0.54 0.61 0.87 1.17 0.64 2.82 3.74 0.39 0.19 † 1.21 0.62 0.69 1.27 1.16 0.48 1.09
DISK THR R 1.04 0.54 0.61 0.87 1.17 0.64 2.83 3.59 0.39 0.19 † 1.21 0.62 0.74 1.27 1.16 0.48 1.08

DISK THR W 1.08 0.54 0.61 0.87 1.17 0.64 2.83 3.75 0.39 0.19 † 1.21 0.62 0.74 1.28 1.16 0.48 1.10
DISK LAT 1.02 0.00 ‡ 0.99 0.54 1.17 0.67 2.90 4.27 0.40 0.25 1.39 0.67 0.54 1.37 0.79 0.60 1.10

DISK SEEK – – 0.93 ‡ 0.14 ‡ 0.87 0.24 † 0.18 ‡ 0.61 0.30 † 0.21 † 1.01 1.12 1.09 1.74 0.71 1.47 0.66
DISK SEQ R – – 1.07 0.26 ‡ 0.95 0.52 1.64 0.87 0.40 ‡ 0.60 ‡ 0.32 ‡ 0.31 ‡ 1.04 1.60 0.74 1.22 0.72

DISK SEQ W 1.11 0.11 ‡ 0.23 ‡ 0.02 ‡ 1.07 0.25 † 0.61 0.72 † 0.77 0.36 0.60 0.40 1.02 0.82 1.13 0.72 0.62
DISKB LAT 0.89 0.65 0.29 0.68 0.91 1.25 1.38 1.32 0.45 0.13 † 0.36 0.27 1.16 0.29 1.05 1.06 0.76
DISKB THR 0.65 0.23 1.19 0.62 0.18 ‡ 0.16 ‡ 0.46 1.06 0.43 0.50 0.27 0.52 0.64 0.25 ‡ 0.42 † 0.29 ‡ 0.49

NET 1 0.77 2.38 0.81 1.02 0.72 0.81 0.74 1.04 0.50 0.53 0.61 0.43 † 0.63 0.43 0.50 0.39 0.77
NET 2 0.89 0.20 0.51 0.64 0.60 0.44 0.95 0.77 0.76 1.04 0.57 0.80 0.50 0.65 0.63 1.10 0.69
NET 3 1.25 1.47 1.70 1.20 0.67 0.60 0.53 0.54 0.48 0.22 † 0.38 0.76 0.63 † 0.52 0.50 0.35 0.74
NET 4 0.63 2.05 1.79 2.14 0.74 0.72 0.52 0.90 1.28 0.13 ‡ 1.15 1.05 0.91 0.35 † 0.75 0.50 0.97
NET 5 2.01 3.09 2.38 4.17 0.48 ‡ 0.38 ‡ 0.27 ‡ 0.39 † 0.82 1.21 0.32 0.59 1.21 0.60 † 0.61 † 0.98 † 1.22

NETB 1 0.62 † 1.17 0.36 † 0.41 † 1.74 0.72 0.75 0.37 1.31 0.97 0.69 1.71 – – – – 0.68
NETB 2 0.63 1.23 0.56 0.54 0.97 0.41 1.04 0.88 0.72 0.37 1.08 0.60 0.55 0.47 † 0.44 1.40 0.74

APPB 0.96 0.34 † 0.06 ‡ 0.13 ‡ 1.72 0.63 0.56 1.15 0.16 † 0.36 † 1.07 † 0.43 † 0.46 0.30 0.91 0.84 0.63
Overall 0.82 0.67 0.71 0.76 1.09 0.70 1.15 1.62 0.57 0.51 0.74 0.64 0.70 0.74 0.76 0.87

Table 7 Detailed results of time-series forecasting for the ARIMA model, showing for each resource metric and each VM the
corresponding MASE of the prediction. †: associated MAE < 0.05, ‡: associated MAE < 0.02. The best result for each VM class
of each provider is highlighted in dark gray, the worst in light gray.

accompanied by a label representing a temporal attribute. The goal of the trained model is to learn an association between the
set of resource metrics and the label (i.e., the target attribute), and to correctly predict the value of the label for unseen entries.

The first task regards the time of the day, and the label is assigned as follows: if the resources are observed between midnight
and 6AM, then the label is ‘Night’, between 6AM and 12AM ‘Morning’, between 12AM and 6PM ‘Afternoon’, between 6PM
and midnight ‘Evening’. This task answer to the following question: is there a relationship between performance and time of the
day? The second task predicts the day of the week, with the values of the label going from ‘Monday’ to ‘Sunday’. It answers to
the question: is there a relationship between performance and day of the week? Finally, the third task is intended to refine the
previous answer and assess whether, notwithstanding the absence of significance variations across the days of the week, there
is a relationship between VM performances and weekend days. This final task is a binary classification, while the previous two
are multi-class. We employed a stratified 10-fold cross validation to train a logistic regression classification model. To confirm
the obtained results, we also built five additional models using different classes of predictive algorithms: decision tree, bagging,
random forest, extremely randomized trees, ada boost.

To assess the quality of the predictions, we considered the percentage of correctly classified (accuracy) entries from the test
set. Table 9 shows the mean and standard deviation of the classification accuracy aggregated by provider. Note that a random
predictor for TimeDay would give a result of 25%, while for DayWeek about 14%. As for Weekend prediction task, being a binary
classification, the minimum baseline for accuracy is equal to 50%. The table also shows the results of the three classification



AWS Azure GCP EGI

Model Metric C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

VAR MASE 1.093 0.954 1.213 0.963 1.522 1.186 1.494 2.100 0.925 0.755 1.005 0.782 0.777 1.055 0.922 0.925
MAE 0.104 0.089 0.108 0.097 0.258 0.207 0.142 0.196 0.118 0.093 0.133 0.096 0.100 0.165 0.144 0.120

ARIMA MASE 0.819 0.674 0.705 0.761 1.091 0.701 1.149 1.619 0.569 0.506 0.738 0.644 0.696 0.740 0.756 0.868
MAE 0.110 0.081 0.097 0.103 0.257 0.163 0.163 0.220 0.113 0.089 0.141 0.133 0.123 0.178 0.184 0.167

SARIMAX MASE 0.810 0.761 0.764 0.783 1.224 0.607 1.226 1.624 0.527 0.473 0.782 0.643 0.701 0.726 0.798 0.854
MAE 0.113 0.093 0.103 0.108 0.289 0.136 0.175 0.221 0.102 0.087 0.147 0.132 0.129 0.170 0.197 0.161

Table 8 Overall time-series forecasting results for performance prediction with time-series forecasting models, showing both
MASE and MAE for all the three algorithms tested. Best results in dark gray, worst in light gray.

Task Provider Logistic Regression Decision Tree Bagging Random Forest Random Trees Ada Boost

TimeDay

AWS 0.55±0.04 0.48±0.04 0.56±0.03 0.55±0.04 0.55±0.05 0.47±0.05
Azure 0.44±0.05 0.37±0.05 0.43±0.04 0.42±0.05 0.41±0.04 0.36±0.06
GCP 0.51±0.05 0.44±0.04 0.51±0.05 0.52±0.04 0.51±0.04 0.43±0.05
EGI 0.30±0.05 0.28±0.05 0.33±0.04 0.29±0.05 0.28±0.05 0.27±0.05

WeekDay

AWS 0.20±0.03 0.21±0.04 0.24±0.05 0.24±0.04 0.25±0.04 0.19±0.03
Azure 0.20±0.04 0.18±0.03 0.20±0.04 0.20±0.05 0.20±0.04 0.19±0.03
GCP 0.17±0.04 0.16±0.04 0.18±0.04 0.17±0.04 0.16±0.04 0.17±0.05
EGI 0.18±0.04 0.18±0.04 0.20±0.04 0.19±0.03 0.19±0.05 0.18±0.04

Weekend

AWS 0.71±0.02 0.65±0.05 0.74±0.03 0.74±0.03 0.74±0.03 0.68±0.03
Azure 0.73±0.02 0.66±0.05 0.73±0.02 0.72±0.03 0.72±0.03 0.68±0.05
GCP 0.69±0.01 0.59±0.05 0.70±0.01 0.68±0.03 0.68±0.03 0.62±0.05
EGI 0.73±0.02 0.65±0.05 0.75±0.02 0.75±0.02 0.75±0.02 0.68±0.04

Table 9 Overall accuracy results for classification experiments regarding time-of-the-day, day-of-the-week and weekend pre-
dictive tasks, aggregated by VM provider. Best result for each task and each provider in bold.

tasks, with each of the six predictive algorithms, aggregated by VM provider. All the algorithms scored a similar accuracy, and
confirm the results obtained with logistic regression, despite the slightly lower results from decision tree and ada boost.

Concerning both TimeDay and Weekend, all the algorithms performed significantly better than a random model, demonstrating
the ability of ML models to extract knowledge and identify patterns where simple analyses fail. For instance, models more likely
to make correct predictions with GCP and AWS with TimeDay, in line with the results obtained with time-series forecasts.
Instead, GCP appears much less predictable with Weekend, which may indicate two things: there is no significant difference
between the performance offered on weekends and weekdays, or there is too much variability in the offered performance across
days. Given the results from time-series forecasting (i.e., that GCP is the more predictable model), we are inclined towards the
first option. At the same time, no algorithm is able to achieve very high accuracy, leaving room for discussion: VM performance
appears to be predictable, but at the same time these predictions are frequently inaccurate, demonstrating that variability is still
an issue with VMs, and strengthening the need for a performance prediction index, like our VI.

On the other hand, accuracy for DayWeek is very low and close to a random model, indicating the inability to assign a certain
set of performance to specific days of the week.

6 DISCUSSION

The wide range of experiments that we run allowed us to investigate VM performance variability from different points of view
and to answer our initial research questions.



To answer 𝑹𝑸𝟏, we created VI, an indicator of variability for VMs. The results obtained from analyzing 16 VMs and 4 VM
providers are succinct and clear, and confirm the trend observed in the rest of the analyses presented in the paper: AWS and GCP
perform better than the other providers, especially with smaller machines (C1/C2), while Azure exhibits without any doubt the
more unstable performance. For instance, Azure A2 and A4 showed the worst performance: among 40 metrics for classes C1
and C2, Azure machines obtained unstable results on 21. These results are also aligned with those obtained with ML predictive
models, where Azure appeared the most unpredictable among the providers considered, thus highlighting a connection between
performance instability and unpredictability. Moreover, this confirms that VI is able to identify important performance trends
that only ML analyses were capable to display.

In summary, VI allows to estimate variability for a given VM, considering a large set of metrics. Moreover, its flexibility
allows to easily adjust the time frame of the considered data, permitting more refined analyses. The results presented in this
paper demonstrate that VI is able to clearly capture the most significant trends in VM performances.

How can one measure the performance variability of VMs?

Performance variability can be analyzed by considering multiple dimensions: breadth, dispersion, speed. We introduce a
Variability Indicator (VI) that is able to quantify the variability in a given user defined time window, and identify stable
and unstable VMs and providers.

To answer 𝑹𝑸𝟐, we first studied the relative standard deviation of the measured performance metrics, showing that different
resources are affected by different levels of variability, even for the same provider. Moreover, we provided an extensive study
on the prediction of individual VM resources using time-series forecasting models, analyzing both the perspective of providers
and classes of VMs offered. The intuition is that the easier is to predict its resource performance, the more stable is the VM.

Prediction tasks gave us important insights. We show that making accurate predictions is not always possible, but more
advanced models are also more accurate. This tells us that predictable patterns are present in the collected data, although they can
be often difficult to extrapolate. Moreover, the results confirmed that not all providers behave in the same way: for instance, Azure
appears much less predictable, thus more unstable. On the other hand, there is not much difference when comparing different
classes of VMs, although smaller machines appear slightly more predictable. From the perspective of individual resources, the
variability is most noticeable with Disk and Network metrics, while Memory is more predictable.

Does the performance of commonly used VMs vary w.r.t. the different resources?

The results obtained by single providers on different resources show different levels of variability. For example, EGI
tends to be stable especially on CPU, but very unstable on Disk. Overall, if one accepted some variability, AWS and
GCP behave in a more appropriate way, while EGI and mostly Azure do not.

To answer 𝑹𝑸𝟑, we first observed the correlation matrix between performance metrics of each provider, then performed a
gradient analysis on them. It is important to note that our experiments aimed to test different resources independently from
the another and then compare their fluctuations in a same time window. Overall, results suggest that providers are capable of
managing resources in isolation.

Our test indicates that metrics are usually not correlated among them, in some cases not even between metrics that measure
the same resource, but with different benchmarks. A higher correlation was evidenced in GCP and Azure, while most of the
metrics in AWS and EGI did not appear to be correlated. This means that AWS and EGI are the two cloud providers that provide
better isolation among resources. Overall, we found that only CPU and memory showed a consistent but rather weak correlation
across all providers. Moreover, the gradient analysis confirmed that there is no strong dependency among single resources, and
only discovered a weak correlation with Azure.

Are the resources provisioned to VMs managed in isolation?

We did not find any noticeable propagation among resource degradation, except for a weak correlation among resources
(particularly with GCP and Azure VMs). Thus, only a multi-metrics analysis allows one to grasp how variability affects
the VMs over time.



To answer 𝑹𝑸𝟒, we first performed a data analysis, but it was not possible to recognize any recurring temporal pattern in
the performance data. Therefore, we indirectly studied whether time can influence the performance of VM providers through
three ad-hoc classification tasks. We noticed that performance is extremely difficult to associate with a specific day of the week
(WeekDay task), regardless of the predictive model employed and the provider considered, with results on par with completely
random predictions. On the other hand, it is possible to distinguish resource performances during weekend and working days,
especially with Azure and EGI (Weekend task). In this experiment, GCP again appears to be the more stable provider, as it
shows smaller differences in performance between weekends and weekdays, therefore making classification more difficult for
the predictive model. Concerning the relationship with time of the day (TimeDay task), AWS and GCP are clearly the more
predictable models, thus resulting in more recognizable time patterns compared to Azure and EGI. Finally, covering a variety
of predictive models allows to conclude that both logistic regression and ensemble models based on bagging, random forest
and randomized trees perform equally well, while decision tree and ada boost are not adequate for predicting trends with VM
performance data.

Is there a relationship between offered performance and time of the day or day of the week?

According to our data analysis, variations occur at random times; regression and ensemble models can instead identify
patterns where simple analyses fail, highlighting the relation between offered performance and both time of the day and
weekends. However, we could not conclude that variations are dependent on the specific day of the week.

To answer 𝑹𝑸𝟓, we compared across VM providers the mean and standard deviation of the various performance metrics
observed. We noticed that in many cases (e.g., CPU EVENTS) the performance is not proportionate to the cost of the VM, sug-
gesting that different performances do not necessarily depend on the size of the machine. Moreover, variations in the performance
are not always similar in nature across providers.

Additionally, we computed the cost/performance ratio for different performance metrics. in general, our experiments suggested
that VM performances mainly depend on the metric itself and not on the type and size of the VM. CPR also assessed important
differences between VM providers, with AWS and Azure seeming to offer the best cost to performance ratio for smaller and
bigger VMs, respectively. We discovered that small machines often offer the best cost/performance ratio. In four of the five
studied metrics, the best results where obtained by machine in class C1 of GCP (1/5) and AWS (3/5). In general we did not
observed a strong correlation between stability of performance and cost. For example, Azure VMs appear to often have the
highest variability among the studied providers, but some times they are also the most convenient ones.

Are the performance of similar VMs offered by different providers comparable and proportionate to their cost?

Measured values say that more expensive VMs do not always offer better performance On average, AWS seems to be
better with the smaller VMs while Azure with the bigger machines provide the most cost-effective choices. Oftentimes,
practitioners must face the trade-off between convenience and performance stability.

6.1 Threats to Validity
This section summarizes the most important threats to the validity of presented results by following the structure proposed in25.

Internal Threats. Cloud providers may update their infrastructures, change the hardware that powers their services, and
implement new software features. Most of the time, all these activities are transparent to the user, but they may affect benchmark
executions, and thus the obtained results. The use of a month as time window helped us mitigate this problem. It allowed us
to analyze the VMs over a significant amount of time and thus take into account possible changes and updates. However, for
validating the impossibility of predicting the day of the week, a longer observation window may be required.

In addition, executed benchmarks may be subject to flaws or bugs. To soften this aspect, we executed well-known benchmarks
(i.e., SysBench and Nench) that are widely adopted and also used in related works7.

We compared VMs with different underlying CPU architectures (e.g., ARM vs Intel). However, we compared VM types with
similar resources (cores and memory), cost, and purpose. In general, we observed that the underlying hardware architecture
does not significantly impact the variability of VMs, whereas, as expected, their behavior depends on the interplay of several
“hidden” factors.



External Threats. The number of tested providers is limited, but we selected the most popular commercial and research-
oriented (in Europe) solutions to provide a wide and clear picture of the current mainstream offers. We also executed the
benchmarks on a limited number of VMs, and we only picked a subset of offered VM types and sizes. Furthermore, all the
benchmarks were executed on machines located in Europe, but other (smaller) assessments16 26 notice that the performance also
fluctuates in other regions and that depends on the regions themselves. We are convinced that selected VMs represent a common
choice for many users, and also allowed us to keep the cost of these experiments under control. More providers, regions, VM
types, and instances would have helped us better understand how performance varies, but we tend to say that obtained results
could qualitatively be very similar to ours.

The work only focused on VMs as computing resource since it is probably the most popular IaaS service nowadays. Needless
to say, other resources (e.g., containers) and PaaS services should be tested separately to get an even better landscape of the
performance of cloud infrastructures. Given the wide adoption of VMs, and given the fact that other computing resources are
based on them, we are confident this can be a good starting point.

Conclusion Threats. We executed 10 different benchmarks to measure 28 different metrics in total. We also repeated the
executions multiple times, every hour over a one-month period, to collect a huge amount of diverse measurements. The number
of repetitions was chosen to balance total execution time and the statistical validity of obtained results. The type and number of
benchmarks and the number of repetitions can be increased to widen the test area and to obtain more robust results. As drawback,
execution time and cost would increase.

7 RELATED WORK

Many researchers have already addressed the problem of evaluating the performance of VMs. Some works want to test specific
resources while others are interested in the performance of software applications that exploit multiple resources concurrently.
These works differ for considered providers, size of employed VMs, run benchmarks, systems used to set up and collect mea-
sured values, and data aggregation and analysis techniques. The conclusions have been often partial and witness unstable cloud
resources. For example, years ago the work by Iosup et al.27 highlighted that the cloud was not suitable for running scientific
experiments. Similarly, Salah et al.28 analyzed the performance of VPS (virtual private servers) on AWS and other two cloud
providers (ElasticHosts and BlueLock) and shows that the performance and its variability depend on executed benchmarks and
selected provider (even if they did not monitor the performance over a period of time).

Our experiments share some key elements with the following works. Leitner and Cito7 formulate 15 hypotheses on perfor-
mance variations in IaaS systems. They analyze the factors that influence variation and how VM sizes can be compared. They
run 3 benchmarks to target CPU, disk, and memory speeds, and 2 application benchmarks to measure the queries per minute on
a MySQL database and the Git checkout and Java compilation times of an open source project. They collected data from four
cloud providers (AWS, GCP, Azure, and IBM) to validate the hypotheses. They run both isolated and continuous tests. The for-
mer tests acquired and initialized a VM and executed the benchmark three times in a row, 6 times per day, over a period of one
month. The latter tests acquired and initialized a VM and the benchmark was executed once every hour over 3 days. They state
that cloud performance is a “moving target” and that the scientific community is required to periodically re-validate its under-
standing of the subject. Our work considered tests that are similar to their continuous ones, but for a longer period. Moreover,
we executed a greater number of benchmarks, and few are similar to theirs. They used Workbench to setup the data collection
while we design and develop a custom and open system.

Gillam et al.29 use different benchmarks to evaluate diverse resources: memory, CPU, disk, and network provided by four
different cloud providers (AWS, Rackspace, IBM, and a private cloud installation of OpenStack). They executed a few bench-
marks and say that the variability does not only depend on the provider, but it also comes from different instances of the same
resource types. We executed a different set of benchmarks, on different cloud providers, using a different approach (RMT) for
launching the benchmarks as described in Section 2.

Sharma et al.30 explore how multi-tenancy affect the performance of VMs and containers. They analyze whether the utilization
of similar or different resources by different tenants sharing a common underlying resource (e.g., a physical machine) affects
higher-level performance metrics (e.g., response time). We also study whether cloud providers manage resources in isolation
and we found out that the performance of different resources are weakly correlated. However, we assumed that the cloud is a
black-box and we do not have access to information regarding the activities running on the same psychical resources.



Li et al.31,13 present CloudCmp, a systematic comparator of the performance and cost of cloud providers. They consider
offered services, devise a set of metrics related to application performance, and propose a set of tools for measuring them. The
metrics measure instance, storage, and network efficiency, performance/cost ratio, scaling speed, storage consistency, and WAN
latency. They executed benchmarks for computing resources, persistent storage, and network. Their approach aims to devise
a tool that exploits collected metrics to help users select the most suitable service. Our work in contrast is more focused on
collecting metrics to investigate whether one can predict VM performance and study its variability across different providers.
Also Samreen et al.32 propose a framework, called Daleel, to support adaptive decision making in cloud environments. While
their work focuses on the use of machine learning techniques, they also analyzed the variability of AWS EC2 VMs (by means
of a simple application and only for a week). The results say that the performance is not always proportional to the cost of the
VM, and that the variability depends on the VM type and on the time of the execution.

Other works propose models to solve the cloud performance variability problem. For example, Ardagna et al.33 survey cur-
rent approaches for workload and system modeling for assessing the quality of service (QoS) of cloud applications to guarantee
performance, availability, and reliability. The goal is to provide suitable modeling means without any reference to concrete mea-
sured values. Casale and Tribastone34 propose the blending solution for the analysis of queueing networks-based performance
models that include exogenous variability, modelled as a continuous-time Markov chain. Again, this work proposes a mod-
elling technique that can save computational time when compared to simulation. Compared to these approaches, we proposed
to measure cloud variability using a novel indicator (VI) and to predict future performance using ML methods.

Podolskiy et al.35 evaluate the auto-scaling capabilities of AWS, Azure, and GCP VMs as means to (also) cope with their
variability. Gesvindr and Buhnova5 analyze the performance, scalability, elasticity, and availability of cloud applications and
propose best practices for optimizing them. Among the given advices, they suggest to collect throughput metrics to identify the
suitability of cloud providers and to select low response-time services among the offered ones. Our work moves a step forward
and VI is a simple indicator created to characterize VMs and may be used in addition to proposed practices.

Some other works focus on the repeatability of cloud-based experiments. Abedi et al.17 discuss the most commonly used
approaches for comparing performance measurements in cloud environments and show that there exist flaws in methodologies
that may lead to erroneous conclusions. They present a methodology for executing repeatable experiments in environments
where conditions change and are not under user control. More recently, He et al.36 notice how the high variability of cloud
platforms can affect the statistical relevance of experiments run in such environments. To solve this problem they propose Metior,
a solution that allows to reduce the errors on performance testing performed in the cloud. Their tool repeats the execution of
the application under test intermittently and on two consecutive days. If the data obtained on the two days are comparable the
results are accurate, otherwise the procedure is repeated in the following days until matching data are found. The comparison is
performed using block bootstrapping, a random sampling technique for time-series that removes biases and outliers. We consider
these approaches complementary to our work: on the one hand our analysis confirms that the variability of cloud platforms
may affect significantly the execution of running applications on diverse metrics and dimensions, on the other our Variability
Indicator can be exploited by novel tools to understand if and to what extent cloud performance is stable.

Some few works analyzed cloud performance using ML techniques. For example, Grohmann et al.37 exploits ML to predict
the response time of running applications from low-level infrastructural metrics. Similarly, Rahman et al.38 studies the changes
of the monitored response time given induced interferences such as co-locating multiple VMs on a single physical machine (i.e.,
multi-tenant resource sharing). Compared to this work, we exploited ML techniques to study performance variability of VM
considering all the resources and different cloud providers. In particular, we searched for patterns in time to forecast the future
performance of the cloud platform and not how low-level metrics impact high-level ones (such as response time).

Papadopoulos et al.19 investigate how to measure and report performance in the cloud and how well the cloud research
community is already doing it. They propose a set of eight methodological principles that combine best-practices from nearby
fields with concepts only applicable to the cloud. They also report on a systematic literature review to analyze whether the
practice of reporting cloud performance measurements follows the proposed principles. We executed the experiments following
the general principles proposed by the authors. We repeated the experiments multiple times (P1), with different workloads and by
randomizing the execution (P2), we describe hardware and software setup properly (P3), used data are open and available (P4),
we also provide aggregated data about measured performance (P5) and a statistical evaluation (P6), we specify the measured
units for every benchmark in graphs and tables (P7) and the used cost model. We also reported the cost model adopted for
the experiments, used resources, and the costs of benchmarked providers (P8). All these suggestions and principles helped us
conceive a proper methodology and increase the soundness of our results.



8 CONCLUSIONS AND FUTURE WORK

This paper presents a multi-faceted analysis of the (performance) variability of four common VM classes offered by well-known
cloud providers (AWS, GCP, Azure, and EGI). The analysis considers 28 different measures, and this is the widest assessment
we are aware of. Our analyses provide some key insights. For example, we discovered that resources have different variability
within the same provider and multiple metrics are required to fully understand to what extent the environment is stable. However,
in general results are complex and difficult to fully understand given that cloud providers abstract away multiple layers of
management. For this reason, we introduce a relatively simple variability indicator, called VI, that is able to summarize and
quantify the variability of cloud infrastructures. Moreover, we also analyzed the performance of VM using ML techniques that
were able to discover latent time patterns. Overall, our experiments highlight that AWS provides the most stable infrastructure,
GCP obtained comparable but slightly worse results, while Azure and EGI appear to be more noisy and unstable. Our future
plans involve expanding the observation window to encompass multiple months. This extension will enable us to leverage a
broader dataset and develop more robust predictive models with enhanced capabilities. By incorporating an extended timeframe
into our analysis, we aim to strengthen the accuracy and effectiveness of the computed predictions.
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