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Abstract 
The splitting of hydrogen sulphide to produce value-added products, namely hydrogen 
and elemental sulphur, represents a promising route for the treatment of H2S, a hazardous 
waste gas, and for a circular production of hydrogen. The decomposition reaction has 
been studied in a plug flow reactor on the catalyst MoS2 for temperatures ranging between 
640 and 929 °C and with a H2S partial pressure of 1.27 kPa. Equilibrium conversions 
have been reached for residence times below 3 s and the apparent activation energy of 
71.894 kJ/mol has been calculated. The catalytic decomposition on MoS2 results therefore 
to be an interesting pathway for the production of H2 from H2s. 
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1. Introduction 
Hydrogen sulphide (H2S) is a poisonous and dangerous compound, the presence of which 
affects many fossil and renewable resources. It is also produced in industrial processes 
that involve desulphurization. H2S is usually processed through the Claus process, which 
partially oxidizes it into sulphur and water. An interesting alternative is represented by 
the splitting of H2S (Chan et al., 2023), which leads to the production of hydrogen and 
sulphur. The reaction involved is the following: 

𝐻𝐻2S → 𝐻𝐻2 +
1
2
𝑆𝑆2 (1) 

The production of hydrogen is particularly interesting for the energy sector and the 
chemical industry. In a previous study, the simulation of a plant producing H2 through the 
thermal decomposition of H2S has been developed, proving the commercial interest of 
the process (Nova et al., 2023b). A variety of H2S decomposition methods have been 
studied, including thermal, catalytic, non-thermal plasma-based, electrolytic, and 
biological processes (Zheng et al., 2023). However, the upscale production of hydrogen 
from H2S has not been realized. The most substantial quantities of hydrogen sulphide are 
produced by large-scale plants. For a possible industrial application, carrying out the 
reaction with high flow rates and therefore reduced residence times is of fundamental 
importance. For this reason, this study focused on the analysis of the catalytic H2S 
splitting. 

The chosen catalyst is MoS2; one of the early investigated catalysts which still appears to 
be among the most active ones for the reaction of interest (Aljama et al., 2023). 
Understanding the reaction and its kinetics in presence of MoS2 is fundamental to improve 
its energy efficiency and conversion. Few studies investigated the reaction and its kinetic 



  A. Nova et al. 

aspects. A Hougen-Watson adsorption model was chosen to represent the reaction 
mechanism (Kaloidas and Papayannakos, 1991). The rate-determining step resulted to be 
the cleavage of the hydrogen-sulphur bonds of the H2S adsorbed on the catalyst active 
sites. Burra et al. (2018) compared catalysts of their production with MoS2 in H2S partial 
pressures between 10 and 50 kPa. The particle size of their catalysts was ~400 µm. Below 
1000 K, the yield of H2 obtained from MoS2 was higher than the one obtained with every 
other tested oxide catalyst. They also calculated activation energies and orders of 
reactions with respect to H2S. 

The present work aims at presenting a new set of experimental data, obtained by 
performing the reaction between 640 and 929 °C, and at a lower H2S partial pressure (1.27 
kPa), compared to previous studies. This allows kinetic evaluations, like the apparent 
activation energy of the reaction. Starting from the same data, it will be possible to 
develop a kinetic model and regress the kinetic parameters. 

2. Experimental setup 
The core of the setup built for the experimental campaigns (Figure 1) is the quartz reactor, 
designed as a Plug Flow Reactor (PFR) and placed inside a tubular oven. The feed is 
represented by a gaseous H2S/N2 mixture with a concentration of H2S equal to 1.5 wt%. 
The flow rate can be tuned ranging between 1 and 100 L/h. At the exit of the reactor, the 
scrubbing of sulphur from the outlet reaction gas is performed by passing it through 
distilled water. A stilling chamber reduces the risk of potentially entrained water droplets. 
Suitable filters ensure the total removal of any solid and liquid particle from the stream. 
The gases are analyzed with an Agilent 490 Micro GC (Micro Gas Chromatograph). The 
catalyst  
is constituted of 0.5 g of Molybdenum(IV) sulfide powder (particle size below 44 µm, 
99% pure, Thermo Fisher), sandwiched between two layers of quartz wool and placed in 
the isothermal zone of the reactor. 

The reliability of the experimental setup has first been tested by performing the H2S 
splitting reaction in thermodynamic regime (Nova et al., 2023a). During the campaign 
investigating the catalytic splitting, temperatures from 640 to 929 °C have been 
considered and the total inlet gas flow rate has been varied to determine the conversion 
at different residence times. The reaction pressure has been kept at 1 bar. 
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Figure 1 - Experimental setup. 

3. Results and discussion 
The reaction has been performed with a H2S partial pressure of 1.27 kPa and at four 
different temperatures (640, 740, 831, and 929 °C). Five inlet flow rates have been 
considered (100, 80, 50, 30, and 10 L/h), corresponding to five different residence times 
inside the reactor. The experimentally obtained H2 concentrations are reported in Table 
1. The errors correspond to the standard deviation calculated from all the composition 
measurements.  

Table 1 - Experimental H2 concentrations obtained by performing the catalytic splitting of H2S in 
the described conditions. 

T [°C] Inlet flow rate [L/h] Residence time [s] H2 concentration [mol%] 
640 100 0.8 0.029 ± 0.001 
640 80 1.0 0.038 ± 0.001 
640 50 1.6 0.055 ± 0.001 
640 30 2.7 0.059 ± 0.001 
640 10 8.0 0.089 ± 0.001 
740 100 0.7 0.086 ± 0.001 
740 80 0.9 0.099 ± 0.004 
740 50 1.4 0.126 ± 0.053 
740 30 2.4 0.152 ± 0.004 
740 10 7.2 0.203 ± 0.004 
831 100 0.7 0.195 ± 0.003 
831 80 0.8 0.242 ± 0.012 
831 50 1.3 0.270 ± 0.010 
831 30 2.2 0.310 ± 0.006 
831 10 6.7 0.333 ± 0.004 
929 100 0.6 0.454 ± 0.001 
929 80 0.8 0.483 ± 0.004 
929 50 1.2 0.490 ± 0.005 
929 30 2.0 0.498 ± 0.002 
929 10 6.1 0.512 ± 0.005 
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Starting from the hydrogen concentrations, measured experimentally, the corresponding 
H2S conversion has been calculated (see Figure 2). 

 
Figure 2 - H2S conversion at different reaction temperatures and residence times. 

The conversion increases with the residence time. In particular, values of conversions 
almost equal to those obtained at thermodynamic equilibrium start to be reached already 
at residence times comprised between 2 and 3 s. These residence times correspond to inlet 
gas flow rates of 30 L/h (see Table 1). These results can be compared with the conversions 
measured by performing the reaction with the same setup, working pressure, and inlet 
mixture, but in absence of a catalyst. In this case, the thermodynamic equilibrium is 
reached at residence times longer than 8 s (corresponding to a 2 L/h inlet flow rate). This 
shows that, in presence of the catalyst, the same value of conversion, the thermodynamic 
equilibrium value, is reached with shorter residence times. The experimental H2 
concentrations and corresponding conversions at equilibrium conditions are reported in 
Table 2. 

Table 2 - H2 concentrations and conversions at the thermodynamic equilibrium, measured by 
performing the reaction in absence of a catalyst and with a gas inlet flow rate of 2 L/h. 

T [°C] H2 concentration [mol%] Conversion [%] 
640 0.063 ± 0.006 4.9 ± 0.6 
740 0.173 ± 0.006 13.7 ± 0.6 
831 0.34 ± 0.01 27 ± 1 
929 0.533 ± 0.008 42.3 ± 0.8 

 
To evaluate the reproducibility of the results, the deactivation trend of the catalyst, MoS2, 
has been studied. A batch of fresh catalyst has been loaded into the reactor and a series 
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of experiments have been carried out while monitoring the H2 concentration as the 
catalyst working time progressed. In Figure 3 the results are presented for a reaction 
temperature of 740°C. As can be seen, no significant reduction of the catalyst efficiency 
can be observed. Therefore, in our operating conditions, in absence of impurities and 
within 10 h of activity, the MoS2 powder is stable and does not show signs of deactivation 
or poisoning. This is in accordance with EDX analyses performed on MoS2 after 2 h of 
activity, which highlighted no additional sulfur formation from the reaction (Burra et al., 
2018) 

 
Figure 3 - H2 concentration obtained by performing the splitting at 740°C, with different 

residence times, plotted against the time of activity of the catalyst. 

For each inlet flow rate, the natural logarithm of the H2S consumption rate has been 
plotted against the reciprocal of the reaction temperature . The slopes of the resulting lines 
represent the corresponding E/R values (where R denotes the universal gas constant and 
E the activation energy). In Figure 4 the Arrhenius plot for the 30 L/h case has been 
reported. The corresponding E is 67.470 kJ/mol. The activation energies obtained for each 
flow rate have been averaged to determine the apparent activation energy, equal to 71.894 
kJ/mol. This value is in agreement with the literature data. For MoS2, Burra et al. (2018) 
calculated an activation energy of around 50 kJ/mol. The difference is probably due to 
the lower H2S inlet partial pressure employed in this study and to the smaller particle size 
of the catalyst. Also, the apparent activation energy is lower than that displayed by many 
catalysts, like metal oxides (γ-Al2O3, α-Fe2O3, V2O5) (Reshetenko et al., 2002) and 
sulphides (Meeyoo et al., 1996). 
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Figure 4 - Arrhenius plot, for the case of an inlet flow rate of 30 L/h. 

4. Conclusions 
The catalytic splitting of H2S has been studied with an experimental campaign, in which 
the reaction has been performed at temperatures between 640 and 929 °C, with a partial 
pressure of H2S of 1.27 kPa, and in the presence of MoS2 as a catalyst. From the 
conversion values, it appears that thermodynamic equilibrium is reached with residence 
times lower than 3 s. The activity of the catalyst was monitored and up to 10 hours of 
activity no signs of reduction in the efficiency are shown. The apparent activation energy 
has been calculated and is equal to 71.894 kJ/mol. Starting from the set of data obtained, 
it will be possible to better understand the kinetics of the reaction, and eventually employ 
it in reactor and plant design. The splitting of H2S could improve the performances of 
different plants and specifically of refineries, providing a source of hydrogen from a 
dangerous waste product. 
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