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Abstract. Designing maintenance strategies to reduce the failure risk of plated 

structures is paramount for increasing the safety level of aerospace, civil and 

mechanical systems. Although traditional time-scheduled maintenance policies are 

reliable, they come with costly operations and avoidable downtimes. Recently, more 

complex condition-based strategies have been studied in the literature. This class of 

maintenance actions rely on structural health monitoring (SHM) frameworks: a sensor 

network is installed on the structure diagnostic data are processed to monitor the 

health state of the structure. 

The high dimensionality of data and the limitations of model-based SHM 

algorithms have led researchers to investigate data-driven solutions for improving the 

reliability of condition-based strategies. So far, supervised machine learning strategies 

have mainly been considered. However, since the cost of generating labeled datasets 

usually turns out to be prohibitive, two alternative solutions have gained attention: 

unsupervised methods and transfer learning (TL). While the former approach has been 

proved to provide satisfactory damage detection performance, it requires external 

knowledge sources to also localize and quantify damage. Instead, transfer learning 

could be used for performing all the damage diagnosis tasks, without the need for 

coupling the data-driven method with complex algorithms to restore the information 

lost by using smaller datasets for training. TL allows adapting pre-trained ML tools 

to new situations, new tasks and new environments. Moreover, TL can be leveraged 

when few labeled data are available, or to adapt efficient tools that have already been 

trained on a slightly different task. 

In this work, TL and convolutional neural networks (CNNs) were leveraged 

for performing damage localization in composite plated structures. That is, domain 

adaptation and fine-tuning were used to make an in-house CNN-based framework for 

localizing structural damage flexible enough to work in different domains.  

 

Keywords: domain adaptation, transfer learning, damage localization, structural 

health monitoring, composite. 
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Introduction  

It is inevitable that safety and reliability issues appear at some point during the operational 

life of structures. When this happens, the probability that the structure will fail becomes no 

longer negligible, and actions must be taken to restore standard safety conditions and avoid 

intolerable failures [1,2]. In this context, structural health monitoring (SHM) has gained 

strategic importance for extending the operational life of structures. The main goal of SHM 

is to detect any damage, anomalies, or changes in the structural behavior through a 

permanently installed network of sensors. 

Particularly promising capabilities have been shown by frameworks that process the 

information carried by ultrasonic guided waves (UGWs) [3–5], especially when 

complemented by machine learning (ML) algorithms [6,7]. In fact, ML algorithms allow 

identifying complex patterns and anomalies that are difficult, or even impossible, to detect 

manually. In particular, this is made possible by the use of advanced ML algorithms, such as 

convolutional neural networks (CNNs), that allow processing the diagnostic signals without 

extracting some damage-sensitive features, which would lead to loss of precious information. 

This was proven in Refs. [8,9], where a CNN-based framework for damage detection, 

localization and quantification was presented. The method outperformed ML-based 

frameworks that relied on extracted features, and traditional tomographic algorithms. 

Evidence was brought that the CNNs were able to diagnose damage characterized by 

properties outside the training domain. However, as most of the ML methods used for SHM, 

the approach required that a large and reliable dataset be available for training the networks. 

This limitation often results in expensive and time consuming operations that prevent 

industries from adopting ML approaches in real-worlds scenarios [8,10–12]. 

To overcome this limitation, transfer learning (TL) has been adopted in the literature 

[13–15]. To date, TL has helped address specific problems related to the nature of available 

experimental datasets, including the availability of limited training data, and has made it 

possible to deal with computational complexity, long training times, and to improve the 

generalization capability of ML algorithms [16]. This method allows using knowledge 

learned from a source domain to solve a problem in a related target domain. Ref. [17] 

introduced a TL approach based on a boosting algorithm to forecast pavement performance 

with limited data, while Ref. [18] presented a comprehensive approach for detecting open 

and closed cracks. Ref. [19] used TF to identify and detect structural cracks in images 

obtained from cameras installed on unmanned aerial vehicles (UAVs). Ref. [20] exploited 

commercial UAVs equipped with high-resolution vision sensors to detect and identify cracks 

in deteriorated concrete bridges. Ref. [21] proposed a method that combines CNNs and TL 

to identify leakage, spalling, and rebar exposure in hydro-junction infrastructure. 

Furthermore, Ref. [22] presented a method to detect damage on bridges using a combination 

of TL and vision-based techniques. However, to the authors’ best knowledge, no methods 

have been proposed in the literature that apply TL in the field of UGW-based SHM. 

This work aims to bring evidence that TL can be used to make CNNs trained on an 

experimental dataset of UGWs acquired on a plate work for plates made of different 

materials. To this purpose, the CNN-based framework already presented in Ref. [8] was 

trained on signals from the source domain. Then, domain adaptation was used to make the 

target domain distribution match the source domain distribution, and the CNN was fine-tuned 

on the few available target domain data.  

This paper is organized as follows. Section 1 presents the proposed framework. 

Section 2 introduces the case study, shows the damage localization results, and discusses the 

advantages of embedding TL into ML-based frameworks for SHM using UGWs. The 

conclusions of this work are drawn out in Section 3, where future work is also presented. 
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1. CNN-based framework for damage localization embedded with TL 

The CNN-based framework for damage detection, localization and quantification already 

described in Refs. [8,9] was considered in this work. In the interest of brevity, only the CNNs 

aimed to localize damage were combined with the TL algorithms to bring evidence of the 

capabilities of the proposed approach. The framework is shown in Figure 1. 

 

 
Fig. 1. Framework for localizing damage in thin-walled structures by combining CNNs and TL. 

 

The first step consists of installing the sensor network on the structure and acquiring 

the diagnostic signals. In order to excite and sense UGWs on plated structures, piezoelectric 

(PZT) sensors are usually adopted. The pitch-catch technique is suggested to acquire 

diagnostic signals. That is, one PZT at a time works as actuator, while the other devices sense 

the UGWs. A full acquisition ends when all the PZT devices have been used for exciting 

UGWs. The first step needs to be performed for both the source and the target domain, so to 

have the two datasets ready for the next steps. 

The second step of the framework consists of training the CNN for damage 

localization over the source domain. The CNN predicts the x and y coordinate of the damage. 

After the training step, TL is used to make the CNN work on the target domain. First, 

domain adaptation is performed. The method implemented to this purpose belongs to the 

feature-based methods, and more specifically to the Transfer Component Analysis (TCA) 

framework [23–25]. This framework aims to identify the principal components of the source 

and target domain distributions, and to generate a map so to have the principal components 

of the two distributions match. The algorithm employed in this work relies on the adaptation 
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of the Principal Component Analysis (PCA) for tensor objects, namely the Multilinear 

Principal Component Analysis (MPCA) [26,27], to find the common features between the 

datasets in the latent space defined by the eigenvectors of the data. After mapping the target 

domain into the source domain, the CNN is fine-tuned over the few available target domain 

data. This procedure allows exploiting the knowledge gained by analyzing the source 

domain, where several pieces of data are available, to make predictions over the target 

domain, where information is instead limited. 

2. Case study 

The proposed method was tested against a case study involving experimental 

structures. Specifically, damage localization was performed for two 4mm thick composite 

plates with in-plane dimensions 200mm x 300mm [28]. UGWs acquired on a Kevlar plate 

(K8) were used as the source domain, while signals coming from a Glass fiber plate (G16) 

constituted the target domain. The sensors employed were 1mm thick PIC255 PZT sensors 

with diameter 5mm. A circular sensor array with 8 devices was installed on each plate to 

allow scanning a circular area with diameter 160mm. Damage was simulated by using the 

pseudo-damage approach described in Ref. [28]. That is, damage was simulated by attaching 

a vinyl tape at 16 positions, one position at a time. The sensor array and damage positions 

are shown in Figure 2. The signals sensed over a full acquisition were stacked so to generate 

a grayscale image (GSI). Each GSI was composed of 7 rows and 10568 columns, i.e., 1 row 

per sensor and 1321 columns, or samples, per actuator. The dataset consisted of 2400 GSIs, 

1600 from the source domain and 800 from the target domain. 

 
Fig. 2. Damage and PZT devices positions considered in the case study. 

 

MPCA was applied to extract the eigenvalues and eigenvectors of the source and 

target domains. Particularly, 10 1-Mode and 10 2-Mode eigenvectors and eigenvalues were 

computed. Here, 1-Mode indicates the extraction performed by compressing the information 

along the row direction, while 2-Mode stands for the column direction. The eigenvectors 

were then stacked in a tensor, called eigentensor, which represented the projection of the 

source and target domains into the latent subspace formed by the 10 principal 1-Mode and 2-
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Mode eigenvectors [26,27]. After performing MPCA, the projected dataset was composed of 

2400 GSIs with dimensions 7x812. That is, the second dimension of the dataset was 

compressed by a ratio 10568/812=13. The source and target domain distributions before and 

after MPCA are shown in Figure 3. Furthermore, the dataset was split into the training, 

validation, and testing sets, using a ratio 80:10:10, respectively. 

 
Fig. 3. Source and target domain distributions before and after MPCA. 

 

Then, the CNN was trained over the source data in the projected dataset using the 

MATLAB® Deep Learning toolbox. The network architecture is shown in Table 1. 

 

Layer Shape Kernel Size Stride Filters 

Input Layer 7x812    

Conv2D  [1, 6] [1, 3] 4 

Batch Normalization     

Max Pooling  [1, 2] [1, 2]  

Conv2D  [2, 4] [1, 2] 4 

Batch Normalization     

Max Pooling  [2, 6] [1, 2]  

Fully Connected 20    

Fully Connected 10    

Fully Connected 5    

Fully Connected 2    
Tab. 1. CNN architecture. 
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The damage localization performance of the CNN trained over the source domain is 

shown in Figure 4 considering the testing set only. Here, red circles indicate expected damage 

positions, while black crosses show where damage was localized by the CNN. 

 

 
Fig. 4. Damage localization performance over the testing set of the source domain. 

 

After training, the fully connected layers of the CNN were fine-tuned over the target 

domain data in the projected dataset, while the convolutional part was kept frozen. 

Furthermore, a new CNN was trained from scratch over the target domain projected dataset 

as a reference to compare the TL performance with. The damage localization performance of 

the fine-tuned CNN and of the newly trained CNN over the testing set of the target domain 

projected dataset is shown in Figure 5. 

 

 
Fig. 5. Damage localization performance over the testing set of the target domain. (a) Fine-tuned CNN. (b) 

CNN trained from scratch. 
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The results brought evidence that TL was fundamental for making the CNN work on 

the target domain. In fact, without TL, the pieces of data available for the G16 plate were not 

enough to guarantee satisfactory localization accuracy, as shown in Figure 5(b). 

4. Conclusion 

This paper has presented a CNN-based framework for damage localization embedded 

with TL. The workflow is constituted of the following steps: 

1. Signals need to be acquired on the structures. The structure for which many 

pieces of data are available is the source domain, while the structure with limited 

information is the target domain. 

2. A CNN is trained to localize damage in the plate of the source domain. 

3. Domain adaptation and fine-tuning are used to make the CNN trained on the 

source domain work on the target domain. 

The results have shown that the proposed framework successfully allows CNNs to 

work in different domains, or for different structures. 

Future work will aim to test the proposed framework against more complex tasks, 

such that of making a CNN trained on a numerical model of the structure work on the real 

structure. 
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