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Abstract. Directions of Arrival for Uniform Linear Arrays represent a widely studied
topic in many fields of signal processing, with large attention on computational complex-
ity, estimation accuracy and noise rejection. In this article we study the mathematical
model behind Directions of Arrival from the point of view of algebraic geometry, fo-
cusing on its relation with the rational normal curve. On this basis, we give a novel
interpretation for the root-MUSIC algorithm, that is a widely adopted estimation ap-
proach in signal processing. Furthermore, we propose some novel estimation techniques.
The first one is based on the computation of the points on the rational normal curve that
minimize the distance from the linear subspace defined by the measured Directions of
Arrival. The others require the study of the secant varieties of the rational normal curve
and the minimization of the distance between the point of the Grassmannian defined by
the signal subspace and a certain secant variety. The results obtained from simulations
in a noisy scenario show that our estimators are statistically consistent. One algorithm
outperforms root-MUSIC over a wide range of scenarios, especially in presence of few
snapshots and low Signal to Noise Ratio.

1. Introduction

Smart Sensors Arrays (SSAs) are, nowadays, the basic component for many communi-
cation systems employing smart antennas for 5G networks [1], sensing systems with array
of microphones [2] and radars [3]. For all these systems an accurate estimation of the
Directions of Arrival (DoAs) is a crucial step for performance efficiency both in sources
localization (for receiver systems) and for efficient signaling along a specific beam direction
(for transmitter systems)[4]. Thanks to the adaptation of SSAs to multiple directions,
it is possible to orient the radiation beam toward a specific direction or to separate the
signal from different sources placed in different angular positions by avoiding interference
and energy scattering in null directions [5].

The SSAs can assume different shapes, that usually trade among many factors, some
of which are the maximum number of sensors, the Signal to Noise Ratio (SNR) and the
Signal to Interference Ratio (SIR), the number of concurrent sources, and the opportunity
to extend geometries from linear to planar and also volumetric arrays. In this manuscript,
we focus on the study of Uniform Linear Arrays (ULAs), by employing techniques from
algebraic geometry. This case is the fundamental array configuration that provides the
basic insight for theoretical developments [6].

1.1. The steering vectors. Let us consider the most general scenario, where there is
a sensor array consisting of L sensors with a given spatial distribution and there are M
sources in unknown position. Assuming a homogeneous medium, the physical world can
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be identified as the Euclidean space. After choosing an orthogonal Cartesian coordinate
system, it can be identified as R3.

The positions of the sensors are pl, where l = 1, . . . , L. In typical applications, the
sources are very distant from the sensors, in comparison to the array’s size. Hence, the
signals measured by the sensors are usually modeled as plane waves (see Fig. 1).

Plane wave

am

p1 p2 pj pk pL-1 pL

djk

tjk( )am

Figure 1. A plane wave with orientation am interacts with a ULA com-
posed by L sensors in positions p1, . . . ,pL. The delay τjk(am), assuming
c = 1, is equal to the length of the projection of djk on am.

This means that for every m = 1, . . . ,M there exists a propagation direction of the
signal of the n-th source, described by a unit vector am. In the DoA localization problems,
the goal is to estimate these unknown vectors am from the signals measured by the array.

In the planar wave approximation, the signal emitted by the m-th source is constant
on each plane perpendicular to am, for any given time t. The wave front travels in space
with velocity c. By considering the displacement vector djk = pk − pj from sensor j to
sensor k, this implies that the time delay of the wave front between the two sensors is

(1) τjk(am) =
〈djk, am〉

c
.

On the plane of the wave front, the m-th signal can be described by a real vector
perpendicular to am. In order to streamline the notation, in signal processing it is usual
to represent such a signal in terms of a complex-valued function sm(t) of the time t :

sm(t) = gm(t) exp(ihm(t)),

where gm(t) and hm(t) are real-valued functions and i is the imaginary unit. Common
assumptions for most of SSAs applications are [7][8][9][10]:

• the signals are narrow-band with the same central frequency ω. This implies that:

hm(t) = ωt+ ϑm(t);

• the signals are slowly varying in time with respect to the planar wave period.
This means that the amplitude and the phase associated to the signal can be
considered constant for the whole time required to reach all sensors of the array,
i.e. gm(t) ≈ gm(t + τjk(am)) and ϑm(t) ≈ ϑm(t + τjk(am)) for all possible values
of τjk(am).
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As a consequence, the only differences between the measurements of the same signal taken
by two different sensors of the array at time t are phase terms, due to the propagation
delays (1). More precisely, let sm(t) be the measurement taken at time t by the first
sensor of the array and related to the signal emitted by the m-th source. Then

sm,l(t) = gm(t− τ1l(am)) exp(iω(t− τ1l(am)) + ϑm(t− τ1l(am)))

≈ gm(t) exp(iω(t− τ1l(am)) + ϑm(t)) = sm(t) exp(−iωτ1l(am))
(2)

is the signal measured at time t by the l-th sensor, for l = 1, . . . , L.
Hence, the impinging signal on each element l of the array can be defined as the

superposition of M planar waves, i.e.

(3) xl (t) =
M∑
m=1

sm,l(t) =
M∑
m=1

sm(t) exp(−iωτ1l(am)).

Let us define in CL the array steering vector, associated to the propagation direction am :

(4) h(am) = (1, exp(−iωτ12(am)), . . . , exp(−iωτ1L(am))) .1

From (3), it follows that the vector x(t) = (x1(t), . . . , xL(t)) of the L measurements taken
by the sensors at time t is the following linear combination of the steering vectors:

(5) x(t) =
M∑
m=1

sm(t) h(am).

1.2. The geometric point of view. When M noiseless signals from different fixed
directions a1, . . . aM are impinging in a SSA, they define the vector x(t). This vector lies
on the M -dimensional subspace of CL generated by h(a1), . . . ,h(aM), that is named the
signal subspace V . In the signal processing literature, the subset of CL defined by the
steering vectors h(a) for every possible direction of arrival a of the signal is referred to as
the array manifold [8].

The geometric properties of the array manifold and the signal subspace have been
studied by many authors in the engineering literature, mainly from a differential geom-
etry standpoint [8]. In the case of planar localization (2D), the sources, the array and
consequently the vector a lie on a plane. Hence, the array manifold is a parametric curve,
where the natural parameter is the azimuth, i.e. the angle describing the orientation
a of the plane wave with respect to a reference direction. In the general case of space
localization problems (3D), the array manifold is a parametric surface. In such a scenario
the natural parameters are azimuth and elevation, that denote the two physical angles
describing the vector a with respect to a reference plane and direction.

In this paper, we work with the particular case of the array manifold associated with a
ULA, from the point of view of algebraic geometry. This means that the array elements
we are considering are equally spaced along a straight line. Hence, the array steering
vector can be written as:

(6) h(am) =
(
1, zm, . . . , z

L−1
m

)
,

1In real applications, the array steering vector has a dependence from the impinging direction am also
from a complex response ζm(am, ω), due to the non-isotropic behavior of the transducer. This means
that:

h(am) = (ζ1(am, ω), ζ2(am, ω) exp(−iωτ12(am)), . . . , ζL(am, ω) exp(−iωτ1L(am))) .

However, this deterministic effect can be handled and corrected a posteriori, therefore we disregard it in
our analysis.
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where zm = exp(−iωτ12(am)). In this setting, the array manifold is a parametric curve,
both in the 2D and 3D localization problems. Indeed, by measuring the phases of the
signal among sensors, we can only determine the angle between the line containing the
array and the orientation a of the plane wave. This means that in 2D localization one
can only find the orientation up to a reflection with respect to the array line, while in 3D
localization one can only find the half-cone, having the array line as axis, on which the
vector a lies.

1.3. Structure of the manuscript. In this manuscript, we study the estimation prob-
lem of the DoAs with a ULA of sensors. The structure of the work is the following.

In Section 2 we study the deterministic model, i.e. in absence of noise, for the DoAs. In
particular, we relate the signal subspace to the image of a particular linear function and
we show that the array manifold is a subset of the rational normal curve. Based on that,
we also give some algebraic and geometrical results that will be useful for the localization
problem.

In Section 3 we focus on the estimation problem in presence of noisy measurements.
Most of the DoAs estimation methods can be divided into two large classes: classical
approaches not based on subspace analysis and the ones based on subspace analysis.
The former methods are based on Capon or Minimum Variance Distortionless Response
(MVDR) [11] approach. MVDR methods are usually computationally demanding due a
full-rank matrix inversion even if GPU computing made feasible their use also for real
time applications [12]. In this manuscript we focus on the latter type of methods, that
are based on different approaches for subspace analysis [13]. We present the classical
root-MUSIC algorithm and we give a clear geometric interpretation of it. Then, we define
a new estimation method based on our previous geometric analysis of the deterministic
problem.

In Section 4 we present the secant varieties of the rational normal curve. We show the
relation between the estimation of M DoAs and the geometry of the M–secant variety of
M–subspaces of CL to the rational normal curve. This allows us to define novel estimation
methods for the DoAs.

In Section 5 we apply our proposals to an explicit example of DoAs estimation. Al-
though this is a preliminary analysis, it shows that our methods give results that are
compatible with the ones of root-MUSIC.

In Section 6 we further investigate the performances of our estimators. A simulation
campaign shows that one of the proposed algorithm outperforms root-MUSIC, especially
in presence of a low number of snapshots and low SNR.

Finally, Section 7 draws some conclusions and describes future research directions that
can take advantage of the analysis presented in this paper.

In order to keep the paper as self-contained as possible, in Appendix A we give an
overview on projective geometry, on the rational normal curve, Grassmannians and secant
varieties. This section, of course, can be skipped by readers who are already familiar with
these topics. Finally, in Appendix B there are the more technical computations that allow
the simplification of the polynomial systems appearing in Section 5.

2. The deterministic DoA model

2.1. The steering map, the array manifold and the signal subspace for a ULA.
As explained in Section 1.1, in a noiseless scenario the SSA response vector x(t) is a linear
combination of the steering vectors h(a1), . . . ,h(aM), with complex coefficients given by
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the signals s1(t), . . . , sM(t) measured by the first sensor of the array. We can reformulate
the question in terms of a certain linear function.

Definition 1. Let α1, . . . , αM be distinct real numbers in [0, 2π) and zm = exp(−iαm),
for every m = 1, . . . ,M . The steering map associated to α1, . . . , αM is the linear function
ϕ : CM → CL defined on the standard basis (e1, . . . , eM) of CM as

ϕ(em) = (1, zm, . . . , z
L−1
m ), for every m = 1, . . . ,M.

If αm = ωτ12(am) for every m = 1, . . . ,M, then ϕ(em) = h(am). Let us define the
signal vector s(t) = (s1(t), . . . , sM(t)) in CM , therefore

x(t) = ϕ(s(t)).

It follows that the signal subspace V coincides with the image Im(ϕ) of the steering map.
To simplify the notation, we set hm = ϕ(em) for every m = 1, . . . ,M . These vectors
satisfy the following results.

Lemma 1. The vectors h1, . . . ,hM are linearly independent with module
√
L. The sub-

space spanned by each one of them is a point in PLC that belongs to the rational normal
curve2 C ⊆ PLC.

Proof. Let us remind that hm = (1, zm, . . . , z
L−1
m ). Since zmzm = 1 for everym = 1, . . . ,M ,

it follows that hm has module
√
L. Furthermore, the homogeneous coordinates of the

subspace spanned by hm are [1 : zm : · · · : zL−1m ]. This is the point vL−1([1 : z]) of
the rational normal curve C, where vL−1 is the Veronese embedding of P1

C into PL−1C .
Finally, h1, . . . ,hM are linearly independent because α1, . . . , αM are pairwise different
(see Proposition 8). �

From now on, by abuse of notation we will identify an element in a vector space with the
corresponding point in the associated projective space. Furthermore, whenever useful, we
will also identify a vector with the corresponding point in the associated affine space.

Theorem 1. The vectors h1, . . . ,hM are the intersection points of the image Im(ϕ) and
the rational normal curve C.

Proof. By definition, h1, . . . ,hM are in Im(ϕ). On the other hand, Lemma 1 states that
they lie on C. Moreover, from the same lemma it follows that the steering map ϕ is
injective, therefore the dimension of Im(ϕ) is equal to M. Since a linear subspace W
intersects the rational normal curve in at most dim(W ) points, then h1, . . . ,hM are the
intersection points of Im(ϕ) and C.3 �

These results show us that the array manifold for a ULA is a subset of the rational normal
curve.

2.2. The deterministic localization problem. Let x1, . . . ,xN be N noiseless mea-
surements vectors taken at different time by the ULA. It is possible to locate the M
sources if and only if one can compute all the steering vectors h1, . . . ,hM starting from
the measured data. This problem is equivalent to determine the steering map ϕ and it
has a unique solution if and only if x1, . . . ,xN span Im(ϕ). In such a case, the solution
of the deterministic DoA problem can be obtained as follows.

Let X be the L×N matrix whose columns are given by the components of the vectors
x1, . . . ,xN. By hypothesis, X has rank M. Let (u1, . . . ,uL−M) be an orthonormal basis

2See Section A for the definition and properties of projective spaces and rational normal curves.
3In this manuscript, we only use dimension in the vector space or affine sense.
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of the orthogonal complement V ⊥ of the signal space V = Im(ϕ), with respect to the
Hermitian scalar product. We name U the L × (L −M) matrix of rank L −M whose
columns are given by the components of these vectors. It follows that UHX = 0, where
UH is the Hermitian conjugate of U.

Thus, the components of vectors z in Im(ϕ) are solutions of the homogeneous linear
system associated to the matrix UH . By requiring that z stays also on C, we have z =
(1, z, . . . , zL−1). Thus, we get a system of polynomial equations, or equivalently, an ideal
in the polynomial ring C[z]. Because of Theorem 1, this ideal is generated by the unique
monic polynomial of degree M :

(7) p(z) = c0 + · · ·+ cM−1z
M−1 + zM

whose roots are z1, . . . , zM . By setting

Z =


1
z
...

zL−1

 ,
we have the following results.

Proposition 1. The polynomial p(z) is the greatest common divisor of the polynomials
obtained as rows of UHZ.

Proof. The statement follows from the fact that C[z] is a principal ideal domain and from
Theorem 1. �

Remark 1. If the minor of UH corresponding to the last L−M columns is non-zero, then
the polynomial p(z) can be obtained by Gaussian elimination from UH . In geometrical
terms, this procedure corresponds to look for the unique (L− 1)-dimensional linear space
that intersects the rational normal curve C at points h1, . . . ,hM and at the ideal point
vL−1([0 : 1]) = [0 : · · · : 0 : 1] with multiplicity L − M . Since we are working in an
affine setting, the ideal point simply disappears. This approach has been pursued in [14],
although in that paper there is no explanation of such a procedure in terms of intersection
of Im(ϕ) and C.

By summarizing the deterministic DoA model, we can say that to determine the steering
map and find the directions a1, . . . , aM, it is enough to intersect the linear span of the
data x1, . . . ,xN with the rational normal curve.

2.3. Further properties of the array manifold. We close the section by giving a
result that will be useful later.

Proposition 2. Let us consider the polynomial

(8) q(z) = ZTJUUHZ, where J =

0 . . . 1
... . .

. ...
1 . . . 0

 .
If z = exp(−iα), then the Hermitian squared distance of z = (1, z, . . . , zL−1) from the
signal subspace V is the rational function

d(z, V )2 =
q(z)

zL−1
.
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Proof. The components of the orthogonal projection of z onto V ⊥ are

PV⊥(z) = UUH


1
z
...

zL−1

 .
Therefore, the squared distance from z to V is

d(z, V )2 = ‖PV⊥(z)‖2 =
[
1 z . . . zL−1

]
UUH


1
z
...

zL−1

 ,
where z is the complex conjugate of z. However, z = 1/z and so the statement follows. �

Because of its geometrical interpretation, it is evident that q(zm) = 0 for every m =
1, . . . ,M , where zm is a root of p(z). Thus, q(z) is a multiple of p(z). We can go further
with this analysis.

Lemma 2. If z = exp(−iα), then

p(z) =
1

c0zM
p(z).

Proof. The roots of p(z) are z1, . . . , zM , with zm = exp(−iαm) for m = 1, . . . ,M . Let us
assume that z = exp(−iα). We have:

p(z) = (z − z1) · · · (z − zM) = (z − z1) · · · (z − zM) =

=

(
1

z
− 1

z1

)
· · ·
(

1

z
− 1

zM

)
=

1

z1 · · · zMzM
(−1)Mp(z) =

1

c0zM
p(z),

since c0 = (−1)Mz1 · · · zM , as follows from Newton’s identities. �

Corollary 1. zm is a root of q(z) with multiplicity at least two, for every m = 1, . . . ,M .

Proof. We give two different proofs of the statement, since each one of the two proofs
highlights and uses different properties.

(1) The polynomial p(z) is the greatest common divisor of the polynomials in UHZ,
hence there exists a (L−M)× (L−M − 1) matrix A over C such that

UHZ = p(z)AHZ,

where Z = [1 z . . . zL−M−1]T . Since d(z, V )2 = (UHZ)H(UHZ), we get

d(z, V )2 = p(z) p(z) Z
H

AAHZ.

From Lemma 2, it follows

q(z) = p(z)2
1

c0
Z
T
J1AAHZ,

where J1 is the order L−M − 1 square submatrix of J obtained by removing the
last M rows and the first M columns.
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(2) By definition, hm = (1, zm, . . . , z
L−1
m ) is a generator of V. Hence, d(hm, V ) = 0 and

consequently q(zm) = 0. Furthermore, let us consider the derivative of q(z) :

d

dz
q(z) =

(
d

dz
ZT

)
JUUHZ + ZTJUUH

(
d

dz
Z

)
=

=

(
d

dz
ZT

)
JPV⊥(z) + zL−1 PV⊥(1/z)H

(
d

dz
Z

)
.

If we evaluate the previous expression at zm, we obtain PV⊥(zm) = 0 and PV⊥(1/zm) =
PV⊥(zm) = 0. It follows that zm is a zero of the derivative of q(z), therefore it is
a root with multiplicity at least 2 of q(z).

�

The first proof gives us the quotient of the division between q(z) and p(z)2 in terms of
the data. The second proof, instead, allows us to get an approximation via Taylor formula
of q(z).

3. The noisy DoA model

In real applications, the data are affected by noise. The measurements vectors y1, . . . ,yN

can be written as sum of the deterministic vectors x1, . . . ,xN and the impairments
ε1, . . . , εN :

yi = xi + εi for i = 1, . . . , N.

It is common to assume N ≥M and the noise as a stochastic stationary process indepen-
dent from the signal, with a zero-mean Gaussian distribution.

3.1. Root-MUSIC. In this section, we summarize root-MUSIC. This is a classical al-
gorithm, based on the subspace analysis, for estimating the DoAs in presence of noisy
measurements. Many variations and implementations of root-MUSIC have been proposed
in literature ([15],[16],[17],[18]) tackling different aspects and applications of the algorithm.

For the sake of simplicity, we assume to know in advance the number M of sources.
The root-MUSIC method works with a two step procedure. Firstly, it estimates the signal

subspace V̂ as the M–dimensional linear subspace of CL that best fits the data y1, . . . ,yN.
Then, it computes a suitable polynomial among whose roots one finds the M DoAs.

In the first step of root-MUSIC, one applies the Principal Component Analysis (PCA)
to y1, . . . ,yN. Because of our assumptions on the deterministic measurement x and the
error ε, the expected values of the real measurements y = x+ε define an affine subspace of
CL that contains 0. Therefore, the PCA is simplified. Let us define the L×N data matrix
Y, whose columns are given by the components of y1, . . . ,yN. The covariance matrix of
Y is the Hermitian matrix RY = YYH of order L, that has non-negative real eigenvalues

λ1 ≥ · · · ≥ λL ≥ 0. Then, the estimated signal subspace is V̂ = Vλ1 ⊕ · · · ⊕ VλM , where
Vλl is the eigenspace associated to the l-th eigenvalue. From a geometric point of view, it

is well known that V̂ can be thought of as the M dimensional affine subspace of CL that
minimizes the sum of the squared distances from y1, . . . ,yN.

In the second step, root-MUSIC takes in consideration the subspace orthogonal to V̂ ,

that is V̂ ⊥ = VλM+1
⊕· · ·⊕VλL . The unit eigenvectors corresponding to the smallest L−M

eigenvalues of RY define a basis of V̂ ⊥. The matrix Û whose columns are the components
of these eigenvectors is the root-MUSIC estimation of the matrix U of Section 2.2. Thus,
the polynomial

(9) q̂(z) = ZTJÛÛ
H

Z



ALGEBRAIC GEOMETRY PERSPECTIVE FOR DOAS ESTIMATION 9

is the root-MUSIC estimation of q(z), defined in Proposition 2. If the noise is not too
large, Corollary 1 implies that q̂(z) has M pairs of roots that approximately are given by
reciprocal complex numbers, whose modules are close to 1. By the mean of each pair, one
obtains the estimation of z1, . . . , zM , and so the estimation of the DoAs a1, . . . , aM.

3.2. Minimum Distance on the Curve. On the base of our geometric interpretation
of the DoA localization problem, now we propose a novel estimation algorithm for the
DoA of the signals. At this aim, we give a theoretical result on the Hermitian distance
between the points on the rational normal curve and affine subspaces of CL. Firstly, we
remind that if V is such a generic subspace and U is a matrix whose columns are given
by an orthonormal basis of its orthogonal complement, then the squared distance of the
point z = (1, z, . . . , zL−1) with z = exp(−iα) can be computed as

d(z, V )2 =
1

zL−1
ZJUUHZ .

Then, we define the following L× L diagonal matrix

K =


0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . L− 1


and the generalized commutator between two matrices

[A,B]k =

{
AB−BA if k = 1,

[A, [A,B]k−1] if k > 1.

The following identity holds:

d

dz
Z =

1

z
KZ.

Lemma 3. Let us take z = exp(−iα) and z = (1, z, . . . , zL−1). The k-th derivative of the
Hermitian squared distance d(z, V )2 with respect to α is the rational function

(10)
dk

dαk
d(z, V )2 =

ik

zL−1
ZTJ [K,UUH ]k Z.

Proof. Let us take the function

f(α) =
1

zL−1
ZTJAZ,

where A is a generic L × L matrix. Using Proposition 2, when A = UUH this function
is the Hermitian squared distance. We have:

d

dα
f(α) = −iz d

dz

(
1

zL−1
ZTJAZ

)
=

i

zL−1

(
(L− 1)ZTJAZ− z d

dz

(
ZTJAZ

))
.

Let us focus on the second term in the bracket:

z
d

dz

(
ZTJAZ

)
=

(
z
d

dz
ZT

)
JAZ + ZTJA

(
z
d

dz
Z

)
=

= ZTKJAZ + ZTJAKZ = ZT (KJA + JAK) Z.
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It follows that:
d

dα
f(α) =

i

zL−1
ZT ((L− 1)JA−KJA− JAK) Z =

=
i

zL−1
ZTJ (((L− 1)I− JKJ) A−AK) Z =

i

zL−1
ZTJ [K,A]1 Z,

where I is the identity matrix and we used the identities

J2 = I and (L− 1)I− JKJ = K.

By applying this formula to the Hermitian squared distance recursively, it is straightfor-
ward to prove the lemma. �

Proposition 3. Let us take z = exp(−iα) and z = (1, z, . . . , zL−1). The local minimum
points of the Hermitian squared distance d(z, V )2 are the unitary roots of the polynomial

(11) r(z) = ZTJ [K,UUH ]1 Z

that satisfy

(12)
d2

dα2
d(z, V )2 = − 1

zL−1
ZTJ [K,UUH ]2 Z > 0.

Proof. The statement is a direct consequence of Lemma 3. �

The idea behind the Minimum Distance on the Curve (MDC) algorithm is to estimate
the DoAs by searching for the M unit complex numbers z that define the M closest points
on the rational normal curve to the estimated signal subspace. We achieve this result with
the following steps:

Algorithm 1 Minimum Distance on the Curve (MDC)

1: compute the estimation V̂ of the signal subspace via PCA;
2: construct the polynomial r̂(z) as in Proposition 3;
3: compute the unit roots of r̂(z) that satisfy inequality (12);
4: among the previous roots, select the M ones that minimize the Hermitian distance.

Finally, compute the estimation of the DoAs.

4. Secant varieties and the DoA problem

In this section, we show how the deterministic and the noisy DoA problems can be
reformulated in terms of the M–secant variety of M–subspaces of CL to the rational
normal curve. We refer the reader to Appendix A for a quick survey on the topic.

4.1. The deterministic problem. In order to solve the deterministic DoA problem, we
have to compute the M intersection points of the rational normal curve C and the image
of the steering map ϕ. The latter is V, an M–dimensional subspace of CL. Hence, V is a
point of the secant variety VM,M(C) ⊂ G(M,CL), and we want to compute the M distinct
points on the rational normal curve that span V .

Proposition 4. Let P1, . . . , PM be points on the rational normal curve C, whose coordi-
nates are (1 : um : · · · : uL−1m ), pairwise different. Let (· · · : pm1,...,mM

: . . . ) be the Plücker
coordinates of the subspace spanned by P1, . . . , PM . Then,

(13) p(z) =
M∑
m=0

p0,...,m̂,...,Mz
m
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has u1, . . . , uM as roots, where m̂ means that m is canceled from the set {0, . . . ,M}.

Proof. The matrix

A =


1 u1 . . . uM1
1 u2 . . . uM2
...

...
...

1 uM . . . uMM


has rank M, since the determinant of the submatrix of the first M columns is Vander-
monde. Therefore, the non-zero solutions of the linear system AX = 0 are all proportional
each other. The Plücker coordinates pm = p0,...,m̂,...,M verify the equality

A

 p0...
pM

 = 0.

This means that p0 + p1um + · · · + pMu
M
m = 0 for every m = 1, . . . ,M . Hence, the

polynomial p(z) = p0 + p1z + · · ·+ pMz
M has u1, . . . , uM as roots. �

Since pM 6= 0, we can divide p(z) by pM , and we get the only monic generator described
in (7). Therefore, the solution of the deterministic DoA problem can be obtained through
the following steps:

Algorithm 2 Plücker method

1: compute the Plücker coordinates of V ;
2: construct the polynomial p(z) as in Proposition 4;
3: compute the roots of p(z).

Because of Definition 1, all the roots of p(z) have modulo 1.
Finally, let us observe that this method can be applied as well to a scenario with noisy

measurements. In this case, we obtain a polynomial p̂(z) whose roots ẑ1, . . . , ẑM are an
estimation of the noiseless roots. From them, we get an estimation of the M DoAs.

4.2. The noisy problem. Based on the previous results, now we propose alternative
estimation criteria for the DoA localization problem in presence of noisy measurements,
that have neat geometric interpretation. In this case, we need some theoretical results on
the distance of a point in the Grassmannian from the secant variety.

4.2.1. Fubini-Study Minimum Distance from the Secant Variety. Since we are working in
a projective space, we first use the Fubini-Study distance (see Appendix A). As in the
previous subsection, let us take M distinct points P1, . . . , PM on the rational normal curve
C, corresponding to the vectors u1 = (1, u1, . . . , u

L−1
1 ), . . . ,uM = (1, uM , . . . , u

L−1
M ). They

generate an M -dimensional linear subspace of CL, that corresponds to a point P on the
secant variety VM,M(C), with Plücker coordinate given by u1∧· · ·∧uM. If we take another
point Q of the Grassmannian, whose homogeneous coordinates are v = (v0, . . . , vL′), with
L′ =

(
L
M

)
− 1, the Fubini-Study distance between them is

d(P,Q) = arccos

(
|〈v,u1 ∧ · · · ∧ uM〉|
‖v‖‖u1 ∧ · · · ∧ uM‖

)
.
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Proposition 5. Let us assume that v is a fixed nonzero vector. The restriction of the
function

f(u1, . . . , uM) =
|〈v,u1 ∧ · · · ∧ uM〉|2

‖v‖2‖u1 ∧ · · · ∧ uM‖2
on |u1| = · · · = |uM | = 1 is a rational function

f(u1, . . . , uM) =
g(u1, . . . , uM)

h(u1, . . . , uM)
.

The points P of VM,M(C), satisfying |u1| = · · · = |uM | = 1, and that minimize the
Fubini-Study distance d(P,Q), are solutions of the following polynomial system:

(14)


g(u1, . . . , uM)h1(u1, . . . , uM)− h(u1, . . . , uM) g1(u1, . . . , uM) = 0

...
g(u1, . . . , uM)hM(u1, . . . , uM)− h(u1, . . . , uM) gM(u1, . . . , uM) = 0

,

where gm(u1, . . . , uM) and hm(u1, . . . , uM) are the partial derivatives of g, h with respect
to um, for m = 1, . . . ,M.

Proof. By the same reasoning behind the proofs of Proposition 2 and Lemma 3, the
constraints imply that um = 1/um for every m = 1, . . . ,M. As a consequence, the function
f(u1, . . . , uM) is rational. If um = exp(−iαm) for m = 1, . . . ,M, then we can think to f
as a real function of α1, . . . , αM . Its partial derivatives are:

∂

∂αm

f(α1, . . . , αM) =
ium

h(u1, . . . , uM)2
·

(g(u1, . . . , uM)hm(u1, . . . , uM)− h(u1, . . . , uM) gm(u1, . . . , uM))

for m = 1, . . . ,M. Because of the constraints, the stationary points of f(α1, . . . , αM) must
satisfy the polynomial system (14).

Finally, the second statement of the proposition follows from the fact that arcco-
sine and square root are monotonic functions. This means that the extremum points
of f(α1, . . . , αM) and d(P,Q) coincide. �

It is not difficult to show that the minimum points of d(P,Q) are the maximum points of
f(α1, . . . , αM). Moreover, the latter function is bounded from above by 1, because of the
Cauchy-Schwarz inequality.

Now we are ready to formulate the Fubini-Study Minimum Distance from the Secant
Variety (FSMDSV) estimation algorithm for the DoAs. In this case, the idea is to search
for the point P of the secant variety VM,M(C) that is closest to the point Q of the
Grassmannian corresponding to the estimated signal subspace. We have the following
steps:

Algorithm 3 Fubini-Study Minimum Distance from the Secant Variety (FSMDSV)

1: compute the estimation V̂ of the signal subspace via PCA and compute the Plücker
coordinates defining Q;

2: construct the polynomial system (14) as in Proposition 5;
3: compute the solutions of (14) given by M -tuple of distinct complex numbers

(u1, . . . , uM) with modulus 1;
4: among the previous solutions, select the point P that minimize the Fubini-Study

distance, or equivalently such that the value of f is closest to 1. Finally, compute the
estimation of the DoAs.
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4.2.2. Hermitian Minimum Distance from the Secant Variety. On the same line, we
present a further method to solve the DoA estimation problem. As above, P1, . . . , PM are
pairwise different points on the rational normal curve C. They correspond to the vectors
u1 = (1, u1, . . . , u

L−1
1 ), . . . ,uM = (1, uM , . . . , u

L−1
M ), where u1, . . . , uM are complex num-

bers with modulus 1. Hence, the point u1∧ · · · ∧uM belongs to the open set p0,...,M−1 6= 0
of the projective space PL′

. We identify such an open subset with the affine space AL′
by

means of the map π : PL′ \ H → AL′
, where H is the hyperplane p0,...,M−1 = 0. Then,

π(u1∧· · ·∧uM) is a point in AL′
whose coordinates are polynomials in u1, . . . , uM , thanks

to the following Lemma.

Lemma 4. Let P1, . . . , PM be points on the rational normal curve C, whose coordinates
are ui = (1 : ui : · · · : uL−1i ), pairwise different, and let (· · · : pi1,...,iM : . . . ) be the Plücker
coordinates of the subspace spanned by P1, . . . , PM . Then

pi1,...,iM
p0,...,M−1

= si1,...,iM (u1, . . . , uM),

where si1,...,iM is a symmetric polynomial in u1, . . . , uM .

Proof. See [19]. �

Let us take another point Q in PL′ \ H, whose homogeneous coordinates are v =
(v0, . . . , vL′). Then, we can compute the Hermitian distance between π(u1 ∧ · · · ∧ uM)
and π(v) in AL′

.

Proposition 6. Let us assume that v is a fixed nonzero vector in PL′ \H. The restriction
of the function

f(u1, . . . , uM) = ‖π(v)− π(u1 ∧ · · · ∧ uM)‖2

on |u1| = · · · = |uM | = 1 is a rational function

f(u1, . . . , uM) =
g(u1, . . . , uM)

h(u1, . . . , uM)
.

The points P of VM,M(C), satisfying |u1| = · · · = |uM | = 1, and minimizing the squared
Hermitian distance are critical for f .

The proof is straightforward and resembles the one of Proposition 5. Moreover, the
stationary points are solutions of a polynomial system of the same form of (14).

We can now formulate the Hermitian Minimum Distance from the Secant Variety
(HMDSV) estimation algorithm for the DoAs. We search the point P of the secant
variety VM,M(C) that is closest to the point Q of the Grassmannian corresponding to the
estimated signal subspace, with respect to the Hermitian distance:

Algorithm 4 Hermitian Minimum Distance from the Secant Variety (HMDSV)

1: compute the estimation V̂ of the signal subspace via PCA and compute first the
Plücker coordinates defining Q, then π(Q);

2: construct the affine coordinate (s1, . . . , sL′) of u1 ∧ · · · ∧ uM;
3: compute the rational function f described in Proposition 6 and its critical points by

solving the corresponding polynomial system;
4: among the previous solutions, select the point P that minimize f . Finally, compute

the estimation of the DoAs.
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5. Numerical experiments

In this section, we apply the theoretical results of the previous sections to a simple
example of DoAs estimation. We take the scenario with L = 3 sensors and M = 2 sources
depicted in Fig. 2. The setup of the example assumes that the maximum amplitudes

p1 p2 p3

q
1

q
2

a1

a2

Figure 2. Representation of the numerical example: two planar waves,
with orientations a1 and a2 defined by DoAs θ1 = 4◦ and θ2 = 25◦ respec-
tively, are impinging on a ULA made of 3 antennas.

of the planar waves are A1 = 10 and A2 = 12, respectively. They can be assumed, in
the slowly varying hypothesis, distributed according to an independent and identically
distributed (i.i.d.) zero-mean white circularly-symmetric complex gaussian. Hence, the
noiseless signal impinging on each element pl of the antenna is, according to eq. (2) and
eq. (3):

xl (t) = s1,l (t) + s2,l (t) = s1 (t) exp (−iωτ1,l (a1)) + s2 (t) exp (−iωτ1,l (a2)) ,

where

(15) sm (t) ∼ Am

(
N
(

0,
1

2

)
+ iN

(
0,

1

2

))
= Am (CN (0, IN)) .

In presence of noise, we assume εl to be additive complex following the same signal
distribution but with a different variance σ2 (equal for each antenna element).This means
that the noisy signal is:

xl (t) = s1 (t) exp (−iωτ1,l (a1)) + s2 (t) exp (−iωτ1,l (a2)) + εl (t) ,

where

(16) εl (t) ∼ N
(

0,
σ2

2

)
+ iN

(
0,
σ2

2

)
= σ (CN (0, IN)).

In this experiment we assume σ = 20.
The distance between two consecutive sensors is assumed to be equal to half wavelength,

therefore:

d = |dj,j+1| =
λ

2
⇒ zm = exp (−iωτj,j+1 (am)) = exp (−ikd sin θm) = exp (−iπ sin θm) .

Thus, the target solution (ideal and noiseless) for the DoAs θ1, θ2 are:

z1 = 0.976− 0.217i and z2 = 0.241− 0.971i.

In the following subsections we will show two simulations, firstly in a noiseless scenario
and then in presence of noise. In both cases, we take N = 1000 snapshots of the same
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signal. We did all the computations in MATLAB [20], but the solutions of the polynomial
systems associated to FSMDSV and HMDSV algorithms, that have been calculated with
MATHEMATICA [21]. The simplification of the two systems in the current scenario is
reported in Appendix B.

5.1. The noiseless scenario. We apply the Principal Component Analysis to the noise-
less measurements, obtaining orthonormal basis of the signal space V and its orthogonal
complement V ⊥.

The polynomial (7) is calculated as explained in Section 4:

p(z) = (0.02− 1.00 i) + (−1.22 + 1.19 i)z + z2,

whose roots are z1, z2.
The polynomial (8) associated to the root-MUSIC algorithm is:

q(z) = (0.00− 0.20 i) + (−0.50 + 0.49 i)z + z2 + (−0.50− 0.49 i)z3 + (0.00 + 0.20 i)z4,

whose roots are z1, z2, both with multiplicity two.
The polynomial (11) associated to the MDC algorithm is:

r(z) = (−0.01 + 0.41 i) + (0.50− 0.49 i)z + (−0.50− 0.49 i)z3 + (0.01 + 0.41 i)z4,

whose roots are z1, z2 and

z3 = −0.716 + 0.699i, z4 = 0.716− 0.699i.

They are all unit complex numbers, however only z1, z2 satisfy inequality (12). Indeed,
they are the minimum points of d(z, V )2, where the Hermitian distance is equal to zero.

Now, let us consider the polynomial system (17) defining the FSMDSV algorithm. By
substituting into (v0, v1, v2) the Plücker coordinates of V, we obtain:

(−0.50 + 0.49 i)− 0.77u1 − 0.77u2 + (0.50 + 0.49 i)u21 + (0.50 + 0.49 i)u1u2
+(0.50 + 0.49 i)u22 + (0.01 + 0.41 i)u21u2 + (0.01 + 0.41 i)u1u

2
2 = 0

(−0.20 + 0.20 i)− 0.32u1 − 0.32u2 + (0.20 + 0.20 i)u21 + (0.20 + 0.20 i)u1u2
+(0.20 + 0.20 i)u22 + (0.00 + 0.17 i)u21u2 + (0.00 + 0.17 i)u1u

2
2 = 0

The system is symmetric with respect to the exchange of u1 and u2, therefore if (u1, u2)
is a solution, (u2, u1) is a solution too. If we only take one of them, we obtain 4 distinct
solutions (u1, u2):

(−0.974 + 0.532 i, 1.3420.311 i), (−0.721 + 0.945 i, 1.938− 2.133 i),
(−0.550 + 0.966 i,−0.303− 1.346 i), (0.976− 0.217 i, 0.241− 0.971 i).

However, we have to exclude the solutions that do not satisfy |u1| = |u2| = 1. Therefore,
it remains only the last one:

(u1, u2) = (0.976− 0.217 i, 0.241− 0.971 i) = (z1, z2).

Moreover, we observe that f is equal to 1 only in (z1, z2).
Finally, let us consider the polynomial system (18) defining the HMDSV algorithm:

(−1.22 + 1.19 i) + 2u1 + 2u2 − (1.22 + 1.19 i)u1u2 = 0

−(8.39 + 8.19 i)u1 − (8.39 + 8.19 i)u2 + (0.17 + 6.89 i)u21
+(0.33 + 13.78 i)u1u2 + (0.17 + 6.89 i)u22 = 0

whose solutions are (−0.716 + 0.699 i, 0.716 − 0.699 i), (0.976 − 0.217 i, 0.241 − 0.971 i).
The solution that minimizes the Hermitian distance is again:

(u1, u2) = (0.976− 0.217 i, 0.241− 0.971 i) = (z1, z2).
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5.2. A noisy scenario. We apply the Principal Component Analysis to the noisy mea-

surements, obtaining orthonormal basis of the estimated signal space V̂ and its orthogonal

complement V̂ ⊥.
If we apply the method explained in Section 4, we obtain an estimation of the polyno-

mial p(z) :
p̂(z) = (0.25− 1.01 i) + (−1.23 + 1.16 i)z + z2,

whose roots are
ẑ1 = 0.891− 0.050 i, ẑ2 = 0.342− 1.110 i.

The estimated DoAs are

θ̂1 = 1.021 and θ̂2 = 23.887.

The estimation of the polynomial (8) is:

q̂(z) = (0.05− 0.20 i) + (−0.55 + 0.43 i)z + z2 + (−0.55− 0.43 i)z3 + (0.05 + 0.20 i)z4,

whose roots are

ẑ11 = 0.891−0.050 i, ẑ12 = 1.119−0.063 i, ẑ21 = 0.342−1.110 i, ẑ22 = 0.253−0.823 i.

Let us observe that ẑ11 and ẑ12 are approximately reciprocal number, such as ẑ21 and ẑ22.
By taking their means and then their phases, we can compute the root-MUSIC estimation
of the DoAs:

θ̂1 = 1.021 and θ̂2 = 23.887.

We obtained the same estimation given by the roots of p̂(z).
The estimation of the polynomial (11) is:

r̂(z) = (−0.10 + 0.41 i) + (0.55− 0.43 i)z + (−0.55− 0.43 i)z3 + (0.10 + 0.41 i)z4,

whose roots are

ẑ1 = 0.998−0.065 i, ẑ2 = 0.310−0.951 i, ẑ3 = −0.788+0.616 i, ẑ4 = 0.788−0.616 i.

Again, only ẑ1, ẑ2 satisfy inequality (12) and lie exactly on the unit circle. They are the
minimum local points of d(z, V )2. The MDC estimation of the DoAs is:

θ̂1 = 1.191 and θ̂2 = 23.561.

Now, we take the estimation of the polynomial system (14) of FSMDSV:
(−0.55 + 0.43 i)− 0.74u1 − 0.74u2 + (0.55 + 0.43 i)u21 + (0.55 + 0.43 i)u1u2
+(0.55 + 0.43 i)u22 + (0.10 + 0.41 i)u21u2 + (0.10 + 0.41 i)u1u

2
2 = 0

(−0.23 + 0.18 i)− 0.31u1 − 0.31u2 + (0.23 + 0.18 i)u21 + (0.23 + 0.18 i)u1u2
+(0.23 + 0.18 i)u22 + (0.04 + 0.17 i)u21u2 + (0.04 + 0.17 i)u1u

2
2 = 0

As in the noiseless scenario, the system is symmetric with respect to the exchange of u1
and u2, therefore if (u1, u2) is a solution, (u2, u1) is a solution too. If we only take one of
them, we obtain 4 distinct solutions (u1, u2):

((−0.010− 1.825 i) · 107, (0.010 + 1.825 i) · 107), (−1.000 + 0.025 i, 0.375 + 0.927 i),
(−0.738 + 0.675 i, 0.562− 0.827 i), (0.997− 0.074 i, 0.314− 0.950 i).

Among the three solutions that satisfy |u1| = |u2| = 1, the last one maximizes f. So, the
estimated roots are:

(u1, u2) = (0.997− 0.74 i, 0.314− 0.950 i) = (ẑ1, ẑ2).

For this pair, f is equal to 0.998. The FSMDSV estimation of the DoAs is:

θ̂1 = 1.358 and θ̂2 = 23.482.
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Lastly, we compute the critical points for the HMDSV. In this case, the system is
(−1.23 + 1.15 i) + 2u1 + 2u2 − (1.23 + 1.16 i)u1u2 = 0

(0− 1.07 i)− (9.42 + 7.13 i)u1 − (9.42 + 7.13 i)u2 + (1.17 + 6.88 i)u21
+(2.34 + 13.77 i)u1u2 + (1.17 + 6.88 i)u22 = 0

whose solutions are (−0.793 + 0.610 i, 0.734 − 0.679 i), (0.991 − 0.136 i, 0.301 − 0.954 i).
The solution that minimize the distance is:

(u1, u2) = (0.991− 0.136 i, 0.301− 0.954 i) = (ẑ1, ẑ2).

The HMDSV estimation of the DoAs is:

θ̂1 = 2.497 and θ̂2 = 23.752.

Based on these examples, we can say that each method defines a consistent estimator.
In the next section we show a further performance analysis of the proposed approaches
against the root-MUSIC method.

6. Performance Analysis

In order to analyze the performances of the proposed approaches, we consider again a
configuration of three antennas and two sources, as depicted in Fig. 2. In the first set of
simulations, we assume that the sources are placed at ±θ with respect to the array normal
direction, where θ ranges from 1◦ to 20◦. According to eq. 15 and 16 both the signal and
the noise are assumed to be independent and identically distributed (i.i.d.) zero-mean
white circularly-symmetric complex Gaussian. In order to analyze the performances of
the proposed approach we keep unitary the signal variance varying the noise power, i.e.
sm (t) ∼ CN (0, IN) and εl (t) ∼ σ (CN (0, IN)). The SNR in decibel can then be defined
as

SNR = 10log10

(
E {sm (t)}
E {ε (t)}

)
= 10log10

(
1

σ2

)
.

In Fig. 3 we show the accuracy of every method varying the SNR from 30dB to -20dB
(worst condition), assuming that both sources have the same amplitude. For every θ and
SNR we simulate 1000 signal acquisitions, each one composed by 1000 snapshots. In the
left column of Fig. 3 we show the sample mean of each method, while on the right there
is the corresponding sample standard deviation. We skip the graphics for the Plücker
algorithm since, for the specific case of three antennas and two sources, this method
defines exactly the same estimation of root-MUSIC, even if polynomial (13) is half-degree
with respect to polynomial (9). As can be seen, for low values of SNR (depending on
θ) the MDC method outperforms root-MUSIC and the other proposed algorithms, with
respect to both the sample mean and the sample standard deviation.

In Fig. 4 we compare the behavior of the different approaches for θ = 1◦, which is the
most difficult condition for a proper DoAs estimation. As can be seen, in this scenario
the MDC method is the most accurate for SNR smaller than 24dB.

In the last set of simulations, we set θ = 1◦ and SNR equal to 10dB. We analyze the
performances of the different estimators with respect to the number of snapshots adopted.
In each configuration, we simulate 1000 acquisitions. The results are depicted in Fig. 5.
The MDC method greatly outperforms the others, from a small number of snapshots up
to more than 7000, both for the bias and for the sample standard deviation.
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7. Conclusions

In this manuscript, we studied the problem of determining DoAs of a signal based on
the measurements taken by a ULA of sensors. We showed how this problem is related to
the geometry of the rational normal curve and its secant variety. Based on our analysis, we
gave a geometrical interpretation of the classical root-MUSIC estimation algorithm. Then,
we proposed some novel estimation methods based on subspace analysis. We presented a
numerical simulation of localization problem with noisy measurements, that showed as all
these methods have the potential to define good estimators of the DoAs. Furthermore, we
performed a preliminary statistical analysis over the presented methods, checking their
capability to estimate the correct DoAs in different SNR conditions and with a variable
number of snapshots. The MDC approach outperforms the root-MUSIC method in most
of cases, especially in low SNR contexts.

In an ongoing work, we are carrying out a complete statistical comparison of these
methods. This will cover the statistical efficiency of the various estimators as well their
computational complexity, as functions of the numbers L of sensors and M of sources.
Moreover, we will focus on their resolution capability, i.e. the ability to distinguish be-
tween very close angles, and their robustness with respect to outliers. At this respect,
the MDC, FSMDSV and HMDSV algorithms are very promising, since one could use the
distances of the estimated points from the respective geometric sets as test statistic for
the goodness of the estimation [22].
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Appendix A. A brief summary of projective geometry

Since the DoA model sits into telecommunication realm, and, in general, researchers in
that field are not familiar with algebraic geometry, in this section we give a few details
on projective spaces, rational normal curves and their secant varieties. This section can
be skipped from readers who are aware of these topics. The exposition is largely inspired
to [23].

A.1. The projective space associated to a vector space. Let W be a (n + 1)-
dimensional K-vector space, and let B be a basis of W . The projective space P(W )
associated to W is the set of 1-dimensional subspaces of W. These subspaces are called
points of P(W ).

Two non-zero vectors v1,v2 in W span the same 1-dimensional subspace if and only if
their components [v1]B, [v2]B with respect to B differ by a multiplicative non-zero scalar.
The homogeneous coordinates of a point in P(W ) are defined as the components of any
non-zero vector in the corresponding subspace. Because of the previous property, homo-
geneous coordinates are defined up to a non–zero multiplicative scalar. Usually, homo-
geneous coordinates are written as [x0 : · · · : xn]. Once we have chosen homogeneous
coordinates, we switch notation from P(W ) to PnK, to stress that we identify points by
means of their homogeneous coordinates.

Another construction of projective spaces consists in joining the so–called ideal points
to the points of an affine space. The relationship between the two construction is the
following. Consider the set U0 of points in PnK whose homogeneous coordinates [x0 : x1 :
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· · · : xn] satisfy the condition x0 6= 0. Then, the map

F : U0 → An
K, F ([x0 : x1 : · · · : xn]) =

(
x1
x0
, . . . ,

xn
x0

)
is 1–to–1. In fact, the inverse of F is

F−1(y1, . . . , yn) = [1 : y1 : · · · : yn].

So, one can identify U0 with An
K. Points in PnK \ U0 are thought of as ideal points of

the affine space An
K, that is to say, directions of lines in An

K. Of course, an analogous
invertible map can be constructed between An

K and Uj = {[x0 : · · · : xn] | xj 6= 0}, for any
j = 1, . . . , n.

An isomorphism of the vector space W induces an isomorphism of P(W ), that is called
homography. The set of homographies is a group with respect to composition. Once we
work with homogeneous coordinates, this group can be identified with PGLn(K), that
consists of equivalence classes of invertible matrices of order n+ 1, where A,B are in the
same equivalence class if A = cB for a suitable c ∈ K∗. PGLn(K) is a multiplicative
group, and acts on PnK. To geometrically explain the action, we have to define linear
independence for points in projective spaces.

Definition 2. The points P1, . . . , Ps ∈ P(W ) are linearly independent if the sum of the
associated 1–dimensional subspaces in W has dimension s.

Theorem 2. Let {P0, . . . , Pn+1}, {Q0, . . . , Qn+1} be two sets of points in PnK. There exists
a unique matrix R ∈ PGLn(C) such that R(Pj) = Qj for j = 0, . . . , n + 1 if and only if
every n+ 1 points in both sets are linearly independent.

Finally, if the vector space W is endowed with a Euclidean or Hermitian structure, we
can define a metric structure on P(W ). Let us take two points P1, P2 in the projective
space, correspondig to the subspaces of W generated by vectors v1,v2, respectively. The
Fubini-Study distance between them is

d(P1, P2) = arccos

(
|〈v1,v2〉|
‖v1‖‖v2‖

)
.

In the Euclidean case, the Fubini-Study distance corresponds to the angle between the
two suspaces.

A.2. Projective varieties and the rational normal curve. Objects of interest in a
projective space are projective varieties, defined as zero sets of a collection of homoge-
neous polynomials in n + 1 variables. Homogeneous polynomials are needed, because a
polynomial q vanishes at a point [x0 : · · · : xn] if q(cx0, . . . , cxn) = 0 for every c ∈ K∗. Two
projective varieties X, Y in PnK are projectively equivalent if there exists R ∈ PGLn(C)
such that Y = R(X). Usually, projective varieties are studied up to projective equiva-
lence.

Linear subspaces in W are examples of projective varieties. In fact, a linear subspace
contains vectors that are solutions of a homogeneous linear system. Moreover, if a non–
zero vector is a solution, then also the 1–dimensional subspace it spans is contained into
the solutions, and so they are projective varieties, as claimed.

The next example of projective variety is the main object of interest for studying the
DoA model. In the following, we take K = C.
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Definition 3. Let PnC be the complex projective space of dimension n. The rational normal
curve C ⊆ PnC is the image of

vn : P1 ↪→ Pn, vn([t : u]) = [tn : tn−1u : · · · : un].

The map vn is called Veronese embedding of P1 into Pn. When PGL1(C) acts on P1
C, we

get the same rational normal curve, but its points are parameterized in a different fashion.
If we let PGLn(C) act on PnC, the rational normal curve is transformed in a projectively
equivalent curve, called rational normal curve as well. If we choose a basis a0, . . . , an of
the homogeneous degree n polynomials in C[t, u], different from tn, tn−1u, . . . , un, and we
take the points [a0(t : u) : · · · : an(t : u)], they form a rational normal curve. In fact, there
exists a base change matrix R that transforms tn, . . . , un in a0, . . . , an. Its equivalence
class in PGLn(C) acts on vn(P1) and transforms it into [a0(t : u) : · · · : an(t : u)], as
claimed.

If X is a projective variety, the set of homogeneous polynomials that vanish at every
point of X form the ideal I(X) in the polynomial ring C[x0, . . . , xn], that is called the
defining ideal of X.

Proposition 7. The defining ideal I(C) ⊆ C[z0, z1, . . . , zn] of the rational normal curve
C = vn(P1

C) is generated by the 2× 2 minors of the matrix[
z0 z1 . . . zn−1
z1 z2 . . . zn

]
.

Example 1. Plane conics are the rational normal curves in P2
C. In fact, every conic,

neither union of two lines, nor a double line, is defined by the vanishing of an irreducible,
homogeneous, degree 2 polynomial. By a suitable change of coordinates, such a polyno-
mial can be rewritten as z0z2 − z21 , that is the determinant of[

z0 z1
z1 z2

]
,

and so it is a rational normal curve. Hence, an irreducible and reduced conic is a rational
normal curve, because it can be obtained from z0z2 − z21 = 0 by the action of PGL2(C).

Example 2. In P3
C, the rational normal curve is the twisted cubic, parameterized as

(t3 : t2u : tu2 : u3), and defined as the locus where z0z2 − z21 , z0z3 − z1z2, z1z3 − z22 vanish.
No two of the three quadrics are enough to cut the twisted cubic, because every two of
them have a line in common, other than the twisted cubic.

For the study of the DoA model, a very important property of rational normal curves
is the following.

Proposition 8. Let C = vn(P1
C) be the rational normal curve, and let P0, . . . , Pn ∈ C.

Then, P0, . . . , Pn are pairwise distinct points if and only if they are linearly independent.

A quite subtle property of rational normal curves is that they are the only curves for
which this property holds.

A final interesting property of rational normal curves is the one described in the Castel-
nuovo’s Lemma. To get an irreducible and reduced plane conic, one has to choose 5 points
in P2

C, no three on the same line. A similar question can be asked for every other rational
normal curve, and can be considered as an interpolation problem in projective spaces.
Even if we do not have to construct rational normal curves to study the DoA model, we
quote the solution of the above problem.
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Theorem 3 (Castelnuovo’s Lemma). Through any n+ 3 points in general position in PnC
there passes a unique rational normal curve.

A.3. Grassmannians and secant varieties. The solution of the DoA model can be
rephrased in terms of linear subspaces of dimension M that meet the rational normal
curve at M different points. Thus, it is useful to introduce Grasmmannian varieties and
secant varieties to the rational normal curve therein.

Definition 4. The Grassmannian variety G(M,W ) is the set whose points are the M-
dimensional linear subspaces of the vector space W .

Of course, G(1,W ) = P(W ). In this respect, Grassmannian varieties can be thought of
as generalizations of projective spaces.

Grassmannians can also be seen as projective varieties. Given W , let us construct its
M–th exterior power ∧MW as the vector space whose elements are linear combinations
of w1 ∧ · · · ∧ wM, where w1, . . . ,wM ∈ W .4 If U ⊂ W is an M–dimensional subspace
with bases (u1, . . . ,uM), (u′1, . . . ,u

′
M), then u1 ∧ · · · ∧ uM and u′1 ∧ · · · ∧ u′M differ only

by a scalar, i.e. the determinant of the base change matrix. This means that they are
the same point in P(∧MW ). So, we can think to G(M,W ) as a subset of P(∧MW ). More
precisely, G(M,W ) is embedded into P(∧MW ) via the Plücker embedding:

G(M,W ) ↪→ P(∧MW )
U 7→ [u1 ∧ · · · ∧ uM]

.

Given a basis B = (e0, . . . , en) of W, the associated basis in ∧MW and the corresponding
reference frame in P(∧MW ) is

BM = ((−1)εI,Jei1 ∧ · · · ∧ eiM | 0 ≤ i1 < · · · < iM ≤ n),

where I = {i1, . . . , iM}, J = {0, . . . , n} \ I, and εI,J is the parity of the permutation I, J
of {0, . . . , n}. The associated homogeneous coordinates are called Plücker coordinates. If
W is an Euclidean or Hermitian space and B is orthonormal, then the induced structure
on ∧MW is the one where BM is orthonormal. This way it is also possible to define the
Fubini-Study metric on P(∧MW ).

Finally, we are interested in defining varieties whose points are subspaces that meet the
rational normal curve at a prescribed number of points. Such varieties are called secant
varieties.

Definition 5. Let C ⊂ PnC be the rational normal curve and let k, k′ be integers. The
closure of the set of subspaces of W of dimension k and meeting C at k′ distinct points
is the variety Vk,k′(C), called k′–secant variety of k–subspaces.

Since the points of the k′–secant variety of k–subspaces are subspaces of W of dimension
k, we have Vk,k′(C) ⊂ G(k,W ). Because of Proposition 8, if k = k′ it is enough to take k
distinct points on C to get a point in Vk,k(C). Hence, Vk,k(C) ⊂ G(k,W ) has dimension
k, for every k ≤ n.

Appendix B. The simplification of the polynomial systems

Here we sketch the simplifications for the polynomial systems associated to FSMDSV
and HMDSV estimation algorithms, in the case L = 3,M = 2.

4Here, we do not give details on the construction of ∧MW (see [24] for a comprehensive presentation
or [25], Appendix A, for a short introduction). We only remark that ∧ is linear with respect to the
operations in W and skew–commutative.



22 M.COMPAGNONI, R.NOTARI, M.MARCON, U.SPAGNOLINI

B.1. FSMDSV. With the above numbers of sensors and sources, the rational function
f of Proposition 5 is:

f(u1, u2) =
1

u21 + 4u1u2 + u22
·
(
v2v0 − (v1v0 + v2v1)(u1 + u2) + (|v0|2 + |v2|2)u1u2+

|v1|2(u1 + u2)
2 − (v0v1 + v1v2)u1u2(u1 + u2) + v0v2u

2
1u

2
2

)
=

g(u1, u2)

h(u1, u2)
.

Then, the associated polynomial system is:
p1(u1, u2) = g(u1, u2)

∂h(u1, u2)

∂u1
− h(u1, u2)

∂g(u1, u2)

∂u1
= 0

p2(u1, u2) = g(u1, u2)
∂h(u1, u2)

∂u2
− h(u1, u2)

∂g(u1, u2)

∂u2
= 0

.

Let us define:

q1(u1, u2) =
u1p1(u1, u2) + u2p2(u1, u2)

u21 + 4u1u2 + u22
,

q2(u1, u2) =
−(2u1 + u2)p1(u1, u2) + (u1 + 2u2)p2(u1, u2)

(u1 − u2)(u21 + 4u1u2 + u22)
,

q3(u1, u2) = (u1 + u2)q1(u1, u2)− u1u2 q2(u1, u2).
The polynomial q1(u1, u2) and q3(u1, u2) have both degree 4, with the same leading mono-
mial u21u

2
2, but different leading coefficients. The following linear combination defines a

degree 3 polynomial:

q4(u1, u2) = (−v0v1 − v1v2) q1(u1, u2)− 2v0v2 q3(u1, u2).

Since also q2(u1, u2) has degree 3, we obtained the following degree 9 polynomial system:

(17)

{
q2(u1, u2) = 0
q4(u1, u2) = 0

.

B.2. HMDSV. In our scenario, we have π(u1 ∧ u2) = (−u1 − u2, u1u2) and π(v) =
(v1, v2). Then,

f(u1, u2) = (v1 + u1 + u2) (v1 + u1 + u2) + (v2 − u1u2) (v2 − u1u2) =

=
1

u1u2

(
−v2u21u22 + v1u

2
1u2 + v1u1u

2
2 + u21 +

(
3 + |v1|2 + |v2|2

)
u1u2 + u22 + v1u1 + v1u2 − v2

)
.

The critical points of f(u1, u2) are solutions of the system{
q̃1(u1, u2) = −v2u21u22 + v1u

2
1u2 + u21 − u22 − v1u2 + v2 = 0

q̃2(u1, u2) = −v2u21u22 + v1u1u
2
2 − u21 + u22 − v1u1 + v2 = 0

.

We take the difference of the first and second polynomials and we divide by u1 − u2.
This is possible because we are looking for solutions that fulfil u1 6= u2. We get the third
polynomial

q̃3(u1, u2) = v1u1u2 + 2u1 + 2u2 + v1.

It is possible to further simplify the system by computing the remainder of the division
between the first and third equation, and we get the forth polynomial

q̃4(u1, u2) = −
(
v1

2 + 4v2
v1

2

)(
(u1 + u2)

2 − v1(u1 + u2) + v2 +
v2(v

2
1 + 4v2)

v1
2 + 4v2

)
.
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Therefore, the critical points for f(u1, u2) can be computed by solving the following degree
4 system:

(18)

{
q̃3(u1, u2) = 0
q̃4(u1, u2) = 0
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compressive beamforming. The Journal of the Acoustical Society of America, 138(4):2003–2014, Oc-
tober 2015.

[6] H.L. Van Trees. Optimum Array Processing – Part IV of Detection, Estimation, and Modulation
Therory. 05 2002.

[7] Leon Cohen. Time-Frequency Analysis: Theory and Applications. Prentice-Hall, Inc., USA, 1995.
[8] Athanassios Manikas. Differential geometry in array processing. Imperial College Press, London,

2004.
[9] Song Jie, Yang Fu-cheng, Cai Fu-qing, and Yu Yi-wei. Complex envelope estimation of direct-path

pulse signal based on real data. In International Conference on Radar Systems (Radar 2017), pages
1–5, 2017.

[10] Hendrik Kleene and Dirk Schulz. Concept of a complex envelope faber polynomial approach for
the solution of maxwell’s equations. In 2018 IEEE MTT-S International Conference on Numerical
Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pages 1–3, 2018.

[11] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE,
57(8):1408–1418, 1969.

[12] Jon Petter Asen, Jo Inge Buskenes, Carl-Inge Colombo Nilsen, Andreas Austeng, and Sverre Holm.
Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging. IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(1):76–85, January 2014.

[13] S. Moon, S. Lee, and I. Lee. Sum-rate capacity of random beamforming for multi-antenna broadcast
channels with other cell interference. IEEE Transactions on Wireless Communications, 10(8):2440–
2444, 2011.

[14] Di Shen, JieSheng Chen, and Jian Gong. Polynomial rooting algorithm for doa estimation based
on signal subspace. In 2011 4th International Congress on Image and Signal Processing, volume 5,
pages 2617–2620, 2011.

[15] D. V. Sidorovich and A. B. Gershman. Two-dimensional wideband interpolated root-music applied
to measured seismic data. IEEE Transactions on Signal Processing, 46(8):2263–2267, 1998.

[16] F. Yan, X. Li, T. Jin, L. Liu, and M. Jin. A real-valued polynomial rooting method for fast direction
of arrival estimation with large uniform linear arrays. IEEE Access, 7:122330–122341, 2019.

[17] M. Pesavento, A. B. Gershman, and M. Haardt. Unitary root-music with a real-valued eigendecompo-
sition: a theoretical and experimental performance study. IEEE Transactions on Signal Processing,
48(5):1306–1314, 2000.

[18] M. Wagner, Y. Park, and P. Gerstoft. Gridless doa estimation and root-music for non-uniform linear
arrays. IEEE Transactions on Signal Processing, 69:2144–2157, 2021.

[19] E. R. Heineman. Generalized Vandermonde determinants. Trans. Amer. Math. Soc., 31(3):464–476,
1929.

[20] MATLAB. version 9.7.0.1190202 (r2019b), 2020.
[21] Wolfram Research, Inc. Mathematica, Version 12.3.1. Champaign, IL, 2021.



24 M.COMPAGNONI, R.NOTARI, M.MARCON, U.SPAGNOLINI

[22] Marco Compagnoni, Alessia Pini, Antonio Canclini, Paolo Bestagini, Fabio Antonacci, Stefano
Tubaro, and Augusto Sarti. A geometrical–statistical approach to outlier removal for tdoa mea-
surements. IEEE Transactions on Signal Processing, 65(15):3960–3975, 2017.

[23] Joe Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1995. A first course, Corrected reprint of the 1992 original.

[24] Werner Greub. Multilinear algebra. Universitext. Springer-Verlag, New York-Heidelberg, second edi-
tion, 1978.

[25] M. Compagnoni, R. Notari, F. Antonacci, and A. Sarti. A comprehensive analysis of the geometry
of tdoa maps in localization problems. Inverse Problems, 30(3), 2014.



ALGEBRAIC GEOMETRY PERSPECTIVE FOR DOAS ESTIMATION 25

A
n
g
u
la

r 
d
iv

e
rg

e
n
ce

A
n
g
u
la

r 
d
iv

e
rg

e
n
ce

A
n
g
u
la

r 
d
iv

e
rg

e
n
ce

A
n
g
u
la

r 
d
iv

e
rg

e
n
ce

30 20 10 0 −10 −20

−20

−10

0

10

20

SNR (dB)

30 20 10 0 −10 −20

−20

−10

0

10

20

SNR (dB)

30 20 10 0 −10 −20

−20

−10

0

10

20

SNR (dB)

30 20 10 0 −10 −20

−20

−10

0

10

20

SNR (dB)

D
o
A

 A
n
g
u
la

r 
S

ta
n
d
a
rd

 D
e
vi

a
tio

n
D

o
A

 A
n
g
u
la

r 
S

ta
n
d
a
rd

 D
e
vi

a
tio

n
D

o
A

 A
n
g
u
la

r 
S

ta
n
d
a
rd

 D
e
vi

a
tio

n
D

o
A

 A
n
g
u
la

r 
S

ta
n
d
a
rd

 D
e
vi

a
tio

n

40 30 20 10 0 −10 −20

0

10

20

30

SNR (dB)

±1°

±20°

40 30 20 10 0 −10 −20

0

10

20

30

SNR (dB)

±1°

±20°

40 30 20 10 0 −10 −20

0

10

20

30

SNR (dB)

±1°

±20°

40 30 20 10 0 −10 −20

0

10

20

30

SNR (dB)

±1°

±20°

Figure 3. Comparison of the proposed methods for different angular dis-
tance of the two sources. From the first row to the last one: root-MUSIC,
MDC, FSMDSV and HMDSV are compared as function of the SNR. In the
first column we report the sample mean values of the estimated DoAs, while
in the second column we provide their sample standard deviations.
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Figure 4. Comparison of the proposed methods for two sources at ±1◦

as a function of the SNR. On the left: the sample mean of the estimated
DoAs. On the right: their sample standard deviation.
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Figure 5. Comparison of the proposed methods for two sources at ±1◦

and SNR equal to 10dB, with a varying number of snapshots. On the left:
the sample mean. On the right: their sample standard deviation.


