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A B S T R A C T

The current work presents an innovative numerical technique for high-Reynolds/high-Mach number compress-
ible flow simulations in complex configurations. In particular, the research combines a novel wall-modeled
large-eddy simulation technique with a sharp-interface immersed boundary method in the framework of high-
order numerical schemes. The proposed approach enables the best from wall modeling and the immersed
boundary. The first is concerned with accurately dealing with wall flows while avoiding direct control of
near-wall resolution; the second is related to efficiently treating arbitrarily complex geometries in Cartesian
grids. In particular, the paper extends a well-established wall model already presented by the research
group to arbitrarily-shaped bounds. The method yields a minimally invasive technique that switches between
wall-resolved and wall-modeled large-eddy simulations according to the local near-wall resolution. Thus,
easily fitting aerodynamic simulation needs. After discussing the numerical procedure, the paper provides
several benchmarks to demonstrate the validity of the proposed approach. In particular, literature-available
direct numerical datasets are mined to compare acquired outcomes. The results’ accuracy is found to be
remarkable from low-Mach-channel and -pipe flow configurations up highly-compressible flows concerning
the spatial deployment of the boundary layer over a flat plate and the shock-wave/boundary-layer interaction
over a compression ramp. Thus, the proposed method appears to be a promising framework for dealing
with engineering-relevant flow simulations along with the efficient path of Cartesian meshes combined with
massively parallel GPU-accelerated architectures.
1. Introduction

Nowadays, Computational Fluid Dynamic (CFD) is a state-of-the-art
tool in industry and research to solve problems involving the evolution
of flows over increasingly complex geometries. Latest technological im-
provements in computing architectures, in fact, have made it possible
to significantly alter the design processes in several industrial sectors
– primarily aerospace and energy – by virtually prototyping a broad
spectrum of engineering machines thanks to enhanced fluid dynamics
simulations. As a result, CFD has lowered testing requirements and has
been able to provide answers to crucial physical questions that might
restrict design performance.

However, advanced engineering applications require high-fidelity
CFD models to create prototypes that closely mimic real-world oper-
ational devices. Therefore, in this regard, scale-resolved CFD method-
ologies like Direct Numerical Simulations (DNSs) or Large-Eddy Sim-
ulations (LESs) are getting increasing attention from research centers
and advanced engineering sectors as they represent the most reliable
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approaches for addressing time-dependent and complex-flow problems.
However, it is worth noting that DNSs or LESs procedures often do
not suit the availability of industrial computer resources. The first
approach, DNSs, in fact, aiming to resolve the entire turbulent spec-
trum, results in the need for very dense grids, thus applying only
to academic configurations. On the other hand, LESs, even leverag-
ing on Kolmogorov’s theory and aiming at modeling the universal
SubGrid-Scale (SGS) turbulent structures, fail immediately in near-
wall situations due to non-homogeneity of turbulence near the walls,
therefore, requiring resolution roughly similar to DNS in applicative
wall flows arrangements. Chapman [1] and Choi and Moin [2] demon-
strated that the number of grid points required to resolve near-wall
eddies for DNS and Wall-Resolved LES (WRLES), i.e., an LES strategy in
which the boundary layer is fully resolved, is approximative 𝑁𝐷𝑁𝑆 ∼
𝑅𝑒37∕14 and 𝑁𝑊𝑅𝐿𝐸𝑆 ∼ 𝑅𝑒13∕7, where 𝑅𝑒 is the Reynolds number
based on a characteristic length of the problem. Taking a practical
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example, if we aim to analyze the aerodynamics performance of a
standard airplane/gas turbine airfoil with a chord Reynolds number of
𝑅𝑒𝑐 ≈ 107 we get that a DNS requires 𝑁𝐷𝑁𝑆 ≈ 1018 points, while a
WRLES is around approximately 𝑁𝑊𝑅𝐿𝐸𝑆 ≈ 1013 points. Consequently,
Reynolds-Averaged Navier–Stokes (RANS) techniques, which model the
entire turbulent spectrum, remain the most commonly used approach
in the industry despite their limited predictive capacity, especially
in time-dependent flow configurations. A reasonable compromise to
deal with time-varying turbulent flows in aerodynamic applications
seems to adopt a LES framework in which the near-wall portions are
handled with some reduced-order model. Such hybrid approaches, in
fact, will retain modeling the multi-scalar nature of the flow, keeping
the computational costs affordable. Along this thread, the development
of increasingly complex hybrid RANS/LES algorithms has succeeded
considerably [3], and, in this framework, the so-called Wall-Modeled
LES (WMLES), i.e., an LES strategy in which the outer-layer eddies and
energy-carrying turbulent structures are resolved while the near-wall
regions are modeled, take place [4]. Compared to other hybrid/zonal
numerical discretizations of the Navier–Stokes equations, the WMLES
approach has been demonstrated to be more accurate in capturing
dynamical effects in the boundary layer, a crucial requirement for accu-
rate prediction of compressible flows [5]. Following this path, several
contributions to the WMLES paradigm have appeared recently [6–
16] and the reader is addressed to recent reviews by Larsson et al.
[17] and Bose and Park [5] for a comprehensive description of the
method. The point we want to stress here is that – still according
to Chapman [1] and Choi and Moin [2] – WMLES scales linearly with
the Reynolds number, i.e., 𝑁𝑊𝑀𝐿𝐸𝑆 ∼ 𝑅𝑒; thus, certainly making such
a strategy more expensive than RANS but affordable at the industrial
level without resorting to particularly advanced computing facilities.

The challenge of turbulence modeling is not the sole factor influ-
encing high-Reynolds number simulations in applications. Efficiently
processing complex geometries, in fact, is not effortless. In this path,
the Immersed Boundary Method (IBM) can represent a straightforward
solution. The approach enables the simulation of arbitrarily-shaped
geometries within fully-structured Cartesian grids. Compared to other
strategies aiming at treating complex geometries (e.g., body-fitted-grid
methods), the IBM primarily provides the following benefits: (i) in
compressible conditions, it can be rendered with fully explicit algo-
rithms; (ii) it is minimally invasive if coupled with existing DNS/LES
solvers; (iii) it is unbeatable in scaling performance when combined
with massive-parallel architectures, especially those adopting modern
Graphics Processing Units (GPUs). Such peculiarities made IBM a pop-
ular choice for a broad range of applications and several scientists
adopted the method in recent years. In particular, from the original
biological-related work by Peskin [18], IB formulations have spread in
literature collecting a wide variety of flow problems of very different
nature [19–38]. The interested reader is referred to Verzicco [39] for
a freshly published review about the method. Compared to body-fitted
strategies, what is detrimental to IBM is the lack of direct control of the
boundary layer resolution.

This is the source of inspiration for the present work. The com-
bination of WMLES, which aims to place the first off-the-wall point
as far as possible from the boundary surface without any direct con-
trol of the near-wall resolution, and the IBM appears very promising
for dealing with arbitrarily-shaped aerodynamics applications with a
marked integration on GPU-enabled solvers. Thus, the current study
proposes a novel numerical approach that combines the WMLES strat-
egy with IBM to handle CFD simulations of complex geometries in
high-Reynolds/high-Mach conditions. Here we cannot fail to mention
that the idea of combining the IBM with wall-modeling is not entirely
new in the literature. Cristallo and Verzicco [40], for instance, pro-
posed a slip-velocity boundary condition based on the boundary layer
2

equilibrium equation for the tangential velocity components. Roman
et al. [41], advanced a wall-layer which assumed the logarithmic
law behavior for point used in the immersed boundary extrapolation
process. Tamaki and Kawai [42] proposed a partial-slip wall-boundary
condition for obtaining the logarithmic law of the wall for the mean
streamwise velocity on non-body-conforming grids by also accounting
corrections to minimizes the adverse effects on the resolved turbulence.
However, compared to already available and similar methods, the
present strategy provides peculiar features. In particular: (i) the wall
model is arranged so that the wall-shear stress and the heat flux are
enforced at the boundary surface by augmenting the turbulent viscosity
and diffusivity and preserving the no-slip and the isothermal/adiabatic
conditions. To the authors’ best knowledge, such a strategy has never
been addressed in compressible conditions and partially explored in
incompressible frameworks [43,44]; (ii) the method, by generalizing
the unified WR/WMLES approach by De Vanna et al. [45], reverts to a
standard wall-resolved-type boundary treatment if the local resolution
allows it by smoothly and dynamically transit between WRLES and
WMLES, a property that fits very well the complex dynamics of the
boundary layer over non-conformal geometries; (iii) because of its
whole explicitness, the method is minimal invasive concerning exist-
ing DNS/LES solvers and easily coupled with parallel algorithms in
multi-GPU logic.

Model validation is provided over four increasingly complex ar-
rangements. In particular, as a first step, a low-Mach channel flow
configuration is adopted as the baseline case, the latter representing an
incompressible in-equilibrium flow on conformal walls. Then, we move
on to a pipe flow setup, still a low-Mach in-equilibrium setup, but with
the non-trivial challenge of the non-conformal wall arrangement. As a
third scenario, a compressible boundary layer is examined that poses
complexity about the high-Mach conditions while keeping the geometry
conformal to the grid. All these configurations are also motivated since
they provide a wealth of DNS literature comparisons which can be used
to assess the efficacy of the proposed technique. Nevertheless, they are
all revisited in IBM logic by considering the walls as submerged solids
in conjunction with the generalized WMLES strategy rather than taking
them as limit bounds, as is customary for such canonical analysis.
Finally, since the suggested technique is aimed at complex geometries,
the paper closes with a description and analysis of compressible flow
aerodynamics through a compression ramp configuration. Such a test
case exposes all of the proposed method’s complexities in terms of non-
conformal bounds, compressible features, and turbulence modeling,
demonstrating how the proposed technique can represent a feasible
alternative in the aerodynamic characterization of complex geometries
in all application sectors where high-Mach and high-Reynolds numbers
control the flow characteristics.

The following is a breakdown of the present document organization:
Sections 2 and 3 provide the essential information concerning the nu-
merical model and numerical methods, respectively. Section 4 presents
the results of the analyses, while Section 5 states the conclusions and
the final remarks.

2. Solver structure

2.1. Governing equations

Present computations are made using URANOS (Unsteady Robust
All-around Navier–StOkes Solver). The solver is a well-established GPU-
enabled code developed at the Industrial Engineering Department of
the University of Padova [46] and now distributed under BSD Licence
2.0here1. URANOS, in particular, deals with the filtered compressible
Navier–Stokes system of equations in a conservative formulation and,

1 URANOS: https://gitlab.com/fralusa/uranos_gpu

https://gitlab.com/fralusa/uranos_gpu
https://gitlab.com/fralusa/uranos_gpu
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in particular, the Reynolds (𝜙 = 𝜙̄ + 𝜙′) and the Favre (𝜙 = 𝜙̃ + 𝜙′′,
𝜙̃ = 𝜌𝜙∕𝜌̄) decompositions are used. The model reads as:

𝜕𝜌̄
𝜕𝑡

+
𝜕𝜌̄𝑢̃𝑗
𝜕𝑥𝑗

= 0 (1a)

𝜕𝜌̄𝑢̃𝑖
𝜕𝑡

+
𝜕𝜌̄𝑢̃𝑖𝑢̃𝑗
𝜕𝑥𝑗

= −
𝜕𝑝̄𝛿𝑖𝑗
𝜕𝑥𝑗

+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

−
𝜕𝑇 𝑆𝐺𝑆𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖 (1b)

𝜕𝜌̄𝐸̃
𝜕𝑡

+
𝜕𝜌̄𝑢̃𝑗 𝐸̃
𝜕𝑥𝑗

= −
𝜕𝑝̄𝑢̃𝑗
𝜕𝑥𝑗

+
𝑢̃𝑗𝜏𝑖𝑗
𝜕𝑥𝑗

−
𝜕̄𝑗
𝜕𝑥𝑗

−
𝜕𝐸𝑆𝐺𝑆𝑗

𝜕𝑥𝑗
+ 𝑓𝑖𝑢̃𝑖 (1c)

Here 𝜌̄ is the filtered density, 𝑢̃𝑖 is the filtered velocity component
long with the 𝑖th direction, 𝑝̄ is the filtered thermodynamic pressure,
̃ = 𝑒+ 𝑢𝑖𝑢𝑖∕2 is the filtered total energy per unit mass, 𝑒 is the filtered
nternal energy per unit mass and ̄𝑗 is the 𝑗th component of the filtered
olecular heat flux. The above system equations is closed by the ideal

as equation of state, 𝑝̄ = 𝜌̄𝑅𝑇̃ , and a constitutive expression for the
nternal energy, 𝑒 = 𝑐𝑣𝑇̃ . Here 𝑇̃ denotes the filtered temperature, 𝑅
s the specific gas constant, 𝑐𝑣 = 𝑅∕(𝛾 − 1) and 𝑐𝑝 = 𝛾𝑅∕(𝛾 − 1) are

the specific heat at constant volume and pressure, respectively, while
𝛾 = 𝑐𝑝∕𝑐𝑣 is specific heat ratio. The viscous stress tensor, 𝜏𝑖𝑗 , and heat
lux components, ̄𝑗 , are accounted as following:

𝜏𝑖𝑗 = 2𝜇(𝑇̃ )
(

𝑆̃𝑖𝑗 −
1
3
𝑆̃𝑘𝑘𝛿𝑖𝑗

)

(2)

̄𝑗 = −𝜆(𝑇̃ ) 𝜕𝑇̃
𝜕𝑥𝑗

(3)

here 𝜇(𝑇̃ ) is the molecular viscosity, 𝜆(𝑇̃ ) = 𝑐𝑝𝜇(𝑇̃ )∕𝑃𝑟 is the thermal
iffusivity and 𝑆̃𝑖𝑗 = 1∕2

(

𝑔̃𝑖𝑗 + 𝑔̃𝑗𝑖
)

denotes the filtered resolved strain-
ate tensor with 𝑔̃𝑖𝑗 = 𝜕𝑢̃𝑖∕𝜕𝑥𝑗 the filtered resolved velocity gradient.
he molecular viscosity, 𝜇(𝑇̃ ), is modeled through the Sutherland’s two
oefficients law

̄(𝑇̃ ) = 𝑇̃ 3∕2
(

𝑇0 + 𝑆
𝑇̃ + 𝑆

)

(4)

here 𝑇0 and 𝑆 = 110.4K denote the reference temperature and
utherland’s empirical parameter, respectively. The model is made
on-dimensional so that the system conditions can be established un-
mbiguously by varying 𝛾, 𝑃𝑟, 𝑅𝑒, and 𝑀𝑎. As a standard rule, 𝛾 and
𝑟 are set to 1.4 and 0.71, respectively. Finally, the forcing term, 𝑓𝑖, is

ntroduced to discretely enforce constant mass-flow-rate in time to cope
ith channel and pipe flow simulations. The matching power, 𝑓𝑖𝑢̃𝑖, is

ikewise added to the total energy equation’s right side.

.2. Turbulence modeling

The SubGrid Scale (SGS) stress tensor, 𝑇 𝑆𝐺𝑆𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗 − 𝜌̄𝑢̃𝑖𝑢̃𝑗 , is
accounted via the Boussinesq’s hypothesis

𝑇 𝑆𝐺𝑆𝑖𝑗 − 1
3
𝑇 𝑆𝐺𝑆𝑘𝑘 𝛿𝑖𝑗 = −2𝜇𝑆𝐺𝑆

(

𝑆̃𝑖𝑗 −
1
3
𝑆̃𝑘𝑘𝛿𝑖𝑗

)

(5)

here 𝜇𝑆𝐺𝑆 is the SGS viscosity and 𝑇 𝑆𝐺𝑆𝑘𝑘 is the isotropic contribution.
ccording to Garnier et al. [47], 𝑇 𝑆𝐺𝑆𝑘𝑘 is neglected since it is non-
egligible only near shocks where the numerical schemes inject a
ignificant amount of artificial dissipation. SGS terms in the energy
quation are given by
𝑆𝐺𝑆
𝑗 = (𝜌𝐸 + 𝑝)𝑢𝑗 − (𝜌̄𝐸̃ + 𝑝̄)𝑢̃𝑗 = (6a)

=
[

𝜌𝑐𝑝𝑇 𝑢𝑗 − 𝜌̄𝑐𝑝𝑇̃ 𝑢̃𝑗
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑗

+
[ 1
2
(𝜌𝑢𝑖𝑢𝑖𝑢𝑗 − 𝜌̄𝑢𝑖𝑢𝑖𝑢̃𝑗 )

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜓𝑖𝑖𝑗

−1
2
𝑇 𝑆𝐺𝑆𝑖𝑖 𝑢̃𝑗 (6b)

here 𝑗 = −𝜆𝑆𝐺𝑆𝜕𝑇̃ ∕𝜕𝑥𝑗 denotes the SGS heat flux, with 𝜆𝑆𝐺𝑆 =
𝑐𝑝𝜇𝑆𝐺𝑆∕𝑃𝑟𝑆𝐺𝑆 , and 𝜓𝑖𝑖𝑗 is the velocity triple correlation tensor whose
contribution is neglected. 𝑃𝑟𝑆𝐺𝑆 , the SGS Prandtl number, is assumed
equal to 0.9.
3

In the present work, the Wall-Adaptive Large-Eddy (WALE) model
by Nicoud and Ducros [48] is used to account for the SGS viscosity.
The model reads as follows:

𝜇𝑆𝐺𝑆 = 𝜌̄(𝐶𝑤𝛥)2
(𝑆𝑑𝑖𝑗𝑆

𝑑
𝑖𝑗 )

3∕2

(𝑆𝑖𝑗𝑆𝑖𝑗 )5∕2 + (𝑆𝑑𝑖𝑗𝑆
𝑑
𝑖𝑗 )5∕4

(7)

ere 𝑆𝑑𝑖𝑗 denotes the traceless symmetric part of the square of the
esolved velocity gradient, i.e.,

𝑑
𝑖𝑗 =

1
2
(

𝑔̃𝑖𝑙 𝑔̃𝑙𝑗 + 𝑔̃𝑗𝑙 𝑔̃𝑙𝑖
)

− 1
3
𝑔̃𝑚𝑙 𝑔̃𝑙𝑚𝛿𝑖𝑗 (8)

and 𝑔̃𝑖𝑗 still represents the resolved velocity gradient. 𝐶𝑤 = 0.325 is the
model constant while 𝛥 = (𝛥𝑥1𝛥𝑥2𝛥𝑥3)1∕3 is the local mesh size. Among
he several algebraic eddy viscosity formulations, the WALE model
as unique qualities that are very useful when paired with embedded
eometries. The model, in fact, automatically delivers the right eddy
iscosity behavior in near-wall areas without requiring any dumping
unction or transition between the bulk flow and the boundary layer
y providing the 𝜇𝑆𝐺𝑆∕𝜇 ∼ (𝑦+)3 asymptotic behavior at the wall
ocations [49]. The research group has already successfully employed
uch a modeling framework for aerodynamics applications, and the
eader can look at De Vanna et al. [37],De Vanna et al. [38] for some
xamples.

.3. Immersed boundary method

Complex geometries are treated with the sharp-interface IBM by De
anna et al. [36]. A quick summary of the method is given here from a

heoretical perspective, while later in this paper, the numerical aspects
re provided. In particular, URANOS handles two-dimensional sketches
ssociated with immersed objects by the .msh file format. With this
ramework, each immersed body, 𝑏 = 1,… , 𝑁 , is represented by a set of
losed points {𝐱𝑏𝑙 }

𝑛
𝑙=1 and edges {𝑒𝑏𝑙 }

𝑛−1
𝑙=1 on a Cartesian mesh. As a result,

after the entire set of many-edged polygons is obtained, each Cartesian
grid point is flagged whether it is within or outside the polygon. The
process follows a classical ray-tracing algorithm according to o’Rourke
[50], and it is managed as a pre-processing activity. Thus, being  the
whole computational domain, this is divided into three portions: 𝛺𝑠,
𝛺𝑓 , and 𝛺𝑔 , the latter being the solid, the fluid, and ghost domain
regions, respectively. The information is stored in a marker variable.
It is essential to highlight that 𝛺𝑠 ∪𝛺𝑓 = . Thus, the ghost region is a
function of both the solid and fluid portions. The latter, in particular,
is defined as follow

𝛺𝑔 = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) ∈ 𝛺𝑠 if∃(𝑥𝑙 , 𝑦𝑚, 𝑧𝑛) ∈ 𝛺𝑓 for
(𝑙, 𝑚, 𝑛) = (𝑖, 𝑗, 𝑘) − 𝑛𝑔,… , (𝑖, 𝑗, 𝑘) + 𝑛𝑔}

(9)

and consists of 𝑛𝑔 layers of points that are required for the high-
order numerical scheme stencils discretization. Such a data structure
allows using the ghost nodes, i.e., 𝐱𝑔 such that (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) ∈ 𝛺𝑔 ,
o prescribe any boundary condition through an arbitrary complex
urface. In particular, in the case of fully resolved wall regions, just
he primitive (i.e., 𝑢̃, 𝑣̃, 𝑤̃, 𝑝̄, 𝑇̃ ), and consequently the conserved (i.e., 𝜌̄,
̄𝑢̃, 𝜌̄𝑣̃, 𝜌̄𝑤̃, 𝜌̄𝐸̃) variables, are forced in 𝛺𝑔 to prescribe the desired
boundary condition. Conversely, if the wall is not sufficiently resolved,
the WMLES strategy is included in the wall treatment by using the
ghost nodes to prescribe the correct wall-shear stress and heat flux.
The numerical procedure underlying the IB approach in wall-resolved
arrangements is amply detailed in Ref. [36], while, in the present work,
a clear description of the method, if combined with the wall model, is
provided in Section 3.

2.4. Near wall treatment

In the case of poorly resolved wall regions, URANOS uses a WM-
LES framework. The current code version, in particular, caters to an

equilibrium-based wall model that implies the instantaneous balancing
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between convection terms and the pressure gradient. As a result, two
unknowns emerge, 𝑈𝑤𝑚 and 𝑇𝑤𝑚, which reflect the mean wall parallel
peed and temperature distribution, respectively. The subscript 𝑤𝑚

indicates that these values are computed by solving the wall model
rather than the classical Navier–Stokes equations that compete with
the LES solver. In particular, according to the thin boundary layer
hypothesis, the near-wall Navier–Stokes system of equations along with
the wall-normal direction, here denoted with 𝑦, simplifies to:

𝑑
𝑑𝑦

(

𝜇𝑡𝑜𝑡𝑤𝑚
𝑑𝑈𝑤𝑚
𝑑𝑦

)

= 0 (10a)

𝑑
𝑑𝑦

(

𝜆𝑡𝑜𝑡𝑤𝑚
𝑑𝑇𝑤𝑚
𝑑𝑛

)

= − 𝑑
𝑑𝑦

(

𝜇𝑡𝑜𝑡𝑤𝑚𝑈𝑤𝑚
𝑑𝑈𝑤𝑚
𝑑𝑦

)

(10b)

here
𝑡𝑜𝑡
𝑤𝑚 = 𝜇𝑤𝑚 + 𝜇𝑡,𝑤𝑚 (11a)

𝜆𝑡𝑜𝑡𝑤𝑚 =
𝑐𝑝𝜇𝑤𝑚
𝑃𝑟

+
𝑐𝑝𝜇𝑡,𝑤𝑚
𝑃𝑟𝑡,𝑤𝑚

(11b)

re the overall model viscosity and thermal diffusivity, respectively,
𝑝 is the specific heat at constant pressure, 𝑃𝑟𝑡,𝑤𝑚 = 0.9 denotes the

turbulent Prandtl number, 𝜇𝑤𝑚 = 𝜇𝑤𝑚(𝑇𝑤𝑚) is the molecular wall model
viscosity, still assumed satisfying Sutherland’s law, 𝜇𝑡,𝑤𝑚 = 𝜅𝜌𝑤𝑚𝑢𝜏𝑦𝐷 is
the wall model eddy viscosity and 𝜅 = 0.41 is the Von Kármán constant.
𝜌𝑤𝑚 = 𝑝𝐿𝐸𝑆∕(𝑅𝑇𝑤𝑚) is the wall model density distribution, 𝑝𝐿𝐸𝑆 is
the external LES pressure, and 𝐷 =

[

1 − exp
(

−𝑦∗∕𝐴+)]2 is the Van
Driest dumping function with 𝐴+ = 17 and 𝑦∗ = 𝑦

√

𝜌𝑤𝑚𝜏𝑤,𝑤𝑚∕𝜇𝑤𝑚 the
model parameter and the wall-normal distance in semi-local scaling,
respectively. Such a system of Ordinary Differential Equations (ODEs) is
solved on a separate grid embedded in the LES main mesh. The grid for
the wall model starts at each 𝑦 = 0 immersed wall location, where speed
and temperature/temperature-gradient are known, and extends to an
exchange site, 𝑦 = ℏ, where the model meets the outer flow conditions

𝑈𝑤𝑚 = 𝑢𝐿𝐸𝑆∕∕ , 𝑇𝑤𝑚 = 𝑇 𝐿𝐸𝑆 , 𝑃𝑤𝑚 = 𝑝𝐿𝐸𝑆 (12)

being 𝑢𝐿𝐸𝑆∕∕ , 𝑇 𝐿𝐸𝑆 , and 𝑝𝐿𝐸𝑆 , the outer LES solution in terms of wall-
parallel velocity, static temperature, and static pressure. After solving
Eqs. (10), the 𝑈𝑤𝑚 and 𝑇𝑤𝑚 distributions are used to calculate the wall
shear stress and heat flux. The information is then enforced as a bound-
ary condition via the proposed IB strategy. The process’s technical
details for conformal walls are widely documented in Refs. [45,51,52]
while Section 3 will provide the details about an arbitrarily-shaped
surface.

3. Numerical methods

The Navier–Stokes system of equations is discretized using a high-
order finite difference approach, and URANOS allows for both uniform
and non-uniform structured Cartesian meshes discretizations. The fol-
lowing provides a brief overview of the adopted schemes and numerical
approaches.

3.1. Convective terms discretization

Convective fluxes are treated using a mix of the central-like Energy-
Preserving (EP) approach by Pirozzoli [53] and the low-dissipative
Targeted Essentially Non-Oscillatory (TENO) strategy by Fu et al. [54,
55,56].

Specifically, the sixth-order EP scheme is used, which aims to
provide semi-discrete conservation of total kinetic energy in the limit
of incompressible, inviscid flows and can be used in non-shocked con-
figurations or flow smooth portions [57–59]. The framework enables a
stable spatial treatment of convective contributions with theoretically
zero numerical dissipation and increased stability compared to conven-
tional central-like discretizations. By examining Modesti and Pirozzoli
[60,61], the reader is pointed to a range of compelling applications
4

where the EP scheme is adopted effectively. t
On the other hand, high-order TENO methods are used to develop
the flow’s shocked/shocklet regions. Peculiarly, TENO methods intro-
duce a discrete cut-off function that removes non-smooth candidate
stencils in the flux reconstruction compared to a more conventional
WENO implementation [62–64]. In addition, adaptive TENO versions
are used, which embed a shock sensor to adjust the threshold of the
𝐶𝑇 parameter in different regions of the domain to recover more sten-
cils from the reconstruction in smooth regions [65,66]. The scheme’s
parameters are those suggested by Fu et al. [55,56].

3.2. Shock detection

In addition to the TENO adaptivity, shock-capturing is only ac-
tivated when some flow requirements are met, leaving most of the
domain to the computationally efficient EP scheme. Since, especially in
low-resolution environments like one associated with WMLES, multiple
zones of supposedly smooth flow are identified through ENO-like re-
constructions, shock detection systems often misidentify spurious noise
and oscillation as shocklets. Thus, the current study adopts a modified
Ducros sensor that is found peculiarly accurate in such cases, with
minimal intrusion of shock-capturing where it is not required [67,68].
The sensor reads as follows:

𝜃 = max

⎛

⎜

⎜

⎜

⎝

−
𝜕𝑢̃𝑖∕𝜕𝑥𝑖

√

(𝜕𝑢̃𝑖∕𝜕𝑥𝑖)2 + (𝜀𝑖𝑗𝑘𝜕𝑢̃𝑘∕𝜕𝑥𝑗 )2 + 𝜖20

, 0

⎞

⎟

⎟

⎟

⎠

(13)

Here, 𝜀𝑖𝑗𝑘 is the Levi-Civita permutation tensor, whereas 𝜖0 = 𝑢∞∕𝐿0
represents a reference velocity gradient. Thus, if the cell-bound sensor
value, 𝜃𝑖+1∕2, exceeds a precomputed threshold, 𝜃̄, the flow is judged
shocked, and the shock-capturing approach is adopted in the flagged
cell and some surrounding cells whose number depends by the TENO
order of accuracy. In contrast, the EP method is used.

3.3. Viscous terms discretization

Unique to URANOS is its ability to handle viscous fluxes using
the semi-conservative finite-difference formulation by De Vanna et al.
[69]. In the case of uniform flow properties, the method provides
equivalent to central finite-difference derivatives approximations with
the corresponding order of accuracy. In contrast, in variable viscos-
ity/diffusion conditions, typical of LES/WMLES of compressible wall
flows, the method provides strong preservation and accurate tele-
scoping of viscous/diffusion terms. Present computations adopt the
sixth-order version of the method.

3.4. Temporal integration

The solver core is completed by third-order low-storage total varia-
tion diminishing Runge–Kutta method by Gottlieb and Shu [70], the
method being considered one of the best options for compressible
flows temporal integration. Thus, being  (𝐔) a high-order numerical
representation of the non-linear spatial differential operators applied to
the conserved variables, 𝐔 = {𝜌̄, 𝜌̄𝑢̃𝑖, 𝜌̄𝐸̃𝑡𝑜𝑡}𝑇 , the method reads as:

𝐔(1) =𝐔𝑛 + 𝛥𝑡 (𝐔𝑛) (14a)

𝐔(2) =3
4
𝐔𝑛 + 1

4
𝐔(1) + 1

4
𝛥𝑡 (𝐔(1)) (14b)

(𝑛+1) =1
3
𝐔𝑛 + 2

3
𝐔(2) + 2

3
𝛥𝑡 (𝐔(2)) (14c)

he time step is dynamically adjusted at each iteration to guarantee the
imulation’s stability. Each time step involves a dynamic computation
nd comparison of the Courant–Friedrichs–Lewy and Fourier criteria,
ith 𝐶𝐹𝐿 and 𝐹𝑂 set to 𝐶𝐹𝐿 = 0.5 and 𝐹𝑂 = 0.1, respectively.
he least achievable time step between the two criteria is employed

o advance the solution.
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Fig. 1. Sketch of the immersed boundary interpolation procedure.

.5. Numerical treatment of immersed walls

Fig. 1 is a graphical representation of the IBM adopted in present
omputations. Here 𝐱𝑔 ∈ 𝛺𝑔 denotes a ghost point while 𝐱𝑖𝑝 ∈ 𝛺𝑓

represents its corresponding image point. As shown in the sketch, for
each ghost point, a normal-to-bound probe is built, the latter crossing
the boundary surface at the 𝐱𝑏 location. The current strategy aims
o interpolate the flow variables at the 𝐱𝑖𝑝 location to prescribe the
esired boundary conditions and/or the proper wall-shear-stress/heat-
lux. Interpolations assume that every flow variable behaves bilinearly
t the subgrid level, i.e.,

(𝑥, 𝑦) = 𝑐1𝑥𝑦 + 𝑐2𝑥 + 𝑐3𝑦 + 𝑐4 (15)

ith {𝑐𝑖}4𝑖=1 being the interpolation coefficients to be determined.
A few exceptions must be mentioned from the numerical treat-

ent sketched in Fig. 1. In particular, (i) The interpolation support,
onsisting of the points surrounding 𝐱𝑖𝑝, may include the ghost area
ith consequent issues in mass/momentum/energy conservation due

o inappropriate boundary specifications; (ii) normal probes cannot
e established near corners surfaces. In these two circumstances, the
nterpolation strategy takes a different route, the explanation of whom
s not the primary aim of the present paper. Thus, the reader can fix
he standard process in mind, as described in Fig. 1, while details on
he present IBM are widely provided by De Vanna et al. [36].

Once an arbitrary flow variable, 𝜙, is interpolated around the 𝐱𝑖𝑝
ocation, a no-slip wall condition is enforced by prescribing the value
f 𝜙 in the corresponding ghost point, 𝜙𝑔 . In particular, if 𝜙 is subjected
o a Dirichlet-type boundary condition, being 𝜙𝑏 the desired value of 𝜙
t the bound, 𝜙𝑔 is assigned as follows:

𝑔 = 2𝜙𝑏 − 𝜙𝑖𝑝. (16)

or Neumann-type boundaries, instead, 𝜙𝑔 reads as

𝑔 = 𝜙𝑖𝑝 (17)

ollowing the suggestion by Piquet et al. [32], primitives variables,
.e., 𝑢, 𝑣,𝑤, 𝑝 and 𝑇 , are used to enforce the boundary condition. Thus,
or an adiabatic no-slip wall, Eq. (16) is applied to all velocity compo-
ents, and Eq. (17) is used to prescribe a zero-gradient condition for the
emperature and the pressure field, respectively. For an isothermal no-
5

lip wall conditions, instead, wall temperature is imposed via Eq. (16)
hile velocity and pressure fields keep the same track as in adiabatic
ases. Thus, the following expressions hold:

𝑢𝑔 = −𝑢𝑖𝑝, 𝑣𝑔 = −𝑣𝑖𝑝, 𝑤𝑔 = −𝑤𝑖𝑝 (18a)

𝑔 = 2𝛼𝑇𝑏 + 𝛽𝑇𝑖𝑝 (18b)

𝑝𝑔 = 𝑝𝑖𝑝 (18c)

eing 𝛼 = 0 and 𝛽 = 1 for adiabatic arrangements, while 𝛼 = 1 and 𝛽 =
1 for isothermal cases, respectively. This strategy can readily enforce

he no-slip adiabatic/isothermal conditions to arbitrary-shaped bounds.
owever, second-order numerical treatment of near-wall quantities

enders this approach effective if the boundary surface is sufficiently
esolved. In high-Reynolds conditions, this is the primary limitation of
he IBM. In fact, the image point may be quite far from the solid surface
elative to the viscous unit, resulting in an underestimation of friction
nd wall heat flux. That is why the wall model takes charge. In such
nstances, the near-wall treatment allows us to prescribe the correct
hear stress and heat flux values without resorting to excessive near-
all resolutions. The image point can be used as the initial location
f the interface between the external LES solver and the near-wall
egion where the system described by Eqs. (10) is solved. Here is the
tep-by-step algorithm:

1. As a first step, the flow field is interpolated around the image
point, 𝐱𝑖𝑝, according to Eq. (15). Thus, velocity components,
𝑢̃𝑖𝑝, 𝑣̃𝑖𝑝, 𝑤̃𝑖𝑝, and overall viscosity and diffusivity values, 𝜇𝑡𝑜𝑡𝑖𝑝 , 𝜆𝑡𝑜𝑡𝑖𝑝 ,
are gathered.

2. Such values are used to compute a first guess of the wall parallel
speed according to the following expression:

𝑢̃∗∕∕ =
√

(𝑢̃𝑖𝑝𝑡1 + 𝑣̃𝑖𝑝𝑡2)2 + 𝑤̃2
𝑖𝑝 (19)

Here 𝑡1 and 𝑡2 denote the tangent versor components associated
with the 𝐱𝑏 location.

3. A first guess of the wall-shear stress, 𝜏∗𝑤 =
√

𝑢∗𝜏∕𝜌𝑤, is computed
by iteratively solving Reichardt’s law [71] in terms of 𝑢∗𝜏 :

𝑢̃∗∕∕
𝑢∗𝜏

= 𝜅−1 log
(

1 + 𝜅𝑦+
)

+7.8
(

1 − 𝑒−
𝑦+
11 − 𝑦+ 𝑒

−0.33𝑦+

11

)

(20)

Here 𝑦+ = 𝜌𝑤𝑢∗𝜏ℎ∕𝜇𝑤 denotes the 𝑦-plus value associated with the
ℎ = |𝐱𝑖𝑝 − 𝐱𝑏| distance while 𝜌𝑤 and 𝜇𝑤, still denoting the flow
density and laminar viscosity at the wall location, respectively,
are obtained from field interpolation around the 𝐱𝑏 location.

4. The wall-shear stress first guess, 𝜏∗𝑤, is then used to estimate
the inner-scaled wall spacings, i.e., 𝛥𝑥+𝑤 = 𝛥𝑥∕𝛿𝜈 , 𝛥𝑦+𝑤 = 𝛥𝑦∕𝛿𝜈 ,
and 𝛥𝑧+𝑤 = 𝛥𝑧∕𝛿𝜈 , being 𝛿𝜈 = 𝜇𝑤∕(𝜌𝑤𝑢∗𝜏 ) the viscous length
and 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 the local grid spacings along the three
Cartesian directions, respectively. Thus, according to literature
suggestions [4,72], if

𝛥𝑥+𝑤 < 40, 𝛥𝑦+𝑤 < 5 𝛥𝑧+𝑤 < 20 (21)

the wall portion is considered sufficiently resolved, and the 𝜇𝑡𝑜𝑡𝑖𝑝
and 𝜆𝑡𝑜𝑡𝑖𝑝 are directly extrapolated on the ghost point, suppos-
ing the laminar behavior of the flow below the image point
(wall-resolved hypothesis). The following equations hold:

𝜇𝑡𝑜𝑡𝑔 = 2𝜇𝑤 − 𝜇𝑡𝑜𝑡𝑖𝑝 (22a)

𝜆𝑡𝑜𝑡𝑔 = 2𝜆𝑤 − 𝜆𝑡𝑜𝑡𝑖𝑝 (22b)

5. Conversely, if one of the constraints expressed by Eqs. (21) is not
satisfied, the wall model is activated, and a different route of the
wall treatment is recovered. A sketch of the method is provided
in Fig. 2.
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6. In particular, we look at a proper location of the wall-model/LES
interface, 𝐱𝑖𝑛𝑡, by searching along the wall-normal direction for
the site where the 𝑦-plus value reaches a precomputed threshold.

7. Once the 𝐱𝑖𝑛𝑡 is found, flow variables are here interpolated again
according to Eq. (15) getting out the interface wall-parallel
speed, 𝑢𝑖𝑛𝑡∕∕ , the interface static pressure, 𝑝𝑖𝑛𝑡 and the interface
static temperature, 𝑇 𝑖𝑛𝑡.

8. Interface flow variables are used as inputs for the solution of
Eqs. (10), which in turn give back the wall-modeled velocity,
𝑈𝑤𝑚, and temperature 𝑇𝑤𝑚, distributions. 𝑈𝑤𝑚 and 𝑇𝑤𝑚 are used
to calculate the wall-modeled wall shear stress and heat flux
according to the following expressions:

𝜏𝑤𝑚𝑤 = 𝜇𝑤

(

𝑑𝑈𝑤𝑚
𝑑𝑦

)

𝑤
(23a)

𝑞𝑤𝑚𝑤 = 𝜆𝑤

(

𝑑𝑇𝑤𝑚
𝑑𝑦

)

𝑤
(23b)

9. Finally, the wall-modeled wall-shear stress and heat flux are
enforced as Dirichlet boundary conditions by locally modifying
the overall viscosity and diffusivity fields, i.e., by prescribing the
so-called effective viscosity and diffusivity at the bound location
according to the following expressions:

𝜇𝑡𝑜𝑡𝑔 = 2𝜇𝑒𝑓𝑓 − 𝜇𝑡𝑜𝑡𝑖𝑝 (24a)

𝜆𝑡𝑜𝑡𝑔 = 2𝜆𝑒𝑓𝑓 − 𝜆𝑡𝑜𝑡𝑖𝑝 (24b)

Here, 𝜇𝑒𝑓𝑓 and 𝜆𝑒𝑓𝑓 denote the effective wall viscosity and
diffusivity

𝜇𝑒𝑓𝑓 =
𝜏𝑊𝑀
𝑤

𝜏𝑊𝑅
𝑤

𝜇𝑤 (25a)

𝜆𝑒𝑓𝑓 =
𝑞𝑊𝑀
𝑤

𝑞𝑊𝑅
𝑤

𝜆𝑤 (25b)

and precisely denote the missing SGS contribution at the wall
required to enforce the correct wall-shear stress and heat flux.
Details about the interpretation of 𝜇𝑒𝑓𝑓 and 𝜆𝑒𝑓𝑓 are widely
provided by De Vanna et al. [45]. Here we claim that this
arrangement can effortlessly unify the wall-resolved and the
wall-modeled LES approaches, keeping active both the no-slip
and no-penetration conditions for the velocity field and the
isothermal/adiabatic condition for the temperature at the wall
in an arbitrarily shaped bound. Moreover, the effective viscosity
and diffusivity values tend to the corresponding laminar values,
i.e., 𝜇𝑒𝑓𝑓 → 𝜇𝑤 and 𝜆𝑒𝑓𝑓 → 𝜆𝑤, while increasing the near-wall
resolution progressively.

The overall methodology is described here for 3D z-periodic geome-
tries but can be easily extended to genuinely 3D cases. In particular,
Eq. (15) must be reformulated as following:

𝜙(𝑥, 𝑦, 𝑧) =
1
∑

𝑖,𝑗,𝑘=0
𝑐𝑖𝑗𝑘𝑥

𝑖𝑦𝑗𝑧𝑘 (26)

being {𝑐𝑖} the interpolation coefficients to be determined. The wall-
parallel speed (Eq. (19)), instead, becomes

𝑢̃∗∕∕ =
√

(𝑢̃𝑖𝑝𝑡1 + 𝑣̃𝑖𝑝𝑡2 + 𝑤̃𝑖𝑝𝑡3)2 (27)

The approach is also compatible with potential modifications to a
moving-objects framework. In this case, the interpolation coefficients
and the geometric contours’ position of each submerged object must
be determined iteratively. Some hints about possible developments in
6

this path can be recovered from De Vanna et al. [36].
Fig. 2. Sketch of the immersed boundary interpolation procedure.

3.6. Parallelization strategy

A final remark is mandatory about the present methodology. What
distinguishes the proposed approach from others in advanced CFD
simulations is its easy integrability with multi-GPU logic. The main
reason concerns the explicitness of the whole algorithms involved.
Compressible Navier–Stokes equations and the suggested immersed
boundary approach, in fact, can be handled with entirely explicit
schemes, requiring compact supports to deal with all computations.
This suits the capacity of contemporary graphics cards, which can per-
form hundreds of thousands of repetitive and spatially-weakly-linked
operations very efficiently. In particular, the core of URANOS has been
recently ported to GPU and it is distributed under BSD License 2.0 at
the web address https://gitlab.com/fralusa/uranos_gpu [46]. The open-
source version of the code collects the whole set of advection/diffusion
numerical schemes and turbulence models (DNS, WRLES and WMLES).
Thus, URANOS represents an easily extendable platform where CFD
developers can test and benchmark their models or applications. The
solver’s parallelization strategy is based on three different MPI imple-
mentations of increasing complexity, from standard SENDRECV block-
ing routines, through non-blocking ISEND/IRECV calls with sending
and receive buffers, up to a non-blocking implementation with MPI-
derived datatypes. GPU-enabled computations are made possible with
the OpenACC directive-based paradigm in a truly non-vendor-specific
framework capable of exploiting contemporary exa-scale computing
architectures.

Concerning the immersed solid treatment, and its multi-GPU assess-
ment, geometrical initialization processes are performed with URANOS’
external routines. The latter can extract a global array, imm%b(n)%
lag_gbl, filling each 𝑛-immersed-body-surface boundary points.

Bodies’ information is then passed to URANOS and handled in an
object-oriented fashion to make the process scalable up to an arbitrary
number of immersed entities. Consequently, the parallelization strategy
in URANOS employs the following steps:

1. The global point array is distributed over processors-based local
arrays concerning the proc’s bounds, imm%b(n)%xlag_lcl.

2. The ray-tracing method by o’Rourke [50] is then used to discern
between the solid and fluid domains. In particular, the method
examines the global array but flags only the Cartesian points

belonging to a local computing unit. This solution allows for

https://gitlab.com/fralusa/uranos_gpu
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Table 1
Computational settings in the IBM+WMLES channel flow simulations at Mach 0.1.
Case Marker 𝑅𝑒𝜏,0 𝑅𝑒𝜏 𝑅𝑒𝑏 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝛥𝑥+ × 𝛥𝑦+ × 𝛥𝑧+

tch1 △ 590 596 22162 48 × 78 × 24 77.2 × 7.6 × 77.2
tch2 ▷ 1000 1010 40265 80 × 78 × 40 78.5 × 16.7 × 78.5
tch3 ▽ 2000 1982 87530 120 × 104 × 60 104.7 × 25.0 × 104.7
tch4 ◁ 5200 5376 252442 160 × 156 × 80 204.2 × 43.3 × 204.2
tch5 * 5200(a) 5118 252442 120 × 104 × 60 272.3 × 65.0 × 272.3
tch6 ◻ 10000 9732 518067 192 × 208 × 96 327.2 × 62.5 × 327.2
tch7 × 10000(a) 9816 518067 120 × 104 × 60 523.6 × 125.0 × 523.6
tch8 ◇ 20000 19342 1105155 224 × 312 × 112 561.0 × 83.3 × 561.0
tch9 + 20000(a) 19580 1105155 120 × 104 × 60 1047.2 × 250.0 × 1047.2
Table 2
Comparison of fitting coefficients for the 𝑅𝑒𝜏 = 𝛼𝑅𝑒𝛽𝑏
channel flow functional trend.
Case 𝛼 𝛽

Pope law 0.09 0.88
DNS fitting 0.079 0.89
WMLES fitting 0.084 0.89

parallel scalability regarding the number of Cartesian grid points
but does not give any speedup due to geometry splitting; how-
ever, since the number of points determining the solid surfaces is
usually orders of magnitude fewer than the number of Cartesian
locations, such a strategy is found to be highly efficient and
avoids any compliance with respect to MPI communications
inside the ray-tracing kernel.

3. Once the solid location of each computing unit is identified,
the Cartesian immersed ghost nodes can be readily determined.
An integer marker variable is then used to locally store the
information about the various subdomains (i.e., fluid, solid, or
solid ghosts).

4. Finally, Cartesian immersed ghost nodes are adopted via lo-
cal operations to specify the desired boundary condition. The
process does not require peculiar MPI treatments since each
MPI-rank halo region is sufficiently extended to account for out-
of-chank image points and data are already arranged in parallel
following the previous steps.

In conclusion, it is important to highlight that these steps are
executed only once at the beginning of each simulation. The inter-
polation coefficients about each ghost node are stored in dedicated
buffers defined locally for each processor. A single computational ker-
nel, efficiently distributed over MPI rank or GPU threads, operates
over each body’s immersed boundary ghost nodes during runtime,
efficiently applying the boundary conditions. This approach takes full
advantage of GPUs’ parallel processing capabilities, enabling a fully
parallel algorithm for multi-GPU implementations.

4. Results

The present section discusses the results obtained with the previ-
ously described numerical model. In particular, four tests of increas-
ingly complexity are addressed consisting in the channel flow between
two immersed block (Section 4.1), a pipe flow inside an immersed block
(Section 4.2), a spatially-deploying compressible turbulent boundary
layer over a immersed planar surface (Section 4.3), and, finally, a
finite-angle-turning turbulent boundary layer over a compression ramp
(Section 4.4).

4.1. Channel flow between two immersed blocks

As a first step the turbulent channel flow in a nearly incompress-
ible regime is here presented. The bulk Mach number of the flow,
𝑀𝑏 = 𝑢𝑏∕𝑐𝑤, is set to 0.1 and a wide range of bulk Reynolds regimes,
i.e., 𝑅𝑒 = 2𝜌 𝑢 ℎ∕𝜇 , is investigated. Here 𝑢 = 1∕(𝜌 𝑉 ) ∫ 𝜌𝑢𝑑𝑉 is
7

𝑏 𝑏 𝑏 𝑤 𝑏 𝑏 𝑉
Fig. 3. Instantaneous bulk-scaled velocity contours and Q-criterion for a channel flow
confined by two immersed blocks. Present data refer to the 𝑅𝑒𝜏 = 10000 configuration.

the bulk velocity, 𝜌𝑏 = 1∕𝑉 ∫𝑉 𝜌𝑑𝑉 is the bulk density while 𝜇𝑤 and 𝑐𝑤
denote the laminar viscosity and the speed of sound at the wall location,
respectively. Table 1 reports the bulk Reynolds number of the flow,
the nominal, 𝑅𝑒𝜏,0, and the computed, 𝑅𝑒𝜏 , friction Reynolds numbers,
being 𝑅𝑒𝜏 = ℎ∕𝛿𝜈 , 𝛿𝜈 = 𝜇𝑤∕(𝜌𝑤𝑢𝜏 ) the viscous length, 𝑢𝜏 =

√

𝜏𝑤∕𝜌𝑤
the friction velocity, 𝜏𝑤 = 𝜇𝑤(𝜕𝑢∕𝜕𝑦)𝑤 the wall shear-stress and ℎ the
channel half-height. Here it is not worthless to mention that targeting
𝑅𝑒𝜏 ≈ 2 ⋅ 104 is beyond the current computational power if combined
with other scale-resolved approaches like DNS or WRLES.

Computations are carried out in a tridimensional box with size
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 2𝜋ℎ × 2.6ℎ × 𝜋ℎ along the 𝑥, 𝑦 and 𝑧 coordinates,
respectively. In particular, the computational domain is enlarged along
with the 𝑦 direction to include the upper and the bottom IB blocks,
acting as immersed walls. These are 0.3ℎ each; thus, the flow occupies
the inner domain whose height equals 2ℎ along with the 𝑦 direction.
A uniform mesh spacing is applied along with all three Cartesian
coordinates. The number of nodes, 𝑁𝑥×𝑁𝑦×𝑁𝑧, and the corresponding
mesh spacings in inner units (i.e., normalized by the viscous length, 𝛿𝜈),
𝛥𝑥+×𝛥𝑦+×𝛥𝑧+, are reported in Table 1. It is worth noting that Table 1
reports the results of 𝑅𝑒𝜏 = {5200, 10000, 20000}𝑇 configurations using
two different resolutions. The first entails a linear increase in the spatial
resolution, and the second, (a)-cases, keeps the same resolution as in
the 𝑅𝑒𝜏 = 2000 setup.

Regarding boundary conditions, periodicity is enforced in the wall-
parallel directions, while the two immersed walls are subject to a
no-slip isothermal condition with shear stress and heat flux imposed
according to the IBM+WMLES procedure. The initial condition is ob-
tained according to the method of Henningson and Kim [79], which
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Fig. 4. Channel flow bulk-scaled instantaneous velocity contours as a function of the friction Reynolds number.
Fig. 5. Friction Reynolds number trend as a function of the bulk Reynolds number
for channel flow configurations. Present IBM+WMLES computations are compared to
available DNS results [73–77] as well as suggestions provided by Pope [78].

superimposes a vortex pair over the analytical solution of the Poiseuille
flow. Such a strategy encourages a rapid transition to turbulence with-
out exceeding complex initial states. To keep the flow rate in the
channel constant, a forcing term 𝑓𝑖 = {0, 𝑓 , 0, 0, 𝑓𝑢}𝑇 is added to the
Navier–Stokes right-hand-side. At each time step, the latter is assessed;
thus, discretely ensuring mass flow rate conservation. Since the flow
is shock-free, convective terms are discretized with the sixth-order EP
scheme in a pure state.

Fig. 3 shows the instantaneous bulk-scaled velocity field, 𝑢∕𝑢𝑏,
concerning the 𝑅𝑒𝜏 = 104 configuration. To this, the iso-surfaces
associated with the Q-criterion for vortex visualization is over-imposed.
For clarity, the upper IB block is just sketched, and only the lower
bound is reported. From such a qualitative representation, we can
observe how the system dynamics are characterized by fully developed
turbulence. In particular, the system’s large scales of motion are clearly
evident and alternate between slow and fast streaks. Thus, from first
sight, the method seems able to grasp the complex dynamics associated
with a wall flow at such high Reynolds conditions. Fig. 4, instead,
displays the instantaneous bulk-scaled velocity fields as a function of
the Reynolds regimes, i.e., moving from 𝑅𝑒𝜏 = 590 up to 20000.

Moving on to more quantitative results, the friction Reynolds num-
ber trend is investigated as a function of the bulk Reynolds numbers of
8

the flow. According to Pope [78], the 𝑅𝑒𝜏 = 𝑓 (𝑅𝑒𝑏) functional trend is
well fit by the following expression:

𝑅𝑒𝜏 = 𝛼𝑅𝑒𝛽𝑏 (28)

where 𝛼 and 𝛽 are fitting constants. Pope suggests 𝛼 = 0.09 and 𝛽 =
0.88, respectively. Fig. 5 reports the 𝑅𝑒𝜏 = 𝑓 (𝑅𝑒𝑏) trend according to
Ref. [78] and compares available DNS data to present WMLES compu-
tations. Obtained results are well aligned with both DNS computations
and trend predictions, even out of the DNS range, whose upper bound
is highlighted by a dash-dotted gray line. Table 2 reports 𝛼 and 𝛽
coefficients comparison as a function of the adopted methodologies. As
the reader can observe, the present IBM+WMLES method perfectly fits
both theoretical and DNS fitted values.

Finally, Fig. 6 reports single point statistics. In particular, Figs. 6(a)
and 6(b) show the inner-scaled velocity profiles, 𝑢̃+ = 𝑢̃∕𝑢𝜏 , and the
inner-scaled turbulent kinetic energy, 𝑘̃+ = 𝑢′′𝑖 𝑢

′′
𝑖 ∕𝑢

2
𝜏 , respectively, as a

function of the inner-scaled wall distance, 𝑦+ = 𝑦∕𝛿𝜈 . For greater clarity,
velocity distributions are offset in the vertical direction by five wall
unit steps. Apart from some mild log-layer mismatch, typical of WMLES
computations, overall, the results are well aligned with DNS references
by Vreman and Kuerten [73], Bernardini et al. [74], Lee and Moser
[75], Hoyas et al. [76], Oberlack et al. [77] for both mean quantities
and fluctuations. Furthermore, it is worth noting that configurations
with 𝑅𝑒𝜏 > 2000 exhibit minimal sensitivity to the chosen resolution.
In such cases, the model accurately represents both the mean velocity
profile and the fluctuations, achieving a level of accuracy similar to
configurations with higher resolutions. This behavior arises due to
the model’s capability to effectively predict wall dynamics once scale
separation is achieved, i.e., as long as the outer layer is resolved.
Consequently, given the constant boundary layer height of ℎ in a
channel flow, the model exhibits near insensitivity to the Reynolds
number. Finally, data are also provided for a nominal 𝑅𝑒𝜏 of 2 ⋅ 104.
The latter are compared with Reichardt’s law [71] since no DNS or
experiments are available for such a Reynolds regime. The trend is
confirmed even for such extreme configurations.

4.2. Turbulent pipe flow inside an immersed block

As the next step, the proposed procedure is tested in a non-conformal
geometrical arrangement; thus, a turbulent pipe flow embedded inside
an immersed block is addressed. The setup is similar to that of the chan-
nel flow. Such a geometric arrangement has been selected precisely in
light of stressing the method to deal with arbitrary cut cells since the
position of the first-off-the-wall grid point concerning the immersed
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Fig. 6. Inner-scaled velocity distributions, 𝑢+ = 𝑢̃∕𝑢𝜏 , and inner-scaled turbulent kinetic energy, 𝑘̃+ = 𝑢′′𝑖 𝑢
′′
𝑖 ∕𝑢

2
𝜏 , as a function of the inner-scaled wall distance, 𝑦+ = 𝑦∕𝛿𝜈 , for channel

flow setups at 𝑀𝑏 = 0.1 and 𝑅𝑒𝜏 up to 2 ⋅ 104. Present results (colors with dots) are compared with DNS data (solid black lines) by Vreman and Kuerten [73],Bernardini et al.
[74],Lee and Moser [75],Hoyas et al. [76],Oberlack et al. [77] and with analytical reference according to the Reichardt’s law [71].
Fig. 7. Instantaneous bulk-scaled velocity contours and Q-criterion for a pipe flow
confined inside an immersed block. Present data refer to the 𝑅𝑒𝜏 = 6000 configuration.

contour is not directly controllable. The flow’s bulk Mach number,
𝑀𝑏 = 𝑤𝑏∕𝑐𝑤, is still set to 0.1, and a wide range of bulk Reynolds
numbers, 𝑅𝑒𝑏 = 2𝜌𝑏𝑤𝑏𝑅∕𝜇𝑤, is investigated. Here 𝑅 denotes the pipe
radius while the 𝑧 axis is selected as the streamwise coordinate, so that
bulk speed is denoted by 𝑤𝑏 = 1∕(𝜌𝑏𝑉 ) ∫𝑉 𝜌𝑤𝑑𝑉 .

The computational domain is made up of a rectangular box of size
2.4𝑅×2.4𝑅×2𝜋𝑅 and is discretized with a uniform Cartesian grid in all
9

directions according to the description reported in Table 3. With this
arrangement, the flow occupies a cylindrical sector of radius 𝑅, while
the rest of the domain is reserved for the IB block. Table 3 reports the
nominal (𝑅𝑒𝜏,0) and the computed (𝑅𝑒𝜏 ) friction Reynolds number of
the flow, being 𝑅𝑒𝜏 = 𝑅∕𝛿𝜈 , together with the bulk Reynolds number,
𝑅𝑒𝑏. Mesh characteristics are also provided in term of the number of
computing nodes, 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧, and mesh spacings in inner units,
𝛥𝜃+×𝛥𝑟+×𝛥𝑧+, being 𝜃, 𝑟 and 𝑧 the azimuthal, the radial and the axial
coordinate directions, respectively. Conversely to the channel flow, 𝛿𝜈 ,
the viscous length, is defined as 𝛿𝜈 = 𝜇𝑤∕(𝜌𝑤𝑤𝜏 ) being 𝑤𝜏 =

√

𝜏𝑤∕𝜌𝑤
the friction velocity and 𝜏𝑤 = 𝜇𝑤(𝜕𝑤∕𝜕𝑦)𝑤 denoting the wall shear
stress, with 𝑦 = 𝑅 − 𝑟 the wall normal coordinate.

Concerning the boundary conditions, the external IB block is mod-
eled as a no-slip and isothermal wall that enforces proper wall shear
stress and heat flux values according to the IBM+WMLES procedure.
Periodicity is enforced along with the pipe axial direction, while no
peculiar boundaries are associated with the edge of the computational
domain since they do not affect the flow. Again the procedure proposed
by Henningson and Kim [79] is used to initialize the system mechanics.
In particular, a vortex pair is over-imposed on the analytical solution
of the Poiseuille flow in radial coordinates. The mass-flow rate is
discretely enforced by adding 𝑓𝑖 = {0, 0, 0, 𝑓 , 𝑓𝑢}𝑇 as an external force
to the Navier–Stokes right-hand side. Again, since no shocks/shocklets
afflict the flow, the sixth-order EP scheme in a pure state is used for
convective terms discretization.

Fig. 7 displays a qualitative overview of the computational domain
and the flow. The bulk-scaled velocity field and the Q-criterion for
vortex visualization are reported. As shown, the fluid domain is sur-
rounded by a square section block made up of the domain’s IB border.
For clarity, the latter is only partially displayed.

As in the channel flow case, Fig. 8 displays the influence of the
Reynolds number in the pipe dynamics from a strictly qualitative
perspective. Here, 𝑥–𝑦 plane cuts related to the four investigated con-
figurations, ranging from 𝑅𝑒𝜏 = 500 up to 6000, are provided. The
reader can observe that the overall turbulence pattern is enriched with
ever finer coherent structures as the grid density increases. Despite
this, the core of the flow, essentially homogeneous and isotropic, is
well represented by the primary eddy-viscosity turbulence model and
gathered realistically.
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Table 3
Computational settings in the IBM+WMLES pipe flow simulations at Mach 0.1.
Case Marker 𝑅𝑒𝜏,0 𝑅𝑒𝜏 𝑅𝑒𝑏 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝛥𝜃+ × 𝛥𝑟+ × 𝛥𝑧+

tpi1 △ 500 551 18433 96 × 96 × 50 13.8 × 13.8 × 69.2
tpi2 ▷ 1140 1217 46862 128 × 128 × 96 22.7 × 22.7 × 79.2
tpi3 ▽ 3000 3183 138105 128 × 128 × 96 59.7 × 59.7 × 208.3
tpi4 ◁ 6000 6398 297070 150 × 150 × 96 102.4 × 102.4 × 418.8
Fig. 8. Pipe flow bulk-scaled instantaneous velocity contours as a function of the friction Reynolds number.
Fig. 9. Friction factor as a function of bulk Reynolds number for pipe flow configu-
rations. Present IBM+WMLES computations are compared to DNS by Pirozzoli et al.
[80]. The dashed-dotted line denotes the Prandtl fitting law.

Looking at more quantitative aspects, Fig. 9 reports the pipe friction
factor, 𝜆, as a function of the bulk Reynolds number of the flow, being
𝜆 defined as:

𝜆 =
8𝜏𝑤
𝜌𝑏𝑤2

𝑏

(29)

A precise forecast of such a parameter enables us to conclude that the
system has established the proper dynamic equilibrium condition in
which wall friction and mass flow rate are entirely consistent. On a
technical level, the friction factor for a smooth pipe is often calculated
using the Prandtl law, which states:
1
𝜆1∕2

= 𝐴 log10(𝑅𝑒𝑏𝜆1∕2) − 𝐵 (30)

Here 𝐴 = 2.0 and 𝐵 = 0.8 are fitting parameters derived from Nikuradse
[81] experiments. Thus, Fig. 9 compares the friction factor values
obtained with the current IBM+WMLES approach to the Pirozzoli et al.
[80] DNS data. The dashed gray line reports the Prandtl law trend. As
10
seen, findings are almost superimposed to both DNS and Prandtl fitting,
with a mild exception for the lowest Reynolds configuration that is
slightly overestimated. The rationale for this has to be found in the wall
model’s assumptions, which imply a fully developed turbulent flow and
a thin boundary layer hypothesis. Indeed, when the Reynolds number
increases, the WMLES perfectly recovers the DNS datum and Prandtl
law.

Finally, Fig. 10 reports single point statistics comparison with DNS
data. In particular, the ensemble-averaged inner-scaled velocity pro-
files, 𝑤+ = 𝑤̃∕𝑤𝜏 , (Fig. 10(a)) and the ensemble-averaged inner-scaled
turbulent kinetic energy, 𝑘̃+ = 𝑢′′𝑖 𝑢

′′
𝑖 ∕𝑢

2
𝜏 (Fig. 10(b)) are provided as

a function of the inner-scaled wall distance, 𝑦+ = 𝑦∕𝛿𝜈 . For greater
clarity, velocity profiles are still offset in the vertical direction by five
wall unit steps. As the reader can notice, results well agree with the
DNS references by Pirozzoli et al. [80]. In particular, mean velocity
distributions perfectly overlap the DNS solution, while mild deviation
in velocity fluctuations are observed with the model systematically
underestimating the reference. Such results, considered the adopted
resolutions, allows us to confirm the quality of the methodology applied
to a non-conformal geometry in high-Reynolds number regimes.

4.3. Compressible turbulent boundary layer over an immersed block

As a further step we present results obtained by simulating a tur-
bulent boundary layer in a compressible regime. The simulation is
modified compared to canonical setups and, in particular, the boundary
layer evolution is made to spatially-deploying over an immersed block.
We consider four 𝑀∞ = 𝑢∞∕𝑐∞ = 2 configurations with adiabatic wall
conditions targeting the location along the plates where 𝑅𝑒𝜏,0 = 𝛿∕𝛿𝜈 is
equal to 250, 580, 1110 and 2000. The first three Reynolds regimes are
selected since we dispose of DNS references by Pirozzoli and Bernar-
dini [57], while the last configuration aims at proving the predictive
capability of the model in high-Reynolds conditions. Fixing the mathe-
matical notation, here 𝑢∞ and 𝑐∞ =

√

𝛾𝑅𝑇∞ are the free-stream velocity
and speed of sound, respectively; 𝛿 denotes the 99% freestream-speed-
recovery local boundary layer thickness; 𝛿𝜈 = 𝜇𝑤∕(𝜌𝑤𝑢𝜏 ) is the local
viscous length; 𝜇𝑤, 𝜌𝑤 and 𝑢𝜏 still denote the laminar wall viscosity,
the fluid wall density, and the wall friction velocity, respectively.

All simulations are carried out in a three-dimensional box of size
𝐿 ×𝐿 ×𝐿 = (90×11×6)𝛿 , being 𝛿 the nominal inflowing boundary
𝑥 𝑦 𝑧 0 0
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Fig. 10. Mean streamwise velocity profiles, 𝑤+ = 𝑤̃∕𝑤𝜏 , and inner-scaled turbulent kinetic energy, 𝑘̃+ = 𝑢′′𝑖 𝑢
′′
𝑖 ∕𝑢

2
𝜏 , as a function of the inner-scaled wall distance, 𝑦+ = 𝑦∕𝛿𝜈 , for

pipe flow cases at 𝑀𝑏 = 0.1 and 𝑅𝑒𝜏 up to 6000. Present results (colors with dots) are compared with DNS data (solid black lines) by Pirozzoli et al. [80].
Fig. 11. Instantaneous freestream-scaled velocity contours and Q-criterion for a tur-
bulent boundary layer confined by one immersed block. Present data refer to the
𝑅𝑒𝜏 = 1110 configuration.

layer thickness. In particular, as in the channel flow, the computational
domain is enlarged along with the wall-normal direction. Thus, a
length equal to 10𝛿0 is reserved for the flow motion while a space of
𝛿0 is reserved to accommodate the immersed block. The streamwise
direction, instead, is made long enough to capture the large-scale and
intermittent motions associated with turbulent structures and avoid
possible statistical correlation with the inflowing synthetic turbulence
generation. Along with all three Cartesian directions, uniform grids are
adopted.

Table 4 summarizes the simulation parameters. Here, the marker
style, the target (𝑅𝑒𝜏,0) and the computed friction Reynolds numbers
(𝑅𝑒𝜏 ), the number of points, 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧, and the mesh spacing in
viscous units, 𝛥𝑥+ × 𝛥𝑦+ × 𝛥𝑧+, are reported.
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Regarding boundary conditions, fully three-dimensional Navier–
Stokes Characteristic Boundary Conditions (NSCBCs) [82,83] are im-
posed at the top and right bounds of the domain. Thus, characteristic
decomposition and the evolution of transverse and viscous terms are
adopted. The approach delivers the correct outflow behavior with
minimum acoustic wave reflection or spurious oscillation injection. At
the bottom wall, an IB block is used as a no-slip and non-penetrating
condition combined with the wall-modeling strategy. In particular, ac-
cording to the present wall-modeled LES process, the IB block enforces
all velocity components to zero, the wall temperature isothermality, the
correct friction, and wall heat-flux. The isothermal condition is imposed
by prescribing
𝑇𝑤
𝑇∞

= 𝑇𝑟𝑎𝑡
[

1 + 𝑟
2
(𝛾 − 1)𝑀2

∞

]

(31)

Here 𝑇𝑤∕𝑇∞ is the freestream-scaled wall temperature, 𝑟 = 𝑃𝑟1∕3

denotes the recovery factor, while 𝑇𝑟𝑎𝑡 = 𝑇𝑟∕𝑇𝑎𝑑 is the ratio between
the recovery temperature and the nominal adiabatic temperature. In
present computations, 𝑇𝑟𝑎𝑡 is set to one; thus, the wall behaves as purely
adiabatic. As customary in LES, the spanwise flow is considered to
be statistically homogeneous, and periodic boundaries are used. The
inflow condition is implemented following the synthetic digital filter
approach by Klein et al. [84]. In particular, the improved version
by Kempf et al. [85] is used. Thus, velocity fluctuations are overlaid
with Musker’s nominal turbulent mean velocity profile [86]. The pro-
cess grants a quick transition to a fully developed turbulent boundary
layer that reaches stability around 10𝛿0 downstream of the inflow lo-
cation. Finally, concerning numerical methods, the present calculation
is performed with a hybrid EP-TENO-A 7 convective scheme, setting
Ducros level to 𝜃̄ = 0.1. Such a numerical arrangement increases
the simulation’s stability without excessively penalizing the natural
deployment of the wall turbulence [68].

Fig. 11 shows the instantaneous freestream-scaled velocity field,
𝑢∕𝑢∞, for the 𝑅𝑒𝜏 = 1110 arrangement. Specifically, the Q-criterion for
vortices visualization is over-imposed on the wall-normal streamwise
parallel instantaneous velocity contours. Color shades are linked to the
speeds range. Thus, lower velocities are associated with blue tones,
while peaks are reported with dark red. In the bottom section of the
domain, the immersed boundary block, acting as the wall-modeled LES
condition, is reported. The reader may appreciate the high amount of
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Table 4
Computational settings in the IBM+WMLES compressible turbulent boundary layer flow simulations at Mach 2.0.
Case Marker 𝑅𝑒𝜏,0 𝑅𝑒𝜏 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝛥𝑥+ × 𝛥𝑦+ × 𝛥𝑧+

tbl1 △ 250 252 256 × 78 × 48 87.9 × 17.6 × 31.3
tbl2 ▷ 580 586 600 × 156 × 96 87.0 × 20.4 × 36.3
tbl3 ▽ 1110 1127 1200 × 224 × 192 83.3 × 27.3 × 34.6
tbl4 ◁ 2000 2013 1500 × 280 × 240 120.0 × 39.3 × 50.0
Fig. 12. Boundary layer freestream-scaled instantaneous density contours as a function of the friction Reynolds number.
Fig. 13. Friction coefficient as a function of the friction Reynolds number for a
boundary layer over a flat plate a Mach 2. DNS trend fits 𝐶𝑓 = 𝑎𝑅𝑒𝑏𝜏 .

turbulence in the flow and the model’s ability to properly represent
more prominent turbulent structures.

Fig. 12 depicts the instantaneous freestream-scaled density fields
over wall-normal slices. Data are provided parametrically with the
friction Reynolds number. Similarly to previous color maps, results dis-
play rarefied regions with blue shades, while higher-density areas are
reported with yellow and red tones. From these purely qualitative rep-
resentations, we immediately recognize the role of the Reynolds num-
ber concerning turbulence deployment. In particular, as the Reynolds
regime increases, turbulent structures become finer and finer, making
the model able to grasp the system’s physics very well, at least from a
qualitative point of view.

Moving on to quantitative results, Fig. 13 shows the friction coef-
ficient trend, 𝐶𝑓 = 𝜏𝑤∕𝑞∞, as a function of the local friction Reynolds
number, 𝑅𝑒𝜏 . In particular, DNS data by Pirozzoli and Bernardini [57]
are compared to present IBM+WMLES computations. It should be em-
phasized that the highest DNS Reynolds regime attains to 𝑅𝑒 = 1110;
12

𝜏

therefore, the proposed model is used in a predictive way to analyze a
wall flow at a Reynolds number double the maximum available in the
literature. Not having data for comparison at 𝑅𝑒𝜏 = 2000, DNS results
are fitted and extrapolated beyond their range, assuming a polynomial
trend for the friction coefficient. In particular, the following functional
behavior is assumed:

𝐶𝑓 = 𝑎𝑅𝑒𝑏𝜏 (32)

which describes a standard behavior of the friction coefficient in bound-
ary layer flow over a flat plate [78,87]. Regression process gives
𝑎 = 0.01474596 and 𝑏 = −0.27720095. Fig. 13 demonstrates how the
data collected with the proposed model well match the DNS trend. In
particular, we see that the model always tends to slightly overestimate
the DNS value, even though the overestimation steadily diminishes as
the Reynolds number grows. This is readily explicable given that the
wall model assumes a fully developed turbulent flow with large-scale
separations in the boundary layer. Thus, the fact that findings suit the
DNS trend better and better as 𝑅𝑒𝜏 grows is consistent with the model
hypothesis.

Finally, moving to wall-normal statistics, Fig. 14 shows the mean
streamwise inner-scaled velocity profile, 𝑢+ = 𝑢̃∕𝑢𝜏 , and the inner-
scaled turbulent kinetic energy, 𝑘̃+ = 𝜌̄𝑢′′𝑖 𝑢

′′
𝑖 ∕𝜏𝑤, as a function of

the inner-scaled wall distance, 𝑦+ = 𝑦∕𝛿𝜈 . Very good agreement is
recovered where DNS are disposed, while the 𝑅𝑒𝜏 = 2000 setup simply
confirms the trend.

4.4. Finite-angle-turning supersonic boundary layer over a compression
ramp

As a conclusive assessment to characterize the proposed numerical
strategy, the present section outlines the interaction between a 𝜃 = 24◦

compression ramp and turbulent boundary layer in highly-compressible
conditions. Simulations faithfully replicate the DNS setup described
by Priebe and Martín [88]. In particular, freestream conditions suppose
a 𝑀∞ = 𝑢∞∕𝑐∞ = 2.91 flow. Thus, the arrangement induces an
oblique shock wave sticking to the ramp leading edge with a nominal
inviscid angle of 𝛽 = 43.58◦. The DNS database supposes the inflowing
boundary layer with a nominal friction Reynolds number, 𝑅𝑒 = 𝛿∕𝛿 ,
𝜏 𝜈
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Fig. 14. Mean streamwise velocity profiles, 𝑢+ = 𝑢̃∕𝑢𝜏 , and inner-scaled turbulent kinetic energy, 𝑘̃+ = 𝜌̄𝑢′′𝑖 𝑢
′′
𝑖 ∕𝜏𝑤, as a function of the inner scaled wall distance, 𝑦+ = 𝑦∕𝛿𝜈 , for

boundary layer cases 𝑀∞ = 2.0 and 𝑅𝑒𝜏 up to 2000. Present results (colors with dots) are compared with DNS data by Pirozzoli and Bernardini [57].
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of around 320 at the shock foot. The complex interaction between
the turbulent boundary layer and the shock wave, together with the
adverse pressure gradient, causes flow separation in the ramp’s leading
edge area. For the present test, the mathematical notation recovers
the same convections adopted in Section 4.3. Thus, 𝑢∞ and 𝑐∞ still
represent the freestream velocity and speed of sound, respectively; 𝛿
is the 99% boundary layer thickness; 𝛿𝜈 = 𝜇𝑤∕(𝜌𝑤𝑢𝜏 ) denotes the local
viscous length, while 𝜇𝑤 and 𝜌𝑤 are the laminar wall viscosity and flow
density at the wall location, respectively. Simulations are carried out
in a three-dimensional box of size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 80𝛿0 × 21𝛿0 × 10𝛿0,
being 𝛿0 the nominal inflowing boundary layer thickness. Again, the
domain is enlarged by one unit delta along with the 𝑦-direction to
accommodate the immersed body. The last for the geometrical setup
is the ramp leading edge location which is placed 50𝛿0 downstream of
the inflow edge to avoid any statistical correlation with the synthetic
turbulence generation.

The boundary conditions receipt adopted for the spatial deploying
turbulent boundary layer is replicated here. Thus, NSCBCs are enforced
at the top and the right domain edges, while the solid surface is treated
as a single IB block. The latter drives all velocity components to zero,
assures the desired wall temperature, and enforces the correct wall
shear stress and heat flux according to the proposed IBM+WMLES
procedure. Wall temperature is still prescribed according to Eq. (31),
where 𝑇𝑟𝑎𝑡, the ratio between the recovery and the adiabatic nominal
temperatures, is set to 0.87; the value fitting the DNS prescriptions
by Priebe and Martín [88]. Periodic boundary conditions are enforced
along with the spanwise direction, while inflow turbulence is provided
again with the enhanced synthetic digital filter approach by Klein et al.
[84] and Kempf et al. [85]. Finally, calculations are performed with a
hybrid EP-TENO-A 5 convective scheme with a Ducros threshold, 𝜃̄,
equal to 0.1.

4.4.1. Spatial resolution
Present IBM+WMLES computations are performed over three in-

creasingly refined meshes, the details of which are reported in Ta-
ble 5. The meshing approach, in particular, includes the non-uniformly
spreading of computational nodes in the 𝑥–𝑦 plane to focus the compu-
tational effort on the solution of the incoming boundary layer and the
ramp section. The spanwise direction, instead, is discretized with con-
stant spacing. Because the ramp turning angle is intense, the grid clus-
tering process results in an over-resolution for the incoming boundary
layer. In fact, if the portion of the flat plate had not been over-resolved
13

m

Table 5
Computational settings in the IBM+WMLES Mach 2.91 turbulent boundary layer over
a compression ramp.

Case Marker 𝑅𝑒𝜏,0 𝑅𝑒𝜏 𝑥∗sep 𝑥∗rea 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧

Coarse ▽ 320 315 −4.0 0.56 768 × 384 × 80
Medium ◁ 320 320 −4.0 0.80 1024 × 512 × 96
Fine △ 320 340 −3.2 0.67 1536 × 768 × 128

concerning the usual WMLES canons, the de-refinement process would
have produced an excessive under-resolution for the sloped section,
making it difficult to resolve the ramp even from a geometrical stand-
point. Table 5, in particular, reports the marker style, the target (𝑅𝑒𝜏,0)
and the computed (𝑅𝑒𝜏 ) Reynolds numbers at the shock foot location,
as well as the extension of the separation bubble, giving the non-
dimensional separation 𝑥∗𝑠𝑒𝑝 = (𝑥𝑠𝑒𝑝 − 𝑥𝑙𝑒)∕𝛿, and the reattachment,
𝑥∗𝑟𝑒𝑎 = (𝑥𝑟𝑒𝑎 − 𝑥𝑙𝑒)∕𝛿, locations. Here 𝑥𝑙𝑒 denotes the ramp leading
edge location. Due to the complex nature of the flow, spatial res-
olutions are graphically provided. Thus, mesh spacing distributions
along with the body surface are provided in Fig. 15. In particular,
Figs. 15(a)–15(c) report, respectively, the ensemble-averaged 𝛥𝑥+𝑤, 𝛥𝑦+𝑤
nd 𝛥𝑧+𝑤 distributions along with the solid surface as a function of
he non-dimensional streamwise coordinate, 𝑥∗ = (𝑥 − 𝑥𝑙𝑒)∕𝛿, and
arametrically to the adopted mesh. WRLES thresholds, according to
q. (21), are also reported as nominal references. Here it is worth
oting that grid-scaled units, 𝛥𝑥+𝑤,𝑖 = 𝛥𝑥𝑤,𝑖∕𝛿𝜈 , are not well-posed for
he out-of-equilibrium flows since the viscous length, 𝛿𝜈 , vanishes at
he boundary layer separation/reattachment locations. However, since
he wall model is instantaneously activated/deactivated based on 𝛥𝑥+𝑤,𝑖
ocal values, the post-processed grid-scaled units are accumulated as

single term, so that by averaging 𝛥𝑥+𝑤,𝑖 = ̃𝛥𝑥𝑖,𝑤∕𝛿𝜈 . For this reason,
he resulting grid-scaled units reflect exactly the ensemble-averaged
ctivation/deactivation of the model based on the local quantities.

.4.2. Instantaneous flow description
Going to describe the overall system dynamics, Fig. 16 qualitatively

hows the three-dimensional flow deployment. Here, the Q-criterion for
ortices visualization is superimposed on the instantaneous Schlieren
ensity contour reported in the backplane. The color map provides the
ach number local value. From such a qualitative representation, three
ost significant parts can be immediately recognized:
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Fig. 15. Near-wall resolutions in internal spacing as a function of the streamwise coordinate.
Fig. 16. Instantaneous Schlieren density and Q-criterion contours for a supersonic
ramp. Present data refer to Medium mesh.

1. The first portion (yellow to red tones) embeds the incoming
boundary layer on top of the initial flat plate. The flow is here
characterized by a near-to-nominal average Mach number, and
the boundary layer is entirely in equilibrium with the wall.

2. The second flow section (blue to green tones) follows the incom-
ing boundary layer region, and it is mainly characterized by the
recirculation region. Here, the boundary layer interacts with the
shock wave, which is plainly visible on the background plane’s
Schlieren trace. Around the ramp leading edge, the flow tends
to stagnate due to the negative pressure gradient, resulting in a
recirculation bubble.

3. Finally, the third part (green to yellow shades) consists in the
recovering boundary layer over the sloped surface where the
flow recovers the stability and keep on going through the outlet.

A more extensive examination of the flow’s instantaneous devel-
opment is reported in Fig. 17. Here a zoom of the instantaneous
freestream-scaled 𝑥-velocity component near the ramp leading edge is
reported for a 𝑥 − 𝑦 slice of the domain. Color maps show the velocity
range from blue to red tones and offer findings for the three increas-
ingly refined meshes used in the present computations. Velocity slices
confirm the qualitative description of the flow we discussed by looking
at the three-dimensional field deployment. However, the recirculation
zone and the non-stationary shock wave trace are enhanced here, with
the noteworthy aspect of detecting negative velocity values. This aspect
14
is peculiar since the wall model, supposing the equilibrium of the
boundary layer, theoretically rules out adverse velocity gradient events.
This fact is, therefore, to be framed in the WR/WMLES blending pro-
cess, which allows for treating sufficiently-resolved flow zones through
a wall-resolved approach. Coming back to Figs. 15, the grid-scaled units
in the recirculation area allow the model to act by a large margin as a
wall-resolved approach.

In this path it is interesting to look at the activation and deactivation
of the wall model over the ramp surface quantitatively as a function
of the grid resolution. We said that if Eq. (21) is met locally, the
current IBM+WMLES strategy automatically shifts to a WRLES-type
approach. This is obtained according to a side algorithm embedded in
the wall-modeling procedure that, in such occurrences, avoids introduc-
ing any additional artificial viscosity/diffusivity. Fig. 19 describes the
activation of the wall model quantitatively by reporting the ensemble-
averaged WMLES activation sensor trend, 𝜃𝑊𝑀 , as a function of the
non-dimensional streamwise coordinate and parametrically to the mesh
refinement level. The sensor, by convention, is defined to be zero for a
wall-resolved portion (i.e., for such near-wall locations where the grid
resolution, combined with the local shear stress, is considered sufficient
for adopting a WRLES approach), conversely, it is set to one if the
portion of the wall requires the wall model intervention. As pointed
out in Fig. 19, the wall model intervention competes in about 50% of
sampled occurrences for 𝑥∗ < −10. This indicates that the incoming
boundary layer’s near-wall resolution permits the flow to be considered
partly resolved, particularly for the most resolved arrangement. On the
other hand, 𝜃𝑤𝑚 values in the recirculation bubble area are close to
zero, with a minimum at 𝑥∗ ≈ −3.5. Thus, the result enables us to assert
that the model treats the recirculation bubble as a suitably resolved
flow part. This finding is simply explained since the friction coefficient
must vanish at the separation and reattachment bubble location. Thus,
by decreasing the near-wall velocity gradients, near-wall resolution
requirements drop. Finally, when 𝑥∗ > 0, since near-wall resolutions are
consistently above the WRLES threshold, 𝜃𝑊𝑀 is steadily statistically
equal to one, demonstrating that the wall model constantly operates
across the whole ramp region.

4.4.3. Mean flow results discussion
After examining the instantaneous fields, we now investigate the

system’s average dynamics. Fig. 18 depicts the freestream-scaled
ensemble-averaged velocity, 𝑢̃∗ = 𝑢̃∕𝑢∞ (Figs. 18(a), 18(c), 18(e))
and the freestream scaled turbulent kinetic energy, 𝑘∗ = 𝜌̄𝑢′′𝑖 𝑢

′′
𝑖 ∕2𝑞∞

(Figs. 18(b), 18(d), 18(f)) fields around the ramp’s leading edge as
a function of the three mesh resolutions. As qualitatively observed
while commenting on the instantaneous flow evolution, averaged ve-
locity confirms that the ramp leading edge portion is covered by a
recirculation bubble that spans from 𝑥∗ ≈ −4 up to 𝑥∗ ≈ 1. We
also confirmed that adverse velocity events are detected on the aver-
age flow, a significant result for a WMLES computation that exploits
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Fig. 17. Supersonic ramp freestream-scaled instantaneous 𝑢-velocity component contours for the three mesh configurations.

Fig. 18. Supersonic ramp freestream-scaled averaged 𝑢-velocity component (18(a), 18(c), 18(e)) and turbulent kinetic energy (18(b), 18(d), 18(f)) contours for the three mesh
configurations.
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Fig. 19. Wall-modeled LES activation sensor as a function of the non-dimensional
streamwise coordinate.

an equilibrium-based wall model. Eqs. (10), in fact, do not provide
boundary layer solutions in partial recirculation conditions. Thus, the
explanation of negative velocity occurrences has to be found in the
adaptability of the current IBM+WMLES model, which can self-regulate
the effective viscosity value concerning the assessment of the wall’s
local resolution. Indeed, based on the WMLES sensor distribution, we
discovered that the bubble area is primarily treated as a wall-resolved
portion, letting the model not rule out negative velocity gradients on
the wall.

Average fields also provide information about the resolution effect.
The coarse and the medium arrangements exhibit a 𝜆-shock structure
ue to the junction of two shock waves at a triple point. The latter
s clearly visible from the turbulent kinetic energy field, which shows
ow the primary shock wave trace keeps a compact behavior up to
specific location while grinding away as it progressively approaches

he wall (Figs. 18(b), 18(d) and 18(f)). The 𝜆-shock’s rearmost branch,
ith low compression intensity, is mainly owing to the ramp-like effect

aused by the recirculation bubble and has no physical meaning but is
urely connected to the low mesh resolutions. On the other hand, the
econd branch is of a physical character and is caused by the geometric
iscontinuity. In the most resolved condition, the first branch tends to
erge with the main shock, even though it is not wholly absorbed. The
resence of the first branch is explained by three concurrent factors:
i) First and foremost, the low resolution provides turbulent viscosity
alues that tend to laminarize the recirculation zones, increasing their
ize; (ii) second, lower resolution tends to smear the primary shock,
osing its strength while approaching the wall and making it unable to
ndermine the recirculating bubble from the wall; (iii) third, the wall
odel does not include any pressure gradient correction, and to cor-

ectly represent events of this kind, a comprehensive non-equilibrium
odel would be required. As a result, recirculating area and the region

f intense turbulent kinetic value reduce in size while increasing the
esolution. Similar findings have already been discussed by De Vanna
t al. [89] in canonical shock-wave/boundary layer configurations.

Finally, to quantitatively trace the average near-wall dynamics and
ompare present model results with the reference DNS, Fig. 20 reports
he freestream-scaled wall pressure, 𝑝̄∗𝑤 = 𝑝̄𝑤∕𝑝∞, and the friction coef-
icient, 𝐶𝑓 = 𝜏𝑤∕𝑞∞, distributions as a function of the non-dimensional
treamwise coordinate and parametrically to the grid resolution. As
een from Fig. 20(a), as the resolution increases, the wall-pressure trace
rogressively matches the DNS reference by Priebe and Martín [88],
nd just a mild deviation is detected in the initial pressure rise. This
s owing to the previously mentioned existence of a non-physical 𝜆-

shock structure that tends to anticipate ramp compression. Fig. 20(a)
also depicts the theoretical wall pressure trend according to shock-
16

expansion theory computations. Again, the current WMLES approach
can wholly recover the inviscid solution when moving out from the
shock wave/boundary layer interaction zone. Looking at Fig. 20(b),
the friction coefficient trend also progressively recovers the DNS trend
while increasing the mesh refinement. In particular, from such results,
it can be concluded that the equilibrium-based boundary layer portions
have achieved convergence. This is evident from the data collapsing
over the flat-plate boundary layer in the inflowing region and the data
collapse in the outflowing portion. Furthermore, the outflowing region
convergence is mostly independent of the chosen resolution, letting us
infer that the results obtained with the most refined mesh represent the
convergence obtainable with the hybrid WR/WMLES model. According
to the activation sensor distribution, 𝜃𝑊𝑀 , increasing the resolution
only leads to obtaining wall-resolved results exclusively in the up-
coming boundary layer region. Conversely, the lack of convergence in
the bubble area primarily stems from the adopted wall model rather
than the proposed method. Using a non-equilibrium wall model would
undoubtedly enhance the overall performance in this area. However,
the intriguing result is that the current IBM+WMLES technique can
recover adverse velocity gradient events, producing friction coefficient
values that closely fit the DNS data in the bubble region. This is
because the proposed method disables the wall model where the near-
wall resolution meets the conditions expressed by Eq. (21) and uses a
traditional wall-resolved strategy; thus, not ruling out negative velocity
occurrences as would be the case of a standard wall model.

To conclude, the current IBM+WMLES technique systematically
overestimates the bubble size compared to DNS data, with a separation
point anticipated at about one 𝛿 upstream of the DNS location. Delayed
boundary layer recovery along with the sloped surface is also systemat-
ically detected. A recirculating portion is observed, which is non-trivial
in wall-modeled arrangements. In-equilibrium portions, instead, are
accurately described, mostly independently of the grid resolution.

5. Conclusions

The paper proposes a novel LES method for analyzing complex
wall flows as in engineering applications. In particular, we address
high-Reynolds/high-Mach number flows by merging a well-established
wall-modeled LES approach wealth discussed in previous literature [45,
51,52,89] with an immersed boundary method. The overall approach
generalizes the wall-modeling procedure to a non-conformal-grid geo-
metrical environment.

The wall model is a distinct approach that involves increasing the
turbulent parameters at the wall location to achieve the desired wall
shear stress and heat flux. The method, in particular, does not rule out
flow separations from the description of the near-wall dynamics and
automatically reverts to a wall-resolved LES if the spatial resolution
allows it. On the other hand, the adopted immersed boundary method
represents a well-established sharp-interface approach already widely
discussed in previous publications [36,38,90].

After discussing the numerical framework, the solver details, and
the proposed immersed-boundary/wall-modeled LES algorithm char-
acteristics, the paper includes multiple benchmarks and test cases to
validate the proposed approach for engineering setups. In particular,
ranging from low-Mach flow regimes within a turbulent channel and
a pipe up to high Mach number flows associated with the boundary
layer deployment over a flat plate and the shock-wave/boundary-layer
interaction over a compression ramp configuration, the method is found
to be able to head the time-dependent flow dynamics associated with
each configuration. Such setups are selected as they have a wealth of
DNS literature to compare with, but they are also revisited to a wholly
immersed boundary logic in light of being fruitful combined with the
proposed methodology. The tests demonstrate the model consistency
against DNS reference, as well as the capacity of the model to be
exploited as a predictive framework to address higher-Reynolds number
flows presently out of current capacity concerning other scale-resolved
methods, e.g., wall-resolved LES or DNS.

The method represents a promising strategy to compel with LES of

complex aerodynamics flows at least for the following reasons:
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Fig. 20. Wall pressure trace and friction coefficient distribution as a function of the streamwise coordinate. Present results (colors with triangles) are compared with DNS data
y Priebe and Martín [88] (circles).
1. It simplifies the grid tuning procedure associated with the pre-
processing effort.

2. It allows using accurate hybrid central/shock-capturing numeri-
cal schemes in a high-order finite difference discretization frame-
work.

3. It reduces the computational effort associated with LES by de-
coupling the near-wall and the outer resolution requirements
letting the model handle the near-wall dynamics.

4. It guarantees coupling the immersed boundary method in high-
Reynolds/high-Mach conditions.

5. It minimizes the numerical viscosity injection, thus leaving the
solely eddy-viscosity model to handle the subgrid-scale terms
granting an accurate description of time-dependent flow fea-
tures.

6. It allows using fully structured Cartesian grids that, combined
with fully-explicit numerical methods, perfectly meet the de-
mands of contemporary massive parallel computations on graph-
ics processing units.

To conclude, the proposed approach stands as a promising path in
ccurately heading compressible aerodynamic problems over complex
eometries, meeting many of the concurrent requirements that contem-
orary fluid dynamics poses for upcoming computations. Finally, the
otential for future advancements is vast, given the method’s purpose
f simulating practical engineering configurations. Here is just a concise
election of possible extensions:

1. Extending the method to the treatment of completely three-
dimensional complex geometries through the coding of an in-
terface capable of pre-processing geometry in STL format. This
fact will allow the use of the method and the solver for realistic
engineering applications such as wings or aeroengine blades.

2. Another demanding task for the future concerns the improve-
ment of the model for out-of-equilibrium effects associated with
non-null wall pressure gradients.

3. Finally, a multiblock framework is required in order to be able
to manage grid portions with very different resolutions.
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