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Abstract: This review aims to highlight the importance of particle shape in the design of polymeric
nanocarriers for drug delivery systems, along with their size, surface chemistry, density, and rigidity.
Current manufacturing methods used to obtain non-spherical polymeric nanocarriers such as filomi-
celles or nanoworms, nanorods and nanodisks, are firstly described. Then, their interactions with
biological barriers are presented, including how shape affects nanoparticle clearance, their biodistribu-
tion and targeting. Finally, their drug delivery properties and their therapeutic efficacy, both in vitro
and in vivo, are discussed and compared with the characteristics of their spherical counterparts.

Keywords: polymeric nanocarriers; non-spherical; drug delivery; filomicelles; nanoworms;
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1. Introduction

Polymeric nanoparticles have been extensively studied in the last decades as ther-
apeutics nanocarriers, especially for personalized medicine applications. They can be
designed to target tissues and to overcome biological barriers which are specific to disease
states and the patient subset; thus, an individualized treatment plan can be developed,
minimizing the impact of patient heterogeneity and improving drug specificity [1,2]. Drug
encapsulation in such nanoparticles allows therapeutics efficiency to be increased and side
effects decreased at the same time. The high degradability and low molecular weight of
the drug often lead to rapid clearance and a short circulation half-life after injection [3,4].
Polymeric nanocarriers allow these drawbacks to be overcome thanks to their biocompati-
bility, tunable biodegradability, capacity to overcome biological barriers and their targeting
abilities by modification of their surface. In addition to these properties, the design of
nanoparticles was shown to have an important impact on their behavior both on biological
process and on targeting drug delivery properties. So far, several studies have investigated
the impact of the size of spherical polymeric carriers on their behavior in vitro and in vivo,
and on drug delivery properties [5–8]. Although the nanoscale size of the carriers has been
demonstrated to be an important parameter to improve drug delivery and therapeutics
efficiency, the shape of the nanoparticle also plays an important role in different biological
processes [9]. Anisotropic nanocarriers present different interaction with both drugs and
cells, and their higher surface area leads to a higher capacity of drug encapsulation and
delivery, due to localized degradation, enhanced targeting through a higher surface area
for cell binding, and easier interaction with targeted cells [10–13].

This review aims to describe the importance of polymeric nanoparticle shape on
their properties as therapeutics nanocarriers. Firstly, the main manufacturing methods
are described: self-assembly process, membrane stretching and particle replication in
nonwetting templates. Then, the interactions of such obtained anisotropic nanocarriers
with biological barriers are presented. Finally, their properties as drug delivery systems,
both in vitro and in vivo, are discussed.
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2. Fabrication of Non-spherical Polymeric Nanoparticles

Various methods described in the literature [2,12–14] can be used to produce non-
spherical polymeric nanoparticles for drug delivery applications (Figure 1). This review
mainly focuses on the most common methods of bottom-up and top-down approaches,
summarized in Table 1, and describes them succinctly.
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Figure 1. Most common non-spherical polymeric nanoparticles used in drug delivery.

Table 1. Manufacturing methods for non-spherical nanoparticles of different shape, size and material.

Fabrication Technique Non-spherical Shapes Size Range Materials Ref.

Self-assembly

Conventional
Filomicelles/worms
Short and Long rods

Vesicles

Ø = 20–60 nm
L = 100–1800 nm

PS-PAA, PS-PEO,
PEE-PEG, PCL-PEG,
PCL-PEO, PEG-PPS,

PEG-PLA
PAA-PMA-PS,
PEG-PLA-PEG

[14–24]

Nucleic acid
complexation Nanorods, nanoworms Ø < 80 nm

L > 140 nm
DNA/PEG-PPA,
DNA/(lPEI)-PEG [25,26]

Unimolecular–polymer
brushes

Worms
Cylindrical

Ø = 17–35 nm
L = 35–1200 nm

PCL-(PEGMA-co-
GMA),

PNB-g-(PS-b-PMA-b-
PAA), PGMA-g-PEG,

PNB-g-PGA

[27–31]

PISA
Worms
Rods

Vesicles

Ø = 20–32 nm
L = 90–635 nm

POEGMA-P(ST-co-
VBA),

PHPMA-(NBMA-co-
CMA),

PMeOx-b-PiPrOx

[32–34]

Membrane stretching Disks
Rods

Ø = 100–240 nm
L = 360–500 nm PS, PLGA [35–37]

PRINT
Trapezoid, cones

Rods
Cylinders

80–600 nm PEG, PLA, PLGA [38–41]

2.1. Self-Assembly Techniques

The typical bottom-up method to produce non-spherical nanoparticles is based on self-
assembly of amphiphilic block copolymers [4]. This process is based on thermodynamic
equilibrium, intermolecular interactions and chain packing driven by the different polarities
of the copolymer blocks. The amphiphilic composition permits the encapsulation of
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lipophilic drugs in the hydrophobic core, which is protected by the hydrophilic shell.
Different structures, such as spherical, cylindrical, or filomicelles (worm-like micelles),
can be obtained [4,42–44]. Particle shape and size depends on the polymer/aqueous
phase separation mechanism, which is influenced by different factors such as polymer
composition (monomeric units, architecture, molecular weight of each block) and self-
assembly conditions (organic solvent, water addition, stirring, evaporation, temperature).
Two main self-assembly procedures can be highlighted: the conventional self-assembly
process leading to micelle formation, and the polymerization-induced self-assembly (PISA),
as presented in Figure 2A.
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Figure 2. Presentation of the main processes to manufacture non-spherical nanocarriers: (A) Self-
assembly techniques (orange: hydrophilic group, green: hydrophobic group), (B) Membrane stretching
method. The film containing the initial nanoparticles is stretched before or after the liquefaction step,
which is obtained either by particle solubilization in adequate solvent or by heating above the glass
transition temperature, (C) Particle replication in nonwetting template (PRINT). This soft lithography
technique utilizes highly fluorinated nonwetting molding template to create nano-scale patterns.

The conventional self-assembly procedure is based on two main steps: (1) the block
copolymers synthesis and (2) the formation of the final nanoparticles. Once the amphiphilic
block copolymers are synthesized, the nanoparticles are manufactured by nanoprecipitation.
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The amphiphilic block copolymers are dissolved in a good solvent for all blocks and then
added dropwise to a solvent in which the hydrophilic group is soluble. Alternatively, the
polar solvent is slowly added to the polymer solution. The difference of solvent polarity
leads to the assembly of micelles, with the hydrophobic groups forming the particle core and
the hydrophilic ones the corona. Finally, the volatile organic solvent is evaporated [4,45].

Linear diblock copolymers are the most studied. In 1995, Zhang et al. were the first
to described non-spherical nanoparticles synthesized by this method using polystyrene-b-
poly(acrylic acid) copolymers (PS-b-PAA) [20]. They demonstrated that different shapes
can be obtained by tuning the hydrophilic block degree of polymerization and thus its
molecular weight. They obtained spherical micelles using PS200-b-PAA21, as well as worm-
like micelles by decreasing the degree of polymerization of PAA (using PS200-b-PAA15).
Numerous investigations were then carried out to obtain non-spherical nanoparticles by
tuning either the diblock copolymers or the self-assembly parameters. As a few examples,
rod-like nanoparticles were obtained with polystyrene-b-poly(ethylene oxide) PS240-b-
PEO80 [21], and filomicelles with nanometric diameters (22–60 nm) and different length (1-
18 µm) using polyethylethylene-b-poly(ethylene glycol) (PEE35-b-PEG42), polycaprolactone-
b-poly(ethylene glycol) (PCL24-b-PEG44 and PCL58-b-PEG110) [15], poly(ethylene glycol)-b-
poly(propylene sulfide) (PEG45-b-PPS44) [22], series of poly(ethylene glycol)-polylactide
(PEG-b-PLA) diblock copolymers [23]. By tuning the solution conditions, PS310-b-PAA52
block copolymers can lead to worm-like micelles or vesicles [14].

Ma and coworkers also demonstrated that triblock copolymers based on poly(acrylic
acid)-b-poly(methyl acrylate)-b-polystyrene (PAA90-b-PMA80-b-PS100) formed rod-like mi-
celles in presence of water soluble carbodiimide [18]. Although self-assembly of diblock
and triblock copolymers may allow different nanoparticle shapes to be obtained for drug
delivery applications, the resulting nanoparticles often present poor colloidal stability
and therefore poor drug delivery properties. To overcome these limitations, some inves-
tigations were performed on non-spherical cross-linkable micelles, obtained by addition
of cross-linking agents which can react with one or both functional blocks [24,44]. Yang
et al. demonstrated that crosslinked worm-like vesicles based on triblock copolymers of
PEG and poly(lactic acid) (PEG-PLA-PEG) presented higher stability in vivo [19]. Non-
spherical morphology was also obtained by complexation of block copolymers with nucleic
acids for gene delivery. Spherical, rod-like and worm-like DNA-based nanoparticles were
synthesized from PEG-polyphosphoramidate (PPA) block copolymer [46], linear PEI (lPEI)-
g-PEG copolymers [25,26], as well as the thermo-responsive ABC triblock copolymers
consisting of poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-n-propyl-2-oxazoline) (PnPrOx)
and poly(L-lysine) [47].

Amphiphilic polymer brushes are another interesting alternative to prepare non-spherical
nanocarriers in order to improve their stability in blood circulation and their drug release pro-
file [48,49]. Müllner et al. performed unimolecular nanoworm micelles based on branched am-
phiphilic copolymers of polycaprolactone-b-(poly[(ethylene glycol) methyl ether methacrylate]-
co-glycidyl methacrylate) (PCL-b-(PEGMA-co-GMA)) and showed that the aspect ratio of such
nanoworms affected the in vivo circulation time [28]. High-molecular weight poly(L-glutamic
acid) based brush polymers, were synthesized by a combination of ring-opening metathesis
polymerization of norbornene-based monomers and ring-opening polymerization of γ-benzyl-
L-glutamate N-carboxyanhydride [31]. These brush polymers were conjugated with a model
drug, camptothecin (CPT), to obtain unimolecular nanocarriers, which were characterized in
terms of stability, drug release kinetics, and in vitro toxicity. Li and coworkers showed that the
same triblock amphiphilic copolymer of polystyrene-b-poly(methyl acrylate)-b-poly(tert-butyl
acrylate) formed spherical micelles in a linear conformation and led to cylindrical micelles in
a brush conformation [27].

Polymerization-induced self-assembly (PISA) is an innovative micelles self-assembly
technique (Figure 2A). During the last decade, this process has been widely studied, leading
to the synthesis of nanocarriers for drug delivery with different shapes such as spheres,
worms, rods, vesicles which can be stimuli-responsive [50,51]. This procedure is based
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on an amphiphilic block copolymers synthesis by reversible-deactivation polymerization,
followed by an in-situ non-spherical micelles formation. A hydrophilic macroinitiator is
firstly synthesized, and then dissolved in a selected solvent to perform chain extension
in the presence of the second monomer, either by dispersion or emulsion. The second
block becomes insoluble while its degree of polymerization increases, leading to self-
assembly formation of differently shaped nanoparticles. For instance, worm-like rods
or vesicles nanoparticles of poly[oligo(ethylene glycol) methacrylate]-b-[poly(styrene)-
co-poly(vinyl benzaldehyde)] (POEGMA-b-P(ST-co-VBA)) were obtained by changing
the degree of polymerization of ST-co-VBA block, which permitted a controlled release
of doxorubicin (DOX) [32]. Different photosensitive non-spherical nanocarriers based
on Poly(N-(2-hydroxypropyl)methacrylamide)-b-poly(2-nitrobenzyl methacrylate-co-7-(2-
Hydroxyethoxy)-4-methylcoumarin PHPMA-b-(NBMA-co-CMA), and obtained through
PISA procedure also showed interesting performances for DOX encapsulation and deliv-
ery [33]. Very recently, a ‘living’ crystallization-driven self-assembly (CDSA) was proposed
for the preparation in water of rod-like polymer nanoparticles based on poly(2-oxazoline)s
(POx) [34]. The resulting in POx nanorods (length between 60 and 635 nm) exhibited stealth
behavior and excellent biocompatibility both in vitro and in vivo, with low immune cell
association and relatively high blood circulation time.

Even though self-assembly is an efficient method to synthesize non-spherical nanopar-
ticles, the control of shape and size of the nanocarriers may be limited by the polymerization
conditions and self-assembly mechanisms. To overcome these drawbacks, top-down ap-
proaches has emerged in the last years, to manufacture nanoparticles of controlled shape
and size, with interesting scalability. Among these different techniques, membrane stretch-
ing, lithography and molding techniques are the most promising.

2.2. Membrane Stretching Technique

Membrane stretching is the most used method after self-assembly (Figure 2B) [4]. It
is based on the mechanical deformation of pre-manufactured spherical nanoparticles into
complex shapes. Indeed, the nanoparticles geometry is determined post-synthesis, by
casting into poly(vinyl alcohol) membranes, liquefying and stretching to reach anisotropic
shapes. Two alternative methods can be used, as the film containing the nanoparticles can
be stretched either before or after the liquefaction step. The latter can be reached either by
solubilization of the polymer nanoparticles in adequate solvent or by heating them over the
polymer glass transition temperature [44,52]. Through this method, anisotropic nanocarri-
ers such as rods, elliptical disks and barrels were obtained for antibody immobilization and
display; however a limited number of polymeric materials can be used, such as polystyrene
(PS) and poly(lactic-acid-co-glycolide) (PLGA) [35–37].

2.3. Particle Replication in Nonwetting Template (PRINT)

Among the different top-down techniques, lithography and molding methods are
widely used to control polymeric nanoparticles shape. Photolithography techniques allow
polymer nanoparticle manufacturing with a resolution of 10 nm [53]. Different geometries
are available to tailor the molds. The most famous and used technique is the particle
replication in nonwetting template (PRINT) method, a soft lithography technique that
utilizes highly fluorinated nonwetting molding template to create nano-scale patterns
(Figure 2C). Discrete and well-defined nanoparticles with cubic, cylindrical, cone, rod
and worm-like shapes were obtained without any residual film coming from the interface
between polymer solution and fluorinated mold, which is one of the main drawbacks of
classic lithography techniques [40]. Nanoparticles were typically formed from PEG, PLA
and PLGA [4,41,44] and exploited as nanocarriers for the delivery of chemotherapeutic
drugs and proteins [38–40].
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3. Effect of Particle Shape on Overcoming Biological Barriers

Even if the interactions between spherical nanoparticles and biological systems have
been widely studied, the manufacturing advancement to control particle shapes opened
new opportunities to overcome biological barriers [54]. While various administration routes
have been explored for spherical nanoparticles, including transdermal, oral, and ocular
administration, most of the non-spherical polymeric nanocarriers are administered using
intravenous or inhalation procedures [55]. Recent studies have highlighted the importance of
the geometry of nanovector in different biological processes, from their injection/inhalation to
their internalization by the targeted cells (Figure 3), namely interaction with immune system,
nanoparticles transport and their biodistribution and targeting behavior. The main effects of
nanocarriers shape on these different biological processes are summarized in Table 2.
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Table 2. Effect of nanocarriers shape on biological processes compare to sphere counterparts.

Non-Spherical Nanocarriers Effect on Biological Processes Ref.

Long Filomicelles
(>10 µm length)

· Prolonged circulation time
· Reduced circulation time (for polymer brushes)
· High phagocytosis rate
· Reduced target selectivity and tumor internalization
· High accumulation in liver and spleen

[15–17,28–30,56–67]

Short Filomicelles,
Nanorods Ellipsoids

(<10 µm length)

· Prolonged circulation time
· Greater vascular margination
· Reduced phagocytosis rate
· High tumor cells internalization
· Low accumulation in liver and spleen
· High retention time in intestinal cells

[16,17,28–30,35,36,56,68–77]

Nanodisks

· Prolonged circulation time
· Greater vascular margination
· Reduced phagocytosis rate
· High tumor cells internalization
· Lower specific uptake than nanorods

[35,56,68,69,71,78–82]

3.1. Interactions with Immune System

Regarding the interactions with the immune system, phagocytosis by macrophages
is the first biological process that nanocarriers must overcome after their administration.
Investigations on biological behavior of non-spherical nanoparticles have highlighted the
crucial role played by nanocarriers geometry in their uptake by immune cells [56,71,83,84].
This two-steps mechanism is based on the adhesion of nanoparticles to the surface of
immune cells (macrophages, monocytes, neutrophils etc.) followed by their internalization.

As it occurs in nature with cylindrical bacteria such as E. coli [85], several studies demon-
strated that elongated nanoparticles such as worms [28,56–58,60,86] or ellipsoids [56,70] are
able to reduce or inhibit phagocytosis rate and thereby evade the immune response. More
specifically, Champion et al. investigated in detail the phagocytosis mechanism on polystyrene
nanoparticles of different shapes, including spheres, ellipsoids, elliptical or rectangular disks
and UFOs [56]. The results demonstrated that phagocytosis can be initiated for any type of
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shape in at least one orientation. However, they underlined the importance of local parti-
cle shape at the point of cell attachment during the first step of the phagocytic mechanism.
In fact, the internalization and its velocity are inversely correlated with tangent angles (Ω)
formed between cells and nanocarriers. Briefly, particles are internalized by macrophages
through acting-cup and ring formation when Ω < 45◦, while in the other case, cells spread
on the nanoparticles but are unable to internalize them. Hence, the curvature of particles
has a determinant role in their internalization independently of their size. In addition, other
investigations showed that a high aspect ratio led to a decreased internalization, as demon-
strated for worm-like polymeric nanoparticles with an aspect ratio higher than 20 [57,58].
Nanocarrier flexibility also affect cellular uptake, as stiffer particles typically showed increased
internalization by immune cells [87]. Flexible filomicelles based on tetrablock copolymers of
PEG-b-PPS linked by a pi-stacking perylene bisimide (PBI) [72], were optimized to decrease
macrophage uptake and increase circulation time after intravenous administration in mice.

Moreover, numerous works highlighted that the presence of hydrophilic polymer at
the surface of nanocarriers, such as PEG, may decrease the macrophage clearance rate by re-
ducing opsonization [88]. Müllner et al. synthesized two types of anisotropic nanoparticles
based on PEGMA-co-PGMA or PCL-b-PEGMA-co-PGMA cylindrical polymer brushes [28].
Their work demonstrated that particle clearance is three times higher for long PEGMA-co-
PGMA brushes (up to 1000 nm) in comparison to the smallest spheres (35 nm). Moreover, a
comparison between the longest PEGMA-co-PGMA and PCL-b-PEGMA-co-PGMA cylin-
drical polymer brushes showed a more rapid clearance of the latter, which possessed a
crystalline core. Mathaes et al. also demonstrated that the association of elongated shape
and presence of PEG shell permit the strong reduction recognition and phagocytosis of
PLGA nanoparticles [60].

In some cases, nanocarriers are designed to interact with immune cells and inhibit their
activation, instead of avoiding immune recognition. PEG-b-PPS filomicelles were tested to
deliver chloroquine to plasmacytoid dendritic cells (PDC) via passive, morphology-based
targeting, in order to inhibit the production of type I interferon [22]. Cellular uptake and
biodistribution studies showed a preferential accumulation in human PDC and monocytes
in vitro and in tissues frequently damaged in systemic lupus erythematosus patients.

These results highlight the importance of shape and size of the nanocarriers to decrease
phagocytosis effect, although surface chemistry, density and rigidity also play a key role in
clearance mechanism.

3.2. Particle Transport

Once the fast uptake by immune cells is avoided, the nanocarriers efficiency also de-
pends on their transport from the administration site to the target organs. For nanocarriers
injected intravenously, their transport characteristics are strongly influenced by margination
phenomenon and their blood circulation half-life.

Margination phenomenon describes the capacity of nanosystems to escape from blood
flow to vessel walls and diffuse inside the target organs. As opposed to spherical nanopar-
ticles, which tend to stay between red blood cells flow and vessel walls, thus limiting
their ability to margination, the non-spherical nanoparticles possess a more complex flow
behavior [3,89]. Their aspect ratio directly influences their lateral drift velocity, enhancing
their rotation and oscillation between walls. Moreover, non-spherical particles also present
a higher specific surface area, leading to stronger adherence to the walls and therefore a
higher binding possibility, as demonstrated for nanorods or nanodisks, in comparison to
their spherical counterparts [68,69].

The circulation half-life of the nanocarriers is highly influenced by their shape, since
geometry has a significant impact on phagocytosis and flow behavior as mentioned before.
The reduced clearance and margination phenomena of non-spherical nanoparticles seems to
extend circulation half-life when compared to the spherical ones. This trend was demonstrated
in several studies, mainly on polymeric filomicelles and nanoworms [15,16,28–30,61,66], but
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also on nanorods [17] and nanodisks [79,81], and this shape effect was confirmed by similar
tests on inorganic (silica, gold, iron oxide) nanomaterials [90–92].

Geng et al. demonstrated that self-assembled filomicelles from block copolymers had a
circulation half-life 10-fold longer than spherical micelles of equivalent chemistry, and were
present in rodent blood vessels for one week [15]. Moreover, they compared the behavior
of filomicelles possessing different lengths (2 µm, 4 µm, 8 µm,18 µm). Results highlighted
that the circulation half-life increased with the filomicelle length up to 8 µm (which is
equivalent to the size of red blood cells), however the longest filomicelles (18 µm) presented
the same behavior than the 8 µm ones. This may be related to a rapid fragmentation of long
conventional self-assembled nanoparticles (>10 µm) which seemed to be less stable in blood
flow, due to a combination of cell-interactions and shear forces, leading to fragments with a
length under 10 µm after few days. Similar studies on nanorods [17] and nanodisks [79,81]
based on amphiphilic block copolymers showed higher circulation half-lives in comparison
to their spherical counterparts.

Müllner et al. investigated the effect of shape and rigidity of polymer brushes
nanoworms on circulation half-life [28]. Interestingly, changes in rigidity had limited effect
in vitro, although the incorporation of a crystalline core compartment into the brushes
resulted in a more rapid clearance in vivo. This suggested that nanoworms flexibility may
play a key role in their filtration and clearance. Despite the high molecular weights, these
nanoworms presented high circulation half-life (over 20 h). However, in contrast to the
results of Geng et al. for self-assembled filomicelles, the circulation half-life decreased with
the increase of the nanoworm length. This trend was confirmed by the studies of Zhang
et al. [29,30], and may be explained by the difference in stability between self-assembled
materials and polymer brushes backbone. Concerning the shape effect, spherical polymer
brush nanoparticles presented higher in vivo circulation half-life ('6.2 h) than that of
nanoworms with the same volume and surface chemistry ('4.6 h) [29].

Other studies also investigated the transport abilities of non-spherical nanoparticles
through the gastrointestinal barrier after oral administration. Particularly, Li et al. [69] and
Banerjee et al. [78] showed that polystyrene nanorods obtained by membrane stretching
possessed higher retention time and transport abilities through intestinal cells than their
spherical counterparts.

3.3. Biodistribution and Targeted Delivery

The shape of nanocarriers represents a key parameter that influences both their biodis-
tribution and cell/tissue targeting in vivo. Besides clearance and transport, geometry
also has a major role in the internalization by targeted cells and on the amount of target-
ing moieties that nanocarriers can display at their surface. Hence, in vivo studies have
demonstrated that nanoparticle geometry impacts their penetration from vessels to tis-
sue and their capacity of binding to the targeted tissues, by comparing filomicelles or
nanoworms [16,28–30,61,64,65], nanorods [17,35,36,67,78] and nanodisks [35,69,81,93] to
their spherical equivalents.

Polymeric filomicelles represent a promising drug delivery system for targeting en-
dothelial cells in the lumen of blood vessels, since they may adhere strongly, lengthwise
to specific targeted moiety on cell surface. In fact, antibody-decorated filomicelles based
on poly(ethylethylene)-b-poly(ethyleneoxide) diblock copolymer, which recognize distinct
endothelial surface molecules, adhered to endothelium with high specificity both in vitro
and in vivo [82]. Christian and coworkers investigated the biological behavior of PEO-b-CL
filomicelles for paclitaxel (PTX) delivery in comparison to equivalent spherical micelles [61].
The results of the in vivo study on mice highlighted that filomicelles permit a higher tu-
mor selectivity and reduce accumulation in off-target organs (heart, lung, liver, spleen) in
comparison to their spherical counterparts. In addition to the shape-effect, Ke et al. have
demonstrated that the length of the filomicelles also plays a role in their biodistribution and
targeting capacity [16]. Comparing filomicelles of two different lengths (180 nm and 2.5 µm)
with spherical micelles with the same diameter and composition, they demonstrated that
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short filomicelles are more efficient to target tumors than the long ones and spherical
micelles. The formers are easily internalized due to their higher specific surface area. The
presence of long filomicelles in tumor was limited as they mainly accumulated in liver,
spleen, and lung. Similar results were found for brush-based nanoworms, as the shortest
nanocarriers accumulated easier in tumors than spherical or long counterparts [29,30].
Moreover, the longer nanoworms presented high accumulation in spleen and liver.

Li et al. studied self-assembled PEG-PCL nanorods of different size loaded with
DOX and demonstrated similar results in vivo. The accumulation of DOX in tumor was
higher for short nanorods than for spherical or long counterparts, indicating a higher
internalization of nanorods by the tumor cells. Moreover, it was noticed that liver and
spleen accumulation were higher for sphere and long nanorod carriers [17]. The same trend
was shown for PS nanorods and nanodisks coated with specific antibodies, manufactured
by membrane stretching [35,36,69,78,81]. Specially, Kolhar and coworkers highlighted an
increased endothelial specificity and brain accumulation of coated nanorods in comparison
to their spherical equivalent [36], which presented a higher accumulation in lung and
brain [36]. Same conclusions were also obtained by Muro et al. for PS antibody-coated
nanodisks, which presented greater targeting specificity in mice lungs and lower liver
uptake compare to nanospheres [81]. Barua et al. confirmed these results by studying
the shape effect of antibody-coated PS nanoparticles on specific uptake and binding [35].
Nanorods presented the highest uptake and surface binding to breast cancer cells in vitro,
and although nanodisks possessed lower specific uptake than nanorods, their capacity
to enter and bind targeted cells was greater than that of spherical counterparts. In oral
administration, the geometry seemed to play a similar role in targeted cell uptake. In fact,
both nanorods and nanodisks presented higher uptake in intestinal cells than the spherical
equivalents and a higher retention time [69,78].

Regarding lung vascular targeting via inhalation delivery, it has been reported that
nanoparticles can also be internalized via caveolae-mediated endocytosis, with eventual
translocation across endothelial cells of the lung vasculature. As filamentous influenza
viruses induce transcytosis from alveolar space into the lung vascular space, filomicelles
may also be transported through paracellular transport with a similar mechanism [63,94].

The role of nanoparticle aspect ratio in biodistribution and tumor penetration was
also investigated with rod-shaped nucleoprotein nanoparticles with predetermined aspect
ratios and surface decoration, either with PEG or receptor-targeted RGD [95]. PEGylated
nanorods with the lowest aspect ratio achieved the most efficient passive tumor targeting
due to their fast diffusion, whereas RGD-labeled particles with a medium aspect ratio
achieved even more targeting efficacy because of the effect of ligand–receptor interactions.
Since iRGD peptide is known to significantly improve the tumor accumulation and tumor
penetration, cylindrical polymer brushes with a different iRGD conjugation density were
evaluated in terms of cellular uptake, tumor targeting and permeability [77]. It was
demonstrated that the highest conjugation density enhanced cellular uptake five times
compared with iRGD-free brushes and tumor accumulation twice in subcutaneous 4T1
mammary tumor-bearing mice. These nanomaterials also provided a penetration depth in
three-dimensional multicellular spheroids larger than 100 µm.

Pharmacokinetic studies on nanotubes generated from cyclic peptide–poly(HPMA)
conjugates showed that the large size of these particles reduced renal clearance and en-
hanced systemic circulation [62]. Their ability to slowly disassemble makes these materials
promising for reducing organ accumulation during systemic drug delivery.

Brush nanoparticles of different topologies were obtained from poly(2-(2-bromoisobut-
yryloxy) ethyl methacrylate) (PBIEM) at different degree of polymerization (DP), and
side chains of PEGMA and glycidyl methacrylate (GMA) [74]. In vitro tests showed
that nanorod shapes exhibit higher association and penetration into multicellular tumor
spheroids compared to their spherical or filamentous counterparts.

Nanospheres or nanorods of different diameters and lengths were also obtained
by varying the number of the conjugated hydrophobic drug camptothecin (CPT) in the



Pharmaceutics 2023, 15, 32 10 of 19

amphiphilic PEG-block-dendritic polylysine–CPT (PEG–xCPT) copolymer [75]. Size and
shape were found to strongly affect blood clearance, biodistribution and tumor targeting.
The nanorods with medium lengths (<500 nm) had a much longer blood circulation and
faster cellular uptake than the nanospheres or long nanorods. These results confirmed that
tumor selectivity is not only driven by the capacity of filomicelles to evade the immune
system, but also by their ability to permeate into different tissues, which is correlated to
their shape. Moreover, the influence of nanoparticle shape on uptake and cellular response
was also highlighted by Zhang and coworkers [96]. While both spherical and needle-shaped
PLGA-PEG nanoparticles entered cells via endocytosis, only needle-shaped nanoparticles
were found to induce significant cytotoxicity [96]. This effect seemed to be induced through
lysosome disruption, although this mechanism may be strongly dependent on the rigidity
of the material used.

4. Effect of Particle Shape on Drug Delivery Properties

Due to their advantages in overcoming the different biological barriers, non-spherical
polymeric nanoparticles are promising drug nanodelivery systems. Several studies inves-
tigated the effect of particle shape on drug delivery properties. Both drug encapsulation
and delivery are affected by the geometry of the nanocarriers, together with the capacity of
the hydrophobic core to entrap hydrophobic drugs, and the polymer degradation kinet-
ics. [11,12,76]. The main drug delivery properties of non-spherical polymeric nanocarriers
are summarized in Table 3.

Numerous investigations were performed on filomicelles obtained by amphiphilic
copolymers self-assembly. The results demonstrated that filomicelles allow higher anti-
cancer drugs encapsulation than spherical equivalents, resulting in a greater apoptotic
effect on tumor cells [97]. Compared to spherical micelles, filomicelles present a higher
surface-to-volume ratio [59], and, most importantly, a larger size of hydrophobic blocks (i.e.
a higher packing parameter) [98], which may favor the drug–copolymer interactions and
therefore the final drug partition coefficient [99].

Several studies on PCL-PEG based filomicelles for anticancer drug encapsulation showed
that higher drug loading contents (DL, %wt.) and encapsulation efficiency (EE, %wt.) can
be achieved compared to spherical counterparts [15,59,61,100–103]. PTX was one of the most
investigated anticancer drugs [15,59,100]. Geng and coworkers performed both in vitro and
in vivo studies on PTX-loaded filomicelles, which presented almost two times higher DL
than spherical micelles for different initial concentrations [100]. The filomicelle capacity to
encapsulate PTX was closely linked to the hydrophobic core diameter, reaching a DL = 4.5%
and 6.7% for filomicelles with PCL core diameter of 11nm and 29nm, respectively [59]. This
conclusion was confirmed by Sun et al. for PCL-PEG-based filomicelles, since PTX drug
loading (DL above 10% and EE higher than 63%) and release were closely related to the length
of PCL core and copolymer composition [103]. In vitro and in vivo studies on PTX-loaded
PCL-PEG filomicelles demonstrated a reduced PTX toxicity and greater anticancer activity
than spherical micelles or free drug [15,61,100]. In the case of PCL-PEG filomicelles loaded
with dexamethasone, DL up to 10% and EE over 90% were obtained, which correspond to
higher values than those obtained with spherical micelles [102].

A slight change in copolymer composition seems to have an important impact on drug
encapsulation in non-spherical nanocarriers [104]. In fact, the amount of drug loaded may
increase when the hydrophobicity of the core is enhanced [105]. For instance, elongated
micelles with poly(styrene oxide) blocks are able to solubilize four times more than micelles
with a poly(butylene oxide) core [106]. Drug loading may also depend on their amorphism;
the replacement of the semicrystalline PCL with other amorphous polyesters such as
poly(δ-decalactone) increased DL [107].

Nair et al. investigated PTX loading capacity of PEG-PBCL filomicelles, containing an
aromatic group in the hydrophobic core, compared to equivalent PEG-PCL filomicelles. The
former presented 40% higher EE than the PEG-PCL filomicelles. In vitro tests on human
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lung cancer cells and tests on mice bearing tumor xenografts highlighted the better efficacy
of PEG-PBCL micelles to induce tumor cells apoptosis and tumor shrinkage over time [101].

PLA-PEG-based filomicelles loaded with betulin derivative also reached high DL
(around 20%) and EE near 100%, leading to significant apoptosis of carcinoma cells
in vitro [108].

Investigations on synergetic multidrug loading on filomicelles were also performed
as combination therapy to overcome tumor heterogeneity and tumor resistance. PEG-PCL
filomicelles loaded with PTX and retinoic acid [109] and PLA-PEG filomicelles co-loaded with
PTX and 17-AAG, or triple combination with rapamycin [110] showed interesting DL (around
10%) and EE (above 68%). These studies demonstrated that drug–drug and drug–polymer
interactions play an important role both on drug-cocktail encapsulation and release.

Worm-like polymeric micelles based on poly(2-oxazoline)s (POx) poly(2-methyl-
2-oxazoline-block-2-butyl-2-oxazoline-block-2-methyl-2-oxazoline) (P(MeOx-b-BuOx-b-
MeOx) were used to achieve co-loading (over 50%wt.) of etoposide (ETO) and an alkylated
cisplatin prodrug (C6CP) [111], improving their pharmacokinetics, tumor distribution, and
antitumor activity in animal models of small/non-small cell lung cancer. Drug–polymer
interaction also affected particle morphology; starting from spheres with inside C6CP,
they became worms after addition of ETO [111]. On the contrary, a transition from par-
tially worm-like to spherical morphology was obtained from unloaded polymer upon
encapsulation of small amounts of PTX [112].

Chen et al. worked on poly(etheranhydrides) terpolymers spheres, nanorods and
filomicelles (with same diameter) loaded with DOX. They obtained the highest encapsu-
lation values with filomicelles (DL = 10.6%, EE = 75.1%), then with nanorods (DL = 7.4%,
EE = 68.8%) compared to spherical counterparts (DL = 5.2%, EE = 70%). The antitumor
effect on tumor-bearing mice followed the same trend, with the highest decrease in tumor
volume for DOX-loaded filomicelles [113]. Li et al. found similar results but with higher
DOX encapsulation values for PCL-PEG long nanorods (DL = 8.4%, EE = 92.3%) and short
nanorods (DL = 7.3%, EE = 80.2%) compared to nanospheres (DL = 4.5%, EE = 49.5%) [17].

In the case of unimolecular bottlebrush micelles, a relatively high drug loading capacity
(up to ca. 25%) was obtained independently of morphology (sphere, rod, and worm) [114].
These nanoparticles were obtained using poly(2-hydroxyethyl methacrylate) (PHEMA) as
backbones and poly(tert-butyl acrylate)-block-poly(ethylene glycol) (PtBA-b-PEG), loaded
with IR780 photothermal agent. The rod-like shape performed favorable behavior for cellu-
lar uptake in 2D culture and spheroid penetration in vitro, preferential tumor accumulation
in mice and photothermal therapeutic efficacy in MCF-7 tumor xenograft model in vivo.

A tri-component polymer brush composed of a polybenzofulvene copolymer bearing
low molecular weight hyaluronic acid and oligo-PEG fractions was also proposed as a
nanocarrier for targeted delivery of DOX (DL ~13%), since this nanomaterial was able to be
internalized into cancer cells by CD44 receptor-mediated uptake [115].

Drug loading, together with drug−polymer interaction and drug diffusion coefficient,
are key factors that influence the release profile in most nanocarrier systems. Clearly,
particle shape is directly related to the surface-to-volume ratio, which makes an important
contribution to the drug diffusion mechanisms [83]. Surface-to-volume ratio may also
affect the kinetics of nanoparticle degradation and, as a result, drug release. In PEO-b-PCL
worm-like micelles, a relatively rapid degradation to spherical micelles was observed, as
a result of hydrolytic degradation of PCL block [59,104]. The in vitro release kinetics of
PTX from these worm micelles showed an initial burst release due to the weak localization
of some of the drug in the core–corona interface region, followed by a much slower and
sustained release.

pH transitions are often exploited by nanocarriers to selectively deliver drug in acidic
environments, such as in tumors and in endosomes. Therefore, in vitro release tests are of-
ten carried out to assess the effect of pH on polymer degradability [98], self-assembly [107],
drug solubility [105,116], and therefore on the release profile.
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Table 3. Non-spherical nanocarriers for drug delivery applications.

Fabrication
technique Shape Material Drug Target Ref.

Conventional
self-assembly

Filomicelles PEG-PEE,
PEG-PCL PTX human-derived

tumors in mice [15]

Filomicelles
PEG-b-

P(CPTKMA-co-
PEMA)

Conjugated CPT Tumor bearing
mice [16]

Nanorods PEG-PCL DOX

HeLa, HepG2, OB
cells; Balb/c mice

bearing H22 tumor
xenografts.

[17]

Crosslinked
wormlike vesicles PEG-PLA-PEG DOX HeLa cells [19]

Filomicelles PEG-PPS Chloroquine plasmacytoid
dendritic cells [22]

Worm-like/rod-
like

vesicles

POEGMA-b-P(ST-
co-VBA) DOX MCF-7 cells [32]

Filomicelles PEG-PCL PTX
A549

Tumor-bearing
mice

[61]

Tubular
polymersomes

/worm-like
micelles

PEG, PTMC, PCL,
and PDLLA block

copolymers
DEX

retinal (ARPE-19)
cells; ex vivo
porcine eyes

[65]

Nanorods PEG-xCPT CPT/DOX MCF-7/ADR
cancer cells [75]

Filomicelles PEG-PCL,
PEG-PBCL PTX

A549 lung cancer
cells, EC4 liver

cancer cells
[100,101]

Filomicelles PEG-PLA Betulin derivative HeLa cells [108]

Filomicelles PEG-PCL PTX, retinoic acid A549, HepG2,
U2os, EC4 [109]

Filomicelles PEG-PLGA PTX, 17AAG,
rapamycin

CaCo-2 human
colorectal

adenocarcinoma
cells

[110]

Filomicelles P(MeOx-b-BuOx-
b-MeOx) ETO, C6CP, PTX

Small/ non-small
cell lung cancer

models
[111]

Filomicelles,
nanorods

poly(ether-
anhydrides) DOX Murine breast

cancer model [113]

pH-responsive
wormlike micelles PEG-PDPA RGD-DM1 Orthotopic brain

tumor model [117]

pH-responsive
wormlike micelles

mPEG-ser-
[poly(Lys-
DEAP)]2

Chlorin e6
KB cells and

tumor-bearing
mice

[118]

pH-responsive
wormlike micelles PEG-PDPA Succinobucol Metastatic breast

cancer Model [119]
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Table 3. Cont.

Fabrication
technique Shape Material Drug Target Ref.

Unimolecular
polymer brushes

Nanorods PNB-g-PGA Conjugated CPT HeLa, LS174T, and
HEK cells [31]

Nanoworms,
lamellae, vesicles

PHPMA-b-
(NBMA-co-CMA) DOX HeLa cells [33]

Cylindrical
bottlebrushes

cellulose-g-(CPT-b-
OEGMA) Conjugated CPT

MCF-7 induced
multicellular

spheroids and
tumor-bearing

mice

[73]

pH sensitive
nanorods PHF-g-(PCL-PEG) DOX A459 human lung

cancer cells [105]

Nanorods,
Nanoworms

PHEMA-g-(PtBA-
b-PEG) IR780

photothermal
therapy in MCF-7

tumor models
[114]

Cylindrical
brushes

HA-
polybenzofulvene DOX HCT116, MCF-7,

16HBE cell lines [115]

PRINT Nanorods PLGA Docetaxel

Human ovarian
carcinoma cells;

Mice bearing
tumor xenografts

[38,39]

The amount of PTX released by the PLA-PEG filomicelles was less than that released by
the spherical micelles at fixed pH. In particular, ~15% release at pH 5.5 and ~22% at pH 3.0 were
observed for filomicelles in 71 days, in contrast to 36% at pH 5.5 and 63% at pH 3.0 for spherical
micelles, which was in agreement with the faster degradation of spherical micelles [12].

pH-responsive worm-like micelles (diameter of ~20 nm and length 50−200 nm)
were obtained from methoxy poly(ethylene glycol)-block-poly(2-diisopropyl methacrylate)
(mPEG-b-PDPA) loaded with succinobucol (DL about 15% and EE about 93%), a selective
inhibitor of vascular cell adhesion molecule-1 (VCAM-1), which was selected as a poten-
tial candidate against lung metastasis of breast cancer [107]. A pH-sensitive drug release
was achieved in response to acidic intracellular environments, reducing the expression of
the metastasis-associated VCAM-1, thus inhibiting the migration of metastatic 4T1 breast
cancer cells. These particles induced a higher specific accumulation in lung, and higher
delivery on the lung sites metastases, which allowed a reduction of the brain tumor close
to 86%.

Worm-like micelles (diameter ~20 nm and length 60−600 nm) composed of pH-
responsive mPEG-b-PDPA copolymer and loaded with cyclic RGD peptide targeted cy-
totoxic emtansine (DM1) conjugates (RGD-DM1), were developed for brain tumor tar-
geting [117]. The nanoworms dissociated at intracellular acidic environments to release
RGD-DM1, which was further degraded into DM1 by disulfide cleavage. These nanocar-
riers enhanced drug delivery to the brain, with deep penetration into brain tumor mass,
and efficient internalization into glioma cells, leading to almost 90% inhibition on tumor
progression in an orthotopic brain tumor model.

Photosensitizing drug-carrying worm-like micelles were also obtained using a pH-
sensitive miktoarm block copolymer consisting of one methoxy PEG block and two 3-
diethylaminopropylated poly(L-lysine) [poly(Lys-DEAP)] blocks [118]. These worm-like
micelles disintegrate in the acidic environment of solid tumors, resulting in targeted de-
livery of the photosensitizing drug, which reduced approximately five times the tumor
volume in nude mice.
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Finally, Enlow and coworkers investigated PLGA cylinders manufactured by PRINT
method and loaded with docetaxel. They studied different initial loading ratio between
0 and 40% and obtained EE higher than 90% for each ratio, indicating that PRINT PLGA
cylinders are interesting nanocarriers for high loading capacities [39]. Chu et al. found
similar DL (33.5% for short nanorods and 45.2% for longer nanorods) for Docetaxel-loaded
PRINT PLGA nanorods but with a lower EE caused by the washing steps performed during
the process [38].

5. Conclusions

Several studies have shown that the presented manufacturing methods allow the
design of anisotropic polymeric nanocarriers with precise shape and size, obtaining mainly
nanoworms, nanorods and nanodisks. These methods can be applied to different types of
biocompatible polymers and studies are still ongoing to expand the polymer library. Differ-
ent works has shown that nanocarrier shape is a critical parameter, along with size, to tailor
their biological interactions and their drug delivery system properties. Indeed, the shape
affects the nanoparticle clearance by biological systems, their transport to the targeted place
and their biodistribution and targeting capacity. Short filomicelles, nanorods and nanodisks
possess interesting properties which may be exploited to deliver therapeutics efficiently at
the tumor site and with reduced side effects. Moreover, anisotropic nanocarriers generally
present higher drug loading and encapsulation efficiency compared to spherical nanopar-
ticles. In vitro and in vivo studies also showed higher targeting efficiency on tumor cells
and tissues. This review highlights the importance of the shape in the design of polymeric
nanocarriers for drug delivery systems. However, nanocarriers are complex materials and it
is difficult to isolate the shape effect from their size, surface chemistry, density, and rigidity.
Despite the clear involvement of particle shape in biological processes, very few examples
of non-spherical nanoparticles have entered the clinical stage. Further research in this field
is therefore required to speed up the translation of non-spherical polymer nanoparticles
into the clinic.
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Bębenek, E. Bioresorbable filomicelles for targeted delivery of betulin derivative. Vitr. Study. Int. J. Pharm. 2019, 557, 43–52.
[CrossRef]

109. Nair, P.R.; Alvey, C.; Jin, X.; Irianto, J.; Ivanovska, I.; Discher, D.E. Filomicelles deliver a chemo-differentiation combination of
paclitaxel and retinoic acid that durably represses carcinomas in liver to prolong survival. Bioconjugate Chem. 2018, 29, 914–927.
[CrossRef]

110. Jelonek, K.; Li, S.; Kaczmarczyk, B.; Marcinkowski, A.; Orchel, A.; Musiał-Kulik, M.; Kasperczyk, J. Multidrug pla-peg filomicelles
for concurrent delivery of anticancer drugs—The influence of drug-drug and drug-polymer interactions on drug loading and
release properties. Int. J. Pharm. 2016, 510, 365–374. [CrossRef]

111. Wan, X.; Min, Y.; Bludau, H.; Keith, A.; Sheiko, S.S.; Jordan, R.; Wang, A.Z.; Sokolsky-Papkov, M.; Kabanov, A.V. Drug combination
synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer. ACS Nano
2018, 12, 2426–2439. [CrossRef]

112. Jaksch, S.; Schulz, A.; Di, Z.; Luxenhofer, R.; Jordan, R.; Papadakis, C.M. Amphiphilic triblock copolymers from poly(2-oxazoline)
with different hydrophobic blocks: Changes of the micellar structures upon addition of a strongly hydrophobic cancer drug.
Macromol. Chem. Phys. 2016, 217, 1448–1456. [CrossRef]

113. Chen, T.; Guo, X.; Liu, X.; Shi, S.; Wang, J.; Shi, C.; Qian, Z.; Zhou, S. A strategy in the design of micellar shape for cancer therapy.
Adv. Healthc. Mater. 2012, 1, 214–224. [CrossRef] [PubMed]

http://doi.org/10.1021/nn200365a
http://doi.org/10.1021/nn505126b
http://www.ncbi.nlm.nih.gov/pubmed/25419856
http://doi.org/10.1371/journal.pone.0129310
http://www.ncbi.nlm.nih.gov/pubmed/26132074
http://doi.org/10.1038/nm1142
http://www.ncbi.nlm.nih.gov/pubmed/15577929
http://doi.org/10.1038/s41598-017-07588-9
http://www.ncbi.nlm.nih.gov/pubmed/28779154
http://doi.org/10.1039/c3tb20431f
http://www.ncbi.nlm.nih.gov/pubmed/32263324
http://doi.org/10.1146/annurev-chembioeng-060713-040447
http://doi.org/10.1021/acsapm.0c00694
http://doi.org/10.1007/s11095-007-9335-z
http://doi.org/10.2217/nnm-2016-0007
http://doi.org/10.1021/acs.biomac.0c00169
http://www.ncbi.nlm.nih.gov/pubmed/32208660
http://doi.org/10.1002/app.45732
http://doi.org/10.1039/c3sm51716k
http://doi.org/10.1021/acs.biomac.8b01430
http://www.ncbi.nlm.nih.gov/pubmed/30689945
http://doi.org/10.1016/j.ijpharm.2004.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15778048
http://doi.org/10.1039/C6PY01838F
http://doi.org/10.1016/j.ijpharm.2018.12.033
http://doi.org/10.1021/acs.bioconjchem.7b00816
http://doi.org/10.1016/j.ijpharm.2016.06.051
http://doi.org/10.1021/acsnano.7b07878
http://doi.org/10.1002/macp.201500465
http://doi.org/10.1002/adhm.201100040
http://www.ncbi.nlm.nih.gov/pubmed/23184725


Pharmaceutics 2023, 15, 32 19 of 19

114. Li, H.A.; Liu, H.; Nie, T.Q.; Chen, Y.; Wang, Z.Y.; Huang, H.H.; Liu, L.X.; Chen, Y.M. Molecular bottlebrush as a unimolecular
vehicle with tunable shape for photothermal cancer therapy. Biomaterials 2018, 178, 620–629. [CrossRef] [PubMed]

115. Licciardi, M.; Scialabba, C.; Giammona, G.; Paolino, M.; Razzano, V.; Grisci, G.; Giuliani, G.; Makovec, F.; Cappelli, A. Design and
development of hyaluronan-functionalized polybenzofulvene nanoparticles as cd44 receptor mediated drug delivery system.
J. Nanoparticle Res. 2017, 19, 197. [CrossRef]

116. Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic unimolecular micelles
based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography
imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769–21779. [CrossRef] [PubMed]

117. Zeng, L.; Zou, L.; Yu, H.; He, X.; Cao, H.; Zhang, Z.; Yin, Q.; Zhang, P.; Gu, W.; Chen, L.; et al. Treatment of malignant brain tumor
by tumor-triggered programmed wormlike micelles with precise targeting and deep penetration. Adv. Funct. Mater. 2016, 26,
4201–4212. [CrossRef]

118. Lee, J.O.; Oh, K.T.; Kim, D.; Lee, E.S. Ph-sensitive short worm-like micelles targeting tumors based on the extracellular ph.
J. Mater. Chem. B 2014, 2, 6363–6370. [CrossRef]

119. He, X.Y.; Yu, H.J.; Bao, X.Y.; Cao, H.Q.; Yin, Q.; Zhang, Z.W.; Li, Y.P. Ph-responsive wormlike micelles with sequential metastasis
targeting inhibit lung metastasis of breast cancer. Adv. Healthc. Mater. 2016, 5, 439–448. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.biomaterials.2018.03.032
http://www.ncbi.nlm.nih.gov/pubmed/29602561
http://doi.org/10.1007/s11051-017-3881-z
http://doi.org/10.1021/am5002585
http://www.ncbi.nlm.nih.gov/pubmed/24628452
http://doi.org/10.1002/adfm.201600642
http://doi.org/10.1039/C4TB00779D
http://doi.org/10.1002/adhm.201500626

	Introduction 
	Fabrication of Non-spherical Polymeric Nanoparticles 
	Self-Assembly Techniques 
	Membrane Stretching Technique 
	Particle Replication in Nonwetting Template (PRINT) 

	Effect of Particle Shape on Overcoming Biological Barriers 
	Interactions with Immune System 
	Particle Transport 
	Biodistribution and Targeted Delivery 

	Effect of Particle Shape on Drug Delivery Properties 
	Conclusions 
	References

