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Abstract

Metamaterials are generally known for their waves attenuation capabilities. This be-
haviour, which is related to the microstructure composing these materials, can be due to a
Bragg-type scattering mechanism or to local resonances. The objective here is to exploit the
two phenomena for generating a system able to localize the energy carried by propagating
elastic (or acoustic) waves. To this purpose, we employ a 1D lattice composed of a chain of
mass-in-mass particles, connected by elastic springs. The lattice contains an internal defect
that causes the energy localization. This configuration allows for a completely analytical
description of the problem. Eventually, an extensive discussion on the interaction between
the two attenuation mechanisms is also given.
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1. Introduction

Metamaterials are composites made up of a periodic repetition of a unit cell, itself con-
taining a microstructure. A widely studied feature of this class of materials is the presence of
band gaps affecting their dynamic response, i.e. gaps of frequencies at which waves cannot
propagate. This behaviour was first noticed in the field of electromagnetism, leading to the5

development of photonic crystals [1]. Very soon, these studies were extended to the field of
elasticity and acoustics, with the emergence of the so-called Phononic Crystals (PCs) and
Locally Resonant Materials (LRMs) (very often, LRMs are named Acoustic Metamaterials
in the literature. For a detailed review of both categories see e.g. [2] and [3]).

In the present work we use the general term metamaterial to indicate both PCs and10

LRMs, as suggested in [4]. The distinction between these two specific classes of metamate-
rials is nevertheless kept because of the different nature of the mechanisms responsible for
the attenuation of propagating waves.
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Metamaterials are often composed of a matrix with periodically distributed inclusions.
The presence of a microstructure can then cause the formation of band gaps. In PCs, the15

scatterers contained in each unit cell behave exactly as the rectangular potential wells in a
Kronig-Penney model, usually employed for studying the motion of electrons in solids [5].
Band gaps are thus induced by a Bragg-type scattering, caused by a destructive interference
of Bloch waves. In LRMs, wave cancellation is due to Fano-like interactions [6, 7] between
the macroscopic waves propagating in the matrix and the local eigenvibrations of the mi-20

crostructure [8]. Mie [9], Helmohltz [10, 11] or Minneart [12] local resonances govern the
response of the system and band gaps can occur at wavelengths well above the spacing of
the lattice.

Bragg scattering is generally disregarded when dealing with LRMs. Some authors have
studied Hybrid Metamaterials (HMs), with the aim of obtaining an interaction between25

the two mechanisms of attenuation [13]. This phenomenon has offered the opportunity of
broadening the band gaps [14, 15].

A rather common and efficient way to investigate band gaps formation consists in using
discrete systems. Crystal-type structures composed of lumped masses connected by springs
are mainly constructed for analysing the mechanism of Bragg scattering in PCs [16, 17].30

Mass-in-mass lattices are instead generally employed for LRMs [18–21], also allowing for a
direct implementation of materials non linearities [22–25] 1.

The formation of band gaps in mass-in-mass models is usually interpreted in terms of an
effective mass, that becomes negative at specific frequencies intervals [26–28]. This is also
in accordance to what is found through homogenization for continuous LRMs, when soft35

inclusions are periodically dispersed in a stiff matrix [29–31]. However, this result remains
true only when the ratio between the stiffness of the inner resonator and that of the outer
springs is small. The case where the stiffness of the resonator is of the same order or higher
than that of the outer spring is usually disregarded for mass-in-mass lattices.

A number of applications of the peculiar dynamic behaviour of metamaterials have been40

studied in the literature ([32–35] to mention but a few). In particular, wave localization
is an important aspect that has been greatly investigated in the past for crystals [36, 37]
and that has become again popular with the advent of metamaterials [38–41]. Breaking
the discrete translational symmetry by inserting a defect can trap waves that are trying to
propagate through the system, generating a so-called defect state. This phenomenon has45

been exploited first in [42] and then in [43] for designing PCs with a point defect, that are
capable of harvesting respectively the energy carried by acoustical and mechanical waves.
Lately, more energy harvesting systems based on defect states have appeared [44–46].

In [47–49] systems for the localization of the mechanical energy carried by propagating
elastic waves are proposed. These systems combine the behaviour of a Fabry-Pérot interfer-50

ometer with the wave localization in continuous LRMs. In [50], a one-dimensional discrete

1This mechanical model has an interpretation also in acoustics: masses and the springs represent respec-
tively the density and the elastic modulus of compression of air in an acoustical context. Moreover, when
scalar waves are considered, elastic and pressure wave equations are formally equivalent, with simply an
inversion of the role played by the material properties.
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counterpart of the above systems is described and numerically studied to show the influence
of the number of the mass-in-mass cells and of the defect width on the wave localization.
The metamaterial is there interpreted as a discrete version of a LRM.

In the same line of research, in the present work we focus on discrete mass-in-mass55

systems and we derive new complete analytical results concerning band-gap formation and
energy localization inside a cavity. At difference from previous literature, no a-priori re-
strictions are imposed on stiffness and mass ratios of the lattice. First, we derive in close
form the conditions on the material parameters under which a Bragg-type mechanism or a
locally resonant mechanism lead to band-gap formation, thus fixing the limit of validity of60

the effective models widely used in the literature. More specifically, we show that mass-in-
mass lattices can be interpreted as discrete versions of HMs. Then the dynamic response of
a system with a defect, similar to the one numerically studied in [50], is analytically char-
acterized. The conditions for optimal energy localization inside the defect are found: the
localization can be obtained not only by means of local resonances inside the metamaterial,65

but also through the mechanism of Bragg scattering. These results can be exploited for the
design of energy harvesters.

The plan of the paper is as follows. In section 2, we consider the band gaps associated
with the mass-in-mass 1D chain, by analysing their dependence on the mass and stiffness
ratios. Then we compare the results with those coming from the corresponding continuous70

one-dimensional metamaterial, showing the reason of the differences. Finally, we treat the
case of a simple mass-spring chain. In section 3, we describe the discrete system for energy
localization constituted by a mass-spring chain with two mass-in-mass barriers delimiting a
central defect, and we analytically derive its dynamic behaviour. In section 4, we compute
the mechanical energy density for the two lattice types under consideration (namely the75

mass-in-mass chain and the mass-spring chain). Fixing some of the parameters governing
the problem, we study the localization phenomenon and we show how the presence of a
defect dramatically affects the behaviour of the system, both in the frequency and time
domain. Eventually, in section 5 conclusions are drawn.

2. The discrete mass-in-mass lattice80

Let us first consider the mass-in-mass chain, shown in figure 1. The system is composed
of a periodic repetition of external masses m1 which are connected to the nearest neighbor
masses with springs k1 and contain internal resonating masses m2, attached with springs k2.
Note that, for the sake of symmetry, the chosen unit cell shown in figure 1 includes mass m1

with the internal resonator (of mass m2 and stiffness k2) and two springs of stiffness k1/2.85

The size of the unit cell is `. Each spring is considered as massless. The index j ∈ Z is used
for referring to a particular cell in the chosen numbering. The displacements of the external
and internal masses will be denoted by uj and vj respectively.

For the sake of clarity, we will consider the problem of elastic waves propagation, never-
theless, everything that follows applies also to the acoustic case, with a suitable reinterpre-90

tation of the quantities. The angular frequency ω will be called just frequency in the rest of
the paper.

3



jj − 1 j + 1

m1

m2
k2k1/2 k1/2

vj

uj

ε =

√
k1
k2

θ =
m1

m2

Figure 1: sketch of the mass-in-mass chain and zoom over its microstructure. Masses m1 are connected to
the nearest neighbors with springs k1 on both sides. Each mass m1 contains a resonator m2 connected with
spring k2. The chosen unit cell includes mass m1 with the internal resonator and two springs of stiffness
k1/2.

2.1. Formulation of the motion problem

Studying the motion of the mass-in-mass chain described in figure 1 leads to the following
differential system: {

m1üj = k1∆ju+ k2(vj − uj)
m2v̈j = k2(uj − vj)

(1)

where ∆j denotes the discrete differential operator

∆ju = uj+1 + uj−1 − 2uj (2)

and superposed dots mark time derivatives.
We will only consider motions at a given frequency ω, so that the variation in time t of

the displacement can be expressed as

uj(t) = Uj exp(iωt), vj(t) = Vj exp(iωt)

and hence the system (1) becomes:

{
m1ω

2Uj + k1∆jU + k2(Vj − Uj) = 0

m2ω
2Vj + k2(Uj − Vj) = 0

(3)

Let us introduce the eigenfrequencies

ω1 =

√
k1
m1

, ω2 =

√
k2
m2
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and the following dimensionless (positive) quantities:

Ω =
ω2

ω2
2

, ε =

√
k1
k2
, θ =

m1

m2

.

Inserting them into Eqs. (3) leads to:
{
θΩUj + ε2∆jU + (Vj − Uj) = 0

ΩVj + (Uj − Vj) = 0
(4)

The second of Eqs. (4) gives Vj in terms of Uj (provided that Ω 6= 1):

Vj =
Uj

1− Ω
(5)

and inserting that relation into the first of Eqs. (4) gives the discrete differential equation
governing the motion of U :

ε2∆jU + µθ(Ω)Uj = 0 with µθ(Ω) = θΩ +
1

1− Ω
− 1. (6)

Hence at given Ω, the motion depends on the two parameters θ and ε. The case of a stiff95

inclusion embedded in a soft matrix corresponds to small ε, and the opposite case, i.e. soft-
in-stiff, to large ε. Therefore, this system can in principle be used as a simplified model
exhibiting both Bragg scattering and local resonance.

Let us study the properties of the function Ω 7→ µθ(Ω) (at given mass ratio θ) which
can be interpreted as the (dimensionless) effective mass, multiplied by the dimensionless100

(positive) frequency Ω. From the second of relations (6), one sees that µθ is monotonically
increasing in its domain of definition, as shown in figure 2.

Ωm ΩM

Ω

µ
θ

1 1 + 1/θ

4ε2

Figure 2: variation of µθ(Ω) with θ and band gaps. Intervals [Ωm, 1 + 1/θ] and [ΩM ,+∞) denote the two
band gaps: [Ωm, 1] (darker blue) and [ΩM ,+∞) (gray) are due to Bragg scattering; [1, 1+1/θ] (lighter blue)
is due to local resonances. By varying ε, the vertical dashed lines move and the band gaps due to Bragg
scattering get either wider or narrower when ε becomes respectively smaller and larger. The part of the first
band gap generated by local resonances can be modified only by varying θ.

5



Specifically, one obtains that µθ is always increasing with Ω and is negative in the interval
(1, 1 + 1/θ) of Ω. This interval corresponds to the formation of a band gap due to local
resonances, as discussed e.g. in [29] and [31].105

2.2. General solutions and band gaps

The general solution of Eq. (6) can be obtained in closed form. Let us search the solution
in the form Uj = rj with r to be determined. Inserting it into Eq. (6) gives the following
second degree equation for r:

r2 − 2br + 1 = 0 with b = 1− µθ(Ω)

2ε2
. (7)

Therefore the roots will be real for |b| ≥ 1 and complex for |b| < 1. Let us consider each
case separately.

(i) 0 < µθ(Ω) < 4ε2. In that case, |b| < 1 and the two roots are complex conjugate. Let
us set

b = cosK∗ with K∗ ∈ (0, π).

Then the two roots are r = cosK∗ ± i sinK∗ = exp(±iK∗) and the general solution of
Eq. (6) reads

Uj = a1 cos jK∗ + a2 sin jK∗, (8)

where a1 and a2 are two arbitrary constants fixed by boundary conditions.

(ii) µθ(Ω) < 0. In that case, b > 1 and the two roots are real numbers. Let us set

b = chK∗ with K∗ > 0.

Then the two roots are r = chK∗ ± shK∗ = exp(±K∗) and the general solution of Eq.
(6) reads

Uj = a1ch jK∗ + a2sh jK
∗. (9)

(iii) µθ(Ω) > 4ε2. In that case, b < −1 and the two roots are real numbers again. Setting

b = −chK∗ with K∗ > 0

the two roots are r = −chK∗ ± shK∗ = − exp(±K∗) and the general solution of Eq.
(6) reads

Uj = a1(−1)jch jK∗ + a2(−1)jsh jK∗. (10)

Note that, when |b| = 1 (i.e. when µθ = 0 or 4ε2), the solutions of Eq. (7) are double roots.
For this particular case, one can check that the general solution of Eq. (6) becomes:

Uj =

{
a1 + ja2 when µθ = 0

(−1)j(a1 + ja2) when µθ = 4ε2

This can be verified either by looking at the limiting behaviours of relations (8), (9) and110

(10), or by directly looking for a second solution of Eq. (6) in the form Uj = jrj.
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Let us now describe more in details the three different behaviours (i), (ii) and (iii). The
solution corresponds to propagating waves only in the case (i) and hence the two other cases
(ii) and (iii) give the band gaps. Accordingly, the band gaps correspond to the intervals
of Ω such that µθ(Ω) < 0 or µθ(Ω) > 4ε2. The first condition corresponds to the interval
(1,Ω0 = 1 + 1/θ) where the effective mass is negative (see figure 2). There exists two values
of Ω, say Ωm and ΩM , such that µθ(Ω) = 4ε2. Specifically, Ωm and ΩM are the two roots of
the second degree equation

θΩ2 − (1 + θ + 4ε2)Ω + 4ε2 = 0 (11)

and read: 



Ωm =
1

2θ

(
1 + θ + 4ε2 −

√
(1 + θ − 4ε2)2 + 16ε2

)

ΩM =
1

2θ

(
1 + θ + 4ε2 +

√
(1 + θ − 4ε2)2 + 16ε2

) . (12)

The first root Ωm belongs to the interval (0, 1) and the second one ΩM is greater than Ω0.
When Ω = 1, one sees directly in system (4) that Uj = Vj = 0 and no motion is possible.
Hence, the band gaps correspond to the two intervals [Ωm,Ω0] and [ΩM ,+∞), shown in
figure 2.115

The dependence of Ωm, Ω0 and ΩM on the two parameters ε and θ is studied respectively
in figures 3 and 4. Each panel composing the two figures contains three curves representing
the behaviour of the three frequencies under consideration, in particular: Ωm is indicated
in red, Ω0 in blue and ΩM in black. The filled areas denote instead the two band gaps
previously defined. Two different colors have been used for the first band gap, in order to120

distinguish between the part of the band gap where the effective mass is positive (darker
region) from that where it is negative (lighter region). In the following, we will refer to the
lower and upper parts of the first band gap as “band gap A” and “band gap B”, respectively.

ΩM

Ω
Ω0

Ωm ε

(a) θ = 0.3.

ΩM

Ω

Ω0

Ωm ε

(b) θ = 1.

ΩM

Ω

Ω0

Ωm ε

(c) θ = 10.

Figure 3: dependence of Ωm (in red), Ω0 (in blue) and ΩM (in black) on ε. The parameter θ is fixed to 0.3
(3a), 1 (3b) and 10 (3c). Filled areas correspond to band gaps.

As it is clear in both figure 3 and 4, the frequency Ω0 is independent from the ratio
ε between the stiffnesses of the springs and decreases as the mass ratio θ increases. In125

particular, it is responsible for the width of band gap B. As stated before, this band gap
is indeed caused by the presence of local resonances. It is thus reasonable that, when θ is
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large, i.e. when the mass of the resonator m2 is small with respect to m1, the effect of the
resonance is reduced, resulting in a thinner band gap B.

Ω

θ

ΩM

Ω0

Ωm

(a) ε = 0.4.

ΩM

Ω

Ω0

Ωm
θ

(b) ε = 1.

ΩM

Ω

Ω0

Ωm
θ

(c) ε = 3.

Figure 4: dependence of Ωm (in red), Ω0 (in blue) and ΩM (in black) on θ. The parameter ε is fixed to 0.4
(4a), 1 (4b) and 3 (4c). Filled areas correspond to band gaps. Ω0 is independent from ε, hence the same
curve appears in the three plots.

The frequency Ωm governs the width of band gap A. The presence of this band gap is not130

due to local resonances, being µθ positive. Band gap A is generated by a mechanism of Bragg
scattering, although it appears connected with a band gap coming from local resonances.
As stated in the introduction, this feature is typical of a hybrid metamaterial (HM), where
the phenomena of Bragg scattering and local resonance are coupled to enlarge the band gap
width [13].135

From figure 3, one can note that Ωm tends to 1 as ε grows, causing the reduction of the
width of band gap A: in the limit band gap A vanishes. This can be explained as follows:
increasing ε, the stiffness k2 of the internal resonator becomes smaller than k1 and the system
resembles very much a discrete version of a locally resonant material (LRM), whose dynamic
response is well known to be governed by local resonances. The behaviour of the frequency140

ΩM , responsible for the opening of the second band gap, confirms the last remark: its value
increases with ε, for a fixed θ, and the second band gap thus opens for higher frequencies
and in the limit tends to disappear. If high values of the stiffness ratio ε are considered, as
often done in the literature (see e.g. [23, 26, 28]), only this latter case is of interest.

The influence of the parameter θ on Ωm is limited (see figure 4), especially for large145

values of ε. ΩM , similarly to Ω0, decreases with θ.
We have thus shown here that a mass-in-mass chain, albeit generally used only for mod-

elling LRMs, it is nevertheless a HM. Therefore the mass-in-mass chain, properly tuned, can
be used to study a system governed by either one of the two wave cancelling mechanisms or
both.150

It is particularly interesting to discuss the structure of the stop and pass bands in the
limit cases of ε tending to ∞ or ε tending to zero. The asymptotic behaviour of Ωm and
ΩM can be obtained directly from Eq. (11). When ε is large, the solution(s) of Eq. (11),
denoted by Ωε, can be expanded as follows:

Ωε = ε2Ω(2) + Ω(0) + ε−2Ω(−2) + · · ·
8



and inserting into Eq. (11) gives:





Ω(2)
(
θΩ(2) − 4

)
= 0 at the order of ε4

2θΩ(2)Ω(0) − (1 + θ)Ω(2) − 4Ω(0) + 4 = 0 at the order of ε2

θΩ(0)2 + 2θΩ(2)Ω(−2) − (1 + θ)Ω(0) − 4Ω(−2) = 0 at the order of ε0

The expansion of Ωm corresponds to Ω(2) = 0 and hence

Ωm = 1− 1

4ε2
+ · · ·

whereas the expansion of ΩM corresponds to Ω(2) = 4/θ and hence

ΩM =
4ε2

θ
+

1

θ
+

1

4ε2
· · ·

When ε goes to infinity, the first band gap tends to the interval [1,Ω0] which corresponds to
negative effective mass. One recovers the results obtained in the soft-in-stiff case, with band
gaps generated by local resonances. In terms of the physical quantities, this (asymptotic)
band gap is given by

band gap in the soft-in-stiff case: ω ∈
[
ω2, ω2

√
1 +

m2

m1

]
.

When ε is small, Ωε can be expanded as Ωε = Ω(0) + ε2Ω(2) + · · · . Inserting it into Eq.
(11) gives: {

Ω(0)
(
θΩ(0) − 1− θ

)
= 0 at the order of ε0

2θΩ(0)Ω(2) − (1 + θ)Ω(2) − 4Ω(0) + 4 = 0 at the order of ε2

The expansion of Ωm corresponds to Ω(0) = 0 and hence

Ωm =
4ε2

1 + θ
+ · · ·

whereas the expansion of ΩM corresponds to Ω(0) = 1 + 1/θ = Ω0 and hence

ΩM = 1 +
1

θ
+

4ε2

θ(1 + θ)
+ · · ·

Therefore, almost all frequencies are forbidden except two small intervals of allowed frequen-
cies, the first close to 0 and the other to Ω0, see figure 3. In terms of the physical quantities,
the allowed intervals are (approximately) given by

first propagating band in the stiff-in-soft case: ω ∈


0,

2ω1√
1 +

m2

m1


 ,
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second propagating band: ω − ω2

√
1 +

m2

m1

∈


0,

2ω1√
1 +

m1

m2


 .

In this case, band gaps are generated not only by local resonances (for which the effective
mass is negative) but also by Bragg reflections of the propagating waves.

2.3. Comparison with the continuous model and the Bloch-Floquet solution

Let us now consider the wave propagation in the one dimensional continuous counter-
part of the discrete mass-in-mass chain. The continuous model can be thought of as the
limit of the discrete one when the internal length is small with respect to the wave length.
The Helmholtz equation in this case can be obtained by replacing in Eq. (4) the discrete
differential operator ∆jU by the second derivative with respect to the spatial variable x,
obtaining

ε2`2U ′′(x) + µθ(Ω)U(x) = 0 (13)

where ` is a characteristic length, which is introduced for dimensional reasons and is related155

to the size of the microstructure. The general solution of Eq. (13) depends on the sign of
µθ(Ω): (i) if the effective mass is positive, then the general solution is sinusoidal in space; (ii)
if the effective mass is negative, then the general solution is exponential in space. Therefore,
the band gap is given by the interval [1,Ω0], closure of the interval where the effective mass is
negative, whatever the value of ε. This result is completely different from that of the discrete160

model, especially for small values of ε. The reason can be understood by considering the
Bloch-Floquet approach.

Let us start from the discrete model. In the Bloch-Floquet approach, the motion is
searched under the form Uj+1 = Uj exp iκ` where κ is the given wave number and ` the cell
size. Inserting this form into Eqs. (4) gives the dispersion equation relating the frequency
to the wave number:

4ε2 sin2 κ`

2
= µθ(Ω). (14)

Therefore, at given κ, a solution exists for Ω only if 0 ≤ µθ(Ω) ≤ 4ε2 and one recovers the
results of section 2.2.

If we consider now the continuous model (13) and motions of the form U(x + `) =
U(x) exp iκ`, the dispersion relation becomes

ε2κ2`2 = µθ(Ω). (15)

At given κ 6= 0 there exist two solutions for Ω, one in the interval (0, 1), the other in the165

interval (Ω0,+∞). When κ goes from 0 to infinity, the two solutions describe those two
intervals, therefore the band gap corresponds to the interval [1,Ω0].

If we compare Eq. (14) with Eq. (15), it appears that Eq. (15) can be seen as an approx-
imation of Eq. (14) for small values of κ`. So the continuous model is a good representation
of the discrete model for small wave numbers (large wave lengths) but not for small wave170

lengths. It should be used only when the ratio κ`/2π is small (with respect to 1). If it is
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used for any value of κ`, there are some differences with the discrete model, that depend on
ε. Specifically, let us consider the two cases according to ε is large or small.

� Large ε. In this case the whole interval (0,+∞) of the left hand side of Eqs. (14) and
(15) can be spanned by small values of κ` (for instance κ` ∼ ε−1/2). Hence, when ε175

goes to infinity both models give [1,Ω0] as the band gap.

� Small ε. For the discrete model, the left hand side of Eq. (14) remains small for any
value of κ` and hence Ω must be close to the two roots of µθ. But for the continuous
model, if one considers any value of κ`, then the left hand side of Eq. (15) describes
all the interval (0,+∞) even if ε is small and the band gap is still [1,Ω0].180

2.4. The spring-mass chain

Let us now consider the classical spring-mass chain. This model will be useful later on
in the paper for properly representing the discrete counterpart of a homogeneous material.
The lattice can be obtained by considering only masses m1 connected by springs k1. In this
way, we are modeling the discrete counterpart of a continuous system composed by the same
material used for the matrix of the metamaterial previously described. For this case, the
motion problem is governed by the following equation:

m1üj = k1∆ju, (16)

with ∆ju still defined by the relation (2). Considering waves at given frequency ω and
using the same notation of section 2.1, in terms of dimensionless quantities, Eq. (16) can be
rewritten as

ε2∆jU + θΩUj = 0. (17)

This Helmholtz equation has the same form of Eq. (6), with µθ(Ω) replaced by θΩ.
Using the same procedure shown in section 2.2, when considering the matrix alone, the

motion corresponds to propagating waves only when

0 < Ω <
4ε2

θ
.

In such a case, setting
θΩ

2ε2
= 1− cosK with K ∈ (0, π), (18)

the general solution of Eq. (17) is given by

Uj = a1 cos jK + a2 sin jK (19)

where a1 and a2 are arbitrary constants.
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3. The spring-mass chain with two mass-in-mass barriers

3.1. Problem definition185

We analyse the system shown in figure 5, with five regions made of springs k1 and masses
m1 either alone (spring-mass chain) or connected to masses m2 by springs k2 (mass-in-mass
chain). The regions of the first type, corresponding to the matrix, are the regions I, III and
V; those of the second type, corresponding to the metamaterial (matrix with inclusions), are
the regions II and IV; the region III (or “defect”) is inserted between regions II and IV, which190

can be thought of as “barriers”. We assume that each metamaterial region contains n cells
and the defect only one. As before, the number above a cell represents its index j ∈ Z in the
chosen numbering. We consider an incoming wave in the region I which propagates at the
angular frequency ω with an amplitude 1, and we search the response in the five regions.

−n−1 −n −1 0 +1 +n +n+1

I II III IV V

m1

m2
k2

k1
2

k1
2

m1

k1
2

k1
2

Figure 5: sketch of the studied system, with unit cells of the metamaterial and of the matrix. In parts I and
V, the chain of masses m1 and springs k1 is infinitely extended for j → ±∞. Regions II and IV are composed
of n cells each.

For localizing the energy carried by an incoming wave inside the defect, the propagation
must be inhibited outside it, hence we consider Ω inside a band gap of the metamaterial and
in the passband of the matrix, i.e.

Ω <
4ε2

θ
and Ω ∈ (Ωm,Ω0) ∪ (ΩM ,+∞). (20)

Taking into account relation (12) of Ωm and ΩM , one has 4ε2/θ = ΩmΩM , and since Ωm <
1 < ΩM , the following inequalities hold:

Ωm <
4ε2

θ
< ΩM . (21)

Therefore, to comply with conditions (20), Ω must be chosen such that

Ωm < Ω < min

{
1 +

1

θ
,
4ε2

θ

}
. (22)
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Figure 6: study of condition (22) with respect to ε (6a) and θ (6b) for respectively θ = 1 and ε = 1. Band
gaps are denoted by the filled areas. The darkest regions indicate all the frequencies which fulfill condition
(22). Letters A and B are used for denoting frequencies respecting condition (22) and belonging to band
gaps.

Condition (22) depends on ε and θ: by fixing one of the two parameters, the variation of195

the interval of frequencies respecting (22) can be studied with respect to the other parameter.
This is done in figure 6a and 6b, where we fixed θ = 1 and ε = 1 respectively. These two
figures are a zoom near the origin of figures 3b and 4b. The frequencies fulfilling condition
(22) are those inside the darkest regions in figure 6 and, hence, can belong to either band gap
A or B, composing the first band gap. This means that, by properly fixing the parameters200

ε and θ, one can choose whether to exploit a Bragg mechanism (condition A) or a locally
resonant mechanism (condition B) for generating the localization phenomenon.

In what follows, we consider both conditions. Two situations can arise: when 4ε2 > θ,
one can work with frequencies belonging either to band gap A or B (although for ε >> 1,
band gap A disappears since Ωm → 1); when 4ε2 ≤ θ, one has that Ω ≤ 4ε2/θ ≤ 1 and205

localization can only be generated by a Bragg mechanism.

3.2. The motion of the system

All the calculations are carried out in the plane of complex numbers. The conjugate of
c is denoted c, its modulus |c|, its real part Re(c) and its imaginary part Im(c).

1. In the region I, using Eq. (17) and the definition (18) of K, the displacement U I
j can be

written as
U I
j = AI e−iK(j+n+1) + BI eiK(j+n+1), j < −n, (23)

the first term corresponding to the incoming wave with a known amplitude AI (propa-
gating from the left to the right, in the direction of the increasing j’s), the second one
to the reflected wave propagating in the opposite direction and whose amplitude BI = R
has to be determined. Without loss of generality, we here consider AI = 1. Substituting
relation (23) into Eq. (17) written for j = −n − 1 and accounting for relation (18), one
obtains U I

−n = e−iK + R eiK. Therefore, the expression (23) is also valid for j = −n and
this can be thought of as a continuity condition for the field U . Rewriting relation (23)

13



for j = −n− 1 and for j = −n, one gets

U I
−n−1 = 1 + R, U I

−n = e−iK + R eiK. (24)

2. In the region II, the general solution of Eq. (6) is given by relations (9) or (10) according210

to whether µθ(Ω) < 0 or µθ(Ω) > 4ε2.

A When Ω < 1, the general solution is given by relation (10). Accordingly, in region II
the displacement can be written as

U II
j = AII (−1)j+n+1chK∗(j + n+ 1) + BII (−1)j+n+1shK∗(j + n+ 1), (25)

where AII and BII have to be determined and −n− 1 ≤ j ≤ 0. Note that relation (25)
can still be used for j = −n − 1 and j = 0, i.e. for the last point in the region I of
the matrix and for the point of the defect. This is a continuity condition for U and
using it for j = −n−1 and j = −n gives U II

−n−1 = AII and U II
−n = −AII chK∗−BII shK∗.

Comparing with relations (24) one has

AII = 1 + R BII shK∗ = −(1 + R)
(
chK∗ + eiK

)
+ 2i sinK. (26)

B When Ω > 1, the general solution is given by relation (9). In region II the displacement
reads

U II
j = AII chK∗(j + n+ 1) + BII shK∗(j + n+ 1). (27)

Using relation (27) for j = −n − 1 and j = −n gives U II
−n−1 = AII and U II

−n =
AII chK∗ + BII shK∗. Comparing with relation (24) one has

AII = 1 + R BII shK∗ = −(1 + R)
(
chK∗ − eiK

)
− 2i sinK. (28)

3. In the region V, assuming that no wave comes from the right, the displacement can be
written as

UV
j = AV e−iK(j−n−1), j ≥ +n (29)

AV = T denoting the amplitude of the transmitted signal. This expression is also valid
for j = +n, the last point in the region IV of metamaterial. Therefore, one gets

UV
+n+1 = T UV

+n = T eiK. (30)

4. In the region IV, as in region II, the general solution of Eq. (6) is given by either relation
(9) or (10).

A When Ω < 1, the general solution is given by relation (10):

U IV
j = AIV (−1)j−n−1chK∗(j − n− 1) + BIV (−1)j−n−1shK∗(j − n− 1), (31)

where AIV and BIV have to be determined and 0 ≤ j ≤ +n + 1. Using relation (33)
for j = +n+ 1 (which corresponds to the first point in the region V) and for j = +n,
gives U IV

+n+1 = AIV and U IV
+n = −AIV chK∗ + BIV shK∗. Comparing with relation (30)

one has
AIV = T, BIV shK∗ = T

(
chK∗ + eiK

)
. (32)
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B When Ω > 1, the general solution is given by relation (9):

U IV
j = AIV chK∗(j − n− 1) + BIV shK∗(j − n− 1). (33)

Using relation (33) for j = +n + 1 and for j = +n, gives U IV
+n+1 = AIV and U IV

+n =
AIV chK∗ − BIV shK∗. Comparing with relation (30) one has

AIV = T, BIV shK∗ = T
(
chK∗ − eiK

)
. (34)

5. In the region III, the displacement can be written as

U III
j = AIII e−iKj + BIII eiKj, −1 ≤ j ≤ +1 (35)

where AIII and BIII have to be determined. Applying this expression for j = −1 and
j = +1, one obtains U III

−1 = AIII eiK + BIII e−iK and U III
+1 = AIII e−iK + BIII eiK.215

We are now able to calculate the displacement of the mass in the defect. In what follows,
we only show in detail the calculations for frequencies belonging to band gap A. The same
procedure can be also applied for frequencies inside band gap B, with small differences that
will result in a slightly changed expression for the displacement of the mass inside the defect
(see the final relations (42) and (43)).220

Let us impose on the interface between parts II and III and between parts III and IV
the conditions corresponding to the the continuity of displacement and stress fields in a
continuous medium. One finds:

{
U II
−1 = U III

−1

U II
0 = U III

0

,

{
U IV
+1 = U III

+1

U IV
0 = U III

0

.

From relations (25), (31) and (35), by using relations (26) and (32), these two systems of
equations can be rewritten as:

[
eiK e−iK

1 1

] [
AIII

BIII

]
=

(−1)n

shK∗

[−(Rα + α)

R β + β

]
(36)

[
e−iK eiK

1 1

] [
AIII

BIII

]
=

T (−1)n

shK∗

[
−α
β

]
(37)

with α and β given by:

α = shK∗(n− 1) + eiKshK∗n, β = shK∗n+ eiKshK∗(n+ 1).
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From systems (36) and (37) one finds:




AIII =
(−1)n+1

2i sinK shK∗
{c+ R d}

BIII =
(−1)n

2i sinK shK∗
{
d+ R c

}
(38)





AIII =
T (−1)n

2i sinK shK∗
{c}

BIII =
T (−1)n+1

2i sinK shK∗
{d}

(39)

with c and d given by:
c = α + βeiK, d = α + βe−iK.

By imposing the equality between the amplitudes AIII and BIII in (38) and the correspond-
ing ones in (39), R and T can be found from:

[
d c
c d

] [
R
T

]
= −

[
c

d

]
.

The coefficient R of the reflected wave and T of the transmitted wave read

R =
−cd+ cd

d2 − c2 , T =
−dd+ cc

d2 − c2 . (40)

Finally, the displacement of the point inside the defect takes the form

U III
0 = AIII + BIII , (41)

that, with relations (39) and the second of relations (40), gives

U III
0 =

(−1)ni sinK shK∗

sh (n− 1)K∗ + (eiK + cosK) shnK∗ + eiK cosK sh (n+ 1)K∗
. (42)

Relation (42), as stated before, is valid for frequencies belonging to band gap A. When
band gap B is considered, U III

0 slightly changes and is given by

U III
0 =

i sinK shK∗

sh (n− 1)K∗ − (eiK + cosK) shnK∗ + eiK cosK sh (n+ 1)K∗
. (43)

4. Energy localization inside the defect

We consider the localization of energy inside the “defect” for the discrete model shown
in figure 5. Specifically, our aim is that of comparing the case where attenuation is predom-
inantly due to a Bragg scattering phenomenon, with the case mainly characterized by local
resonances.225

In the subsequent calculations, we make use of the following relation for the time average
of a harmonically varying quantity u = U exp iωt:

〈(Re(u))2〉 =
1

2
U U =

1

2
|U |2 . (44)
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4.1. Mechanical energy of the barriers

The mechanical energy density of the barriers eij, with i = II, IV and j denoting the j− th
mass m1, is the sum of the potential energy density W i

j and the kinetic energy density Kij,
that are given by:





W i
j =

1

2`

{
k1
2

[
Re(uij+1 − uij)

]2
+
k1
2

[
Re(uij − uij−1)

]2
+ k2

[
Re(vij − uij)

]2
}

Kij =
1

2`

{
m1

[
Re(u̇ij)

]2
+m2

[
Re(v̇ij)

]2}
. (45)

Normalizing relations (45) with k2`, the dimensionless mechanical energy density γij =
eij/(k2`) can be found. Using relation (44) for averaging with respect to time relations (45)
and taking into account Eq. (5), the dimensionless averaged mechanical energy density 〈γij〉
can be written as

〈γij〉 =
1

4`2

{
ε2

2

[∣∣U i
j+1 − U i

j

∣∣2 +
∣∣U i

j − U i
j−1
∣∣2
]

+

[
µθ +

2Ω2

(1− Ω)2

] ∣∣U i
j

∣∣2
}
, (46)

with i = II, IV and j denoting the j − th mass m1.
As shown previously, the motion U i

j of the jth mass m1 belonging to the i − th part
depends on whether the frequency of the incoming wave belongs to band gap A or B.
Therefore, inserting either relations (25) and (31) or (27) and (33) in relation (46), the230

averaged mechanical energy density in the two cases can be expressed as follows:

� Band gap A.

〈γij〉 =
1

4`2

{(
µθ +

Ω2

(1− Ω)2

)[∣∣Ai
∣∣2 −

∣∣Bi
∣∣2
]

+

(
1 + chK∗

2
+

Ω2

(1− Ω)2

)[(∣∣Ai
∣∣2 +

∣∣Bi
∣∣2
)

ch 2K∗s

+ 2
(
Re(Ai )Re(Bi ) + Im(Ai )Im(Bi )

)
sh 2K∗s

]}
(47)

� Band gap B.

〈γij〉 =
1

4`2

{(
µθ +

Ω2

(1− Ω)2

)[∣∣Ai
∣∣2 −

∣∣Bi
∣∣2
]

+

(
1− chK∗

2
+

Ω2

(1− Ω)2

)[(∣∣Ai
∣∣2 +

∣∣Bi
∣∣2
)

ch 2K∗s

+ 2
(
Re(Ai )Re(Bi ) + Im(Ai )Im(Bi )

)
sh 2K∗s

]}
(48)

with {
i = II and s = j + n+ 1

i = IV and s = j − n− 1
.
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4.2. Mechanical energy of the mass-spring chain

The dimensionless averaged mechanical energy density 〈γj〉 of the jth unit cell for a
mass-spring chain (regions I, III and IV of the system) is given by:

〈γij〉 =
1

4`2

{
ε2

2

∣∣U i
j+1 − U i

j

∣∣2 +
ε2

2

∣∣U i
j − U i

j−1
∣∣2 + Ωθ

∣∣U i
j

∣∣2
}
, (49)

with i = I, III,V. The motion U i
j of the j-th mass m1 is obtained either from relation (23),

(29) or (35). Inserting these latter relations into (49), one obtains:

〈γij〉 =
2ε2

`2
sin2 K

2

{[ ∣∣Ai
∣∣2 +

∣∣Bi
∣∣2
]

+ (1− cosK)
[ (
Re(Ai)Re(Bi) + Im(Ai)Im(Bi)

)
cos 2Kj

+
(
Im(Ai)Re(Bi)−Re(Ai)Im(Bi)

)
sin 2Kj

]}
,

(50)

with Ai and Bi denoting the wave amplitudes for the i− th part, with i = I, III,V, and where
we have used relation (18). Note that the defect (region III) is composed by a single cell,
therefore only j = 0 is considered.235

4.3. The localization phenomenon

Let us now consider the localization phenomenon. By tuning the parameters governing
the problem, it is possible to exploit either a Bragg or a locally resonant behaviour for
focusing inside the defect the energy carried by an incoming wave. Specifically, as shown in
figures 3 and 4, the two attenuating mechanisms can be activated depending on the values240

chosen for θ and ε. The number n of unit cells composing each barrier only modifies the
efficacy of the attenuation generated by the barriers and, hence, it can be fixed without
varying the width of band gaps A and B.

In what follows, we fix n = 2 and discuss several systems characterized by different θ
and ε. Selecting e.g. θ = 1 and looking at figure 6a, depending on ε the system can work
either with Ω belonging only to band gap A, to band gap A and B, or only to band gap B.
Specifically, one has: 




ε2 ≤ θ/4 only band gap A

θ/4 < ε2 < O(1) band gaps A and B

ε2 >> 1 only band gap B

Therefore, the following three cases are analysed: ε = 0.4, ε = 1 and ε = 3 (this latter value
is high enough to consider the problem governed only by band gap B).245

By employing relations (50) and (18), the averaged mechanical energy density of the
unit cell composing the defect 〈γIII0 〉, normalized with respect to the incoming energy 〈γin〉,
can be plotted as a function of the frequency Ω, as shown in figure 7, where a logarithmic
scale is used for the vertical axis. More specifically, the energy has been computed only for
those frequencies respecting condition (22), which itself depends on ε; for this reason, the250
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117.5

Figure 7: averaged mechanical energy density of the defect 〈γIII0 〉, normalized with respect to 〈γin〉 (i.e.
the energy carried by the incoming wave) versus frequency Ω for: ε = 0.4 (light gray), ε = 1 (gray) and
ε = 3 (black). A logarithmic scale is used for the vertical axis. The vertical dashed-dotted lines delimit
the intervals of frequencies Ω respecting condition (22) for each of the three considered ε. The vertical
line at Ω = 1 separates band gap A from band gap B. When ε = 3, the normalized energy density is not
experiencing any peak and is smaller than 1 ∀Ω respecting condition (22).

intervals of frequencies between Ωm and Ωlim vary for the three cases. From figure 7, for
ε = 0.4 and ε = 1 a peak appears (“peak 1” and “peak 2” respectively) that corresponds
to a maximum localization of the incoming energy. In general, for Ω belonging to a band
gap, the presence of the first barrier generates a reflected wave and, as a consequence, the
energy transmitted to the defect should be less than the incoming one (〈γIII0 〉/〈γin〉 ≤ 1).255

The presence of a peak greater than 1 confirms that the introduction of a defect gives rise
to a peculiar behaviour, causing an accumulation of the energy traveling along the system.
Nevertheless, the localization doesn’t always take place, as one can verify by looking at
the behaviour of 〈γIII0 〉/〈γin〉 for ε = 3 (see figure 7): for this particular value, no peaks are
present.260

“Peak 1” and “peak 2” appear respectively at Ω = 0.394 and Ω = 1.440. Considering
these two frequencies, the normalized energy 〈γj〉/〈γin〉 along the entire system is shown in
figure 8 (j ∈ Z indicates the jth unit cell).
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(a) (b)

Figure 8: mechanical energy density γj of each unit cell j composing the system, averaged over a time
period and normalized with respect to the incoming one, for Ω corresponding to “peak 1” (figure 8a) and
“peak 2” (figure 8b). The vertical dotted lines are used to separate the different unit cells; moreover, the
dashed-dotted vertical lines delimit the two barriers in both figures.

The behaviour of the system is very similar for the two cases, although the level of
concentration for ε = 0.4 (figure 8a) is higher than that of ε = 1 (figure 8b). This aspect
can also be quantified by introducing an index of concentration (IC), defined as follows:

IC =
〈EIII〉

〈EII〉+ 〈EIII〉+ 〈EIV〉 , (51)

with Ei denoting the total mechanical energy of the ith part, simply given byEi = `
∑

j γj k2`,

for j ∈ part ith (this means that the sum considers all the unit cells j composing the ith part).265

Using this index for peaks 1 and 2, one obtains respectively IC1 = 0.57 and IC2 = 0.33,
thus confirming a larger localization for ε = 0.4.

Since “peak 1” belongs to band gap A and “peak 2” to band gap B, the above analy-
sis shows that both Bragg scattering and local resonance can generate a localization phe-
nomenon.270

4.4. Motion of the mass in the defect

Let us now study the motion U III
0 of the mass inside the defect and how its presence

affects the transmission coefficient T. In particular, by using the second of relations (40)
and (41), both quantities can be expressed for varying frequencies. This is shown in figures
9a and 9b, where we plot respectively

∣∣U III
0 (Ω)

∣∣ / |Uin| (Uin is the motion imposed in part I275

by the incoming wave) and |T(Ω)|, again only for those frequencies verifying condition (22),
for each ε. In figure 9a, a logarithmic scale is used for the vertical axis.
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(a) (b)

Figure 9: (a) Displacement magnitude
∣∣U III

0

∣∣ of the mass inside the defect normalized with the amplitude
|Uin| of the incoming wave, as a function of Ω. A logarithmic scale is used for the vertical axis. (b) Modulus
|T| of the transmission coefficient versus Ω. The different colors refer to the three different ε (light gray:
ε = 0.4, gray: ε = 1, black: ε = 3).

When ε = 0.4 and ε = 1, both plots in figure 9 present one peak, exactly at the same
frequency where 〈γIII0 (Ω)〉/〈γin〉 is maximum. These frequencies also correspond to perfect
transmission (i.e. |T| = 1): this is another peculiarity introduced by the presence of a defect.280

A similar result was found by the authors for a continuum case (see [47, 48]).

4.5. Localization in the time domain

Up to now, we have only considered the behaviour of the system at its steady state for
a given frequency. Here we also analyse the problem in the time domain, by means of a
centered finite difference scheme and we check that, for ε = 0.4 and ε = 1 and for a time285

t large enough,
∣∣U III

0 (t)
∣∣ / |Uin| tends to the peak values shown in figure 9a and |T(t)| ≈ 1

(|Uin| is not a function of t because it is imposed to be constant).

I II III IV V

ũ
Fixed0 +n+1

Figure 10: sketch of the system used for the time domain analysis. Parts I and V are now of finite thickness.

The first mass on the left is subjected to an imposed displacement ũ = sinω t, with ω =
√

Ωω2 and Ω
denoting the peak frequency under consideration. The last mass on the right is fixed. Masses j = 0 (blue)
and j = +n+ 1 (orange) are evidenced for later use.

Figure 10 schematically represents the system used for the time domain analysis. In
order to carry out a numerical solution of the problem, we considered finite dimensions for
parts I and V and we imposed boundary conditions on the first and final mass respectively290

of parts I and V. In particular, the motion of the first mass on the left is constraint to be
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ũ = sinω t (the amplitude of the generated incoming wave is hence equal to 1, |Uin| = 1),

with ω =
√

Ωω2, where Ω is the frequency of the peaks computed in the previous section;
the last mass on the right instead is fixed. By choosing the properties of the resonator (mass
m2 and spring k2), ω2 is defined and thus also ω. The two quantities of interest, namely295 ∣∣U III

0 (t)
∣∣ and |T(t)|, are the amplitudes, for large t, of displacements |u0(t)| and |u+n+1(t)| of

the masses highlighted respectively in orange and blue in figure 10. They can be derived
by analysing the motion of the two masses with respect to time, as shown in figures 11a
(ε = 0.4) and 12a (ε = 1). The amplitude |u0(t)| at large t almost coincides with the
corresponding value

∣∣U III
0 (Ω)

∣∣ shown in figure 9a, for both peaks; moreover, again for large t,300

the amplitude |u+n+1(t)| of the transmitted wave tends to 1. This verifies the localization
phenomenon and quantifies the time frame ∆t, which is necessary for the system to reach
the maximum level of concentration. More in details, the transitory time ∆t depends on the
final level of energy concentration inside the cavity, when a stationary condition is reached.
The higher is the energy peak in figure 7, the larger will be the time needed for reaching the305

final regime. This is shown in figures 11a and 12a: the transitory time for “peak 1” is larger
with respect to that related to “peak 2”. As the level of concentration depends on the level
of attenuation provided by the barriers at the frequency corresponding to a peak of energy,
the transitory time is indirectly influenced by both the stiffness and mass ratios.
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|T|≅0

(b)

Figure 11: (a) Oscillations in time of displacements u0 and u+n+1 of the masses evidenced respectively in
blue and orange in figure 10. (b) Oscillation in time of the displacement of the first cell after a barrier
without defect (sketch above). Material parameters: θ = 1, ε = 0.4, m2 = 0.01 Kg, k2 = 1 N m-1.
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Figure 12: (a) Oscillations in time of displacements u0 and u+n+1 of the masses evidenced respectively in
blue and orange in figure 10. (b) Oscillation in time of the displacement of the first cell after a barrier
without defect (sketch above). Material parameters: θ = 1, ε = 1, m2 = 0.01 Kg, k2 = 1 N m-1.

An important remark is here necessary: the presence of boundaries could affect the result310

by generating reflected waves that, nevertheless, need some time to reach the two masses of
interest. Therefore, by tuning the total time of the analysis in relation to the speed of the
traveling waves and the number of unit cells used in parts I and V, it is possible to neglect
the presence of these reflected waves.

The influence of the defect can be finally evidenced by considering the system schemat-315

ically depicted in figures 11b, 12b (above) and analysing the amplitude |ublack(t)| of the
transmitted wave, i.e. the amplitude of the motion of the mass evidenced in black in the
figures. The system is composed by a mass-spring chain with a single barrier of 4 cells
without defect. For this system the transmitted wave amplitude is almost zero for both ε,
as shown in figures 11b and 12b (below). This final result confirms the substantial change320

of behaviour with respect to the case with the defect.

5. Concluding remarks

Mass-in-mass discrete systems have been widely studied and employed to represent the
behaviour of LRMs. This work has highlighted that this lattice actually represents a hybrid
metamaterial that can be tuned to behave either as a PC or as a LRMs. The two parameters325

of the problem, namely the ratio between the stiffnesses and that between the masses,
influence the wave cancelling capacity of the mass-in-mass chain. The variation of the band
gaps position and width is due to the activation of the mechanisms of Bragg scattering or
local resonance.

The present study of the effective model built from the discrete HM has set the limit of330

validity of the method based on the negative effective mass, method which is generally used
in literature to determine band gaps in discrete systems. The limit is related to the ratio
between the stiffness of the chain and that of the resonators.
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The attenuating capabilities have been exploited to study a discrete system for the
harvesting of energy carried by a propagating wave. Introducing a defect in the mass-in-335

mass chain, waves can be localized and the energy that they transport can be focused. The
analytical treatment allowed to derive the optimal conditions for energy localization. A
worth noting result is that the Bragg scattering offers a better response in terms of energy
concentration.

All the analytical results have been verified through computations in the time domain.340

We remark that, having considered a one-dimensional problem, the context has been
that of scalar waves, but exactly the same considerations would apply in more dimensions.
Furthermore, the results obtained can be employed for other problems that can be brought
back to the solution of discrete differential equations of the type studied here. A work in
this direction is currently in progress.345
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