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Non-linear analytical model for FRCM coupons in tension 

Yu Yuan , Gabriele Milani * 

Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy   

A R T I C L E  I N F O   

Handling Editor: Prof. Ole Thomsen  

Keywords: 
FRCM 
Tensile test 
Analytical solutions 
Failure mechanism 

A B S T R A C T   

Externally bonded FRCM (Fiber Reinforced Cementitious Matrix) materials are nowadays quite diffused to 
reinforce existing structures: taking as reference FRP (Fiber Reinforced Polymer), the replacement of an organic 
matrix with mortar is more compatible with masonry substrates, and the reversibility of the reinforcement is 
more appealing for the architectural heritage conservation. At the same time, due to the low strength of the 
mortar layers, complex failure mechanisms are observed for FRCMs, which still need comprehensive theoretical 
investigations. Indeed, not only the mortar-fiber interface may behave non-linearly, but also the mortar may 
crack and affect the overall behavior. The tensile test on coupons is commonly used as a direct approach to 
characterize the properties of the reinforcing package, and there is a wide consensus on approximating the global 
behavior with a trilinear law; however, the different test set-ups and the inhomogeneity of the material itself 
bring about large dispersion of the experimental results. This paper aims at proposing a simplified analytical 
model to consider the damage mechanisms in FRCM coupons in tension, including interface slippage, mortar 
cracking, and their simultaneous occurrence. The accuracy of the model is then verified by comparing the results 
with experimental data. The conditions under which such failure mechanisms occur and the effects of material 
properties are also investigated with a view to complement the understanding of experimental observations from 
a theoretical perspective.   

1. Introduction 

For many existing masonry buildings, which include also a great part 
of the architectural heritage, strengthening interventions are necessary 
to increase the structural safety. External bonding of composite mate-
rials to structural elements is a common and effective reinforcement 
strategy, considering the limited variation of weight and useable space, 
as well as the flexible and rapid application. In recent years, FRCM 
(Fiber Reinforced Cement Matrix), also known as TRM (Textile Rein-
forced Mortar) has attracted increasing attention, particularly for the 
reinforcement of masonry structures as an alternative to FRP (Fiber 
Reinforced Polymer). Instead of the organic matrix adopted in FRP 
strengthening, the inorganic matrix of FRCM ensures better compati-
bility with masonry materials, allows moisture evaporation, and per-
forms better at high temperatures [1]. A further important advantage, 
especially for architectural heritage, is the reversibility. 

As a critical aspect that has been emphasized in FRP-reinforced 
systems, the adhesion between the externally applied composite and 
the substrate is very important, since poor bonding will lead to prema-
ture failure of the reinforcing system without activating the full 

participation of the composite. Shear tests, which are commonly used to 
characterize bond behaviors, have also been conducted to investigate 
FRCM-reinforced samples [2,3]. However, unlike FRP materials (which 
typically exhibit higher strength), in addition to the detachment of the 
reinforcement from the substrate, failures inside the FRCM reinforce-
ment can occur: the mortar may crack, the fiber textile may slide inside 
the mortar layers, and the fibers may be subjected to rupture. Therefore, 
the description of the failure mechanism developing inside an FRCM 
reinforcing package is an important open issue that deserves consider-
ation. Tensile tests on coupons are widely used to characterize FRCM 
material properties; both Italian CNR-DT 215/2018 [4] and American 
ACI 549.6R-2020 [5] guidelines require testing standardized FRCM 
specimens in tension, for a preliminary evaluation of the system per-
formance. On the other hand, many experimental campaigns have been 
carried out [3,6–16], including several Round Robin Tests containing 
both shear and tensile tests involving a variety of materials and exper-
imental set-ups [17–20]. 

The results of tensile tests for FRCM often show a high degree of 
dispersion, which is due to many reasons, for instance, the irregularities 
of the specimens themselves, such as differences in casting dimensions, 
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misalignment of yarns, and the appearance of micro-cracks in the 
mortar. As a result of the specimens’ inhomogeneities, the location 
where the first crack appears is also not fully predictable, resulting in 
inaccurate measurements when the range of displacement measuring 
devices (such as extensometers or LVDTs) is not sufficient to cover the 
crack development. In combination with conventional measuring de-
vices, DIC [6,21,22] or buried sensors [9] have also been used to avoid 
this problem while obtaining more detailed information. On the other 
hand, different testing set-ups have a considerable effect on the resultant 
tensile behavior, hampering the comparison among the experimental 
results. In general, the FRCM coupons are rectangular or 
dumbbell-shaped, which can be cast by mortar with one or more layers 
of fiber grids. The connection between the specimen and the testing 
machine needs to ensure efficient transmission of tension while at the 
same time avoiding twisting and eccentricity as much as possible. The 
two currently used gripping methods are the clevis grip and the 
clamping grip. The specific gripping technologies and their effect on the 
experimental results will be reviewed in detail in the next section. It 
should be mentioned that many researchers have now acknowledged 
this effect, both from an experimental phenomenological [11,17,18,23] 
and theoretical [24–26] point of view, because it has been observed that 
failure modes triggered are very dependent on the specimen configu-
rations and the clamping system used. Although the fiber fracture that 
may occur in the tensile test hardly ever occurs in actual engineering 
applications, the tensile tests are of some significance and do reflect the 
degree of the bond between mortar and fiber textile to some extent, since 
interfacial slip is a commonly observed failure mechanism in coupon 
tests regardless of the experimental setup. For instance, in the coupon 
test, there’s an inelastic slippage between dry fiber and matrix, and the 
analytical model proposed can indirectly be used to calibrate the me-
chanical properties (in terms of shear stress, slip) of the interface. 

In such a context, it is therefore interesting to develop analytical 
models for describing the non-linear behavior of FRCM coupons sub-
jected to tension tests, because fast and stable computational results can 
be useful to both simulate reinforced structures in absence of extensive 
preliminary characterizations (rarely available), and also provide 
possible theoretical perspectives on the interpretation of complex 
experimental phenomena. Although there are differences in the 
boundary (loading) conditions, the constitutive relationships of the 
components, and the description of the mortar cracking process, the 
existing models are similar in terms of establishing simplified mathe-
matical models and deriving the governing equations. In the analytical 
model proposed by Grande et al. [26], the brittle failure of the mortar 
and the softening behavior of the interface have been considered sepa-
rately, while two patterns of cracks starting from the center and the end 
of the specimen have been discussed. In the model proposed by Minafò 
et al. [27], mortar and fiber are assumed elastic-brittle, while the failure 
of the interface is not involved. Furthermore, with the calibration of the 
interface shear stiffness through massive experimental data, the results 
for multi-layer reinforcements are also presented. The model by Focacci 
et al. [25] is devoted to the analysis of clevis grip tensile tests, where the 
softening behavior of both mortar and interface are considered; the 
force-displacement branches between the occurrence of successive 
cracks are reproduced by the increase of the cracking width. On the 
other hand, it cannot be denied that refined numerical models are also 
attractive to investigate the sensitivity of the outcomes in presence of 
more complex constitutive models and different boundary conditions [8, 
28,29], or to reflect the inhomogeneity of the material properties [30] as 
well as the presence of initial defects of the specimens [31]. Instead of 
adopting sophisticated analytical and numerical models, another option 
is to resort to the Aveston-Cooper-Kelly (ACK) model originally devel-
oped to describe the tensile stress-strain behavior of brittle matrix 
composites [32], or similar simplified approaches as discussed in 
Ref. [33]. Such simple models are already relatively effective for pre-
dicting the tensile behavior of FRCM [8,33–35]. However, the approach 
proposed here can be still used to provide information with more insight 

into the local behavior of the interface between dry fiber and matrix. In 
this regard, the present procedure can be seen as an advancement in the 
knowledge about the damage processes developing in the different 
components of the reinforcing system that allows obtaining a much 
more reliable prediction of the expected efficacy in a strengthening 
intervention. 

Facing the complex damage modes exhibited by an FRCM composite 
under tension, their theoretical and computational prediction -which 
involves the damage of the interface between mortar and fiber textile as 
well as that of the mortar layers-is not an easy task and to some extent an 
open issue. This issue has been only partially tackled in the aforemen-
tioned models [25–27], which are based on different strategies to solve 
simplified governing equations. First, the sequence in which each 
component (mortar, fiber textile, and interface between them) enters in 
the inelastic stage is difficult to determine in advance; second, it is tricky 
to establish how the components behave after the local damage of one of 
them. 

In such an intricate framework, the present paper proposes and 
discusses an analytical model for describing the non-linear behavior of 
FRCM coupons subjected to tension (under a clamping grip hypothesis) 
that can take into account the failure of all components, and provides a 
procedure based on closed-form solutions to determine along the entire 
length of the coupon stress and displacement field of each layer. The 
coupon is subdivided into three different layers: external mortar, in-
ternal fiber textile and an interface between mortar and fiber. The 
interface exchanges tangential stresses between mortar and fiber layers, 
which are assumed subjected to uniaxial tensile stresses. Under the 
hypothesis of elastic materials, writing the equilibrium and the consti-
tutive equations for all the components, an ordinary differential equa-
tion (ODE) system is derived, which can be solved analytically provided 
that suitable boundary conditions are imposed. If it is assumed that 
mortar can concentrate damages on localized cracks and that the 
interface exhibits an elastic-perfectly brittle behavior with residual 
tangential strength, the ODE system still admits analytical solutions, 
which deserve to be discussed with the aim of predicting the local state 
of damage of the coupon at any value of the externally applied load, as 
well as to have an insight into the global behavior beyond the elastic 
limit. Three cases are discussed: in the first one it is assumed that cracks 
appear in the mortar layer and the interface remains elastic (Case 1), in 
the second one that the interface behaves inelastically and mortar 
elastically (Case 2), and in the third one that both mortar layer and 
interface exceed the elastic limit (Case 3). A comprehensive comparison 
with available experimental stress-strain curves obtained on a suffi-
ciently large dataset of coupons tested in uniaxial tension is provided to 
show the reliability of the approach proposed. Thanks to its rapidity and 
stability, the influence of some mechanical parameters such as elastic 
slip limit of the interface, residual strength of the interface and mortar 
tensile strength is evaluated, and interesting deductions are made on the 
failure modes triggering and the local state of stress of all the 
components. 

2. The analytical model 

2.1. Review of experimental results 

The experimental results available show that the typical tensile 
behavior of an FRCM coupon is trilinear: The first stage is elastic before 
the appearance of cracks in mortar layers; in such a phase the coupon 
stiffness is dependent on elastic and geometric properties of all the 
components. The second stage is characterized by the appearance of 
more cracks, sometimes an evident slippage at the interface occurs and 
multiple oscillations and experimental instabilities of the global stress- 
strain curve are visible, whose stiffness is significantly reduced. The 
third stage is characterized by a stabilization of the crack pattern, where 
no new cracks are formed, but only the expansion of the already formed 
ones occurs. The stiffness at this stage progressively becomes -in 
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agreement with intuition-almost equal to the stiffness of the fiber textile 
due to the extensive failure of the bond between the mortar and the 
textile. The existing experimental database available in the literature 
-which is quite large-gave an opportunity to calibrate the aforemen-
tioned trilinear tension stiffening model, see for instance Ref. [35]. 
According to a relatively wide set of experimental observations, three 
types of failure modes are generally categorized [16–19]. Type A is a 
failure at the clamps; Type B is characterized by matrix cracking with 
eventual fibers rupture; Type C is a matrix cracking coupled with fibers 
slippage at the clamps. As mentioned earlier, the failure modes can be 
quite dependent on the experimental setups, the typical trilinear 
behavior can only be observed when no premature failure at the ends 
occurs so that the full tensile load-bearing potential of the composite can 
be developed. 

In order to assign the boundary conditions of the model reasonably, 
it’s crucial to determine the conditions at the loading edge of the spec-
imen during the tensile test. To transfer the external load from the 
loading machine to the specimen, one way is to directly pass the tensile 
stress through specific devices, such as employing a metal plate buried 
inside the specimen, or an alternative is to proceed by a flange fixed at 
the end of the dumbbell-shaped test piece (protected by rubber) [10,23]. 
Another way is to apply perpendicular pressure at the end of the coupon: 
the testing machine can directly clamp the end with a reinforced tab 
(referred as clamping grip here) [3,6–8,11], or it is possible to stick 
metal plates on both sides at the end of the specimen, so that the testing 
machine can apply tension to the shackle that connects the two plates 
(usually known as clevis grip) [9,12–15]. The clevis gripping method 
recommended by the ACI standard usually leads to end slippage, 
resulting in an underestimation of the tensile strength of the FRCM 
coupon, with the third stage of the coupon constitutive law not being 
observed [18,23]. Moreover, the strength of the specimen turns out 
largely influenced by the length of the plate at the end. Therefore, many 
researchers have recommended the clamping grip for achieving a full 
mechanical characterization of the FRCM system by avoiding premature 
mortar failure and textile slippage at the end [17,19]. However, it is 
undeniable that the clevis test can also allow observing the fiber-matrix 
bond effect, so some scholars believe that it is essentially a fiber–matrix 
bond test rather than a characterization test of the tensile properties [24, 
25]. In this paper, the study is mainly limited to the clamping gripping 
method, and readers interested in a theoretical model specifically 
developed for the clevis setup are referred to a recent study by Focacci 

et al. [25]. 
In this paper, to provide the necessary validation of the analytical 

model, the experimental campaign conducted by Carozzi et al. [3] is 
used. Rectangular PBO-FRCM coupons were tested according to the ACI 
standard, but with the clamping grip system; in addition, the ends were 
treated with sandblasting and reinforced by epoxy resin, as shown in 
Fig. 1-a. The geometrical and mechanical properties of the specimens 
belonging to the so-called PBO1-FRCM group (according to data and 
definitions provided in Ref. [3]) are summarized in Table 1; they 
represent the basic reference parameters for the great part of the cal-
culations carried out in the present paper. The experimental campaign 
could not provide a direct method to determine the interface stress-slip 
relationship; however, this parameter can be provided by pull-out tests, 
as carried out in some other studies focusing on the mortar-fiber inter-
face relationship [36–38]. In this study, according to previous literature 
available analyzing the same tests [30], for the shear strength, a value of 
about 75% of the mortar tensile strength is assumed, with a slip at the 
elastic limit equal to 0.015 mm as shown in Table 2. 

Considering a clamping grip set-up, it is difficult to determine the 
stress and displacement inside the loading device with a simple 
analytical strategy, but it seems reasonable to hypothesize, as schema-
tized passing from Fig. 1-a to Fig. 1-b, that the formation of the first 
cracks occurs near the loaded edges. In what follows, to simplify the 
model, the loading devices are not considered (because a specific model 
would be necessary) and we assume that the earliest cracks appear in 
mortar layers at both ends of the specimen (x = ±L/2) excluded the 
devices and that the interface still behaves elastically after the formation 

Fig. 1. Scheme adopted for the tensile test set-up on FRCM coupon (a), and the corresponding model before initial cracking at both ends (b), and during the whole 
loading process after initial cracks (c). (Measures in the figure is mm). 

Table 1 
Parameters adopted for the analytical models.  

Component Parameter Symbol and unit Value 

Mortar Young’s modulus Em [MPa] 6000 
thickness (one layer) tm [mm] 5 
tensile strength ftm [MPa] 3.65 
compressive strength fcm [MPa] >15 

Fiber textile Young’s modulus Ef [MPa] 215900 
equivalent thickness tf [mm] 0.046 
length L [mm] 280 
width B [mm] 40 
tensile strength ftf [MPa] 3397  
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of the cracks (as it will be discussed in Section 3.1). Thus, all subsequent 
analyses can follow the simplified mathematical model depicted in 
Fig. 1-c, where mortar exhibits normal stresses equal to zero at the 
extremes. 

2.2. Analytical model and ODE system 

The analytical model is expected to describe the typical non-linear 
behavior of an FRCM coupon under tension, meaning that with the 
fiber elongation, transversal cracks gradually develop in the mortar 
layer and the interface can slip, until the bond is no longer effective, and 
the fiber strip alone bears the tensile forces applied at the vertical edges. 
Based on the experimental phenomena, a classic simplified mathemat-
ical model is proposed, see Fig. 2, which relies upon considering three 
different components working in parallel: the mortar layers (placed 
symmetrically), the fiber textile, and a zero-thickness interface between 
them, which has the role to transfer the load from the fiber to mortar and 
vice-versa, through a suitable tangential stress-slip law. Consistent 
geometric dimensions and uniform distribution of the materials are 
assumed along the width, length and thickness of the coupon. Under the 
above ideal assumptions, it is not difficult to deduce that an FRCM 
coupon subjected to tension exhibits double symmetry: one symmetry 
axis is horizontal and coincides with the fiber textile centroid and the 
other is vertical and placed at equal distance from the loading devices 
applied at the extremes of the specimen. 

Therefore, the analyses can be carried out considering only one 
quarter of the coupon as shown in the enlarged area in Fig. 2-a. The 
independent variables considered are the following: the horizontal 
displacement fields of mortar and fiber (um and uf ) and the normal stress 
acting on the aforementioned two layers (σm and σf ), respectively. The 
displacements of both mortar and fiber in correspondence with the 
centroid of the coupon (where the origin of the frame of reference is 
located) are equal to zero, so that rollers with horizontal axis are placed 
on the vertical symmetry axis. The x-axis is set horizontally along the 
length of the fiber for the sake of convenience, with orientation from the 
left to the right. The y-axis runs vertically along the thickness of the 
coupon, with upwards orientations, as depicted in Fig. 2-a. The 
parameter tm indicates the mortar layer thickness and tf the semi- 

thickness of the fiber textile. 
Taking into consideration a portion of the coupon with infinitesimal 

length equal to dx as shown in Fig. 2-b, the equilibrium conditions be-
tween mortar and fiber layers can be written as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

tf
dσf

dx
= τ(s)

tm
dσm

dx
= − τ(s)

(1)  

The shear stress acting at the mortar-fiber interface is denoted with τ(s). 
An elastic-perfectly brittle behavior with residual tangential strength 
(bi-linear behavior) is assumed: 
{

τ = Ki s (s ≤ se)

τ = τr (s > se)
(2)  

Where the slip s denotes the difference of the horizontal displacements 
of fiber and mortar: 

s= uf − um (3)  

In the previous equations Ki indicates the elastic stiffness assumed for 
the interface, τr is the residual shear strength and se = τm/Ki is the elastic 
limit of the interface slip, τm indicating the peak strength reached at the 
elastic limit. 

The constitutive relationships of the two materials in the elastic 
range allow writing the following equations: 
⎧
⎪⎪⎨

⎪⎪⎩

σf = Ef
duf

dx

σm = Em
dum

dx

(4)  

Where Em and Ef are the elastic moduli of mortar and fiber layers, 
respectively. An ODE system can be deduced by combining Eq. (4) and 
Eq. (1), then analytically solved with the imposition of suitable 
boundary conditions at different instants of the loading process, as 
explained in detail in the following sections. 

With the aim of realistically reproducing the expected behavior of an 
FRCM coupon under tension, considering the high tensile strength of the 
fiber textile in comparison with that of the mortar layers, as well as the 
experimentally observed failure mechanism, fiber rupture may be 
considered as the instant where the failure of the entire coupon is 
reached. It can be also assumed that the fiber textile behaves elastically 
during the whole experiment. The following three different cases may 
occur, depending on the mutual mechanical properties of mortar and 
interface: 

Case 1: the interface behaves elastically, and the mortar layer cracks, 
meaning that only a non-linear behavior for mortar is considered. 
Cracks are assumed concentrated, and mortar behaves elastically 
almost everywhere, exception made for those points where cracks 
are located. Two sub-cases are discussed, the first assuming an 
elastic-perfectly brittle behavior for mortar, the second imposing 
that the crack opening is ruled by a certain fracture energy, i.e. that 
there is an analytical relationship between crack width and the stress 
acting in correspondence of the crack. 
Case 2: the interface behaves non-linearly, but the tensile strength of 
mortar is assumed very high and it remains in the elastic phase, 
meaning that only the non-linear behavior of the interface is 
considered. 
Case 3: interface and mortar layer exhibit non-linearity contempo-
rarily; in this latter case, both mortar cracking and interface slippage 
are observed. 

For Case 1, it is assumed that mortar forms concentrated cracks in 
particular positions of the coupon along its length. Therefore, its 

Table 2 
Interface parameters adopted for Case 1 and Case 2.  

Parameter Symbol and unit Value 

Case 1 Case 2 

shear strength τm [MPa] / 2.5 
stiffness Ki [N /mm3] 166.67 166.67 
elastic slip limit se [mm] / 0.015 
residual strength τr [MPa] / 0/0.125/0.25  

Fig. 2. Analytical model adopted for an FRCM coupon subjected to tension (a) 
and stress analysis for the infinitesimal parts (b). 
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behavior between two contiguous cracks is elastic and an analytical 
solution can be easily deduced by progressively changing the boundary 
conditions and the length of the portion of coupon considered. In other 
words, the same analytical model can be adopted for different intact 
mortar portions. Let us first consider the intact coupon at the beginning 
of the test (after the appearance of initial cracks at the two extremes) and 
let us focus on one quarter of it for double symmetry reasons (shaded 
area in Fig. 3). With reference to Fig. 3, along the x-axis, the normal 
stress in the mortar layer is zero at the free edge located on the right and 
is expected to attain the maximum in correspondence of the origin O, 
since non-null tangential stresses -generated by the slip between matrix 
and underlying fiber textile-arise at the interface between matrix and 
fiber. Thus, the crack will appear in the middle of the coupon. Let us 
label such analysis step as i = 1; nothing changes considering other 
steps, making sure to change the length of the portion of coupon (always 
half the length in the previous step), it is possible to identify two 
meaningful instants to deduce step by step the global load-displacement 
behavior of an FRCM coupon under tension:  

1) Instant A: It represents the instant when mortar on the vertical 
symmetry axis reaches the maximum tensile strength, as shown in 
the schematic diagrams on the left in Fig. 3;  

2) Instant B: It is the instant immediately after the formation of the 
crack in Instant A, as shown by the right-hand diagrams of Fig. 3. 

Proceeding step by step, the length of the coupon analyzed reduces 
by a factor 1/2. To correctly identify the displacement at the loaded 
edge, suitable boundary conditions must be assumed on the displace-
ments to assign on the left edge of the portion of the coupon considered, 
making use of the results obtained for the contiguous portion of the 
coupon and calculated in correspondence of the right edge (which is 
regarded as the left edge for the coupon portion under consideration). 

After the first crack occurs, the mortar layer cracks and divides into 
two geometrically identical parts on both sides of the crack, allowing to 
perform the same analysis carried out in the previous step. Following 
this simple procedure, the behavior of an FRCM coupon under tension 
can be described during the whole loading process, even in the inelastic 
range, because cracks will continue to appear in pre-assigned positions 
of the mortar layer until the fiber rupture. 

Case 2 may occur in practice when the coupon length is too small, so 
that mortar cannot attain its maximum strength, or typically when the 

interface strength is too small if compared with that of the mortar. Such 
behavior has been observed by many researchers in the experiments, 
and denoted with the term ‘saturation crack spacing’ [39]. Phenome-
nologically, the saturation crack spacing indicates a distance between 
two contiguous cracks appearing in mortar layers that is too small to 
allow the formation of further cracks, which promotes at the same time 
the activation of the interface non-linearity. 

To summarize, Table 3 and Fig. 4 show respectively a synopsis of the 
cases considered and the corresponding constitutive models adopted. In 
Case 1, as already mentioned, two mortar models (labeled as Case 1-a 
and Case 1-b) are adopted under the hypothesis of elastic behavior for 
the interface. In Case 2, different values of residual strength are 
considered in order to show the role played by such parameter on the 
local and global response, maintaining the mortar layer elastic. Finally, 
Case 3 combines mortar cracking and inelastic behavior of the interface. 
For all models, as already mentioned, the failure of the coupon is 
controlled by the rupture of the fiber, which is characterized by an 
elastic behavior throughout the whole analysis. 

3. Case 1: mortar failure 

3.1. Case 1-a: Elastic-perfectly brittle mortar with elastic interface 

In this case, we assume that the mortar matrix behaves in an elastic- 
perfectly brittle manner, whereas the interface is assumed elastic. 
Combining Eq. (4) and Eq. (1), and re-arranging the equations isolating 
on the left the first derivative of the independent variables, the following 
ODE system can be obtained: 

Fig. 3. Scheme of the analytical calculations carried out for Case 1 with formation of concentrated cracks inside mortar (the shaded area is the portion of the coupon 
considered in the analyses). 

Table 3 
Constitutive models for the different cases discussed.  

Cases Mortar Interface Fiber 

Case1- 
a 

Elastic-brittle Elastic Elastic- 
brittle 

Case1- 
b 

Elastic- 
softening 

Case2 Elastic Elastic-brittle with/without residual 
strength 

Case3 Elastic-brittle Elastic-brittle with residual strength  
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dx
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The general solution for such an ODE system can be trivially ob-
tained as follows: 
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⎢
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uf
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um
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⎤
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− tmα
− tm

/
tf

tmβ
1

⎤

⎥
⎥
⎥
⎦

eλ3x+C4

⎡

⎢
⎢
⎢
⎣

tmα
− tm

/
tf

− tmβ
1

⎤

⎥
⎥
⎥
⎦

eλ4x

(6)  

in which C1,…,4 are integration constants and coefficients λ3, λ4, α and β 
are the following: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ki

(
1

Emtm
+

1
Ef tf

)√

λ4 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ki

(
1

Emtm
+

1
Ef tf

)√

α =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Emtm

Ef tf Ki
(
Ef tf + Emtm

)

√

β =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ef tf

EmtmKi
(
Ef tf + Emtm

)

√

(7) 

It is interesting to point out that constants C1,…,4 have the following 
units of measure: C1 in mm, C2 is a pure number, C3 and C4 in MPa. 
Constants λ3,4 are in mm and α, β in 1/MPa. To determine the constants 
of integration, the following procedure is applied for the Instant i-A. At 
the i-th Instant, we can imagine that the coupon is constituted by nsc,i =

2(i− 1) sub-coupons (abbreviated with ’sc’ at the subscript) of length 2Li 

placed in series, with Li = L/2i . Isolating the nsc,i -th coupon and 
analyzing it separately without considering the rigid horizontal trans-
lations induced by the fact that sub-coupons are connected to neigh-
boring ones (in other words the ODE solution is applied on a coupon 
with length L/2i ), the boundary conditions to apply to all sub-coupons 
are the following:  

⎧
⎪⎪⎨

⎪⎪⎩

uf
⃒
⃒

x=0 = 0
um|x=0 = 0

σm|x=0 = ftm
σm|x=Li

= 0

(8) 

Indicating respectively with uiA,j
fLi and σiA,j

fLi the displacement and the 
stress in the fiber textile of the j-th sub-coupon along Li, for Instant i-A, 
such quantities can be calculated by finding C1,…,4 in Eq. (6) through the 
imposition of boundary conditions, Eq. (8). Then, the loaded edge 
displacement and stress are the following:  
⎧
⎨

⎩

uiA
fLi = nsc,iuiA,j

fLi

σiA
fLi = σiA,j

fLi

(9) 

Assuming an elastic-perfectly brittle constitutive relationship for 
mortar (Case 1-a), in the mortar section attaining its tensile strength, the 
normal stress immediately drops to zero and Instant i-B occurs imme-
diately after Instant i-A, making the assumption that the displacement at 
the loaded edge is maintained unaltered. The previously mentioned 
condition about the unaltered displacement of the fiber at the loaded 
edge requires that the fiber displacement of the right loaded edge of the 
sub-coupon j is uiA,j

fLi . Therefore, the boundary conditions to apply at 
Instant i-B are the following: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uf
⃒
⃒

x=0 = 0

uf
⃒
⃒

x=Li
= uiA,j

fLi

σm|x=0 = 0
σm|x=Li

= 0

(10) 

Indicating respectively with uiB,j
fLi and σiB,j

fLi the displacement and the 
stress in the fiber textile of the sub-coupon j along Li, for Instant i-B, such 
quantities can be again calculated finding C1,…,4 in Eq. (6) through the 
imposition of boundary conditions, Eq. (10). Then, the loaded edge 
displacement and stress are the following:  
⎧
⎨

⎩

uiB
fLi = nsc,iuiB,j

fLi

σiB
fLi = σiB,j

fLi

(11) 

The geometric distribution of cracks in Instant i-B can then be uti-
lized in Instant (i+1)-A, following the above-described procedure, the 
coupon behavior until the fiber fracture can be obtained. The stresses 
and interface slip distributions along half of the coupon length are 
presented in Fig. 5. Instants A (solid lines) and B (dashed lines) before 
and after the occurrence of each crack are indicated by different colors. 
Six Instants are depicted for the sake of clearness as well. The symmetric 
crack pattern and the same stress distributions in each uncracked mortar 
portion (i.e. inside a sub-coupon) are clearly visible. The stress-strain 
global behavior is shown with a black solid line in Fig. 6, where the 
strain is obtained by dividing the displacement at the loaded end by the 
full length of the coupon. Six teeth corresponding to the cracking 
sequence can be identified. It is also important to point out that such a 
very simple model is continuing to develop cracks in the third stage (the 
sixth crack), approximating it with a sawtooth behavior. Such a peculiar 
outcome, not fully consistent with experiments, is a consequence of the 
elastic assumption of the interface, leading to the situation that the 
interface still can provide enough shear stress to allow mortar failure 
even on a very short portion of the coupon. 

3.2. Case 1-b: Elastic-softening mortar with elastic interface 

In Case1-b, it is assumed that after the mortar reaches its maximum 
strength (Instant A), the mortar stress does not drop instantaneously to 
zero, because the mortar is assumed brittle with softening ruled by a 
certain fracture energy as shown in Fig. 4-c. 

Fig. 4. Constitutive models assumed for the different components: (a) Elastic 
mortar, (b) Elastic-perfectly brittle mortar, (c) Elastic-softening mortar, (d) 
Elastic interface, (e) Elastic-brittle interface without residual strength, (f) 
Elastic-brittle interface with residual strength and (g) Elastic-perfectly brittle 
fiber textile. 
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The crack width increases progressively, allowing to see a snap-back 
of the global curve until the crack can be considered fully developed 
(Instant B). The following exponential relationship between mortar 
tensile stress and mortar displacement (which represents the concen-
trated crack width) at the local origin of the sub-coupon (i.e. where 
mortar attains the maximum stress) is assumed: 

σm|x=0 = ftme
− ftm
GI

um |x=0 (12)  

in which the fracture energy GI is the shaded area depicted in Fig. 4-c, 
and enclosed between the mortar stress-displacement (crack width) 
relationship, Eq. (12), and the horizontal axis. The description of the 
softening behavior of mortar under tension by means of exponential 
functions is a classical numerical strategy that can be found both in 
recent [24,40] and dated literature [41]. Such numerical assumption is 

grounded on a wide set of experimentations devoted to the topic, see for 
instance Ref. [42]. On the other hand, no matter the specific law 
assumed in the tensile inelastic stage for mortar is; in fact, any analytical 
function can be adopted (such as the classical linear relationship) for the 
model without additional numerical issues. 

The solutions for Instants i-A are exactly the same deduced in Case 1- 
a. However, in Case 1-b it is also possible to reproduce what happens 
between Instants A and B, simply solving the same ODE system, under 
the imposition of different boundary conditions. If in x = 0, the stress is 
σm0, with 0 ≤ σm0 ≤ ftm, then at an intermediate instant between Instants 
A and B, we have: 

Fig. 5. Case 1: Distribution of (a) fiber tensile stress, (b) mortar tensile stress, (c) interface slip and (d) interface shear stress until fiber rupture.  
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Fig. 6. Global stress-strain relationships obtained in Case 1-a and Case 1-b and comparison with experimental data.  

Fig. 7. Distributions of (a) fiber stress, (b) mortar stress, (c) fiber and mortar displacements, and (d) interface slip at increasing displacement Δ applied at the loaded 
edge. Δ is increased to evaluate the instant when the initial cracks appear at clamping ends. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σm|x=0 = σm0

um|x=0 =
GI

ftm
ln
(

ftm

σm0

)

uf
⃒
⃒

x=0 = 0

σm|x=Li = 0

(13) 

The global stress-strain relationships of the coupon obtained with 
different values of GI are plotted in Fig. 6. It can be seen that Instants B 
are the same for both cases, since they represent a snapshot of the me-
chanical system at the same displacement of the fiber at the loaded edge. 
The much evident difference is the branch within Instants A and B: in 
Case1-a, it is indeed imposed to drop down the force applied to maintain 
the same displacement; in Case1-b a snap-back can be reproduced, 
which appears very pronounced for small values of the fracture energy. 
If, on the contrary, GI is sufficiently large, the typical oscillating 
behavior of the trilinear curve in stage 2 (and frequently observed 
experimentally) can be reproduced also numerically in a quite accurate 
way. 

3.3. The model before the appearance of the first crack at the loaded edge 

When we consider the model at the formation of the initial cracks 
near the loading devices (Fig. 1-b), the elastic ODE system of Eq. (5) still 
holds, and the boundary conditions that can be applied are the 
following: 
⎧
⎪⎪⎨

⎪⎪⎩

uf
⃒
⃒

x=0 = 0
um|x=0 = 0

σm|x=L/2 = ftm(
um − uf

)⃒
⃒

x=L/2 = Δ

(14) 

The exact value of Δ (the slip between the mortar and fiber textile at 
the loaded edge) cannot be determined analytically in an easy way, but 
what is known is that the sign of Δ must be positive. A convenient 
strategy is to increase Δ until the possible peak normal stress at the 
origin in the mortar layer is reached. As can be seen in Fig. 7, the dis-
placements of mortar and fiber are quite small along the whole coupon 
length, the interfacial slip is much smaller than the elastic limit, and the 
fiber stress is far from that responsible for the rupture of the fiber textile. 
Therefore, when simulating a real test made in the lab, it is reasonable to 
disregard such initial loading phase, i.e. that before the appearance of 
the initial two cracks at clamping ends, because this phase is limited at 
the early stages of the loading process and scarcely affects the subse-
quent analyses. 

4. Case 2: failure of the interface 

In this case, we assume that the interface behavior is bi-linear and 
discontinuous (elastic-perfectly brittle with residual strength), while 
mortar and fiber are elastic. No cracks can appear in the mortar, hence 
only one Instant, say A, needs to be re-defined, and there is a transition 
point where the interface behavior passes from elastic to inelastic. Let us 
indicate the abscissa of such a transition point with xr (as shown in 
Fig. 8). xr value needs to be decreased from Li to 0; when xr = Li the 
coupon has reached the elastic limit, whereas when xr = 0 the interface 
is in the inelastic stage everywhere throughout the length of the spec-
imen. When the stress in the fiber textile reaches the value assumed for 
the rupture of the yarns, the coupon fails and the analysis must be 
stopped. 

The problem is split into two distinct regions, the first elastic and the 
second inelastic.  

1) Elastic region 

For the part where the interface behaves elastically (0 ≤ x ≤ xr), the 
previously presented ODE system representing the field equations is still 

applicable, and can be solved with the boundary conditions below: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uf
⃒
⃒

x=0 = 0

um|x=0 = 0
(
uf − um

)⃒
⃒

x=xr
= se

σm|x=xr
=

τr(Li − xr)

tm

(15)    

2) Plastic region 

The equilibrium equations for mortar and fiber textile in the inelastic 
part (xr < x ≤ Li) can be written as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σf = σf
⃒
⃒

x=xr
+

τr(x − xr)

tf

σm =
τr(Li − x)

tm

(16) 

The displacements at a certain abscissa x located in the inelastic part 
are the following: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uf = uf
⃒
⃒

x=xr
+

∫ x

xr

σf

Ef
dx

um = um|x=xr
+

∫ x

xr

σm

Em
dx

(17) 

Integrating Eq. (17), it is possible to derive analytically such dis-
placements as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uf = uf
⃒
⃒

x=xr
+
(x − xr)

Ef
σf

⃒
⃒
⃒
⃒

x=xr

+
τr(x − xr)

2

2Ef tf

um = um|x=xr
+

τr

Emtm

(

Li(x − xr) −
1
2
(x − xr)

2
) (18) 

Remembering that the solutions at x = xr is already known from the 
elastic region, all quantities can be determined without the need to 
resort to complex computational methods. 

Fig. 8. Schematic diagram of the interface status in Case 2.  
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To test the reliability of the approach, a sensitivity analysis is carried 
out with three different values of residual strength (0 MPa, 0.1τm and 
0.05τm), keeping the remaining quantities unchanged and equal to those 
reported in Table 2. Stresses and interface slip distributions along one- 
half of the coupon length are depicted in Fig. 9 at increasing values of 
the applied external load; whereas the global stress-strain curves are 
presented in Fig. 10. Obviously, when the residual friction of the 
interface is assumed to be equal to zero, the behavior of the coupon 
tends asymptotically to approximate that of the bare fiber textile when 
the inelastic region of the interface expands considerably. When the 
residual strength is not zero, the coupon stiffness is again equal to that of 
the dry fiber at large values of the applied load, but the deformability 
decreases by a value (which remains almost constant increasing the 
applied load) which is dependent on the amount of residual strength 
considered. In agreement with intuition, large values of such strength 
are associated with lower strains measured at the loaded edge of the dry 
fiber. It can be seen that a small portion of the interface is always in the 
elastic stage when the fiber rupture is reached, a feature that is consis-
tent with the assumption that the relative slip at the origin is zero. 

5. Case 3: Simultaneous non-linear behavior of mortar and 
interface 

5.1. The analytical approach 

In this case, possible failures of all components are considered. 
Mortar is assumed elastic-perfectly brittle, while the interface is elastic- 
perfectly brittle with residual strength. Dealing with two components 

that could potentially behave inelastically, first of all, it is necessary to 
determine whether mortar and interface can simultaneously reach the 
inelastic states; if this is the case, the mortar layer can crack only after 
the interface has partially entered the plastic stage, otherwise, we fall 

Fig. 9. Distribution of (a) fiber tensile stress, (b) mortar tensile stress, (c) interface slip, and (d) interface shear stress along half coupon length for Case 2 with τr =

0.1τm. The solid lines represent the elastic region, while the dashed lines the plastic region. 

Fig. 10. Global stress-strain relationships obtained for Case 2 adopting 
different values of residual strength for the interface, and comparisons with 
experimental data. 
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into Case 1, as extensively discussed in the previous Sections.  

• Evaluation of interface inelastic behavior triggering 

The fiber-mortar interface enters the inelastic stage when the 
maximum slip (which occurs at Li) reaches the elastic limit se . Let us 
consider an intact portion of the mortar layer 2Li long, Fig. 11-a, whose 
internal variables are calculated elastically because all the points inside 
such a portion are in the elastic phase by definition. According to the 
elastic results already discussed in Case 1, the interface slip at Li can be 
deduced from the solution of the ODE in the elastic range, and utilizing 
boundary conditions to eliminate constants. More in detail, based on Eq. 
(6), it is possible to write separately the slips at x = 0 and x = Li , as 
follows:  
{

s0 =
(
uf − um

)
|x=0 = (C4 − C3)(α + β)tm

sLi =
(
uf − um

)
|x=Li

=
(
C4eλ4Li − C3eλ3Li

)
(α + β)tm

(19) 

Remembering that at the origin s0 = 0, it follows that C3 = C4, 
knowing from Eq. (7) that (α+β) cannot be equal to zero, because sum of 
two positive numbers. Also, from Eq. (7), it must be noted that λ4 = −

λ3. 
If a crack in the matrix layer occurs, which appears at x = 0 , we can 

write other two boundary conditions at the left and right edges:  
{

σm|x=0 = C2Em + C3 + C4 = ftm
σm|x=Li

= C2Em + C3eλ3Li + C4eλ4Li = 0 (20) 

The above system of the equation provides the value of C3 = C4 :  

C3 =C4 = ftm
/ (

2 − eλ3Li − e− λ3Li
)

(21) 

Finally, we can write the slip at x = Li when a crack appears as 
follows:  

sLi =
tmftm(α + β)(eλ3Li − e− λ3Li )

(eλ3Li + e− λ3Li − 2)
=

tmftm(α + β)
tanh

( λ3Li
2

) (22)  

When sLi > se, then the interface has partially entered the inelastic stage 
at mortar cracking, and the solution for a part of the coupon is no longer 
elastic and needs to be recalculated. 

On the other hand, to maintain the interface elastic everywhere until 
crack, meaning that we always have sLi ≤ se, the following inequality 
must hold: 

tanh
(

λ3Li

2

)

≥
tmftm(α + β)

se
(23) 

Note that tanh (x) cannot be larger than one; if the right-hand side of 
the inequality is greater than one, there is no value of Li that can satisfy 
Eq. (20), i.e., the interface will enter the plastic phase before any crack 
appears along the whole coupon. For example, if the material properties 
and the interface stiffness are kept constant, it can be seen that when se 

decreases, the value of the term on the right side of the inequality in-
creases, in such a way that the right-hand side can become greater than 
one.  

• Evaluation of mortar cracking 

It is discussed here whether the mortar can crack after the interface 
has partially entered the plastic stage. First, it is necessary to determine 
the transition point between the elastic and inelastic stages along the 
interface (xr). As observed in Case 2, the maximum mortar tensile stress 
(denoted here with σm0), is reached at the origin (centroid of the 
coupon); the value of σm0 progressively increases and then decreases as 
the loading proceeds (Fig. 9-b). Analytically speaking, for any given xr 
varying from Li to 0, for the elastic region, we can write the boundary 
conditions as in Eq. (15)., which combined with the solution of the ODE 
system, Eq. (6) and Eq. (7), allows deriving analytically σm0 as follows: 

σm0 =
τr(Li − xr)

tm
+

se

(α + β)tm
tanh(λ3xr / 2) (24) 

The addends on the right-hand side of the previous equation are both 
positive and the stationarity point of Eq. (24) is: 

xm
r =

2
λ3

arcosh

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
seλ3

2(α + β)τr

√

(25) 

The maximum obtainable mortar stress is therefore σm
m0 = σm0(xr =

xm
r ). It is also possible that the derivative of σm0 is always negative, for 

instance, when τr is relatively large and/or se is relatively small. 
If the interface enters the inelastic stage with a σm

m0 < ftm, mortar can 
no longer crack and the coupon behaves beyond the elastic limit as 
described in Case 2.   

• Calculation procedure  
1) Instant iA 

Let us consider that at the Instant (i-1) the interface is fully elastic. At 
the Instant iA, when at the loaded edge the slip sLi > se and in the 
centroid σm

m0 ≥ ftm, Case 3 occurs. The transition point xr at Instant iA 
(denoted with xiA

r ), as shown in Fig. 11-b, can be determined by 
imposing σm0 = ftm, and finding with a standard non-linear equations 
solver the intersection abscissa of the following two curves:  
⎧
⎪⎪⎨

⎪⎪⎩

y1 = ftm −
τr(Li − xr)

tm

y2 =
se

(α + β)tm
tanh(λ3xr/2)

(26) 

The same result can be also conveniently achieved via a spreadsheet 
varying xr from Li to 0, to find the first point that satisfies the condition 
σm0 ≥ ftm , whose abscissa corresponds to xiA

r . If there are no points 
satisfying such a condition, mortar can no longer crack. The correctness 
of Eq. (26) has been verified by the authors in this manner as well. Once 
that xiA

r is known, the solutions of the elastic and inelastic parts can be 
determined as described in Case 2.   

2) Instant iB 

Mortar is cracked at x′

= 0, see Fig. 11-b; an inelastic phase is active 
at the interface from xiA

r to Li . However, what is unknown is the inter-
face status from 0 to xiA

r . Due to the presence of a crack at x′

= 0 , a new 
plastic zones might appear from 0 to xiB

r . To determine xiB
r , the 

boundary conditions to impose in the elastic range ( xi
rB ≤ x ≤ xi

rA ) for 
the ODE system are the following:  
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf
⃒
⃒

x=xiB
r
=

xiB
r

Ef

(

σf
⃒
⃒

x=xiB
r
−

τrxiB
r

2tm

)

(
uf − um

)⃒
⃒

x=xiB
r
= − se

σm|x=xiB
r
=

τrxiB
r

tm

σm|x=xiA
r
=

τr
(
Li − xiA

r

)

tm

(27)  

In which the first condition comes from equilibrium considerations in 
the part from 0 to xi

rB (similar to the derivation in Eq. (18). ), knowing 
that at x = 0 , uf = 0. The condition (uf − um)

⃒
⃒
x=xiA

r
= se cannot be used 

since the slip value at xi
r after the formation of the crack is not neces-

sarily equal to se . In fact, the plastic range starts from xiA
r only because 

the part beyond it has already entered the plastic range in Instant A. 
Gradually increasing the value of xiB

r from 0 to Li/2 , we look for the 
value that satisfies the condition that the fiber displacement at Li is equal 
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to that of Instant iA (remembering that there is no change in the fiber 
displacement at the loaded edge passing from Instant A to Instant B), 
thus obtaining the solution on the whole mortar layer; the solution for 
the part corresponding to the crack formed in Instant iA can also be 
easily obtained using symmetry considerations.   

3) Instant (i+1)A 

If the current length of the uncracked specimen still allows the for-
mation of cracks inside the mortar ( σm

m0 ≥ ftm ), and the tensile ultimate 
strength of the fiber has not been reached ( σfLi < ftf ), the calculation for 
Case 3 needs to be repeated. Passing from Instant iB to (i+1)A, the 
method to determine the inelastic range is different, considering that the 
interface is already partially plastic. The new elastic range is shown in 
Fig. 11-c and spans from xi+1

rL to xi+1
rR . 

First, similar to the approach of searching xiB
r in Instant iB, without 

expanding the plastic range on the right ( xi+1
rR = xiA

r ) , the value of xi+1
rL is 

gradually increased. The boundary conditions to use in the elastic part 
include Eq. (28). It is then evaluated that value of xi+1

rL between xiB
r and 

Li/2 that satisfies the condition that the maximum tensile stress of the 
mortar layer is equal to the mortar tensile strength: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf
⃒
⃒

x=xi+1
rL

=
xi+1

rL

Ef

(

σf
⃒
⃒

x=xi+1
rL

−
τrxi+1

rL

2tm

)

(
uf − um

)⃒
⃒

x=xi+1
rL

= − se

σm|x=xi+1
rL

=
τrxi+1

rL

tm

σm|x=xi+1
rR

=
τr
(
Li − xi+1

rR

)

tm

(28) 

Another possible situation is that, it may happen that for any value of 
xi+1

rL , the tensile strength is not attained, which means that the plastic 
range of the interface expands. For a given value of xi+1

rR (decreasing from 
xiA

r ), it is then found the value of xi+1
rL that satisfies the continuity con-

dition of the mortar stress, as well as the condition that the slip at the 
interface reaches the elastic limit at both ends of the central elastic zone. 
Obviously, if the plastic zone is symmetric around the centroid, the 
boundary conditions to impose are also symmetric and the solution can 
be obtained; in this case, the maximum mortar stress appears in corre-
spondence with the center of symmetry. In the authors’ experience when 
training with such a cumbersome procedure, the plastic zone appears 
symmetrically; and even if the interface enters the inelastic phase, the 
development of the plastic zone is generally small. The above calcula-
tions have been carried out in Matlab (but a common spreadsheet can be 
used as well) with a search length for the parameters involved equal to 
0.01 mm, which appears sufficiently accurate for the problems of 
technical relevance discussed in the paper. Finally, the calculations for 

Instants (i+1)B can be performed as discussed for the previous Instant 
iB. 

The algorithm is iterated until the rupture of the fiber, which occurs 
in the model always at the loaded edges. The failure point for the 
specimen can be determined similarly to what was done in Instants iA, 
only replacing the boundary condition written for the maximum mortar 
stress with a new one on the value of the fiber stress. The calculation 
procedure followed is reported in the synoptic flow chart of Fig. 12. 

5.2. Examples and discussions 

Three sets of interface parameters (reported in Table 4) are consid-
ered to have an insight into the sensitivity of the results obtainable with 
the model proposed. 

Fig. 13 shows the three sets of interface parameters considered, 
location, and the number of cracks observed in the model with a mortar 
tensile strength equal to 3.65 MPa. Blue circles refer to Set 2, black 

Fig. 11. Schematic calculation procedure of the interface plastic zone in Case 3 at Instant (i-1) (a), instant i (b) and Instant (i+1) (c).  

Fig. 12. Flowchart to calculate FRCM coupon behavior under tension consid-
ering various failure mechanisms. 
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squares to Set 1, and magenta triangles to Set 3. The judgments of mortar 
cracking are made based on the comparison between σm

m0 and ftm under 
different Li, as presented in the previous section. In particular, as visible 

also in Fig. 14, three cracks can be identified for Set 2 and Set 3, in which 
larger values of τr are adopted, compared to Set 1 (only two cracks can 
be formed). Fig. 14 shows the global stress-slip curves obtained with the 
different sets of parameters, superimposed with experimental data. 
Zoomed details at the initial stage of the loading process (stages 1 and 2 
of the trilinear idealized curve) are also reported for the sake of 
clearness. 

In Fig. 15, the distributions of the internal variables -e.g. mortar 
stress, interface slip, and shear stress-along the coupon length (one-half 
of the specimen is represented and Set 2 results are considered) at 
different instants are reported. The symmetric behavior is pretty 
evident, as well as the location of cracks in the mortar layer and the 
extension of the plastic zone inside the interface. Considering the global 
behavior (Fig. 14) and the local one (Fig. 15), it can be deduced that 
although the number and location of the cracks are different, the stress- 
strain curves obtained for the coupon are pretty similar. In particular, 
the elastic phases (stage 1) exhibit the same stiffness; as expected, with a 
larger τm, the elastic phase is longer; in the second stage, the fiber stress 
before and after the appearance of the cracks inside the mortar is not 
much different, as well as the extension of the phase; the third stage is, as 
expected, characterized by a stiffness close to that of the dry fiber textile. 

In order to provide additional validation of the effectiveness of the 
model proposed, some comparisons with results obtained experimen-
tally in Ref. [3] for the other two groups of coupons (made with Glass 
G-FRCM and Carbon C-FRCM) are also reported. The mechanical 
properties adopted in the simulations are summarized in Table 5. 
Similar to the previous determination of interface parameters for the 
PBO group, the interface peak tangential stress τm is kept equal to 75% of 
the mortar tensile strength, the elastic limit se is set equal to 0.015 mm, 
and a residual strength equal to 20% of τm is assumed. Fig. 16 presents 
the results obtained using the model named Case 3; experimental tests 
refer to Glass and Carbon groups. It can be seen that there is a good 
agreement between numerical predictions and experimental evidence 
for all groups (including the PBO group, reported in Fig. 14): the main 
features of the trilinear constitutive relationships are well reproduced, 
the numerical strain and stress values in the second stage are close to the 

Table 4 
Interface parameters adopted for Case 3.  

Sets shear strength 
τm [MPa]

stiffness 
Ki [N /mm3]

elastic slip limit 
se [mm]

residual strength 
τr [MPa]

Set 1 2.5 166.67 0.015 0.25 
Set 2 2.5 166.67 0.015 0.5 
Set 3 3.5 233.33 0.015 0.5  

Fig. 13. Comparisons of maximum obtainable mortar stress σm
m0 and mortar 

tensile strength under different Li. 

Fig. 14. Global stress-strain curves obtained for Case 3 assuming different residual strengths at the interface, and comparisons with experimental data.  
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experimental one, and the stiffness in the third stage provided by the 
analytical model is very near to that of the dry textile tested, as expected 
(see Fig. 16). 

Considering all the models proposed in the paper (Case 1, Case 2, and 
Case 3), it can be stated that all of them allow reproducing the global 
stress-strain curves in a quite satisfactory manner when compared with 
the experimental data, despite the simplifications introduced to handle 

the analytical solutions. Comparatively speaking:  

• Cases 1 and 3 consider mortar damage, hence they allow also a quite 
precise characterization of the typical phenomena of stiffness 
degradation occurring in stage 2 in the trilinear curve, and the 
oscillatory behavior observed experimentally. The differences be-
tween the results obtained when the matrix layer is assumed elastic- 
brittle while the interface is elastic (Case 1) and when both the 
interface and mortar are assumed inelastic (Case 3) are not detect-
able from the global stress-strain curves, since in both cases several 
oscillations of the stress are visible in the second stage. In fact, the 
exact sequence of the cracks’ appearance inside the mortar and the 
inelasticity triggering at the interface turn out to be strongly 
dependent on the mechanical properties adopted in the model for the 
matrix and interface. 

• Case 2 ignores the occurrence of cracks in the mortar layer, a hy-
pothesis that does not allow clearly identifying the occurrence of the 
second stage; in agreement with intuition, an underestimation of the 
specimen ductility when the value of the interface residual strength 
is high can be observed.  

• All Cases in the third stage exhibit stiffness close to that of the dry 
fiber textile, but differently from what was observed experimentally, 
in Case 1 cracks continue to open also in this stage because no 
interface damage is possible. 

It should be also noted that the prediction of the crack locations 

Fig. 15. Case 3 (Set 2): Distribution of (a) fiber tensile stress, (b) mortar tensile stress, (c) interface slip and (d) shear stress until fiber rupture.  

Table 5 
Parameters adopted for G-FRCM and C-FRCM groups.  

Component Parameter Symbol and 
unit 

Value 

Glass- 
FRCM 

Carbon- 
FRCM 

Mortar Young’s modulus Em [MPa] 8000 7000 
thickness (one 
layer) 

tm [mm] 5 5 

tensile strength ftm [MPa] 2.07 2.02 
Fiber textile Young’s modulus Ef [MPa] 55600 203000 

equivalent 
thickness 

tf [mm] 0.045 0.042 

length L [mm] 280 280 
width B [mm] 40 40 
tensile strength ftf [MPa] 1121 1913 

Interface shear strength τm [MPa] 1.5 1.5 
stiffness Ki [N /mm3] 100 100 
elastic slip limit se [mm] 0.015 0.015 
residual strength τr [MPa] 0.3 0.3  
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provided by this model is purely conventional and cannot be considered 
predictive of the actual experimental results, which are unavoidably 
influenced by many uncertainties. In agreement with such practical 
consideration, more complex numerical models where different material 
properties at different locations are assigned (according to a stochastic 
approach) may be required, similar to what is already presented in some 
specialized literature [30,31].  

• Saturation crack spacing 

For Case 3, where more complex failure mechanisms are involved, it 
is also interesting to discuss the occurrence and location of mortar cracks 
by means of a comparison between the so-called saturation crack 
spacing (Ls) and the length provided by the model (Li). It is interesting to 
observe that Eq. (25). provides values of xm

r independent from Li. The 
minimum length Ls that allows the formation of a concentrated crack 
inside mortar can be gained via Eq. (24). assuming σm

m0 = ftm: 

Ls =
ftmtm

τr
−

se

(α + β)τr
tanh

(
λ3xm

r

2

)

+ xm
r (29) 

For the mechanical and geometric properties used in the present 
simulations, Ls is equal to 42.4 mm, 27.4 mm, and 21.8 mm for Sets 1 to 
3 separately, values fully consistent with those predicted by Case 3.  

• Inelastic zone propagation inside the interface 

The role played by the inelastic region in Case 3 is to gradually 
expand in order to achieve mortar cracking. However, as shown in 
Fig. 15, the plastic zone hardly develops with the increase of cracks. If 
we consider the plastic zone to develop symmetrically, Eq. (24) can as 
well be utilized to determine gradually the plastic zone extension when 
mortar cracks; indeed, it is possible to write the following relation: 

ftm =
τr(Li − xr)

tm
+

se

(α + β)tm
tanh(λ3xr / 2) (30) 

By observing the second term, it is possible to deduce that, when 
(λ3xr /2) is large enough, the value of tanh(λ3xr /2) tends to one, so the 
length of the plastic zone (Li − xr) is almost constant and equal to the 
following expression: 

Li − xr ≅
ftmtm

τr
−

τrse

(α + β)
(31) 

It is useful to remember that xr denotes the local coordinate in In-
stants i of the transition point on the right between elastic and inelastic 
behavior of the interface, the value of which is normally large at the 

early stages of cracking. Moreover, when the external load applied in-
creases, xr becomes shorter, and mortar can no longer crack, because the 
length where the interface is able to transfer stresses from the fiber to the 
mortar layer is not sufficiently long. With the data used in the present 
simulations and considering τr = 0.2τm, if xr ≅ 20 mm, the term 
tanh(λ3xr /2) is about 0.96, while the saturation crack spacing Ls is 27.4 
mm (to compare with Li = L3 = 35 mm). The above considerations are 
graphically represented in Fig. 17, where curves y1 and y2 of Eq. (26) are 
depicted; we should also mention that the same results of xr have been 
obtained by the authors with a Matlab implementation.  

• Occurrence of different cases 

In the model, only the extension of the plastic zone and displace-
ments are related to the previous step; when the plastic zone extension is 
known, stresses and interfacial slip distributions are only dependent on 
the properties of the components and the length of the analyzed portion. 
Moreover, the conditions for determining whether the interface 
(inequality of Eq. (20)) and mortar fail are also related to the component 
properties and the length of the analyzed sub-coupon. Keeping the 
properties of mortar and fibers as in Table 1, as well as the interface 
elastic stiffness constant, for different values of se and τr, Cases 1, 2 and 3 

Fig. 16. Global stress-strain relationships of Case 3 for (a) Glass-FRCM group and (b) Carbon-FRCM group, and comparisons with experimental data.  

Fig. 17. Prediction of the extension of the inelastic zone in Case 3 for Set 
2 data. 
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occur at different values of L/Li ratio, as depicted in Fig. 18. In the 
horizontal axis the ratio L/Li is represented, the vertical axis is se and the 
subplots refer to different values of τr. In addition, an increase of the 
horizontal coordinate indicates a decreasing length of the analyzed sub- 
coupon (and indirectly the position of a mortar crack). 

It can be seen that the threshold where an interface inelastic behavior 
is observed is higher when se is larger, and Case 1 occurs more often. 
Case 2 appears later when τr gets larger, which means that the number of 
mortar cracks appearing during the whole loading process increases 
(and the saturation crack length is shorter) when the interface residual 
strength is sufficiently high. 

6. Conclusions 

An analytical model to describe the mechanical behavior of FRCM 
coupons in tension has been presented. Interfacial damage, mortar 
cracking, and the simultaneous occurrence of both mortar cracking and 
mortar/fiber interface inelastic behavior have been extensively dis-
cussed. The present model has been focused on the condition where 
mortar first cracks appear early near the edges of the clamping grip 
devices. The simple mathematical formulation proposed has been based 
on considering a mortar layer and a fiber textile (assumed always elastic 
until rupture) subjected to tension and exchanging at the interface 
tangential stresses. The setup of an experimental clevis grip test has not 
been investigated in detail (it will be discussed in future dedicated 
research) because it plays a meaningful role only at the first stages of the 
deformation process. Indeed, if the assumption that the initial cracks 
will appear near the grips is made, the afterward analyses are similar for 
both the clamping and clevis gripping systems. A major difference is 
that, for the clevis gripping system, additional assumptions about the 
shear stress distribution between the steel plate and the mortar (for 
example, as assumed in the literature [25]), and a quite complex 
calculation of the internal actions transferred by the steel plate to the 
fiber textile are required to deduce the global stress-strain curve. Such 

considerations go beyond the possibilities of the present approach, 
which is mono-dimensional and on purpose disregards the local 
multi-dimensional state of stresses with the aim of deriving analytical 
formulas. 

Three cases have been discussed in detail: in Case 1, an elastic brittle 
behavior for mortar has been assumed to maintain the interface elastic, 
in Case 2 the interface has been considered non-linear (elastic-perfectly 
brittle with residual strength) and mortar elastic, whereas in Case 3 both 
mortar and interface have been assumed non-linear. In Case 1, two sub- 
models have been extensively discussed (called respectively Case 1-a 
and Case 1-b); in Case 1-a mortar has been assumed elastic-perfectly 
brittle, whereas in Case 1-b an exponential softening model has been 
considered to describe the crack opening. In Case 2, the interface has 
been assumed to behave in an elastic-perfectly brittle manner with re-
sidual tangential strength. The role played by such residual resistance 
has been extensively discussed in the numerical examples analyzed to 
validate the analytical model proposed. 

Under the aforementioned assumptions, it has been possible -by 
writing the equilibrium equations for mortar and fiber layers-to deduce 
an ODE system admitting closed-form solution. Different cases -such as 
crack formation inside mortar and evolution of slippage at the interface 
fiber/mortar-has required to impose different boundary conditions and 
to analyze different portions of the coupon (e.g. between two contiguous 
cracks), depending on the cases, which has allowed an analytical 
determination of stresses and displacements during the entire defor-
mation process. 

It has been shown that the model can satisfactorily reproduce the tri- 
linear constitutive law assumed in the engineering practice for the 
speedy characterization of the behavior of coupons subjected to tensile 
tests. As far as the global behavior (in terms of applied load and 
measured deformation) is concerned, all models have proved a very 
satisfactory agreement with experimental evidence. Locally (i.e. to 
predict the formation of cracks and slippage along the coupon length), 
the results obtained have also shown that it is necessary to consider the 

Fig. 18. Occurrence of different cases while changing interface parameters (se and τr) under different analysis lengths Li.  
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simultaneous failure of mortar and interface to avoid the formation of 
unrealistic cracks inside mortar at short coupon lengths. A sensitivity 
analysis carried out changing the interface elastic limit and the residual 
strength has put in evidence that there is a certain influence on the 
failure mechanisms triggered, although the global stress-strain response 
found has been pretty similar in all the cases investigated. 

The simplicity of the approach, its reliability and the very limited 
computational burden required (almost all the analyses carried out are 
based on a closed-form formulation) make the model particularly 
attractive to explain in an easy way some typical phenomena occurring 
in FRCM tensile tests, the most important being for sure the contem-
porary damage of mortar and interface. Further developments of the 
proposed model include its application to the study of (i) single lap shear 
tests, (ii) entire reinforced structural elements in- and out-of-plane 
loaded, and (iii) reinforced curved masonry pillars, the latter being a 
topic particularly important for the strengthening of arches and vaults. 
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