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Abstract
We report on the dependence of the frequency-to-intensity noise conversion in the locking of an ultrafast laser against a 
high-finesse optical enhancement resonator from the carrier envelope offset frequency. By a proper combination of the cavity 
finesse and laser carrier envelope offset frequency, it is possible to optimize the signal-to-noise ratio of the laser intensity 
trapped into the optical resonator. In this paper, we describe the effect of the laser-enhancement cavity coupling on the 
intracavity power relative noise, and we demonstrate both theoretically and experimentally its reduction.

1 Introduction

Frequency-to-intensity noise conversion in the laser stabili-
zation with respect to high-finesse optical resonator is a well 
known problem [1–3] and over the years several experimen-
tal solutions have been implemented to reduce the inten-
sity noise of the cavity trapped radiation: the use of noise-
immune high-frequency modulation detection schemes [3], 
by means of wide control loop bandwidths in the frequency 
locking schemes [4], and using cavity ring-down methods 
[5, 6]. In the majority of the investigated cases, the laser 
sources operated in a continuous wave regime. However, 
in the last 20 years thanks to the introduction of the optical 
frequency comb sources, the locking of ultrafast broadband 
laser sources to high-finesse resonators is of extreme interest 
in a wide variety of sensing/spectroscopic applications [7–9] 
as well as in extreme non-linear optics for the generation 
of coherent radiation in the UV and XUV spectral regions 
[10–12]. In spectroscopic applications, cavity locking is used 
to increase by several orders of magnitude the interaction 

length with the samples, while in UV and XUV generation, 
it can be exploited to increase the circulating laser intensity. 
In any case, low intensity noise of the trapped laser field is a 
mandatory requirement to obtain the highest signal-to-noise 
ratio (SNR) and temporal coherence [7, 8, 10–12].

In this paper, we demonstrate a novel solution to reduce 
the residual frequency-to-intensity noise conversion when a 
pulsed laser is coupled to a high-finesse enhancement reso-
nator. This is related to the use of slightly detuned resonance 
conditions between the cavity resonances and laser modes 
by acting on the Carrier Envelope Offset (CEO) frequency 
of the pulsed laser source. In this way, the modes of the 
laser comb that are far from the spectrum center, and the 
ones that are near the spectrum center give contributions 
to the second order derivative of the frequency-to-intensity 
fluctuation function with opposite signs. For this reason, the 
contributions of these different regions of the laser spectrum 
compensate each other. By a proper combination of the CEO 
frequency detuning and cavity finesse values, large cavity 
gain factor can be obtained together with a strong reduction 
of the frequency-to-intensity noise conversion, an essential 
requirement for the generation of X-ray radiation by inverse 
Compton scattering (ICS) [13] with low-intensity noise. 
After the theoretical description of the method, a detailed 
experimental characterization of the technique is performed 
using a mode-locked Yb:fiber laser at 1035 nm, and a ring 
cavity optical resonator. With a gain factor as large as 1130, 
we demonstrated an integrated frequency to intensity noise 
conversion reduced from 8% to less than 0.5%.

The paper is structured in four sections. The principles 
and the theoretical treatment of the method is presented in 
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Sect. 2, whereas the numerical simulation are reported in 
Sect. 3. Section 4 shows the experimental characterization 
of the method. Finally, Sect. 5 closes the paper with some 
concluding remarks.

2  Theory

The link between the CEO frequency fceo and the frequency-
to-noise conversion in an optical cavity can be shown start-
ing from the time-domain electric field of a mode-locked 
laser. The train of pulses in time domain is given by the 
superposition of the field of several modes oscillating in 
phase. If every mode has a frequency �m , being m∈ℕ , the 
electric field E(t) can be written as:

where Sm is the laser power spectrum S(�) evaluated at the 
frequency �m , while �m is a generic phase noise. Typically, 
�m contains both slow components (essentially related to 
mechanical vibrations), and fast components. In the spectral 
domain, Eq. (1) becomes:

where �[⋅] denotes the Fourier transform. When the optical 
bandwidth of the comb is much narrower than the carrier 
�0 , we assume that the noise �

m
(t) = �(t) is equal for all the 

laser teeth.
Furthermore, we assume that 𝜑(t) ≪ 2𝜋 , so that we can 

expand the exponential to first order, leading to

Equation (3) tells us that the laser spectrum has a comb-
like structure of Dirac deltas, broadened by the noise 
�(�) = �[�(t)] . Thus, the laser power is given by

where Φm =
|||�
(
� − �m

)
+ i�

(
� − �m

)|||
2

.
Note that in Eq. (4), the crossed products cancel since 

different modes do not overlap.

(1)E(t) =

∞�
m=0

√
S
m
e
−i2��

m
t+i�

m
(t)

(2)E(�) = �[E(t)] =

∞�
m=0

√
Sm ∫ ei2�(�−�m)tei�m(t) dt

(3)

E(�) =

∞�
m=0

√
Sm � ei2�(�−�m)t(1 + i�(t)) dt

=

∞�
m=0

√
Sm

�
�
�
� − �m

�
+ i�

�
� − �m

�� ≡
∞�
m=0

Em(�)

(4)

P(laser) =

∞∑
m=0

Sm
|||�
(
� − �m

)
+ i�

(
� − �m

)|||
2

=

∞∑
m=0

Sm Φm ≡
∞∑
m=0

P(laser)
m

To complete the discussion about the laser, we also 
remind that the frequencies of its modes are [14, 15]:

where frep is the separation of the teeth corresponding to the 
repetition rate of the laser, while Δ�cep is its Carrier-Enve-
lope Phase shift, generated by the different phase and group 
velocities in the laser cavity. The so-called Carrier-Envelope 
Offset frequency is defined as fceo =

Δ�cep

2�
frep.

The laser pulses can be coupled to an optical enhance-
ment cavity [16] to stack them and increase their power 
with a passive gain proportional to the resonator finesse. 
In particular, for an overcoupled cavity of finesse F, the 
maximum achievable gain is 2

�
F . The spatial modal struc-

ture of an enhancement cavity is given by the well-known 
Hermite–Gaussian polynomial [17], when operating in an 
ideal case (vacuum environment and no dispersion). How-
ever, if we consider dispersion, the circulating laser pulses 
acquire a phase depending on the resonator mirrors and air 
dispersion, which adds to the Guoy phase related to the 
non-planar nature of the resonating field. Such additional 
phase must be taken into account in a more realistic and 
general discussion [18]. In this case, the resonance condi-
tion for the fundamental cavity spatial modes TEM00 is 
given by:

where �G is the Gouy phase, L is the cavity length (we 
assume here a ring resonator), k = 2��∕c is the wave vector, 
while �M(�) and �A(�) are the frequency-dependent phases 
introduced by the cavity mirrors reflections and air, respec-
tively. Notice that the Gouy phase for an astigmatic enhance-
ment cavity, as in our case, is obtained by the sum of two 
different contributions, depending on the cavity geometry on 
the horizontal and vertical directions: �G = �G,x∕2 + �G,y∕2.

The phases �G , �M and �A can be collected in one gen-
eral term �cav(�) . This can be expanded around �0 as 
�cav = �cav,0 + � �

�

cav,0
+ ��cav(�) , with ��cav containing 

only second-and higher order terms in � [19]. From Eq. (6) it 
is possible to obtain a general expression for the enhancement 
cavity longitudinal modes:

The effect of the quadratic term ��cav is to prevent a 
perfect uniformity of cavity mode spacing. On the other 
hand, it can be neglected in case of small input laser spec-
tra and small enhancement cavity Finesse values. This is 
the case of our experimental setup, where we specifically 

(5)�(laser)
m

= m frep +
Δ�cep

2�
frep = m frep + fceo

(6)kL − 2�G + �M(�) + �A(�) = 2�n

(7)

�(cav)
n

=
c

L
(
1 +

c

2�L
�

�

cav,0

)
(
n −

�cav,0

2�
−

�
�

cav,0

2�
−

��cav(�)

2�

)
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chose to couple a 2.7 nm input spectrum with a cavity of 
Finesse < 5000.

The first term of Eq. (7) is the Free Spectral Range 
FSR = c

[
L
(
1 +

c

2�L
�

�

cav,0

)]−1
 of the enhancement cavity, 

while, after neglecting ��cav , all the terms in the bracket are 
constant, except for the longitudinal index n, so they can be 
collected in a single constant term kcav . Now, defining 
fcav = FSR ⋅ kcav , the expression of the enhancement cavity 
fundamental spatial modes TEM00 reduces to

Hence, similar to the laser comb mode spectrum, even the 
modal structure of the enhancement cavity presents an offset 
frequency, fcav . The highest passive gain is achieved when 
the laser and the enhancement cavity teeth are perfectly 
matched. This condition can be obtained and maintained 
during time exploiting the well known Pound-Drever-Hall 
(PDH) technique [20], which, in our case, stabilizes the FSR 
of the cavity to match the laser teeth. If we set m0 to be the 
laser spectrum barycenter, so that once the enhancement 
cavity is locked the PDH signal is 0, the maximum coupling 
between the combs is obtained by stabilizing the laser tooth 
m0 to the cavity tooth n0 , with n0 = m0 . Starting from Eqs. 
(5) and (8), and taking this last condition n0 = m0 , we can 
write the following general resonance condition

(8)�(cav)
n

= n FSR + fcav.

�(laser)
m0

= �(cav)
m0

⇒ m0 frep + f0 = m0 FSR

where f0 = fceo − fcav is the relative frequency offset between 
laser and cavity combs. The PDH technique fixes the FSR 
of the cavity to FSR = frep +

f0

m0

 . A clear representation of 
the two combs coupling is reported in Fig. 1. A perfect over-
lap of the cavity and the laser modes is possible only if 
f0 = 0 , otherwise, each tooth has a detuning given by

where Δm = m − m0 . When the laser-cavity locking condi-
tion is achieved, only relative detunings are relevant. Thus, it 
is equivalent to introduce noise from the laser or the cavity, 
and from now on we attribute all the noise to the laser with-
out loss of generality. On the other hand, the same results 
can be achieved by assuming �(t) = 0 , while introducing a 
noise �FSR(t) on the cavity frequencies.

Now, we study how f0 affects the laser-cavity coupling, 
hence the intracavity power and its noise. We start from 
considering the total intracavity power in relation with the 
incoming laser power and the cavity response:

(9)Δ�m
(
f0
)
=

f0

m0

Δm ,

(10)

P(cav)
�
f0
�
=

∞�
m=0

P(laser)
m

1 − R1

1 + R − 2
√
R cos

2�Δ�m(f0)
FSR

=

∞�
m=0

P(laser)
m

Γ
�
Δ�m

�
f0
�� ≡

∞�
m=0

P(cav)
m

�
Δ�m

�
f0
��

Fig. 1  Laser and cavity modes in frequency domain. In this represen-
tation, the cavity is stabilized to the laser on the tooth n

0
= m

0
 with 

the PDH technique. The teeth with indexes n ≠ m
0
 have a detuning 

Δ�
m
 , which is positive for m > m

0
 or negative for m > m

0
 . In this 

scheme fcav > fceo , so f
0
< 0
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where Γ
(
Δ�m

(
f0
))

 is the gain of the cavity for the mode m 
detuned by Δ�m

(
f0
)
 , R1 is the input cavity mirror power 

reflectivity, and R the product of all the cavity mirrors’ 
reflectivity. Notice that we explicated the dependence of 
Δ�m on f0 , following Eq. (9). The total cavity gain Γtot is 
then given by the weighted average of the single modes gains 
over all the coupled modes. In terms of power, assuming an 
incoming radiation power P(laser) , the stored power is simply 
given by P(cav) = P(laser) ⋅ Γtot.

While Γtot is not directly accessible, the transmit-
ted power is, and it is directly proportional to the gain 
as P(trans) =

(
1 − R2

)
P(laser)Γtot . In the latter equation, R2 

is the reflectivity of the mirror used to detect the cavity 
transmission.

As far as the peak power of the intracavity pulses Ppeak 
is concerned, we find an implicit dependence on f0 hidden 
in the coupling with the cavity. Indeed, the cavity acts as 
a filter for the laser, both in amplitude and in phase. The 
additional phase experienced by each mode, which impacts 
on the temporal structure of the pulses, must be taken into 
account to properly estimate Ppeak . As f0 increases, both 
the cavity spectral filtering effect and the phase become 
more and more important, broadening in time the stored 
pulses and lowering Ppeak . We can write

where Fcav and �cav are the cavity filter function in amplitude 
and phase. In experimental setups, there is often an addi-
tional detuning fpdh , given by an electronic offset in the PDH 
stabilization, which locks the enhancement cavity mode n0 
not exactly on the central frequency of the correspondent 
laser mode m0 . The PDH stabilization offset can be included 
in the theory by simply considering Δ�m =

(
f0

m0

)
Δm + fpdh.

At this point, we are able to debate on a particularly 
interesting and important issue: the noise transfer from the 
laser and the cavity to the stored power in the coupled sys-
tem. There are essentially two noise sources for the stored 
power: the laser intensity noise and the frequency noise. 
Intensity noise is substantially due to power fluctuations of 
the laser source, and we will not cover it in this work. On 
the contrary, frequency noise induces fluctuations in the 
stored power, because it causes time-dependent additional 
detuning �f(t) . This frequency noise is strictly dependent on 
the phase noise, indeed �f (t) = (2�)−1d�(t)∕dt . Usually, it 
can be associated to a �f(�) and a spectral distribution with 
a standard deviation ��f  . The introduction of ��f  is quite 
important, because this is a parameter directly accessible 

(11)Γtot =

∑
m P(cav)

m

�
Δ�m

�
∑

m P
(laser)
m

(12)Ppeak = max

������
−1
�√

S(�)Fcav(�) e
i�cav(�)

�����
2
�

from the experimental setup, by measuring the integrated 
frequency noise discriminated by the cavity while the lock-
ing with the laser is maintained [21]. To study the influence 
of �f  on the power fluctuations, the function Γ

(
Δ�m + �f

)
 can 

be expanded around the offset detuning frequency Δ�m as

Therefore, recalling that the total cavity gain is the aver-
age gain of the teeth, weighed on the coupled laser spectrum 
S(�) , and the same holds for the fluctuations, we separate the 
gain in two components Γtot and �Γtot , respectively, writable 
as

Γtot in Eq. (14) is noise-immune, and it is only an implicit 
function of the system offset f0 and of the eventual fpdh . We 
also defined N ≡ ∑

m Sm to simplify the notation on the latter 
equations. The first term of Eq. (15) is an odd function when 
fpdh = 0 , thus the sum over all the modes around m0 van-
ishes, because Δ𝜈m < 0 or Δ𝜈m > 0 for m < m0 or m > m0 , 
respectively. Hence dΓ

d𝜈
||Δ𝜈m < 0 or dΓ

d𝜈
||Δ𝜈m > 0 . Notice that in 

principle fpdh can differ from zero, and this would induce a 
symmetry break that causes a non-negligible noise arising 
from first-order terms. On the other hand, fpdh can be easily 
set to zero by adjusting the feedback parameters. The second 
term is the most important for us, because it can be adjusted 
by manipulating the offset f0 (hence fceo ) to reduce the noise 
transfer.

In Fig. 2, a representation of the noise transfer reduction 
via f0 principle is given. Since the second-order derivative 
of Γ is an even function, it assumes both positive and nega-
tive values at increasing detuning. In particular, when 
f0 = 0 , the term d

2Γ

d�2
||Δ�m is negative for all the comb teeth. 

For this reason, the second-order contributions to the noise 
sum together, because they are all concordant. On the other 
hand, when the offset f0 is non-zero, the modes different 
from m0 experience a detuning proportional to Δm , as writ-
ten above. Hence, if f0 becomes larger enough, the detuning 

(13)
Γ
(
Δ�m + �f

)
≈ Γ

(
Δ�m

)

+
dΓ

d�

||||Δ�m
�f +

1

2

d2Γ

d�2

||||Δ�m
�f 2.

(14)
Γtot =

∑
m SmΓ

�
Δ�m + �f

�
∑

m Sm
≈

∑
m SmΓ

�
Δ�m

�
∑

m Sm

=
1

N

�
m

SmΓ
�
Δ�m

�

(15)

�Γtot(�f ) =
1

N

∑
m

Sm
[
Γ
(
Δ�m + �f

)
− Γ

(
Δ�m

)]

=
1

N

(∑
m

Sm
dΓ

d�

||||Δ�m
�f +

1

2

∑
m

Sm
d2Γ

d�2

||||Δ�m
�f 2

)
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of the most external modes is sufficient to contribute with 
positive d

2Γ

d�2
||Δ�m . In this situation, the modes close to m0 give 

quadratic noise contributions with opposite sign with 
respect to the external ones ( d

2Γ

d𝜈2
||Δ𝜈m < 0 and d

2Γ

d𝜈2
||Δ𝜈m > 0 , 

respectively). The resulting total noise is then reduced with 
respect to the f0 = 0 case, since now part of the contribu-
tions cancel out. Increasing f0 , this second-order cancella-
tion becomes more efficient. However, as a drawback, 
increasing f0 results in a decrease of Γtot . For this reason, it 
is important to compare the noise suppression with the cav-
ity passive gain loss, at a given offset f0 . As we will show 
in the next sections, the noise suppression is more effective 
than the gain drop, and, consequently, it is possible to dra-
matically reduce the intensity noise without a large decrease 
in the stored power. A last step useful to understand the 
impact of noise suppression is to evaluate how a frequency 
noise ��f  affects the integrated noise �P of the intracavity 
power. This is directly given by the fluctuation of the gain 
Γtot , namely �Γ . To simplify the notation, we define 
� ≡ 1

N

∑
m Sm

dΓ

d�
��Δ�m and � ≡ 1

2N

∑
m Sm

d2Γ

d�2
��Δ�m , then

In case of no PDH offset, � = 0 and Eq. (16) becomes 
�Γ = |�| ��f 2 . Notice that in the calculations, we exploited 
the fact that ⟨�f ⟩ = 0 and 

⟨
�f 3

⟩
= 0 for symmetry. The rela-

tive noise of the cavity gain is simply given by

Equivalently, the relative intracavity power noise is 
�P,rel = �P∕P

(cav)
tot = �Γ,rel.

Finding a simple relation between ��f  and ��f 2 is impor-
tant, because we have direct access to the first quantity, but 
not to the second. This relation can be found for instance 
rewriting Eq. (16) in the case of Gaussian-distributed noise 
�f  . For simplicity, we define �f = x and �f 2 = y = x2 , so that 
the Gaussian distribution of �f  can be written as

(16)

�2

Γ
=

�
�Γ2

tot

�
− ⟨�Γtot⟩2 =

��
� �f + � �f 2

�2�
−
�
� �f + � �f 2

�2

= �2
�
�f 2

�
+ �2

�
�f 4

�
+ 2��

�
�f 3

�
− �2 ⟨�f ⟩2

− �2
�
�f 2

�2

− 2�� ⟨�f ⟩ ��f 2�

= �2�2

�f
+ �2�2

�f 2

(17)�Γ,rel =
�Γ

Γtot

Fig. 2  Representation of the effect of f
0
 on the evaluation point of the 

cavity gain and its derivatives (from above to below: Γ with the laser 
teeth, dΓ∕d� , and d2Γ∕d�2 as functions of � ). At increasing offset, the 
gain progressively decreases with the distance from the central mode 
m

0
 . The first derivative terms on the right balance the ones on the 

left, since dΓ∕d� is an even function (when fpdh = 0 ). On the other 
hand, d2Γ∕d�2 is odd. Thus, the central modes contributions are com-
pensated by the external modes, where the second-order derivative 
becomes positive
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where we performed the substitution y = x2 , so that 
dx = 1∕2

√
y dy . Notice that the domain of y is ℝ+ , so we 

exploited the symmetry of the Gaussian distribution of x to 
change the integration range from (−∞,+∞) to [0,+∞) . The 
distribution of the variable y = �f 2 is thus 1√

2��x
√
y
e
−

y

2�2x  . Its 

variance is by definition

This result tells us that ��f 2 =
√
2�2

�f
 , so Eq. (16) becomes

Some important considerations can be done looking 
at our simple analytical model. First, we expect differ-
ent behaviors for different values of the finesse, since it is 
directly related to the cavity linewidth as well as the gain 
function and its derivatives. In particular, we expect a higher 
sensitivity to the suppression effect for higher finesse. The 
same holds for the width of the laser spectrum, since for a 
wider spectrum, more external teeth with a wider detuning 
are involved, contributing to the noise suppression.

In the next sections, we will show that it is possible to 
apply the discussed theory to obtain a strong suppression 
of the intensity noise, given a specific enhancement cavity 
gain, though some experimental limitations occur. As it will 
be extensively explained, this can be obtained exploiting the 
relative offset f0 of the combs, together with a proper choice 
of different enhancement cavity finesse values.

3  Simulations

The cavity-laser system has been simulated to comprehend 
the impact of f0 (thus of fceo ) on the total gain, on its relative 
noise, and on the peak power of the stored pulses. Notice 
that, since we showed �P,rel = �Γ,rel , from now we will refer 
to it as a unique �rel . These simulations allow estimating the 
effective cost paid in terms of gain reduction to have a strong 
noise suppression. All the calculations have been performed 
with Wolfram Mathematica and Matlab. We took the experi-
mental data as technical parameters for the simulations (see 

(18)
∫

∞

−∞

1√
2��x

e
−

x2

2�2x dx = ∫
∞

0

2√
2��x

e
−

x2

2�2x dx

= ∫
∞

0

1√
2��x

√
y
e
−

y

2�2x dy

(19)

�2
y
= ∫

∞

0

1√
2��x

√
y
e
−

y

2�2x y2 dy

−

⎛⎜⎜⎝∫
∞

0

1√
2��x

√
y
e
−

y

2�2x y dy

⎞⎟⎟⎠

2

= 2�4
x

(20)�2
Γ
= �2�2

�f
+ 2�2�4

�f

Sect. 4), in particular, we set the repetition rate of the laser 
to frep = 100 MHz. To simulate the spectrum shape S(�) , we 
used a supergaussian function of the 4th order of the form 
S(�) ∝ exp

[
− ln 2

(
2
(
� − �0

)
∕Δν

)8] , where the FWHM Δ� 
is given by Δ� = −c∕�2

0
Δ� , and �0 = c∕�0 , being Δ� = 2.7 

nm the corresponding FWHM in the wavelength domain, 
and �0 = 1035 nm the central wavelength. As far as the cav-
ity is concerned, we simulated a 4-mirrors crossed cavity in 
overcoupled configuration, switching between the two dif-
ferent values of the finesse of 4300 and 1800. We set the 
offset of the PDH error signal to 0, assuming a perfect lock-
ing of mode m0 . Nevertheless, values of fpdh up to some kHz 
do not affect the results appreciably. Then, we took ��f = 5 
kHz, which is the value we experimentally measured. 
Finally, we assumed �f  Gaussian distributed, so we esti-
mated �rel from Eq. (20).

Figure 3 shows the results of the simulations of normal-
ized Γtot , �rel , and Ppeak as functions of f0 , for a cavity of 
finesse 4300. We chose a normalized plot to highlight the 
different trends of the traces.Notice that the peak power 
has been calculated from the laser spectrum, taking into 
account the cavity spectral filter effect and mode-dependent 
phase. After multiplying all these terms, an Inverse Fou-
rier Transform allows estimating the shape of the resulting 
pulses inside the cavity in temporal domain, thus Ppeak . As 
it can be easily noticed, all simulated quantities decrease 
when the laser-cavity offset f0 rises. Nevertheless, there is 
a faster drop in terms of relative noise with respect to the 
other traces. For example, in the first 10 MHz, the normal-
ized amplitude of the noise reduces to 0.27, while the peak 
power remains around 0.70, and the total gain (average 

Fig. 3  From top to bottom: gain (black), stored pulses peak power 
(green), and relative power noise �rel (red) as functions of the relative 
frequency offset f

0
 . Traces are normalized to their respective values 

in f
0
= 0 . Here the finesse is 4300
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intracavity power) stays at about 0.75. Thus, in general, 
there is always an advantage in terms of signal-to-noise 
ratio for both Ppeak and Pcav , leaving the point f0 = 0 . This 
general behavior has immediate repercussions in all those 
applications of non-linear optics such as the generation of 
high order harmonics (HHG) and ICS X-ray generation. In 
HHG, a slight noise reduction in the fundamental harmonic 
can lead to a substantial suppression for HHG noise, by an 
amount proportional to the order of the generation process. 
Since the framework in which this work has been developed 
is the study and realization of optical cavities for ICS X-rays 
generation, we will concentrate only on the cavity gain and 
its noise, omitting further considerations on Ppeak . Indeed, 
in ICS experiments, scattering efficiency is more sensitive 
to average power variations than to intracavity pulses tem-
poral broadening [22]. As a second simulation, we com-
pared the behaviors of two cavities with different values of 
finesse. In particular, we calculated total gain and relative 
noise for finesse values of 4300 and 1800, and the results are 
reported in Fig. 4. In panel a, we report Γtot , while in panel 
b) �rel , for a cavity with finesse values of 4300 and 1800. 
The gain decreases similarly for the two cases, although the 
maximum gain is a function of the finesse. We start from a 
gain of 2680 for F = 4300 , and of 1130 for F = 1800 . The 
noise at zero offset is different for the two cases, too, being 
26.2% and 4.6%, respectively. For both finesse values, the 
gain decreases slower than the noise. From these simula-
tions, we demonstrated that, given a certain target gain, the 
noise can be reduced by setting a finesse higher than needed, 
and then increasing f0 until the desired gain is reached, hav-
ing a relative noise lower than the standard configuration of 
f0 = 0 . For example, in this case, the gain of 1130 can be 
conveniently reached starting from F = 4300 and increas-
ing f0 until Γtot = 1130 is reached (approximately f0 = 27 

MHz, instead of choosing a finesse of 1800 and couple it to 
the laser with f0 = 0 . In this way, the same gain is achieved 
with a noise reduction of a factor 6.4 ( 0.72% against 4.6%).

4  Experiment

In this section, we report on the experiment we performed 
to study and prove the f0-dependent noise suppression. 
The experimental setup is schematized in Fig. 5. The laser 
source is an Orange Yb:fiber mode-locked oscillator from 
Menlo Systems, with a repetition rate of 100 MHz, and a 
bandwidth of 20 nm, centered at 1035 nm. A BK7 win-
dow (with a thickness of 5 mm) is inserted in the laser cav-
ity, to control fceo by a manual micrometric rotation stage 
(labelled RS in the schematics). The laser output power is 
on the order of 200 mW. The output pulses pass through 
a NewFocus Wideband 4004 IR Electro-Optic Modulator 
(EOM), that introduces a frequency modulation at 3.5 MHz, 
needed for the Pound-Drever-Hall (PDH) cavity-laser sta-
bilization. Though not strictly required for this experiment 
(but already integrated in our experimental setup), an opti-
cal amplification stage follows. The laser beam is stretched 
in time and selected in frequency domain by an Optigrate 
BG Pulse Chirped Volume Bragg Grating (CVBG) and 
power-enhanced by a 4 m long Yb-fiber amplifier (based 
on Liekki Yb1200-12/125DC-PM), pumped by a multi-
mode 976 nm laser diode (Photontec M976). The CVBG 
is required to avoid nonlinear effects inside the amplifier’s 
fiber. Here, the pulse length is stretched from 200 fs to 380 
ps, while the spectrum is reduced to a FWHM of 2.7 nm, 
with a shape well described by the 4th-order supergaussian 
function used in the simulations. The output power from 
the amplifier has been set to 1.1 W. Then the pulses go 
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through a NEOS Acousto-optical Modulator (AOM), nec-
essary for the measurement of the cavity finesse exploit-
ing the modulation technique described in [23]. At this 
point, the laser is coupled with a four-mirror crossed ring 
enhancement cavity. The four mirrors by Layertec have a 
negligible dispersion (single mirror Group Delay Dispersion 
GDDmirror = 6.7 fs2 ) in the spectral region of interest. M1 
and M4 are flat, while M2 and M3 are curved, with a radius 
of curvature of 750 mm. Also, the air dispersion inside the 
cavity is negligible ( GDDair = 48.8 fs2 ) in our experimental 
setup. Since our cavity is overcoupled, we exploited two 
different input couplers M1 to switch between two different 
finesse values. One input coupler has a power reflectivity of 
R = 99.66% and gives a finesse 1800 (measured 1785 ± 50 , 
Γtot = 1137 ± 30 ), while the other has R = 99.86% and gives 
a finesse of 4300 (measured 4270 ± 110 , Γtot = 2720 ± 70 ). 
All the other mirrors have a high reflectivity ( R > 0.99999 ). 
The Free Spectral Range of the cavity is controlled by a 
piezoelectric actuator (PZT) attached to the mirror M4. The 
active stabilization of the cavity against the laser is based 
on the PDH error signal generated from the beam reflected 
from M1. It is detected by the photodetector P1 (Fermionics 

Opto-Technology FD500W), and low-pass filtered at 100 
kHz to cancel the high-frequency components. The PDH 
error signal is then sent to a PID controller, which elaborates 
the signal and applies it to the PZT. The transmitted signal is 
measured by the photodiode P2 (Thorlabs PBD150A, band-
width 5 MHz) behind M2.

We measured the Relative Intensity Noise (RIN) of the 
laser before coupling to the cavity, showing the results in the 
left panel of Fig. 6. The measurement has been performed 
using a large bandwidth photodetector and an Agilent 
E4445A Spectrum Analyzer, high-pass filtered at approxi-
mately 150 Hz to remove the DC component. The high-pass 
(HP) filter response has been removed to estimate the inte-
grated noises. Then, the relative integrated noise from 1 Hz 
to 1 MHz of the laser is �rel = 0.03% . The RIN background 
coincides with the photodiode floor. For what concerns the 
RIN behavior, we observe a decreasing curve on the whole 
band (except for the region influenced by the filter). The 
higher average level approaches − 90 dB  Hz−1 , except for 
a − 80 dB  Hz−1 noise peak, while the minimum approached 
at 1 MHz is below − 130 dB  Hz−1 . Several peaks are notice-
able in the intensity noise spectrum, in particular between 

Fig. 5  Scheme of the setup used for our experiment. The source laser 
is represented in orange. RS micrometric rotation stage, EOM Elec-
tro-Optic modulator, CVBG Chirped Volume Bragg Grating, AOM 

Acousto-optical modulator, M1, M2, M3, M4 enhancement cavity 
mirrors,  P1 and P2  photodetectors, LP 100 kHz 5th-order low-pass 
filter, PZT piezoelectric actuator
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100 Hz and 2 kHz. Those are due to the amplifier pump 
diode’s electrical noise, which is directly transferred to the 
amplified signal, although it is cut at approximately 1 kHz 
by Ytterbium spontaneous decay [24].

At this point, we coupled the laser to the cavity (in this 
case F = 4300 ), and we measured the frequency noise of the 
coupled system, shown in panel b of Fig. 6. This measure-
ment has been performed by acquiring the PDH error sig-
nal after LP, and converting it into a detuning signal by the 
so-called discriminator constant kd [4], defined as kd =

��

�V
 , 

where �� is a detuning variation between the laser and the 
cavity frequencies, while �V  is the corresponding variation 
on the PDH signal. We have kd = 1.56 × 105 Hz V

−1 . Here, 
the background corresponds to the frequency noise measured 
with the cavity out of resonance. To better estimate the noise 
without feedback contributions, such measurement has been 
performed with a weak lock (feedback bandwidth approxi-
mately 1 kHz). The low-frequency peaks are mainly due to 
mechanical vibrations. On the other hand, the noise around 
10 kHz comes from the piezoelectric actuator resonance. 
Other contributions derives from the laser frequency noise 
spectrum but are not distinguishable from the cavity ones, 
since the discriminator measures only relative detunings. 
The highest frequency noise level is reached by mechanical 
contributions, and it is approximately 103–104 Hz2 Hz−1 . The 
sharp cut at 100 kHz is due to the LP filter of the PDH stabi-
lization. From the PSD of panel b of Fig. 6 we calculated the 
experimental integrated frequency noise ��f = 5063 Hz, by 
taking the square root of PSD integral (calculated between 
1 Hz and 1 MHz).

Exploiting the setup described above, we compared the 
Relative Intensity Noise of the signal transmitted from the 
mirror M2 with the two available finesse values and different 
f0 , bearing in mind that such signal is directly proportional 
to the intracavity power. In addition, we acquired temporal 

traces of the transmitted beam to have a better visualization 
of the results.

As mentioned at the beginning of this Section, the control 
of f0 is allowed by the presence of a BK7 window inside 
the laser cavity. The window can rotate at different angles 
with respect to the beam, thus modifying the intracavity 
dispersion, and inducing a fceo change. As explained in 
Refs. [25, 26], when f0 is minimized, only one transmission 
peak is maximized in a cavity scan. On the contrary, when 
f0 = frep∕2 two consecutive peaks have the same intensity, 
visibly lower than the maximum of the previous situation. 
We experimentally found these points (see Fig. 7) by adjust-
ing the BK7 window angle, so calibrating the control of f0.

Indeed, from simple goniometric considerations, f0 can 
be written as a function of the window angle �

where �0 and �max are the angular positions of f0 = 0 and 
f0 = frep∕2 , respectively, taking the perpendicular position 
of the window as � = 0 , while k = nair∕nBK7 = 1∕1.507 at 
1035 nm. Estimating the uncertainties on the rotation stage 
and possible mount hysteresis, we claim an error of ± 5 MHz 
on our f0 measurements.

To investigate the noise transfer from the frequency 
detuning to the stored power, we acquired different RIN 
traces, shown in Fig. 8. Here, a comparison between the 
transmitted power RIN for finesse 1800 and for finesse 4300 
in both cases with f0 = 0 and f0 = 45 MHz is shown (curves 

(21)

f0(�) =
frep∕2

− 1
√

1−k2 sin2 �0
+ 1

√

1−k2 sin2 �max

⎛
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Fig. 6  a RIN of the laser before coupling to the cavity. b Frequency noise of the laser-cavity coupled system
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from (a) to (d)). As a reference baseline for these measure-
ments, we report the laser RIN in orange (f).

The choice of f0 = 45 MHz is not accidental, but we 
experimentally set it to the value such that the configura-
tion with F = 4300 and f0 = 45 MHz has the same gain as 
the configuration with F = 1800 and f0 = 0 . Indeed, we 
measured the same cavity passive gain comparing the trans-
mission power levels for finesse 1800, f0 = 0 and finesse 
4300, f0 = 45 MHz, so having the occasion to directly 
compare the contribution of f0 on noise suppression. It is 
worth noting that we fixed the PID lock parameters (chosen 
by optimizing the cavity lock for finesse 1800, f0 = 0 ) to 
compare different finesse values and offsets without chang-
ing the loop gain or bandwidth. As a last step, we acquired 
also a RIN of the transmitted signal with finesse 4300 and 
f0 = 45 MHz optimizing the feedback parameters (trace 

(e)). This latter measurement shows a further enhancement 
in terms of power fluctuations. The higher trace, namely 
the one labeled (a), is the one of finesse 4300 and f0 = 0 . 
Before 10 kHz it is constant at about − 50 dB  Hz−1 , while 
a broad peak at 11 kHz appears at the piezoelectric actuator 
resonance. After the resonance, the trace falls and reaches 
the background floor around 400 kHz. The same drop is 
noticeable in trace (b), which is the RIN of finesse 1800 and 
f0 = 0 . On the other hand, the average is 20 dB lower than 
the previous, and no piezoelectric actuator resonances are 
visible. A substantial change is noticeable looking at trace 
(c), acquired for finesse 4300 but high f0 . Though, the gain 
is the same for this curve and (b), while the noise is on aver-
age 10 dB lower between 100 Hz and 10 kHz, and 20 dB 
lower between 10 and 50 kHz. Furthermore, the noise fall 
reaches the floor at 200 kHz instead of 400 kHz. A similar 

Fig. 7  Resonance peaks (black) and voltage applied to the piezoelec-
tric actuator (red) during a scan of the cavity length. The distance 
between two peaks is equal to a variation of the cavity length, cor-
responding to a FSR . In panel a, f

0
 is null, thus the secondary peaks 

around the central one are symmetric and considerably lower than it. 
In panel b, the opposite situation is shown: f

0
= frep∕2 = 50 MHz, so 

the primary peak and its neighbor on the right have the same intensity 
and symmetry of secondary peaks is broken

Fig. 8  RIN traces acquired 
from photodetector P2 in cavity 
locking condition. From top to 
bottom (labeled in the legend 
both in colors and letters) traces 
acquired for: a F = 4300 and 
f
0
= 0 , b F = 1800 and f

0
= 0 , 

c F = 4300 and f
0
= 45 MHz, 

d F = 1800 and f
0
= 45 MHz, 

e∗ F = 4300 and f
0
= 45 MHz 

with PID parameters optimized 
for this case, and f input laser 
RIN baseline. Except for data 
(e, f), all the traces have been 
measured by leaving the PID 
cavity-lock parameters unal-
tered. The highlighted traces 
(b, c, e) correspond to the same 
gain factor Γtot = 1137 ± 30
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behavior can be encountered for trace (d), namely the one 
obtained from finesse 1800 and f0 = 45MHz (with a lower 
average of about 10 dB before 10 kHz). A difference in the 
RIN fall around 10 kHz of the two curves (a) and (b) and the 
three curves (c), (d), and (e) can be observed. We attribute 
it to the general noise reduction in presence or absence of 
f0 , thus a rescaling of the RIN level also for frequencies 
above the PID bandwidth. The best noise suppression case is 
then represented in trace (e), where we combined the effect 
of f0 with an optimization of the feedback parameters. The 
feedback noise reduction is evident between 100 Hz and 
10 kHz (which is the feedback bandwidth, i.e., the actuator 
mechanical resonance frequency), where the noise remains 
on average below − 90 dB  Hz−1.

From the RINs, we calculated the relative noise inte-
grating from 1 Hz to 1 MHz obtaining the following val-
ues: �a = 32.5% , �b = 8.0% , �c = 2.5% , �d = 1.2% , and 
�e = 0.4% . Sigmas are labeled with the same letter of the 
correspondent RIN. Notice that there is agreement between 
the simulated noise decreasing trend and the experimental 
values.

The core of this work resides in the difference between 
�b and �c . Indeed, these measurements have been obtained 
at the same gain (thus at the same cavity stored power), but 
the power fluctuations are lowered by f0 of a factor 3.2. Of 
course, the compensation becomes more evident after the 
PID optimization, which leads to an integrated relative noise 
reduced of a factor 20 with respect to the one from trace (b).

For a better visualization of the results, we report the 
three cases of interest (b), (c), and (e) transmission power 
traces in Fig. 9.

All the represented measures were acquired by the same 
detector used for the RINs and sent to the oscilloscope. The 
color used in the picture recalls the correspondent cases in 
Fig. 8. Thus, from left to the right, we encounter cases (b), 
(c), and (e). As expected, the relative noise is subjected to a 
drop as f0 increases, passing from �b = 8.0% for F = 1800 
and f0 = 0 , to �e = 0.4% for F = 4300 and f0 = 45 MHz 
and optimized feedback, while maintaining the same gain. 
Notice that even though the order of magnitude of the rela-
tive noises is the same of simulation (as well as their drop 
at increasing f0 ), the measured values are lower than the 
predicted ones in most of the cases. This fact can be ascribed 
to a partial suppression given by the PDH feedback, as can 
be seen from the RIN traces.

A final comment should be addressed to the compari-
son between the simulations and the experimental data. 
The value of f0 at which the two configurations have the 
same gain is different between the simulations and the 
experiment (30 MHz versus 45 MHz, respectively). The 
reasons could be manifold: the gain function Γ in Eq. (13) 
has been expanded up to the second order, together with an 

approximated modelling of the laser spectrum and experi-
mental uncertainties on the f0 measurement.

5  Conclusions

In conclusion, we demonstrated both theoretically and 
experimentally the suppression effect of f0 (thus of fceo ) over 
the frequency noise contribution to power fluctuations of a 
laser-cavity locked system. We showed that increasing f0 
leads to a substantial noise reduction, visible both in terms 
of integrated relative noise and its spectrum. We also dem-
onstrated that the enhancement cavity gain decreases slower 
than the noise. This finding opens the possibility of exploit-
ing higher finesse to obtain a desired cavity gain (average 
stored power), while maintaining substantially lower power 
instabilities. In particular, we experimentally showed that 
a cavity gain of approximately Γtot = 1130 can be obtained 
either with a finesse of 1800 and an offset f0 = 0 , or with 
a finesse of 4300 and an offset f0 = 45 MHz. However, the 
relative noise in these two cases is very different, passing 
from 8.0 to 2.5%, respectively. In the last configuration, an 
optimization of the PID parameters allowed us to further 
decrease the relative noise to 0.4%.
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Fig. 9  Time domain traces of finesse 1800- f
0
= 0 (red, left), finesse 

4300- f
0
= 45 MHz before (blue, central) and after (green, right) 

the PID optimization. Cavity gain (thus stored power) is essentially 
the same in all represented cases. The traces have been merged in a 
unique time axis for simplicity of representation
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