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A B S T R A C T

Unsupervised learning is an effective and practical methodology for structural health monitoring 
when the preparation of labeled training data regarding damaged states is intractable, unnec
essary, and expensive. Despite several studies on this field, some challenging issues need further 
evaluations. The main objective of this research is to overcome the challenges concerning 
different variability patterns in unlabeled vibration data caused by single and multiple environ
mental and/or operational variations, non-generality of unsupervised learners in handling 
training data of different sizes, and impacts of false positive and false negative errors on early 
damage warning. A novel integrated unsupervised learning method is proposed that emanates 
from manifold learning-aided data clustering and non-parametric probabilistic anomaly detec
tion. Data clustering is based on regularized Gaussian mixture modeling supported by nearest 
neighbor graphs, for which training data can be modeled on a manifold structure. The primary 
purpose of this step is to generate local subsets of the entire training data in an effort to minimize 
the effects of environmental and/or operational variations. A multi-fidelity hyperparameter 
optimization is also designed to set the main hyperparameters of the proposed clustering algo
rithm, namely the number of components (clusters) and a regularization value. Using the 
aforementioned local subsets, a non-parametric probabilistic anomaly detector is developed from 
a reverse Gaussian mixture function to compute anomaly scores for early damage warning. Modal 
frequencies regarding two large-scale bridges are used to validate the proposed method and 
compare it with some state-of-the-art techniques. Results confirm the effectiveness and reliability 
of this method with negligible errors under different environmental variability.

1. Introduction

A serious challenge in our modern society is to preserve civil structures that are of utmost importance to economic development, 
transportation networks, and energy supply. Different methodologies are sought to protect civil structures from any adverse change 
caused by damage, prior to any partial or even full collapse. In this regard, new technologies based on data-driven structural health 
monitoring (SHM) can be developed within the framework of artificial intelligence [1]. Exploiting various sensing systems [2,3], civil 
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structures can be monitored intelligently by measuring static and/or dynamic responses under different excitations loadings. Measured 
responses are then handled to extract meaningful information, called damage-related features, and make a decision on the state of the 
structure being monitored [4].

The process of decision-making or feature classification in SHM are implemented in the three levels of early warning of damage (i. 
e., Has the structure suffered from any damage?), localization of damage (i.e., Where are the damaged components?), and quantifi
cation of damage (i.e., How severe is the localized damage?). The correct information and knowledge about early damage warning play 
significant roles in the next two levels. In fact, the success in damage localization and quantification depends on the effective and 
efficient early detection of damage. Compared with traditional visual inspections, an automated implementation of the first level of 
SHM can significantly expedite monitoring programs, reduce maintenance costs, improve structural safety, and prolong the lifespan of 
civil structures.

Within the paradigm of artificial intelligence, machine learning offers robust and effective approaches to early warning of struc
tural damage [5–10]. The main criterion for selecting the best machine learning model among the supervised, semi-supervised, and 
unsupervised classes depends on the availability of labels for the training data. In the context of SHM, fully labeled training data 
needed for supervised learning contains structural features (e.g., modal frequencies) of both undamaged and damaged conditions, 
while unlabeled training data suitable for unsupervised learning is comprised of the only undamaged features. Partially labeled data 
related to semi-supervised learning refer to all the features regarding the undamaged condition, with a few available features regarding 
the damaged state [5]. For early damage warning, the collection of fully and partially labeled datasets is not trivial, as the current state 
of the structure is actually unknown and any method should make attempts to estimate it. On the other hand, it may not be logical to 
damage civil structures for preparing damage data. This conveys the great importance of unsupervised learning for the first level of 
SHM.

Anomaly detection (also termed novelty detection) is the main unsupervised learning method for decision-making or feature 
classification [11]. The purpose of an unsupervised anomaly detector is to develop a model or function via unlabeled data, and then 
determine an anomaly score (index) for each training or test sample. Finally, it can make a decision whether a test sample is an 
anomaly or a normal one. Various anomaly detectors based on statistical distances [12–14], statistical and probabilistic models 
[15–17], and deep neural networks [18,19] especially autoencoders [20–22], have been developed for early damage warning. 
Clustering-based anomaly detection is a recent improvement in unsupervised learning for decision-making; generally, this method
ology leverages the concepts of hybrid and local learning algorithms [23]. To put it another way, a clustering-oriented anomaly de
tector consists of at least two steps of data clustering/partitioning and anomaly detection. In the first step, a clustering algorithm is 
used to split the entire training data into local subsets (clusters) in an effort to choose relevant training features and ignore irrelevant 
ones. In the second step, the selected local dataset provides the primary elements for developing a non-parametric or parametric 
anomaly detector. On this basis, the developed anomaly detector determines anomaly scores for all the training features, allowing to 
estimate a decision threshold. Finally, anomaly scores of test instances are compared with the estimated threshold for decision-making: 
if the anomaly score for a test sample exceeds the threshold, the anomaly detector warns about an abnormal (damaged) condition. Due 
to the coupling of data clustering and anomaly detection, different choices are available to develop clustering-aided anomaly detection 
techniques. Some examples of these approaches include the k-means clustering and Euclidean distance [24], agglomerative hierar
chical clustering and multivariate Bhattacharyya distance [25], agglomerative concentric hypersphere clustering and Euclidean dis
tance [26], Gaussian mixture model and Mahalanobis-squared distance (MSD) [27], spectral clustering and empirical anomaly indices 
[28], adaptive kernel spectral clustering and direct distance metrics [29], and hierarchical information clustering and density-based 
anomaly detection [30].

Despite the effectiveness and efficiency of clustering-aided anomaly detection, some challenges should still be dealt with properly. 
One of these challenges is related to the confounding influences caused by environmental and/or operational variability in SHM 
programs. This issue is crucial to SHM due to the deceptive effects of such variability conditions on decision-making, particularly in 
long-term monitoring [31]. On the one hand, changes in the environmental (e.g., temperature, humidity, wind speed and direction) 
and operational (e.g., excessive loadings and traffic) factors can alter structural responses similar to that linked to damage, leading to 
false positive errors. On the other hand, the level of variability of these conditions may be larger than damage, particularly compared to 
minor damage, masking the influence of damage and leading to false negative errors [17]. As the false positive and negative errors can 
be directly related to economic and safety issues, it is therefore essential to mitigate or remove the environmental and/or operational 
effects [31]. The other important issue pertains to the type of variability, as some specific environmental and/or operational factors are 
dominant. For example, daily and seasonal temperature fluctuations or freezing weather make single environmental variability 
conditions changing structural responses of short- and moderate-span bridges [32–34], while temperature, traffic, and wind are 
multiple environmental and operational factors simultaneously affecting structural responses of long-span cable-supported bridges 
[35,36]. This issue emphasizes the significance of developing robust methods with high generality investigated in this article. Further 
than the engineering challenges concerning the environmental and/or operational changes, the most significant technical issue is 
concerned with the limitation and complexity of some anomaly detectors in handling the aforementioned engineering issues under 
different sizes of the training features (e.g., small and large sets of modal frequencies obtained from short-term and long-term 
monitoring programs [16]). This is a demanding issue because some of these anomaly detection techniques are suitable for large 
data (e.g., anomaly detectors based on dimensionality reduction or feature selection strategies), but those may fail in yielding 
appropriate performances using small data and vice-versa. Thus, there is a critical need to develop a versatile and effective anomaly 
detection method capable of addressing the engineering and technical challenges associated with varying data scales.

This article proposes a new clustering-oriented anomaly detection method in an integrated unsupervised learning fashion. Initially, 
a novel manifold learning-aided clustering technique based on a regularized Gaussian mixture model (RGMM) supported by nearest 
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neighbor graphs (NNGs), called here RGMM-NNG, is proposed to split the entire training data into local subsets (clusters) regardless of 
the size of data. The main premise behind RGMM is that training samples can be modeled on a manifold structure, based on their NNGs, 
and regularization significantly aids this approach to enhance the clustering performance. Once the entire training dataset is clustered, 
its local subsets (features) are considered to develop a non-parametric probabilistic anomaly detector based on a reverse Gaussian 
mixture function (RGMF). The proposed anomaly detector, which is consistent with the Gaussianity assumption on the local subsets, is 
formed by handling the local training subsets, and its inverse is then used to compute anomaly scores for decision-making. Since the 
RGMM-NNG method conforms to a model-based parametric data clustering, this work presents a multi-fidelity hyperparameter 
optimization (MF-HPO) technique to determine the critical hyperparameters of RGMM-NNG, which are the optimal number of 
components (clusters) and a regularization value. In view of the importance of confounding influences related to the environmental 
and operational variations, the proposed MF-HPO technique is specifically designed with an emphasis on mitigating such conditions. 
The major innovations of this article are three-folds: (i) a novel integrated SHM method based on manifold-aided data clustering and 
unsupervised anomaly detection, (ii) a hyperparameter optimization approach for the RGMM-NNG, and (iii) a probabilistic non- 
parametric anomaly detector.

Different sets of dynamic features (i.e., modal frequencies), extracted from vibration data of two full-scale bridges, are used to 
assess the effectiveness and performance of the proposed method, and compare it with some state-of-the-art anomaly detection 
techniques. Results demonstrate that the proposed method is effective and reliable for SHM in the presence of single and multiple 
environmental/operational variations. As the local features extracted from the initial step of the proposed method can effectively 
mitigate the influences of environmental and/or operational variability on the whole data, RGMM-NNG significantly enhances the 
ability of RGMF to generate more discriminative anomaly scores. This results in superior outcomes in reducing false positive and 
negative errors compared to several state-of-the-art techniques.

2. Clustering-based anomaly detection method

The proposed method consists of two main steps: (i) data clustering via RGMM-NNG along with its hyperparameter tuning by 
means of MF-HPO, and (ii) density-based anomaly detection via RGMF. Fig. 1 shows the flowchart of the proposed method to sum
marize it. Accordingly, the method initially processes the training data points corresponding to the undamaged structural condition. 
These points are used to tune the number of clusters and the regularization value needed for RGMM-NNG. These hyperparameters 
enable the proposed clustering technique to properly subdivide the entire training points into optimum clusters, and then deal with the 
effects of the environmental and/or operational variability by yielding the minimum false positive error.

Subsequently, the local subsets obtained with RGMM-NNG, along with the training points, are exploited to develop the RGMF- 
based anomaly detector. In this regard, the mean vectors and covariance matrices related to the local subsets represent the main 
structure of the adopted anomaly detector. Training and test points are then handled to compute their anomaly scores, acting as 
damage indices. Within an unsupervised anomaly detection framework, the anomaly scores relevant to the training points are used to 
estimate a decision threshold, so that any deviation of the scores relevant to the test points gives a warning of damage. It is important to 

Fig. 1. Flowchart of the proposed clustering-based anomaly detection method.
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acknowledge that the threshold estimation conducted during the training phase relies on an assumption that the structure being 
monitored is undamaged at that time. For the assessment of the current structural state during the monitoring stage, it is supposed that 
test samples become available in real time to perform online damage detection. Therefore, the test instances are successively processed 
by the trained anomaly detector to compute their anomaly scores.

2.1. Data clustering via RGMM-NNG

GMM is a probabilistic clustering method based on a weighted sum of Gaussian components. In this method, clustering is achieved 
by partitioning data samples into components, each of which is characterized by the mean vector, covariance matrix, and mixture 
weights, reflecting the Gaussian distribution of the data within that cluster [36: Chapter 9]. While GMM assumes that data distributions 
are supported in the Euclidean space [38], modeling in a submanifold, based on a manifold structure of data, can substantially enhance 
the learning performance.

The manifold of data is a mathematical structure that organizes data into a graph of connected regions where each data point is 
linked to a neighborhood set. Furthermore, a submanifold is a specific type of manifold situated within a higher-dimensional manifold 
[39: Chapter 16]. The manifolds and/or submanifolds can be used to represent a number of connected data points that can be given as 
transformations from a higher-dimensional space. In this context, manifold learning is an advanced machine learning algorithm that 
leverages these geometric structures to perform dimensionality reduction. By mapping high-dimensional data onto these manifolds or 
submanifolds, manifold learning aims to preserve the inherent data structures and relationships in the data. The process involves 
discovering the underlying manifold structure within the data and then representing this manifold in a new and lower-dimensional 
space. Since the manifold is often unknown, its structure can discretely be constructed by using a nearest neighbor graph. This 
approach offers a significant advantage by providing a more discriminative effect compared to traditional methods, relying on the 
Euclidean space [38]. On the other hand, it is important to acknowledge that manifolds are constructed from the training data related 
to the undamaged state. Utilizing the graph-based approach, a regular manifold is generated by ensuring that the training points 
maintain a coherent and consistent structure within the feature space, in spite of the presence of potential outliers.

By integrating the concepts of GMM-aided clustering and graph-based manifold learning, Liu et al. [40] suggested RGMM-NNG as a 
model-based clustering algorithm. This method incorporates a regularizer into the objective function of GMM, obtained by con
structing an NNG and by applying the Kullback-Leibler (KL) divergence as a distance measure. The KL divergence on its own provides 
the distance between two probability distributions, so that the GMM problem can be solved more effectively than through the 
expectation–maximization algorithm [37: Chapter 9]. Compared to the traditional GMM, RGMM-NNG features a significant 
advancement thanks to the integration of NNG and KL divergence. This integration enforces a smoothness constraint rooted in the 
manifold structure, which enhances the capability of RGMM-NNG to accurately cluster complex data. Such advancements not only 
boost clustering precision, but also significantly improve the decision-making process in applications such as SHM. Despite the direct 
utilization of RGMM-NNG, this research presents important innovations. The primary innovation involves adapting RGMM-NNG to 
SHM for addressing one of the major challenges, i.e., the effects of environmental and operational variability. The other innovation lies 
in the integration of MF-HPO with RGMM-NNG, as detailed in Section 2.3, to optimally tune its critical hyperparameters including the 
number of clusters (components) and a regularization value. This strategic adaptation not only enables RGMM-NNG to provide local 
information for anomaly detection, but also emphasizes the mitigation of the environmental and operational impacts leading to 
improved detection accuracy.

Given a feature vector xi relevant to the training matrix X∈ℜp×n, where i = 1,…,n, the main function for GMM is expressed as 
follows: 

P(xi|θ) =
∑c

r=1
ωrG(xi|μr,Σr) (1) 

where P(xi|θ) is the probability density function of the data point xi given the model parameters θ; c denotes the total number of 
components of GMM; ωr is the rth mixture weight; and G(xi|μr,Σr) represents the Gaussian mixture density function of the rth 

component, which is defined as: 

G(xi|μr,Σr) =
1

(2π)
p
2|Σr|

1
2

exp
(

−
1
2
(xi − μr)

TΣ− 1
r (xi − μr)

)

(2) 

where μr and Σr are the mean vector and covariance matrix of the rth component; and |.| represents the matrix determinant. The 
unknown elements of GMM are collected into θ = {ωr, μr, Σr}. As already pointed out, GMM is therefore characterized by the mean 
vectors, covariance matrices, and mixture weights related to all components. The parameters in θ are then estimated by the maximum 
likelihood method. Given the training data X , the log-likelihood function of GMM is written in the following form: 

L (θ) = logP(X|θ) = log
∏n

i=1
P(xi|θ) (3) 

where Π stands for the product operation. As Eq. (3) contains a nonlinear function of the unknown parameters in θ, the expect
ation–maximization algorithm can be exploited in an iterative manner [37: Chapter 9]. By introducing the conditional probability 
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distribution P(r|xi), which represents the likelihood of the ith feature vector belonging to the rth component, the complete log- 
likelihood function is obtained as follows: 

L (θ) =
∑n

i=1

∑c

r=1
P(r|xi)(logωr + logG(xi|μr,Σr) ) (4) 

According to the expectation–maximization algorithm [41], the solution of Eq. (4) involves the expectation and maximization 
steps. The expectation step develops a function for the expected value of the log-likelihood, evaluated using the current estimates of the 
unknown parameters. The maximization step then calculates these parameters by maximizing this expected log-likelihood. In simpler 
terms, the expectation step in GMM computes the posterior probabilities of component points (memberships). Having considered the 
component-membership posterior probabilities as weights, the maximization step estimates the mean vectors, covariance matrices, 
and mixing proportions by applying the maximum likelihood. With such backgrounds, RGMM-NNG assumes that the conditional 
probability distribution P(r|xi) can vary smoothly along the geodesics in the intrinsic geometry of P(X), which represents the marginal 
probability distribution of the training matrix on the manifold structure. In other words, it is supposed that the conditional probability 
distributions of the feature samples resemble the marginal distribution of the training data on the manifold structure. This concept is 
known as the local consistency assumption [40].

To develop the objective function of RGMM-NNG, the similarity (distance) between two distributions is measured by the symmetric 
KL divergence. In this context, the application of the KL divergence is central to define the relationships within the NNG based on the 
distributional characteristics of the training points. Given the q-dimensional probability distributions P̂i = P(xi|θ) and P̂j = P

(
xj|θ
)

regarding the ith and jth samples of the training data, where i,j = 1,…,n, the KL divergence is written as follows: 

dKL
(
P̂i
⃦
⃦P̂j
)
=
∑q

l=1

P(xil|θ)log

(
P(xil|θ)
P
(
xjl|θ

)

)

,∀i ∕= j (5) 

To avoid problems related to a non-symmetric measure, the symmetric version dSKL of the KL divergence is introduced as: 

dSKL
(
P̂i‖P̂j

)
=

1
2
(
dKL
(
P̂i‖P̂j

)
+ dKL

(
P̂j‖P̂i

) )
,∀i ∕= j (6) 

In the following, an NNG is derived from some nearest neighbors of the training samples. This describes a type of graph-based data 
structure, which is constructed from a set of training points in a metric space. Each point is connected to its nearest neighbors based on 
a specified distance metric. In the case of RGMM-NNG, the symmetric KL divergence is used as the metric to connect each training point 
to its nearest neighbors. The NNG can be modeled in undirected and directed configurations. Since the symmetric KL divergence 
ensures that the distance measure is the same in both directions, this symmetry implies that the graph considered in RGMM-NNG is 
undirected.

Based on the concept of manifold learning, the local geometric structure of the data can be effectively modeled by using the NNG on 
a scatter of training features. Let us consider a graph with vertices (nodes), each of which represents a training sample; if there are n 
training samples, the graph contains n vertices or nodes. The edges between the vertices are determined based on the nearest neighbor 
relationship. Specifically, an edge exists between two vertices i and j if either the vertex i is among the k-nearest neighbors of vertex j or 
vice versa. This bidirectional criterion ensures that the graph captures the local proximity or similarity between samples. Accordingly, 
one can derive an edge matrix, also referred to as an adjacency matrix [42], to represent the connections (edges) between the vertices 
(nodes) of the graph. This matrix is typically represented as a square matrix where both rows and columns correspond to the vertices of 
the graph. In other words, the entries of this matrix state whether a direct connection (edge) exists between the vertex corresponding to 
the row and the vertex corresponding to the column. Considering the ith and jth training samples, which is equivalent to the vertices i 
and j in the graph, the connectivity between these vertices in the edge matrix (γij) is defined in the following form: 

γij =

{
1, ifxi ∈ Nk

(
xj
)
or xj ∈ Nk(xi)

0, otherwise (7) 

where Nk(xi) and Nk
(
xj
)

denote the k-NNs sets associated with the training samples xi and xj. Each entry in the edge matrix indicates 
the presence (γij = 1) or absence (γij = 0) of an edge between the vertices i and j. In this case, if xi is among the k-NNs of xj and vice versa, 
there is a connectivity between these samples and the edge entity corresponds to one. Once the edge matrix of the NNG is determined, 
the function related to the smoothness of P(r|xi) on the graph is defined as: 

R =
∑n

i,j=1
dSKL

(
P̂i‖P̂j

)
γij (8) 

By adding this smoothness term to the log-likelihood function of GMM, one obtains: 

K = L − λR =
∑n

i=1
log
∑c

r=1
ωrG(xi|μr,Σr) −

λ
2
∑n

i,j=1
dSKL

(
P̂i
⃦
⃦P̂j
)
γij (9) 

where λ is the mentioned regularization parameter. The objective function of RGMM-NNG in Eq. (9) contains unknown parameters 
that can be estimated either internally within the algorithm or a priori using an additional technique. From a machine learning 
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perspective, the parameters estimated within the learning algorithm are referred to as model parameters; the other unknown pa
rameters that significantly affect the overall performance of the learning process are called hyperparameters, and need to be tuned 
beforehand [43]. Accordingly, the mixture weights {ω1,⋯,ωc}, the mean vectors {μ1,⋯,μc}, and the covariance matrices {Σ1,⋯,Σc} 
are the model-parameters of RGMM-NNG estimated by the iterative expectation–maximization algorithm [40]. The method hyper
parameters include the number of NNs (k), which contributes to build the NNG and determine the graph weights, the regularization 
value (λ), and the optimal number of components (c). Eventually, after determining the model and hyperparameters of RGMM-NNG, 
this method presents the components {C1,…,Cc} along with their mean vectors and covariance matrices, serving as the main outputs of 
the first step of the proposed method. These outputs are then incorporated into the RGMF-based anomaly detector for early damage 
warning.

It is important to clarify the differences between the innovative application of RGMM-NNG and manifold learning presented in this 
study and the work by He and Guo [44]. This paper adopts the symmetric version of the KL divergence, while He and Guo [44]
challenged the non-symmetric characteristic of the KL divergence and developed the RGMM using the Hellinger distance. Hence, the 
primary difference lies in the use of distinct distance measures. Moreover, another key distinction relates to the application domains of 
RGMM and manifold learning: specifically, the engineering problem in [44] focused on bearing health monitoring by addressing the 
dual challenges of constructing a proper health indicator and its suitability for predicting the remaining useful life of bearings. In 
contrast, this research aims to leverage the RGMM in conjunction with the NNG for data clustering to mitigate the effects of envi
ronmental and operational variability.

2.2. Multi-fidelity hyperparameter optimization for RGMM-NNG

Hyperparameter optimization is a critical process in learning any parametric model. This is due to the direct impact of hyper
parameters on the model performance. In machine learning, this process can be performed by some well-accepted algorithms such as 
grid or random search, gradient-based optimization, Bayesian optimization, multi-fidelity optimization, and metaheuristic approaches 
[43]. When there is a small set of hyperparameters, model-free and multi-fidelity techniques are optimal solutions. In the context of the 
RGMM-NNG algorithm, it suffices to determine the number of components c and the value of the regularization parameter λ. Hence, 
MF-HPO is introduced to tune these elements before the final data clustering. Regarding the number of NNs, it is only necessary to 
provide the best NNG when all vertices are connected, which can be achieved by some empirical estimators. In this work, the empirical 
estimator proposed by Walters [45] is adopted, where for n data samples, k is given by the nearest integer to 0.4125log(n). This means 
that the number of NNs necessitates a prior definition, without any incorporation into the MF-HPO algorithm. The flowchart of the 
proposed MF-HPO is depicted in Fig. 2.

According to the fundamental principles of the MF-HPO algorithms [43], the proposed strategy is carried out at multiple (two) 
levels. Initially, an attempt is made to optimize the hyperparameters within a large search space using a correspondingly large step 

Determine the novelty scores

Estimate a threshold via the novelty scores of the training
samples

Compute the misclassification errors for all search items
and step sizes

Select the best hyperparameters with the minimum
misclassification errors

Define small search space
with small step sizes

Features of the normal condition

Determine the novelty scores

Estimate a threshold via the novelty scores of the training
samples

Compute the misclassification errors for all search items
and step sizes

Select the search area with the minimum misclassification
errors

Define large search space
with large step sizes

Level I Level II

x1 x2 xn z1 zt

Training data Validation data

Fig. 2. Flowchart of the MF-HPO algorithm.
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size. Subsequently, the outcomes from the first level are used to define a reduced search space and smaller step size, allowing the 
strategy for tuning the hyperparameters more precisely. Since c and λ should mitigate the negative effects of environmental and/or 
operational variations, the optimal criterion to set them is based on the minimization of the false positive rates. In this optimal solution, 
RGMM-NNG can thus split the entire training data into local subsets so that the confounding effects are minimized. As the data 
clustering step is implemented on the training data, which is related to the normal/undamaged structural state, the false positive error 
is the only available metric for the optimization criterion, which is defined as: 

E = FP =
NFP

NTN + NFP
(10) 

where NFP and NTN denote the numbers of false positive and true negative cases. Here, the terms “positive” and “negative” refer to the 
damaged and undamaged conditions [17]. Hence, the false positive represents the cases related to an undamaged structure, for which 
the anomaly detector incorrectly alarms in relation to the occurrence of damage; the true negative means instead that the structure is 
correctly detected in its normal condition by the anomaly detector. Apart from the false positive error, another evaluation metric for 
decision-making is the rate of false negative error, which is expressed as follows: 

FN =
NFN

NTP + NFN
(11) 

where NFN and NTP represent the numbers of false negative and true positive, respectively. In this regard, the false negative relates to a 
damaged structure, for which the anomaly detector mistakenly notifies no damage occurrence, while the structure is actually 
damaged. Conversely, the true positive means that the structure is accurately detected in its damaged condition.

2.3. Non-parametric probabilistic anomaly detection

Probabilistic anomaly detection is based on the estimation of the probability density or distribution function of data. It operates 
under specific assumptions about data distribution, such as Gaussianity, to define a threshold. Anomalies are detected by identifying 
data points that deviate significantly from the established assumptions [11]. The proposed anomaly detection method adheres to these 
foundational concepts, yet it employs innovative and distinct strategies. Initially, the proposed method generates a mixture of 
probabilistic models through the output of RGMM-NNG, which is the local mean vectors and covariance matrices related to the clusters 
of the training points, to derive a probabilistic function/model. The innovation of this strategy emanates from the theory of local 
learning, for which local information is applied to develop the anomaly detector, rather than customarily considering the probability 
density/distribution function concerning the entire training dataset.

Subsequently, the probabilistic model is inverted to define the RGMF and compute the anomaly scores of the training and test 
points. In the probabilistic anomaly detection framework, anomalies typically exhibit lower probability values compared to normal 
data points. This is attributed to the tendency of anomalies to change the statistical properties of normal data, notably by increasing the 
standard deviation and variance. Since the probability function is dependent on such statistical properties, the presence of anomalies 
leads to reduced probability values. This means that the anomaly detection process identifies anomalies by tracking a descending trend 
in probability values, where anomalies are characterized by the lowest scores. Despite the apparent reasonableness of this direct 
strategy for anomaly detection, it is less common in critical projects such as SHM of civil structures. This underscores the importance of 
establishing decision thresholds in crucial anomaly detection scenarios. Furthermore, the direct use of the minimum probabilistic 
scores limits the application of various threshold estimators, such as peak-over-threshold (POT) techniques relying on extreme value 
theory (EVT), which are only valid for maximum data distributions, for final decision-making. Accordingly, the proposed RGMF is 
represented by inverting the mixture probabilistic model, which is indicative of one of the main innovations presented for anomaly 
detection. The other key innovation is related to the non-parametric nature of RGMF that enables it to determine anomaly scores 
without any hyperparameter tuning. This underscores the simplicity and cost-effectiveness of the proposed anomaly detector.

The proposed RGMF is defined by exploiting the output of the RGMM-NNG algorithm, in terms of the local mean vectors {μ1,⋯,μc} 
and covariance matrices {Σ1,⋯,Σc}. For any training sample, the anomaly score is obtained as follows: 

ρ(xi) =
1

max
j

(
G
(

xi
⃒
⃒μj,Σj

)) (12) 

where i = 1,…,n and j = 1,…,c, and G
(

xi

⃒
⃒
⃒μj,Σj

)
is the probability distribution function defined in Eq. (2). Utilizing all the n samples 

collected during the training phase, the corresponding n anomaly scores relevant to the undamaged state are established and sub
sequently adopted to estimate the threshold τ. Since the effects of the environmental and/or operational variability can be mitigated by 
using the RGMM-NNG method, the POT-aided EVT threshold estimator proposed by Sarmadi et al. [46], is considered here to define 
the threshold τ for final decision-making. This threshold estimator offers the advantage of circumventing model selection, specifically 
eliminating the need for extreme value distribution modeling and parameter estimation.

If zl is the lth test point to be evaluated in real time during the monitoring phase, with l = 1,…,m, early damage warning can be 
implemented in an online fashion. The anomaly score δ(zl) is determined by inverting its density value ρ(zl), where: 
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ρ(zl) =
1

max
j

(
G
(

zl
⃒
⃒μj,Σj

)) (13) 

and: 

G
(

zl
⃒
⃒μj,Σj

)
=

1

(2π)
p
2
⃒
⃒Σj
⃒
⃒
1
2

exp
(

−
1
2

(
zl − μj

)T
Σ− 1

j

(
zl − μj

))

(14) 

Whenever the anomaly score exceeds the threshold, the procedure triggers an early damage warning in the sense that the structure 
has undergone some degradation and the current structural state is classified as damaged. Conversely, if the anomaly score falls below 
the threshold, the structure is considered to be still behaving normally and it is classified as undamaged.

3. Validation via full-scale bridge structures

3.1. A post-tensioned concrete bridge

This structure known as the Z24 Bridge is one of the most famous benchmark models in the SHM community. It was built as a three- 
span post-tensioned concrete bridge and located along the A1 Bern-Zurich Highway in Switzerland. The bridge was demolished in 
1998, to build a new bridge with a larger side span. The structure had a main span of 30 m, and two side spans of 14 m. Fig. 3 shows the 
side and top views, as well as a picture of this bridge. The superstructure of the Z24 Bridge consisted of a two-cell closed box girder with 
tendons in the three webs. Both the main piers were built as concrete diaphragms, fully connected to the superstructure.

A long-term continuous monitoring test was carried out to measure acceleration responses and environmental factors such as air 
temperature, humidity, wind speed and direction, and rain before the complete demolition. Realistic damage patterns were also 

Fig. 3. Z24 Bridge: (a) Elevation view and main dimensions, (b) plan view, and (c) an old picture of the structure.
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gradually introduced in a controlled manner, to define ad-hoc damaged conditions. An automated operational modal analysis based on 
the stochastic subspace identification was conducted by Peeters and De Roeck [47] to extract the one-year modal frequencies of the 
fundamental four vibration modes, as shown in Fig. 4. In this figure, the modal frequencies relevant to the first 3475 samples are 
associated to the normal or undamaged condition, while those relevant to the remaining samples 3476–3932 are instead related to the 
damaged state. An important insight provided by Fig. 4 is that the modal frequencies of the undamaged state exhibit sharp increases 
within the first 2000 samples. This is attributed to the impacts of freezing temperatures, which stiffened the bridge deck and resulted in 
abnormal frequency increases. Therefore, such single environmental variability linked to the freezing temperature is the major 
challenge in SHM of the Z24 Bridge.

To detect damage, 90% of the modal frequencies related to the normal condition are adopted to generate the training matrix 
X∈ℜ4×3128, which therefore consists of 3128 feature vectors of four variables (p = 4). The remaining 10 % of the modal frequencies 
relevant to the normal condition, serving as the validation data, and all modal frequencies concerning the damaged state are instead 
used to assemble the test matrix Z∈ℜ4×804. To start tuning the main hyperparameters of RGMM-NNG, the empirical estimator proposed 
by Walters [45] is initially applied to determine the number of NNs to construct the NNG and data manifold by considering the total 
number of training samples (n = 3123), leading to k = 4. Fig. 5 shows different three-dimensional (3D) views of the manifold structure 
of the training samples constructed from the NNG. This graph contains 3123 vertices (the blue circles), which are the training points 
and are connected by edges (the green lines) based on the four NNs of each point. The obtained NNG helps in understanding the 
relationships and proximities within the training data, which are essential for exploring the manifold structure indirectly.

In relation to the observed manifold structure, significant parallels can be drawn with transfer learning scenarios, particularly in the 
context of joint domain adaptation [48]. The manifold serves as a unified feature space that simplifies the representation of data from 
diverse structural states of the bridge, similar to how transformed feature spaces in transfer learning facilitate domain adaptation. This 
common feature space enables effective learning and generalization across varying structural conditions, which is similar to the 
methodology applied in other SHM applications conducted in [48]. Domain adaptation is particularly crucial for enhancing model 
transferability between different structural domains, which can accommodate significant variations in data distributions.

In the following, the proposed MF-HPO algorithm is adopted to set the other hyperparameters of the RGMM-NNG, i.e., the value of 
the regularization parameter (λ) and the number of components (c). Fig. 6 shows the results of this algorithm in terms of the maps of the 
false positive errors in the multilevel search spaces. In this figure, the vertical and horizontal axes represent the number of components 
and the regularization value, respectively. As shown in Fig. 6(a), the first level of the MF-HPO reveals that the lowest error rate is 
achieved with smaller values of both hyperparameters, ranging from 10 to 50 for c and from 0.01 to 0.1 for λ. These ranges are 
subsequently selected as the search area for the second level of the MF-HPO approach, as depicted in Fig. 6(b). The hyperparameters 

Fig. 4. Modal frequencies of the Z24 Bridge relevant to the first (a), second (b), third (c), and fourth (d) modes.
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that lead to the minimum error rate in the second level are finally estimated as c = 46 and λ = 0.02. Therefore, the training samples are 
clustered into 46 components {C1,…,C46}, to determine the corresponding mean vectors {μ1,⋯,μ46} and covariance matrices {Σ1,⋯,

Σ46}. The training and test samples (vectors) are then fed into the RGMF to determine their anomaly scores {ρ(x1),…,ρ(x3128)} and 
{ρ(z1),…,ρ(z804)}.

By considering the anomaly scores of the training samples, an alarming threshold is estimated via the POT-EVT threshold estimator. 
Fig. 7 shows the result of damage detection obtained by the proposed RGMM-NNG-RGMF method, where the horizontal line refers to 
the estimated threshold (τ) and the vertical lines are used to distinguish the normal and damaged conditions in the training and 
monitoring phases. In Fig. 7, furthermore, the anomaly scores associated with the normal and damaged conditions are labeled as NC 
and DC, respectively. As can be seen in Fig. 7, the sudden jumps in the modal frequencies are no longer apparent in the anomaly scores 
of the training samples. This substantiates that the proposed RGMM-NNG technique generates proper local information (i.e., clustered 
training subsets), significantly filtering out the confounding influence of the considered environmental factor. This is because the data 
clustering mitigates internal variability within the clusters that enables the anomaly detector (RGMF) to focus more accurately on 
genuine data characteristics rather than fluctuations caused by the temperature variability. Accordingly, no false alarms are reported 
for the training samples, and the majority of the anomaly scores relevant to the validation data fall below the threshold, implying 
accurate detection of the normal condition. On the other hand, most of the anomaly scores relevant to the damaged state (i.e., the 

Fig. 5. Z24 Bridge: 3D views of the manifold of the training samples generated by the NNG with k = 4.

Fig. 6. Z24 Bridge: Maps of the false positive errors given by the proposed MF-HPO algorithm within the RGMM search space relevant to (a) Level 1, 
and (b) Level 2.
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samples 3476–3932) exceed the threshold, implying the correct detection of damage. Therefore, the proposed method succeeds in 
distinguishing the damaged state from the normal condition and filtering out the severe environmental variability to provide 
discriminative anomaly scores.

The performance of the proposed method is now assessed in the case of smaller training datasets, by decreasing the training ratio 
from 90% to 60% and 40% of the entire dataset, leading to the corresponding training matrices X60%∈ℜ

4×2085 and X40%∈ℜ
4×1390. The 

remaining 40% and 60% of the modal frequencies relevant to the normal condition, as well as all the modal frequencies of the damaged 
state are collected in the corresponding test matrices Z60%∈ℜ

4×1847 and Z40%∈ℜ
4×2542. Fig. 8 illustrates the results of early damage 

warning by adopting the same threshold estimator used in the reference case. It can be seen that the reduced number of training data 
significantly increases the number of false positive errors in the validation data. This increase is attributed to the fewer instances of 
training data available for allocation in data clustering, which impacts the ability of the proposed method to accurately discern be
tween normal and anomalous conditions. Even if most of the anomaly scores concerning the damaged state fall above the threshold 
line, as Fig. 8(a) reveals, the rate of false negative errors increases compared to the corresponding error in Fig. 7. An important 
observation from Fig. 8(b) is that using only 40% of the normal features to assemble the training matrix fails in providing discrimi
native anomaly scores. As a result, the majority of the anomaly scores for the validation samples align with those of the damaged state, 
indicating an inability to effectively distinguish between the normal and damaged conditions using the 40% training ratio. To further 
assess the negative consequences of considering limited training data, Table 1 lists the number and percentage of false positive, false 
negative, and misclassification errors for all three training ratios. As expected, the best performance is linked to a relatively large 
training ratio (90%), while the method performance is seriously degraded in case of smaller training sets.

Fig. 7. Z24 Bridge: Early warning of damage via the proposed method.

Fig. 8. Z24 Bridge: Early warning of damage via the proposed method by using smaller training rates: (a) 60%, and (b) 40%.
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Having considered the reliable performance of the proposed clustering-aided anomaly detection method, a further evaluation is 
conducted to testify the impact of data clustering. For this purpose, the only RGMF anomaly detector is applied by incorporating the 
entire (original) training data. In this case, the mean vector and covariance matrix of X90%∈ℜ

4×3123 are estimated and used in RGMF. 
Fig. 9 illustrates the anomaly scores of the normal and damaged conditions of the Z24 Bridge using the complete training dataset 
incorporated into RGMF. Due to the presence of outliers (i.e., the environmental variability), which alter the statistical properties of 
the training data, it is evident from Fig. 9 that the direct application of RGMF cannot provide reliable outcomes for early damage 
warning in such a way that the sudden sharp increases in the original features is observable in the anomaly scores. Thus, the anomaly 
scores of the training points are either equal or even larger than some scores concerning the test samples.

Although the previous comparison emphasizes the importance of data clustering performed by RGMM-NNG to enhance damage 
detectability and reduce decision-making errors, it is necessary to further validate this importance by another anomaly detector. For 
this reason, the process of early damage warning in the Z24 Bridge is repeated by merging RGMM-NNG with the well-known MSD. 
Accordingly, the local mean vectors and covariance matrices obtained from RGMM-NNG are used to develop an MSD-based anomaly 
detector. For the ith training feature, the anomaly score based on the MSD metric is given by: 

dM(xi) = min
j

((
xi − μj

)T
Σ− 1

j

(
xi − μj

))

(15) 

The same holds for any test sample zl by substituting it instead of xi. The other steps of the early damage warning are similar to those 
discussed for the RGMF-based anomaly detector. Fig. 10 shows the result of early damage warning by RGMM-NNG-MSD using the 
same POT-EVT threshold estimator. As can be seen, the proposed data clustering helps MSD to address the problem of severe envi
ronmental effects in the training samples so that no false positive errors emerge in the training phase. Moreover, most of the MSD- 
generated anomaly scores relevant to the damaged condition fall above the threshold, implying correct detection of damage. 
Comparing the RGMF and MSD through their anomaly scores, as shown in Fig. 7 and Fig. 10, it is evident that the use of RGMF results 
in fewer false positive and negative errors than MSD. More precisely, the rates of false positive, false negative, and misclassification 
errors in Fig. 10 are reported as 12 (0.34 %), 16 (3.50 %), and 28 (0.71 %), respectively. When these are compared to the corresponding 
errors listed for the proposed method under the 90% training ratio in Table 1, it can be demonstrated that RGMF reduces errors by 
75%, 31.25%, and 50%, respectively, which highlight its efficacy in improving anomaly detection accuracy.

The proposed method is also evaluated against three state-of-the-art unsupervised anomaly detection techniques. Initially, the data 
clustering proposed in this study is compared with its original version, i.e., GMM, combined with the MSD metric for anomaly 
detection [49]. Subsequently, RGMM-NNG is assessed by partitioning the whole training features via the well-known k-means clus
tering (KMC) along with the Euclidean-squared distance (ESD) for anomaly score calculation [24]. Eventually, the proposed method is 
compared with a combination of PCA and MSD. In this approach, PCA provides normalized features by computing the residuals 

Table 1 
Z24 Bridge: Performance assessment of the proposed method under varying training ratios.

Training ratios (%) performance assessment

False positive False negative Misclassification

90 3 (0.09 %) 11 (2.41 %) 14 (0.35 %)
60 26 (0.74 %) 64 (14.03 %) 90 (2.28 %)
40 516 (14.84 %) 66 (14.47 %) 582 (14.80 %)

Fig. 9. Z24 Bridge: Early warning of damage via the RGMF-based anomaly detection over the entire training data (i.e., without the RGMM-NNG).
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between the original and reconstructed features obtained from the PCA model and MSD computes the anomaly scores [50]. Since both 
GMM and KMC are parametric techniques, the primary hyperparameters to be configured include the number of components for GMM 
and the number of clusters for KMC. These hyperparameters are optimized using the Bayesian information criterion (BIC) [23] and the 
Davies-Bouldin criterion (DBC) [51], respectively. For both approaches, the hyperparameters are determined by analyzing sample 
components and clusters and selecting those that yield the minimum BIC and DBC values. Fig. 11 shows the outcomes of the 
hyperparameter tuning for the GMM and KMC, where the optimal component and cluster correspond to 6 and 2, respectively, after 30 
trials. Furthermore, the number of principal components, which is the only hyperparameter of PCA, is determined by the explained 
variance technique with a threshold set at 90 % [52], yielding two optimal principal components.

The results of early damage warning via these unsupervised learning techniques are shown in Fig. 12. In contrast to Fig. 7 regarding 
the proposed method, significant environmental effects still emerge in the anomaly scores relevant to the training samples. Moreover, 
half of the anomaly scores associated with the damaged state display the same range of values of the anomaly scores relevant to the 
normal condition, especially those highly affected by the environmental variability. As can be observed in Fig. 12(b) and (c), the worst 
performances belong to the KMC-ESD and PCA-MSD techniques. Therefore, it can be stated that the proposed method outperforms the 
state-of-the-art techniques aimed at early warning of damage and removing the severe environmental effects caused by freezing air 
temperature.

To summarize all the comparative studies, the receiver operating characteristic (ROC) and precision-recall (PR) curves of the 
various anomaly detection methods are plotted in Fig. 13. Concisely, an effective method is characterized by a ROC curve that ap
proaches the upper-left corner of the ROC space and a PR curve that is near the upper-right corner of the PR space [50]. Conversely, an 
ineffective method exhibits a ROC curve close to the diagonal 45◦ line and a PR curve that aligns closely with the horizontal line. With 
these descriptions, it can be seen that the proposed RGMM-NNG-RGMF method shows the best performance with both the ROC and PR 

Fig. 10. Z24 Bridge: Early warning of damage by the RGMM-NNG-MSD.

Fig. 11. Z24 Bridge: Hyperparameter optimization for the GMM and KMC based on the evolution of (a) the BIC and (b) the DBC values.
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Fig. 12. Z24 Bridge: Early warning of damage via (a) GMM-MSD, (b) KMC-ESD, and (c) PCA-MSD.

Fig. 13. Z24 Bridge: Performance evaluation of unsupervised anomaly detection methods via (a) ROC and (b) PR curves.

A. Entezami et al.                                                                                                                                                                                                      Mechanical Systems and Signal Processing 224 (2025) 111984 

14 



curves. This proves that it is highly effective for anomaly detection, and is characterized by high accuracy and a robust balance of false 
positive and true positive rates. In contrast, the PCA-MSD and RGMF techniques show the worst performances. While the RGMM-NNG- 
MSD, GMM-MSD, and KMC-ESD methods outperformed the PCA-MSD and RGMF, they still do not reach the effectiveness of RGMM- 
NNG-RGMF. An important conclusion drawn from Fig. 13 is that the clustering-aided anomaly detection methods are more successful 
than the other types of anomaly detection techniques, e.g., PCA-MSD and RGMF, due to the positive impact of data partitioning on the 
performance of the anomaly detector and on the removal of the variability effects.

Finally, the computational times of the various anomaly detection techniques are evaluated to assess their complexities in early 
damage warning using a relatively large feature dataset. This comparison has been conducted with a computer featuring a CPU Intel® 
Core i7, 64 GB of RAM, and Windows 10, utilizing the MATLAB 2023 built-in “tic-toc” function to measure the execution times. Table 2
lists the computational time (in seconds) for each step of the proposed and state-of-the-art anomaly detection techniques. It is 
important to note that the steps of hyperparameter optimization and data clustering are based solely on the training features, while the 
process of anomaly detection handles both the training and test instances. Accordingly, it is evident that the proposed RGMM-NNG- 
RGMF method requires substantial computational time. This increase is primarily due to the extensive search spaces considered in the 
double grid search algorithm of the proposed MF-HPO approach. Although the hyperparameter optimization strategies for GMM and 
KMC, which determine the number of components and clusters, take more time than the procedures of data clustering and anomaly 
detection, their execution times are shorter than those associated with the proposed MF-HPO algorithm. Among all the evaluated 
techniques, PCA-MSD provides the fastest analysis. Regarding the non-parametric anomaly detector functions, namely RGMF, MSD, 
and ESD, all exhibit fast performances. In summary, regardless of the effectiveness and reliability in early damage warning, for which 
the proposed method outperforms all the others, the current solution looks more complex than the others in the case of relatively large 
feature samples. This limitation can be mitigated by developing more efficient hyperparameter optimization strategies for RGMM- 
NNG.

3.2. A concrete cable-stayed bridge

This civil structure called the Yonghe Bridge [53,54] is a five-span concrete cable-stayed bridge constructed in China. Fig. 14 shows 
the side and top views, as well as a picture of this bridge. This structure has a main span of 260 m, and two side spans of 25.15 and 
99.85 m as depicted in Fig. 14(b). The girder of the bridge consists of 74 precast segments formed continuously by cast-in-place joints, 
which linked the girder ends and formed transversely reinforced diaphragms. A total of 88 pairs of cables containing steel wires with 
the diameter of 5 mm were used to connect the towers to the bridge deck. In 2005, some serious cracks with a width up to 20 mm were 
detected at the bottom of the closure segment at the mid-span. Additionally, some cables near the anchors were reported as severely 
corroded. A repair program was then conducted from 2005 to 2007, to recast the mid-span girder and replace all of the stay cables 
[54]. In the meantime, a sophisticated SHM system was considered to measure the bridge response and some environmental data.

In August 2008, a crack at the left side span and a detachment between the girder and the piers at both side spans were detected 
during a regular inspection process. The vibration response acquired in the time window 2007–2008 can then be exploited to validate 
SHM methods [53]. The acceleration time histories measured by means of 14 single-axis accelerometers installed at the upstream and 
downstream sides of the bridge girder are here considered, according to the deployment configuration reported in Fig. 13(b). 
Regarding measuring the environmental data (i.e., wind and temperature), an anemoscope was mounted on the top of the south tower 
and a temperature sensor was installed at the mid-span of the girder.

The acceleration time histories of 13 accelerometers (i.e., excluding the 10th accelerometer due to meaningless values) recorded 
over the period from January 01 to July 31, 2008 are used to identify the bridge modal frequencies. This short-term monitoring 
program includes the measurements taken on nine specific days, i.e., January 01, January 17, February 03, March 19, March 30, April 
19, May 05, May 17, July 31. According to Li et al. [53], the measurements acquired during the first eight days of the monitoring period 
mentioned above are representative of the bridge undamaged condition, while the last one (July 31st) is actually related to the 
damaged state. Using an operational modal analysis based on the frequency domain decomposition, see Sarmadi et al. [16], four stable 
modes were identified as main dynamic features of the bridge. Fig. 15 shows the time variation of the identified modal frequencies, 
where the first 192 samples are linked to the normal condition (i.e., 24 sets of accelerations for 8 days), and the last 24 samples are 
instead related to the damaged state. As the environmental factors recorded in terms of temperature and wind speed are not available, 
the interpretation of their effects is carried out via the aforementioned modal frequencies. Despite a clear gap between the frequencies 
of the normal and damaged state, which may simplify the process of anomaly detection, there are considerable variations in the modal 
frequencies of the normal condition. As discussed in Li et al. [35], the air temperature and wind speed had significant influences on the 
bridge modal frequencies. Since the low wind speed was dominant, the positive aerodynamic stiffness partially caused the jumps in the 
modal frequencies of the undamaged condition as can be observed in Fig. 15. Furthermore, some fluctuations (i.e., upward and 

Table 2 
Z24 Bridge: Assessment of computational times (sec) of the different stages of the anomaly detection techniques using relatively large feature samples.

Methods Hyperparameter optimization Data clustering Anomaly detection Total

RGMM-NNG-RGMF 600 780 15 4 1399
GMM-MSD 20 8 4 32
KMC-ESD 17 6 2 25
PCA-MSD 1 – 4 5
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downward of the bridge frequencies) are observable, which may be caused by the simultaneous impacts of daily temperature and 
traffic. In contrast to the Z24 Bridge, which is characterized by the single dominant environmental variability, the modal frequencies of 
the Yonghe Bridge were influenced by multiple environmental factors related to the air temperature and wind speed, and most likely 
by other unmeasured environmental and/or operational conditions.

To detect early damage in the Yonghe Bridge, 90% of the data relevant to the normal condition are used to assemble the training 
matrix X∈ℜ4×172, which contains 172 feature vectors of the four vibration modes (p = 4). The remaining 10% of the data in the 
undamaged state, which serve as the validation data, and all the features relevant to the damaged state are collected in the test matrix 
Z∈ℜ4×44. To perform data clustering via RGMM-NNG, the optimal number of NNs based on the Walters’s estimator [45] turns out to be 
k = 3. Fig. 16 shows 3D views of the manifold structure built on the training samples. Due to the limited size of training data, which 
consists of only 172 samples, a single level of the MF-HPO technique is considered to tune the hyperparameters of the RGMM method. 
Hyperparameter ranges are set with the sample clusters between 1 and 20 and regularization values from 0.001 to 0.1. Optimal values 
are identified as c = 10 and λ = 0.001. Hence, the training samples are clustered into the ten components {C1,…,C10}, with the local 
mean vectors {μ1,⋯,μ10} and covariance matrices {Σ1,⋯,Σ10}, which are needed to model the RGMF-based anomaly detector for 
determining the anomaly scores of the training and test instances, i.e., {ρ(x1),…,ρ(x172)} and {ρ(z1),…,ρ(z44)}, respectively.

Based on the outputs of data clustering through RGMM-NNG, Fig. 17 shows the result of early damage warning via the proposed 
method. For this purpose, the decision threshold is given by the same POV-EVT technique [46] adopted in the previous case. As can be 
discerned, no false alarm is reported for both the training and validation samples (i.e., labeled as “NC-Training” and “NC-Monitoring”). 
Moreover, all the anomaly scores relevant to the damaged state turn out to be greater than the threshold, without any false negative 
error. It can be thus concluded that the multiple environmental effects on the modal frequencies regarding the normal condition do not 
affect the obtained results. Due to a clear discrepancy between the anomaly scores relevant to the damaged and normal conditions, the 
proposed method consistently demonstrates its ability to provide reliable decision-making and accurate early damage warning. This is 
especially noteworthy as the proposed clustering-aided anomaly detection method could effectively handle a small set of dynamic 
features, despite their being influenced by multiple environmental/operational variations.

The performance of the proposed method is further evaluated by comparative analyses similar to previous structure. Fig. 18

Fig. 14. Yonghe Bridge: (a) side view, (b) top view, and (c) a picture of the bridge.
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illustrates the results of early damage detection in the Yonghe Bridge using the RGMF and RGMM-NNG-MSD. To better indicate the 
influence of data clustering and the use of local clustered training subsets, no threshold is allocated to indicate the outcome of the 
RGMF-aided anomaly detection displayed in Fig. 18(a). Hence, the single mean vector and covariance matrix derived from the entire 

Fig. 15. Modal frequencies of the Yonghe Bridge relevant to the first (a), second (b), third (c), and fourth (d) modes.

Fig. 16. Yonghe Bridge: 3D views of the manifold of the training samples generated by the NNG with k = 3.
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training data X∈ℜ4×172 are utilized in the RGMF to determine anomaly scores for both the training and test points. As observed, the 
direct application of the RGMF alone is insufficient to address the effect of the environmental/operational variability. This is evidenced 
by the large anomaly scores for some training and validation samples, indicative of the undamaged condition, which match the scores 
from the damaged state. It should be noted that the emergence of such large anomaly values is the main reason for the decision to forgo 
any threshold in the decision-making process. In contrast, as Fig. 18(b) appears, the proposed data clustering technique significantly 
improves the conventional MSD-based anomaly detection to provide reliable early damage warning. Therefore, it can be concluded 
that local information obtained with RGMM-NNG can yield results more reliable than those obtained without any partitioning of the 
training data.

To directly assess the performances of RGMF and MSD, the observations in Fig. 17 and Fig. 18(b) indicate that the anomaly detector 
presented in this study is more effective than MSD. Despite their similar performances, the RGMF makes the final decision with fewer 
false positive errors compared to MSD in relation to the validation data (i.e., labeled as “NC – Monitoring”). Hence, the coupling of 
RGMM-NNG and RGMF leads to a more robust and effective tool for early damage warning under varying multiple environmental/ 
operational conditions. The other comparative analysis investigates the proposed method with the state-of-the-art anomaly detection 
techniques GMM-MSD, KMC-ESD, and PCA-MSD. Fig. 19 depicts the BIC and DBC values of 20 sample trials for determining the 
optimal numbers of components and clusters for the GMM and KMC, which are identical to 13 and 8, respectively. Additionally, the 
explained variance technique is applied to determine the number of principal components for the PCA model, corresponding to 2. 

Fig. 17. Yonghe Bridge: Early warning of damage via the proposed method.

Fig. 18. Yonghe Bridge: Early warning of damage via (a) the RGMF-based anomaly detection using the entire training data (i.e., without the RGMM- 
NNG), and (b) the RGMM-NNG-MSD.
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Fig. 19. Yonghe Bridge: Hyperparameter optimization for the GMM and KMC based on the evolution of (a) the BIC and (b) DBC values.

Fig. 20. Yonghe Bridge: early warning of damage via (a) GMM-MSD, (b) KMC-ESD, and (c) PCA-MSD.
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Fig. 20 presents the results of early damage warning in the cable-stayed bridge using the aforementioned anomaly detection tech
niques. The method assessment in filtering the influence of the environmental/operational variability is based on the direct com
parison of the anomaly scores of the training and test points.

In Fig. 20(a), it can be observed that the anomaly scores concerning the training samples, as provided by the GMM-MSD method, 
are roughly smooth without any considerable variability. Moreover, there is a clear difference between the anomaly scores relevant to 
the normal and damaged conditions. However, several anomaly scores linked to the validation data exhibit significantly increased 
values close to those of the damaged, leading to inaccurate assessment of the actual condition of the bridge. This outcome indicates the 
poor performance of GMM-MSD. In Fig. 20(b), the variability caused by the environmental and/or operational conditions are still 
visible in the anomaly scores relevant to the training/validation samples. Some anomaly scores linked to the normal condition take 
values in the same range of the scores related to the damaged state. This outcome is again indicative of the poor performance of KMC- 
ESD in providing discriminative anomaly scores and mitigating the influences of the multiple environmental/operational variations. 
As Fig. 20(c) reveals, the PCA-MSD exhibits the weakest performance among the considered techniques. This is primarily due to the 
significant reduction in the anomaly scores for the damaged state, which leads to a substantial overlapping of the scores between the 
undamaged and damaged conditions.

To summarize the performances of all anomaly detection techniques, Fig. 21 presents the accuracy rates for detecting damage in the 
cable-stayed bridge. A conventional threshold estimator based on a 95 % confidence interval is used to ensure a fair comparison across 
the techniques. This comparison reveals that the RGMM-NNG-RGMF method outperforms all the others, featuring the highest accu
racy, while the PCA-MSD method shows the poorest performance. Although other techniques also outperform PCA-MSD, the proposed 
RGMM-NNG-RGMF consistently provides a superior effectiveness.

Eventually, Table 3 presents the computational times for different steps of the proposed and state-of-the-art anomaly detection 
methods using small vibration features. Compared to the computational times under relatively large feature instances related to the 
Z24 Bridge, the data in Table 3 reports a significant decrease in the computational demands for all methods, when applied to the 
Yonghe Bridge with a smaller number of feature samples. The complexity in the hyperparameter optimization and data clustering is 
notably reduced, which directly impacts the total computational time. However, the MF-HPO algorithm for tuning the main hyper
parameters of RGMM-NNG still requires longer time compared with the hyperparameter tuning strategies for GMM, KMC, and PCA.

4. Conclusions

In this paper, an innovative clustering-based anomaly detection method has been proposed to warn early structural damage in the 
presence of single or multiple environmental and/or operational variability. This integrated unsupervised learning method has con
tained data clustering via RGMM-NNG and non-parametric density-based anomaly detection through RGMF. The MF-HPO algorithm 
has also been presented to tune the hyperparameters of RGMM. The proposed clustering technique has provided local clustered subsets 
from the training data to determine local mean vectors and covariance matrices to be used in RGMF. The modal frequencies of the Z24 
and Yonghe bridges have been utilized to verify the effectiveness and reliability of the proposed method. Furthermore, several 
comparisons have been conducted to demonstrate the superiority of this method over some state-of-the-art techniques.

The main findings of this work can be summarized as follows. (1) The proposed RGMM-NNG-RGMF method has succeeded in 
dealing with the effects of single and multiple environmental/operational variability affecting the bridge modal frequencies. In the 
long- and short-term monitoring schemes with the different variability patterns, the proposed method could provide discriminative 
anomaly scores, without any adverse influences of the environmental and/or operational conditions. (2) Regardless of the threshold 

Fig. 21. Yonghe Bridge: Performance evaluations of the unsupervised anomaly detectors using the accuracy metric.
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setting, it has been possible to clearly distinguish the damaged structural states from undamaged ones. This conclusion confirms the 
noteworthy ability of the proposed method to directly implement an early warning of damage without requiring threshold consid
eration, which is crucial in unsupervised anomaly detection scenarios. (3) The proposed MF-HPO algorithm has been shown suitable 
for hyperparameter tuning when the size of the feature dataset is relatively large. In case of a small dataset, e.g., that relevant to the 
Yonghe Bridge, a single level of MF-HPO has been shown to be sufficient. (4) The proposed RGMF anomaly detection has failed to 
provide correct anomaly scores for early damage warning in the absence of the RGMM-NNG technique. This emphasizes the impor
tance of data clustering and local information derived from the entire training data, which is seriously influenced by the environmental 
and/or operational changes. (5) Under similar conditions and using the same technique for data clustering, RGMF has outperformed 
the well-known MSD. (6) The proposed method has proven superior to the state-of-the-art anomaly detection techniques GMM-MSD, 
KMC-ESD, and PCA-MSD. This superiority has been attributed to the ability of the proposed method to generate more discriminative 
anomaly scores, effectively addressing the environmental and operational effects. (7) The complexity assessment of the proposed and 
state-of-the-art anomaly detection techniques has indicated that RGMM-NNG-RGMF requires longer execution time, if compared to 
other methods. The extensive search spaces for the hyperparameters tuning of RGMM-NNG via the MF-HPO algorithm are the primary 
reason of the considerable computational burden of the proposed method.

In future research activities, the process of early damage warning can be extended by leveraging some advanced machine learning 
algorithms such as semi-supervised learning and incremental learning to design real-time SHM schemes with limited training data. 
Furthermore, while this study has focused on modal frequencies, which are widely-used and well-accepted vibration features for early 
damage warning, future research will concentrate on raw acceleration data. This shift will potentially eliminate the need for opera
tional modal analysis techniques for modal identification.

Despite the effective performance of the proposed MF-HPO algorithm for tuning the main hyperparameters of RGMM-NNG, the 
major encountered limitation has been shown to be related to the computational intensity, particularly when large datasets are 
handled with large hyperparameter spaces. This issue stems from the iterative nature of the MF-HPO algorithm and the need to inspect 
multiple model configurations across different fidelity levels, that significantly prolongs the hyperparameter optimization process. To 
address this limitation in future studies, strategies will be employed to enhance the efficiency of hyperparameter optimization. These 
include adopting advanced search algorithms such as Bayesian and genetic optimizations, leveraging parallel computing, and 
implementing adaptive fidelity mechanisms.
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Table 3 
Yonghe Bridge: Assessment of computational time (sec) of the different stages of the anomaly detection techniques, using small feature samples.

Methods Hyperparameter optimization Data clustering Anomaly detection Total

RGMM-NNG-RGMF 25 17 <1 <1 <43
GMM-MSD <1 1 1 <3
KMC-ESD <1 1 <1 <2
PCA-MSD <1 – 1 <2
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