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Abstract— We address the problem of detecting distribution
changes in a novel batch-wise and multimodal setup. This setup is
characterized by a stationary condition where batches are drawn
from potentially different modalities among a set of distributions
in R? represented in the training set. Existing change detec-
tion (CD) algorithms assume that there is a unique—possibly
multipeaked—distribution characterizing stationary conditions,
and in batch-wise multimodal context exhibit either low detection
power or poor control of false positives. We present MultiModal
QuantTree (MMQT), a novel CD algorithm that uses a single
histogram to model the batch-wise multimodal stationary con-
ditions. During testing, MMQT automatically identifies which
modality has generated the incoming batch and detects changes
by means of a modality-specific statistic. We leverage the theo-
retical properties of QuantTree to: 1) automatically estimate the
number of modalities in a training set and 2) derive a principled
calibration procedure that guarantees false-positive control. Our
experiments show that MMQT achieves high detection power and
accurate control over false positives in synthetic and real-world
multimodal CD problems. Moreover, we show the potential of
MMQT in Stream Learning applications, where it proves effective
at detecting concept drifts and the emergence of novel classes by
solely monitoring the input distribution.

Index Terms— Change detection (CD), concept drift, his-
tograms, multimodal monitoring, Stream Learning.

I. INTRODUCTION

ETECTING distribution changes is a fundamental prob-

lem in machine learning and stream mining, as it is
key to concept drift detection and adaptation [1]. Change
detection (CD) is central in many applications like indus-
trial/environmental [2] and urban [3] monitoring, security [4]
and finance [5]. In this work, we address the batch-wise CD
problem in a novel and challenging multimodal setup.

In batch-wise CD problems, data come in batches, typi-
cally of fixed size, and each batch contains independent and
identically distributed (i.i.d.) samples drawn from a unique
stationary distribution ¢y. In this scenario, the goal is to
monitor incoming batches to detect any distribution change
¢o — ¢, which yields batches from a different distribution
¢1. An illustrative example of a batch-wise CD problem is
predictive maintenance, where inertial sensors mounted on
a piece of machinery (e.g., a robotic arm) acquire a multi-
variate stream of high-throughput measurements for integrity

Manuscript received 6 February 2023; revised 28 June 2023; accepted 3 July
2023. This work was supported by the PNRR-PE-AI FAIR Project funded by
the NextGeneration EU Program. (Corresponding author: Diego Stucchi.)

Diego Stucchi, Luca Magri, and Giacomo Boracchi are with the Diparti-
mento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
20133 Milano, Italy (e-mail: diego.stucchi@polimi.it).

Diego Carrera is with STMicroelectronics, 20041 Agrate Brianza, Italy.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2023.3294846.

Digital Object Identifier 10.1109/TNNLS.2023.3294846

monitoring purposes. Typically, these data are processed in
batches, which are intermittently acquired over short time
intervals. In this context, detecting distribution changes in
batches is very important, as changes might indicate faults
in the sensors or an unexpected evolution of the machinery
operating conditions. Batch-wise CD is also popular in the
concept-drift detection literature, where it has been tackled by
various statistical tools, from simple two-sample tests to more
sophisticated density-based models [6].

All the existing CD algorithms assume that ¢ corresponds
to a single stationary distribution. Unfortunately, this assump-
tion does not match situations where multiple conditions are
deemed normal, and stationary batches can be drawn from
different distributions {¢y ,}, which we refer to as modalities.
For example, the robotic arm previously considered might—
in normal conditions—operate different types of movement
at different speeds. These settings are illustrated in Fig. 1
(left), where the blue and green samples refer to batches
acquired during different operating modes, thus are drawn
from different modalities. As long as batches are drawn from
any modality {¢y,} characterizing ¢y, no change has to be
detected. In contrast, distribution changes modifying even
a single modality, for instance ¢o; — ¢;1, as shown in
Fig. 1 (right), should be detected, as they possibly indicate
an unexpected behavior.

This example illustrates the batch-wise multimodal CD
problem we address, where stationary batches are drawn from
a set of unknown modalities {¢g ,,}. Multimodal CD requires
a specific algorithm to: 1) describe the stationary condition
¢o = {¢do.m} and 2) associate each batch to the modality ¢y ;
it comes from. Such multimodal CD problem has never been
addressed, neither in the CD nor concept drift literature. The
most general CD algorithms, which model ¢ as a multipeaked
distribution (say Gaussian mixtures [7], [8], [9]), assume that
in stationary conditions each batch is drawn from the whole
mixture. As a consequence, in the batch-wise multimodal
settings, they would consider batches from a single modality
@o.» unusual, resulting in a false alarm.

We fill this gap and present MultiModal QuantTree
(MMQT), a novel histogram-based algorithm that solves the
batch-wise multimodal CD problem. This is a very powerful
algorithm, as it is: 1) nonparametric, meaning that it does
not make any assumption on the distributions of modalities
{do.m}; 2) efficient, as it employs a single histogram to compute
detection statistics; and 3) practical, since we show it can
operate at a controlled false alarm rate, a property inher-
ited by QuantTree [10], which provides a sound theoretical
background.

In order to train an MMQT, we construct a modality-
agnostic partitioning of the input domain (see Fig. 2, left)
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In stationary conditions (left), the measurements, possibly corresponding to different operating scenarios, follow two modalities ¢ 1 and ¢g . After

a fault (right), the distribution of the measurements changes (¢o,1 — ¢1,1), potentially affecting a single modality (¢o > is unchanged).
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Left: two stationary batches drawn from two modalities ¢ 1 and ¢ 2, and their contour plot. Note that here ¢¢ > is non-Gaussian and multipeaked.

A QuantTree partitioning is drawn in red lines. Right: corresponding bin-probability vectors ! and 2. MMQT provides CD capabilities in a multimodal
batch-wise setting, where any batch drawn from ¢ ; or ¢p > is considered stationary.

and use this to transform training batches into bin-probability
vectors 7! (Fig. 2, right). Then, we estimate the number of
modalities characterizing ¢y by clustering the bin-probability
vectors. During monitoring, we detect distribution changes
¢o — ¢ that affect any modality {¢o .} (as in Fig. 1) by
computing a modality-specific test statistic that is compared
against a predefined detection threshold. To this purpose,
we define a batch-to-modality mapping that uses the centroids
of the clusters of bin-probability vectors.
The main contributions of this work are the following.

1) We formulate the multimodal batch-wise CD problem,
and solve this by MMQT.

2) We show that MMQT can control the false alarms by
setting detection thresholds that do not depend on ¢y.

3) We present an automatic procedure for estimating the
number of modalities in ¢y by leveraging, for the first
time, the control over false alarms as a criterion.

4) We propose a principled calibration procedure to adjust
the estimated bin probabilities, which is particularly
effective when the training set is scarce.

Our experiments demonstrate that MMQT can successfully
estimate the number of modalities and effectively perform
multimodal batch-wise CD while controlling the false positive
rate (FPR). Interestingly, MMQT proves effective also on real-
world datastreams, where ¢y is an unknown collection of
modalities. Moreover, we demonstrate that MMQT can suc-
cessfully address key problems in concept drift detection, like
detecting distribution changes in a completely unsupervised
manner or the emergence of novel classes.

This article is structured as follows. In Section II, we for-
mulate the novel batch-wise multimodal CD problem, and in
Section III, we describe the related CD algorithms, which
however cannot cope with our multimodal settings, and we
introduce the QuantTree [10], which sets the basis for our
work. In Section IV, we present MMQT, discuss its main
theoretical result (Proposition 1), and analyze its compu-
tational complexity. In Section V, we assess the detection
performance of MMQT in both CD and Stream Learning

problems. Finally, Section VI discusses the limitations of
MMQT, and Section VII wraps up our major contributions.

II. PROBLEM FORMULATION

We address CD in a batch-wise and multimodal setup, where
data x € R? are, in stationary conditions, multivariate real-
izations of one of M random vectors drawn from modalities
{dom, m = 1,..., M}. We denote by ¢y the multimodal
stationary distribution such that a sample is said stationary
when it comes from any modality ¢ ,, as defined by the
following relation:

X~ ¢o = Imell,..., M} (1)

We further assume that data come in batches W = {x;,i =
1,..., v} containing v i.i.d. samples each. In stationary con-
ditions, each batch is drawn from a single modality, i.e.,

S.t. X ~ o -

)

but different batches might come from different modalities.
For the sake of simplicity, in the following, we drop the
exponent v, and simply write W ~ ¢g,, to denote that all
the v samples in the batch W are drawn from ¢ . We also
adopt the compact notation W ~ ¢, to indicate that W ~ ¢,
for some m.

Our goal is to design an algorithm able to detect batches
that are not drawn from any modality in ¢¢. Thus, we address
the following hypothesis testing problem:

W~ [pom] = x~¢om VxeW

Hy: W ~¢o versus H : W ~ 1 #pon Ym 3)

which we solve while guaranteeing a controlled FPR o« €
[0, 1], i.e., the proportion of type I errors [11]. By ¢; in (3),
we denote any post-change distribution including at least a
modality other than the stationary ones {¢g ,,}.

We remark that modalities {¢ ,,} do not necessarily coin-
cide with peaks of ¢y, since each modality can itself be
non-Gaussian and feature multiple peaks, as illustrated in
Fig. 2 (see ¢y ). Moreover, for the sake of generality, we frame
our detection problem in unsupervised settings, where the
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stationary distribution ¢y, the modalities {¢ ,,}, their number
M, and the post-change distribution ¢; are unknown. We only
assume a training set containing N batches drawn from ¢y,
namely TR = {W; ~ ¢p,i =1, ..., N}, is provided.

IITI. RELATED WORK AND BACKGROUND

CD has been abundantly addressed in many monitoring
scenarios involving univariate/multivariate datastreams and
streaming/batch-wise operations. Still, to the best of our
knowledge, the CD literature is entirely focused on the single-
modality setting, and a solution to the batch-wise multimodal
CD problem described in Section II has never been proposed.
In what follows, we summarize approaches to the multivariate
CD, which is our primary interest.

Most CD algorithms for multivariate datastreams use a dis-
tance metric or a density measure to quantitatively assess the
dissimilarity between the distributions of historical and new
data. Parameteric methods assess the dissimilarity between
batches by computing a two-sample statistic [12] that requires
knowing the distribution ¢, which is often approximated by
a Gaussian mixture model (GMM) [7], [8], [9]. Changes
are then detected by computing a test statistic leveraging
on the fit model (e.g., the loglikelihood). Since the distribu-
tion of these test statistics is unknown, detection thresholds
need to be defined by bootstrap to control false positives.
Two prominent examples in this family are semi-parametric
log-likelihood (SPLL) [7] and principal-component analysis
(PCA)-SPLL [8]. SPLL fits a GMM to the training set and
uses an upper bound of the loglikelihood as the test statistic.
PCA-SPLL performs a PCA projection before applying SPLL
to the low-variance components, which are supposed to be
primarily affected by the change. Unfortunately, assuming that
¢o belongs to a parametric family of distributions can be a
severe limitation leading to a poor approximation when the
hypothesis is violated. MMQT features several advantages
with respect to a GMM: 1) it is not parametric; 2) it con-
trols the FPR of each individual modality; and 3) performs
a theoretically sound automatic estimation of the number
of modalities. In our experiments, we consider SPLL and
PCA-SPLL as representative parametric methods, with detec-
tion thresholds computed by bootstrap.

Nonparametric methods provide a more flexible alternative,
as they do not restrict ¢y to a parametric family of distribu-
tions. A few nonparametric alternatives have been designed
for multivariate data, such as those relying on kernel test
statistics [13], [14], kernel ratio test [15], or generalized log-
likelihood statistic [16], like PCA-CD [17] and statistical
density test (SDT) [18]. Other nonparametric approaches to
multimodal CD are based on density estimation and assess
the discrepancy between batch distributions [19], [20], [21],
[22]. However, none of these methods tackle the multimodal
CD problem described in Section II, which we solve by a
histogram-based algorithm. Thus, we focus on the nonpara-
metric methods based on histograms [6], [10], [23], [24],
partitioning R? and monitoring bin probabilities to detect
changes. In particular, while MMQT also belongs to non-
parametric algorithms, it is the first CD algorithm specifically
designed for these settings.

A. Batch-Wise Monitoring by Means of Histograms

A histogram # is a collection of subset-probability pairs & =
{(Sk, k) }k=1....x . The partitioning S = {S;} is a collection of
bins yielding a disjoint cover of the input domain R¢, namely
USy = RY, and S, NS; = ¥ when k # j. The vector & € R¥
stacks all probabilities m; € [0, 1] for samples drawn from
¢y to fall inside S, hence >, m, = 1. In particular, we define
a function I" mapping a batch W C R¢ to the corresponding
bin-probability vector p € R¥

rw)=p, pkzw, kel{l,...,K} (4)
being p; the kth component of p and #(-) the set cardinality.
Histogram-based CD algorithms monitor incoming batches
by computing a test statistic defined over h, i.e., a statistic
that uniquely depends on the bin-probability vector p in (4).
Examples of such statistics are the Pearson [11] or the Total

Variation statistic. We use the latter, defined as

K
1
TsnW) =52 o —mil. )
k=1

Any batch deviating from ¢y is detected as long as
Ts..(W) > t, for some threshold 7 € R.

Histograms give rise to nonparametric CD methods, and
here we discuss the most relevant examples. The kdg-
tree [23] constructs a partition by iteratively halving the input
space until it reaches a minimum bin density, and measures
the discrepancy between historical and incoming data as
the Kullback—Leibler distance. The detection thresholds for
kdg-tree are computed by bootstrap over TR. Liu et al. [6]
identify some limitations of histogram-based methods, such
as the non-compactness of the bins and the presence of
cluster gaps, and propose EIkM, a x-means-based partition-
ing. Finally, we consider Density Tree [25, Ch. 5], which
consists of a binary splitting partitioning where each leaf is a
multivariate Gaussian, and each split is defined to maximize
an information-gain metric. None of the above algorithms
can natively cope with the batch-wise multimodal scenario
presented in Section II, as they all compute test statistics
that consider ¢y as a single distribution without distinguishing
between modalities. As we will show in our experiments,
all these methods that set their detection thresholds by
bootstrap can only control the average FPR and achieve
modality-specific FPR much higher/lower than the target.
Instead, MMQT solves the issue by using modality-specific
detection thresholds. In particular, our method is a multimodal
extension of QuantTree (described in what follows), improving
on the theoretical guarantees of the original method and
natively designed for the batch-wise multimodal scenario.

B. QuantTree

QuantTree [10] is an algorithm that builds histograms for
CD. QuantTree takes as input TR and a set of target bin
probabilities {m;}, and iteratively defines a partitioning S
whose bin probabilities under ¢y are given by {m;}. At each
iteration, QuantTree computes a new bin by splitting the
remaining portion of the input domain along a single covariate,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

and choosing a sample quantile of the marginal distribution
as the splitting point. This splitting scheme ensures that:
1) the bin probabilities are random variables whose distribution
depends only on {m;}, the batch-size v and the size of TR,
and 2) the distribution of any statistic defined over such a
histogram does not depend on ¢y. These properties enable very
practical nonparametric monitoring, as the detection thresholds
to control the FPR can be set via Monte Carlo simulations
on synthetically generated data and do not require bootstrap-
ping over TR. Specifically, [26] proves that the reference
bin-probability vector of a QuantTree is drawn from a Dirichlet
distribution with parameters depending only on N and {m;}.
Moreover, the bin-probability vector I'(W) associated with
a batch W ~ ¢y is distributed as a multinomial that only
depends on v. Therefore, we simulate the construction of a
QuantTree and compute the statistic associated with a batch W
by sampling random vectors from the Dirichlet and the multi-
nomial distributions, respectively. In particular, any QuantTree
constructed with the same parameters v, N, and {m;} uses the
same detection threshold, independently of ¢y. Despite the
nice properties of QuantTree and the recent extensions via
kernel functions [27], this algorithm is not able to monitor
multimodal batches, as shown in our experiments.

C. Non-Stationary Datastreams

Stream Learning models are expected to detect and react to
concept drifts [6], namely changes in the statistical properties
of the monitored datastream. In Stream Learning, a classifier
is trained over labeled data drawn from an initial distribution
¢, potentially collected in batches, and needs to accommodate
any distribution change ¢9 — ¢; that would disrupt its
performance. In this scenario, active approaches [28], [29],
[30] employ a CD test to detect changes and trigger an adap-
tation strategy to counteract the performance loss caused by a
concept drift or by the emergence of novel classes [31], [32],
[33]. The most popular approach to concept drift detection
consists in monitoring the error rate of a classifier trained on
annotated stationary samples and reporting a detection when
the error rate increases [34], [35]. Such a monitoring scheme
requires constant supervision to detect changes, which might
not be viable in many conditions. Other methods rely on pairs
of streams, which might receive different types of supervision
(if any) to detect distribution changes while constantly adapt-
ing the classifiers to the evolving stream [36], [37]. A third
approach to concept drift detection is to steadily monitor the
distribution of unlabeled input data. This can be done in
many ways, either by approximating ¢y by some parametric
model [7] or by employing nonparametric statistics [38], [39].
It has to be mentioned another approach, often encountered
in fault detection literature, which consists in leveraging
annotated examples [40] or prior knowledge to detect specific
types of changes [41]. Unfortunately, these methods are very
application specific and are based on assumptions that are
rarely encountered in general Stream Learning settings.

Therefore, even in the non-stationary environment (NSE)
literature, we are the first to address the multimodal batch-wise
CD problem described in Section II. Our setting has a minor
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overlap with the literature on recurrent concepts, where clas-
sifiers adapt to concept drifts by learning new models, and
use previously learned ones in the case of recurrent distribu-
tions [28], [42]. However, algorithms assuming the existence
of recurrent concepts switch between states only when a drift
is detected and struggle when ¢ is the combination of a set
of modalities {¢o }-

IV. MULTIMODAL QUANTTREE

MMQT performs multimodal batch-wise CD by defining a
modality-agnostic partitioning S of the input space and com-
puting a modality-specific test statistic over incoming batches.
The partitioning S is used to describe all the modalities in
¢ and to associate each batch W to the modality that most
likely generated it. The test statistic is efficiently computed
by comparing the bin-probability vector of the tested batch
against the reference vector of selected modality. Remarkably,
MMQT inherits the nonparametric nature of QuantTree and
can cope with modalities characterized by any multivariate
distribution ¢y ,,, even those presenting multiple peaks (like
¢, in Fig. 2). Indeed, the nonparametric trait of MMQT
is guaranteed by the batch-to-modality mapping (7), which
allows us to compute test statistics as in QuantTree.

In the following, we delineate the training phase of MMQT
(Section IV-A) and illustrate the batch-wise monitoring by
modality-specific test statistics (Section IV-B). Then, we illus-
trate some peculiarities of MMQT that are backed by the
theoretical properties of QuantTree: the calibration procedure
(Section IV-C) and the estimation of the number of modalities
(Section IV-D). Finally, Section I'V-F reports the computational
complexity of MMQT, and Section IV-G describes an alterna-
tive scheme consisting of using M-QuantTrees.

A. MMQT Construction

Histogram-based methods construct a partitioning S of the
input space, and model ¢, through a reference bin-probability
vector 7 that describes the percentage of points drawn from
¢o that fall in each bin. In principle, this scheme would
apply to each modality ¢ ,, giving rise to many histograms.
However, MMQT constructs a unique partitioning S to define
M reference bin-probability vectors, each characterizing an
individual modality as described in Algorithm 1. For simplic-
ity, we describe all the operations assuming the number of
modalities M to be known, i.e., M=M , while the automatic
estimation of M is detailed in Section IV-D.

We first partition R? via the QuantTree algorithm (line 1)
to obtain S, a partitioning of K disjoint bins with proba-
bility m; = 1/K under ¢y. To this purpose, all samples in
TR are used, disregarding the batch they come from. Then,
we process TR in a batch-wise manner, and map each W
to its bin-probability vector p € RX (line 2) by computing
bin probabilities I'(W) as in (4). We obtain a set I'(TR) C
RX collecting the bin-probability vectors associated with the
training batches

'TR)={p;=TW;),i=1,...,N}. (6)

Since we assume that M is provided, we do not initialize M
(line 3) and do not iterate the while loop at line 4. For each
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Algorithm 1 Training MMQT and Estimating M

Require: Training set TR = {W;,i = 1,...,N}, tar-
get FPR o
Ensure: Number of clusters M, partitioning S
1: Define S as a QuantTree, using TR and K bins with bin
probabilities 1/K.
2: Map each batch W in TR via T, yielding I'(TR) =
{pi,i=1,...,N}.
Set M =0, FPR = 1
while FPR > o do
M=M+1
Run k-means clustering on I'(TR), using M
Calibrate bin probabilities {™} as in (12)
Compute thresholds {z,,} for target o (Section IV-A)
for all W € TR do
10: Change detection on W
11:  end for
12:  Compute the achieved FPR
13: end while
14: Return M , S

D T RSN

modality, we compute a reference bin-probability vector and
the detection thresholds as follows. First, we run (line 6) the
k-means algorithm [43] to divide the bin-probability vectors
in I(TR) ¢ RX into M clusters. We take the centroids of
the resulting clusters as preliminary estimates of the reference
bin-probability vectors {m™} associated with the modalities.
Then (line 7), we adjust each m™ through the calibration
procedure (12) described in Section IV-C to account for the
multimodal nature of the problem. Finally (line 8), for each
modality ¢y ,, we compute a detection threshold t,, via Monte
Carlo simulations, as discussed in Section I1I-B.

B. Batch-Wise Monitoring Using MMQT

During monitoring, MMQT computes the bin probabilities
p = I'(W) € RX for each incoming batch W according to the
partitioning S as in (4), and performs the batch-to-modality
association by determining the modality ¢ ,+ which most
likely has generated W as

m* = argmill ||p - Jt’”2|| @)
m=1,..., M

where p = I'(W) is the bin-probability vector of the test
batch and {m™} are the calibrated reference bin-probability
vectors constructed during training. Then, we compute the

Total Variation (5) as a modality-specific statistic

1 &

T (W) = =D |pi — " ©)

2 k=1

to assess the statistical distance between p and =" . We detect
a change when

qunm* (W) > Typx. (9)

We observe that (7) might associate a batch W to a wrong
bin-probability vector & . This phenomenon is not compen-
sated by MMQT and might impact the false positive control.

Fig. 3. Calibration of bin probabilities. We report the partitioning S
constructed by QuantTree over the entire TR and samples from the mth
modality only. The boundary 9S; does not meet any point from ¢o .,
as opposed to what would happen with a QuantTree constructed over batches
from ¢p,, (dashed lines). Calibration compensates for this difference by
estimating y; in (14) as the ratio between the expected values of Py, [Ax]
and Py, [Ax U Byl

However, our experiments show that the FPR is well controlled
both in case of synthetic and real-world datasets.

C. Calibration of Bin Probabilities

The properties of QuantTree (Section III-B) guarantee that
each threshold 7, is independent of the data dimension d
and the distribution ¢y ,, and depends only on the reference
bin-probability vector x™, the batch size v and the number
N,, of training batches associated with that ¢ ,. However,
when we train MMQT, we do not construct the partitioning S
specifically for ¢, but we use the entire TR, which is drawn
from all the modalities in ¢y. Therefore, we have devised
a calibration procedure to mitigate the resulting discrepancy
between the bin probabilities estimated by the x-means and
the actual bin probabilities. For simplicity, in what follows,
we assume to know which modality generated each batch,
while in practice we estimate it by the batch-to-modality
mapping (7).

During training, for each bin S; and modality ¢, the
k-means estimates the probability Py, [Sk] of a sample drawn
from ¢y, to fall in S;. These probabilities correspond to
each component of ™, computed as 7} = L, «/n,,, where
n, = VN, is the number of training points associated with
the mth modality by (7), and L,,; is the number of these
points falling in S;. When we use a single partitioning S to
monitor all the modalities {¢y,,,}, each bin probability 7;" does
not accurately represent the probability for a sample drawn
from ¢, to fall in S, since the histogram bins have not
been constructed on points from the same modality. To better
illustrate the issue, Fig. 3 shows an example of QuantTree
partitioning, where we report training points drawn from ¢ ,,
only. To construct the kth bin S, all the training samples {x;}
are sorted according to the ixth covariate, denoted as [-];,.
Then, the algorithm defines the split by selecting a value zjs,
among the sorted covariates z() < z(2) <, ..., where each z;)
correspond to a sample x(;, € TR such that [X(;)];, = z(j.
In this example, the boundary dS; between S; and S;y; does
not pass through any training point drawn from ¢y ,, which
means that the split was defined by selecting a training point
x drawn from another modality.

In the illustration in Fig. 3, we can identify the two samples
drawn from ¢, , that are closest to 9S;, namely, X, ,) and
X(r,, .+1y» Which are inside and outside Sy, respectively. Let A}’
and B} be the stripes between Xz, ,) and 95, and between
X(L,+1) and Sy, formally defined as

m

K = {X S Skl[x]ik > Z(Lmk)} (10)
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k=1
B = [x g U Sillly = 2(1,,4) n
j=
Note that when S is built using QuantTree over training points
associated with ¢, only, the bin boundary 9S; would pass
through x(z,, ,), and A}’ would be empty.
The proposed calibration procedure consists in updating the
marginal bin probabilities 7™ by taking into account the stripes
Al and B} as follows:

mk+gk

= C(n)') = |

—' 12
H( qj+1Mm + l) ( )

Jj<k

where ¢; = 1 — /'L
defined as

m,i/(Nmv) and the values g' are

208 = Z(Lug)

- Z(Lnnk)

= 13)
YLt

Intuitively, g;' represents the expected value of the ratio
between the probabilities of A}’ and Aj' U B}, which is the
ratio between the amount of points expected to fall in A} and
AU B}, respectively. In (12), the factor in parenthesis takes
into account the probabilities of bins S; for j < k after the
calibration. For the sake of simplicity, we omit C(-) from the
notation of the calibrated bin probabilities unless necessary.

The calibration procedure in (12) derives from the following
proposition, which expresses the expected probability of a
point to fall in a bin of MMQT. Precisely, we show that (12) is
the same as (14) from Proposition 1, where y;" is substituted
by an estimate g;'.

Proposition 1: Let L, ; be the number of points drawn
from modality ¢, falling into the bin S, let n, be the
overall number of samples drawn from ¢, and let n, ; =
Ny —Z’;;} L, ; be the number of training samples drawn from
¢o,n not falling into bins 1,2, ...,k — 1. Then, there exists
vi' € [0, 1] such that the expectation of the probability of the
kth bin under ¢, can be expressed as

m + yﬂl
B[P 151] = 2 H( —) (1

qj+1Mm +1

fork=1,...,K—1, where ¢g; = 1 — zl!;l Ly.i/(N,v) and
the expectation is considered with respect to the training set
realizations.

The proof of Proposition 1 is in the supplementary material,
together with the required theoretical results. We remark that
the calibration of the reference bin-probability vectors is only
possible because from [10] we know the distribution of the
bin probabilities in QuantTree. Other tree structures, such as
kd-trees [44], do not provide the same theoretical properties.

To conclude, we observe that the impact of the calibration
procedure becomes more evident when TR is small. Intuitively,
as TR gets smaller, we expect the stripe A; to become larger,
thus the denominators of (12) to become smaller. This effect
is shown in Section V-E, where we assess the influence of
the number of training batches N,, and the distance between
stationary distributions over the ability of MMQT to control
the FPR with and without calibration.
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D. Estimation of the Number of Modalities

In the multimodal problem solved by MMQT, the num-
ber of modalities represented in TR is unknown. Classical
model-selection procedures used in clustering validation [45],
[46], [47] select the optimal number of clusters by optimizing
a quality measure that usually assesses the compactness of the
data in the clusters. For the first time, we use the FPR control
guaranteed by MMQT to estimate the number of clusters, i.e.,
of modalities, characterizing ¢y. Our procedure to estimate
M builds on the intuition, confirmed by the experiments,
that when we underestimate M, the empirical FPR exceeds
the target o’. In this case, in fact, batches drawn from
different modalities would be associated with the same bin-
probability vector, resulting in many false alarms. To prove our
intuition, we run experiments on synthetic data in R? where
¢o is characterized by different numbers of modalities M €
{1,2,...,8}. Here, we simulate under- and overestimations
of M by configuring MMQT with M € {1,2, ..., 10}. Fig. 4
illustrates the results for M = 4 and 8, reporting the empirical
FPR achieved by MMQT plotted against the number M of
modalities used to construct S. These plots show that when
M < M, the empirical FPR is larger than the target o’ = 5%
(dashed horizontal line), and the FPR steadily drops below the
target as soon as M=M (dashed vertical line). Moreover, the
FPR decreases at a slower rate once M > M , meaning that
even overestimating the number of modalities prevents us from
effectively controlling the FPR. In the supplementary material,
we report the results for M € {1,2, ..., 8}.

Our procedure for estimating M consists in constructing a
histogram and then computing the empirical FPR over TR
for increasing values of M = 1,..., until we obtain an
MMQT that yields an FPR lower than the target «’. The entire
training procedure of MMQT is unsupervised and described
in Algorithm 1. The number of modalities M is estimated
at lines 3-13, where multiple values of M are tested. First
(line 3), we initialize M = 0. Then, in the while loop of
line 4, we test increasing values of M until the empirical
FPR achieved over TR drops below «’. At each iteration,
we increase M (line 5), compute the bin probabilities via
k-means (line 6), calibrate bin probabilities (line 7), and
compute thresholds {z,,} for each identified modality (line 8).
Ultimately, we select the first value M yielding an FPR lower
than the target . In the experiments, we repeat the estima-
tion process multiple times and set M by majority voting.
We remark that such an estimation technique would not have
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been possible without the theoretical properties of QuantTree,
which allows setting the detection thresholds controlling the
FPR.

We want to emphasize that modalities {¢y ,,} in MMQT do
not correspond to peaks of a distribution (say, the components
of a GMM) but are rather any distribution of batches, not
necessarily unimodal. For this reason, the problem of estimat-
ing the number of modalities in RY is more challenging, as it
requires distinguishing between a single modality having mul-
tiple peaks and several unimodal modalities. Note that MMQT
conveniently estimates M in the space of bin probabilities R¥,
where it can easily handle multipeaked modalities in R?, like
¢o,» in Fig. 2, which are mapped to a unimodal bin-probability
distribution.

E. Parameters of MMQT

In MMQT, « is the target FPR—i.e., the expected proportion
of type I errors, as in any Hypothesis Test—and is used
to define detection thresholds via Monte Carlo simulations.
In principle, the value of «’ used to estimate the number
of modalities (Section IV-D) can differ from o and, in
Section V-F, we explore the impact of disentangling them.
In the following, unless differently stated, we set o’ = 5%.

Other crucial parameters for MMQT are the number v of
samples in a batch W and the number of bins K. On the
one hand, the estimation of the bin-probability vector from
training or testing batches improves when bins contain many
samples from W, namely, when the ratio v/K is large.
Moreover, thanks to the consistency property of Hypothesis
Tests, we know that the power of MMQT would increase
when v grows, as we discuss in the experiments and show
in the supplementary material. On the other hand, since
each bin of MMQT considers only a (randomly selected)
dimension, using a large K increases the probability that every
dimension is considered in the histogram construction but
lowers the average number of points per bin. This drawback is
especially significant for high-dimensional data, where some
input components might be ignored by all the splits. We choose
v and K in each experiment to balance the number of samples
per bin and the risk of ignoring some input components in the
splits.

F. Computational Complexity

We analyze the computational complexity of the MMQT
training following Algorithm 1. The complexity of build-
ing the QuantTree partitioning (line 1) is O(KNvlog(Nv)),
as reported in [10], while computing the probability vector
of every batch in TR (line 2) costs O(KNv). Then, inside
each of the M iterations of the while loop at line 4, we have
to perform k-means clustering, which requires O(tK>N),
being ¢ the maximum number of k-means iterations. The cost
of the bin-probability calibration is negligible, being O(K).
Thresholds (line 8) for each of the QuantTrees constructed
during training are computed via Monte Carlo simulations as
in [26], and require O(BK + Bvlog K) operations, being B
the number of Monte Carlo iterations. Therefore, the overall
complexity of training an MMQT becomes O (K Nvlog(Nv)+

MtK2N+M2(BK+Bv log K)). During monitoring, the com-
putational complexity is dominated by the computation of the
bin-probability vector and the selection of the corresponding
centroid, thus it turns out to be O(vK + MK ).

G. CD by M-QuantTrees

MMQT monitors incoming batches W using a single parti-
tioning S, which is used to compute the bin-probability vector
p = ['(W). Then, p is first used to identify the modality
generating W (7) and then to compute the modality-specific
statistic (8), which is compared against the corresponding
threshold to detect changes. Such a detection scheme requires
the calibration procedure of Section IV-C.

A viable alternative to MMQT is to employ M QuantTrees,
one per modality, thus avoiding calibrating the bin prob-
abilities. This corresponds to constructing modality-specific
histograms to monitor batches of each modality. In the fol-
lowing, we refer to this solution as the M-QuantTrees. During
training, the M-QuantTrees algorithm estimates M in the
same way as MMQT and uses the same batch-to-modality
association in (7) to split the training set into modality-specific
disjoint subsets {TR,,}. Then, each subset TR,, is used to
construct a modality-specific QuantTree partitioning S™ and
to compute a detection threshold t,, as in [26]. During testing,
each incoming batch W is associated with a modality m* via
(7) so that the detection is performed by the corresponding
QuantTree S™'.

Despite  avoiding the calibration procedure, the
M-QuantTrees alternative is less efficient in terms of
computational complexity since, during training, it requires
building M QuantTrees more than MMQT, thus increasing
the cost by O(M(KNvlog(Nv))). Moreover, during testing,
each batch W needs to pass through two QuantTrees instead
of just an MMQT, doubling the inference cost. To conclude,
we remark that M-QuantTrees is a viable option developed
within the MMQT framework, as this latter provides a
procedure for estimating M and the batch-to-modality
mapping. In our experiments, we will compare MMQT and
M-QuantTrees in terms of control of the FPR and detection
performance.

V. EXPERIMENTS

In this section, we assess the performance of MMQT on
synthetic and real-world datasets (Section V-A) by the figures
of merit described in Section V-B. We show that MMQT out-
performs competing methods (Section V-C) and can accurately
estimate the number of modalities (Section V-D), and effec-
tively detect changes while controlling the FPR (Section V-E
and V-F). We also show the benefits of MMQT in Stream
Learning, where it can detect concept drifts and the emergence
of novel classes in non-stationary datastreams (Section V-G).
MMQT code is publicly available for download.'

A. Datasets

We test MMQT using both synthetic and real-world
datasets.

! GitHub repository: github.com/diegocarrera89/quantTree
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1) Synthetic Dataset: We generate datasets where the
stationary {¢y ,} and post-change {¢; ,,} modalities are Gaus-
sians with a minimum Kullback-Leibler distance sKL, <
SKL(@im,» $jn), Vi, j,m,n. In the supplementary material,
we detail the procedure to generate these modalities, which
is inspired by the CCM framework [48].

2) CWRU Bearing Dataset: The Bearing dataset is provided
by the Case Western Reserve University (CWRU) Bearing
Data Center [49] and consists of vibration data collected by
an accelerometer placed onto an electric ball-bearing motor.
This annotated dataset is an example of an industrial moni-
toring CD application and comprises acquisitions performed
at three different speeds {Sp;, Sp,, Sp;} both in normal (used
for training) and faulty conditions (used only to assess the
detection performance). Accelerometer measurements are pre-
processed by a short-time Fourier transform over windows of
size 32 extracted with eight samples overlap. We monitor the
absolute values of the first d = 8 coefficients and split the
resulting datastream in batches of v = 32 samples in RS,

3) INSECTS Dataset: The INSECTS dataset [50] is a recent
classification benchmark for datastreams affected by concept
drift. It contains feature vectors (d = 33) describing the
wing-beat frequency of different species of flying insects.
We consider only the abrupt-change dataset, which contains a
datastream of six concepts with annotated change points. Each
concept contains measurements acquired from six (annotated)
insect species at different unknown temperatures, which are
known to have different feature distributions.

B. Figures of Merit

We consider two classical figures of merit in batch-wise CD:
the empirical FPR and the area under the receiving operating
characteristic curve (AUC). We also assess the average error
AM = M — M when estimating the number of modalities.
In Section V-G, we test Stream Learning performance and
we consider, on top of detection metrics, the classification
accuracy and the expected detection delay (EDD). Since there
is no specific temporal order among testing batches in our
experiments, the EDD is computed as the expected value of
a geometric distribution having as a parameter the empirical
true positive rate (TPR) for a fixed detection threshold. All the
results are averaged over multiple runs and reported together
with the 95%-confidence interval, proving the statistical sig-
nificance of our findings.

C. Methods

Most of the algorithms mentioned in Section III are lim-
ited to dealing with a single distribution ¢y and, therefore,
cannot cope with our batch-wise multimodal setup described
in Section II. Since there are no alternatives that directly
operate in our setting, we compare against methods that can be
adapted to handle multivariate data from possibly multipeaked
distributions. In what follows, we illustrate the considered
methods and their configurations as summarized in Table 1.

1) MMQT: In all our experiments, the partitioning of the
input domain § is defined by a QuantTree to yield a uniform
density coverage of the training set TR C R? (m; = 1/K).
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TABLE I

PARAMETERS SETTING FOR THE CONSIDERED METHODS. THE NUMBER
OF BINS K AND OF GAUSSIAN COMPONENTS C DEPEND ON THE
DATASET. IN THE SUPPLEMENTARY MATERIAL, WE TEST OTHER
VALUES OF v AND o’

e MMQT (w/ cal) QuantTree - ) SPLL
Dataset MMQT (w/o cal)  M-QuantTrees Density Tree PCA-SPLL
All v =128
All o =5% -
All T} = automatic T = 1/K Vk
Synthetic (low d) K =4d CcC=M
Synthetic (high d) K =64 C=M
INSECTS K =64 CcC=M
CWRU K =16 CcC=M

In low-dimensional synthetic data (d € {2,4, 8, 16}), we set
K = 4d, while in high-dimensional synthetic data (d €
{32, 64, 128}) we fix K = 64 since we keep a fixed batch
size and we need to preserve a minimum amount of training
samples per bin. For the same reason, in the CWRU (d = 8)
and INSECTS (d = 33) datasets, we set K = 16 and
K = 64, respectively, due to the small size of the datasets.
To estimate the number of modalities M , we run the x-means
algorithm using the xk-means++- initialization [51], repeating
the centroid initialization ten times. To increase the robustness,
we repeat the entire estimation of the number of modalities
(Algorithm 1) ten times, choosing the most often selected M
and the partitioning S achieving the closest FPR to o’ among
those yielding M. Finally, we calibrate the bin probabilities as
in (12).

2) MMQT (w/o Calibration): This is exactly like MMQT,
with the only difference being that we do not apply the bin-
probability calibration. This baseline allows us to assess the
impact of the calibration on the detection performance.

3) M-QuantTrees: As an alternative to MMQT, we test CD
by using M-QuantTrees as in Section IV-G. We employ M
QuantTrees, with parameters set as in MMQT.

4) QuantTree: We test a single QuantTree [10] config-
ured with the same parameters and statistic as MMQT. This
batch-wise baseline is not multimodal, thus ignoring the fact
that batches might be drawn from different modalities.

5) Semi-Parametric Log-Likelihood: SPLL [7] is perhaps
the closest solution in the literature to our CD problem, as it
adopts a multipeaked density model. We use SPLL in the
general setting where a GMM 50 is fit to TR with possibly
different covariance matrices, as in [7], and we consider the
ideal conditions where the number of Gaussians C is given.
For the synthetic data, we fit a mixture of exactly C = M
Gaussian densities to TR. For the CWRU dataset, we set
C = 1 (Single Speed scenario) or C = 3 (Multi Speed
scenario), while for the INSECTS dataset, we set C equal to
the number of insect species. During testing, SPLL associates
each sample to the closest Gaussian, and computes an upper
bound of the loglikelihood. The SPLL statistic is then averaged
over the batch to obtain the test statistic. We estimate every
time the detection threshold via bootstrapping over TR.

6) PCA-SPLL: This variant of SPLL was proposed in [§]
consists of computing a PCA transformation over TR to
project data over the components with the lowest variance.
Then, a GMM is fit to the projected training data, and SPLL
is adopted for detection. In our experiments, we keep the
principal components corresponding to the lowest 20% of the
variance, and set up SPLL as in the previous paragraph.
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Fig. 5. Automatic estimation of the number of modalities on synthetic

datasets in R* (top) and R!S (bottom) with M € {2,4, 6, 8, 10} modalities.
Boxplots depict the distributions of AM = M — M where M has been
estimated via MMQT, SI, CH, and DB indices. MMQT yields the most
accurate estimates.

7) Density Tree: This non-multimodal baseline consists of a
binary splitting tree where each split is defined by maximizing
an information-gain metric. Such a method is inspired by [25]
and was also used as a baseline in [10]. Our implementation
uses the Total Variation statistic (5), and we define a detection
threshold by bootstrapping over TR.

As a closing remark, we observe that the estimation of
M and the histogram construction performed by QuantTree
and MMQT are stochastic processes, characterized by a sig-
nificant degree of randomness. To ensure a fair comparison,
in each run, we construct the partitioning S, we estimate M s
and we use these for MMQT, MMQT w/o calibration, and
M-QuantTrees. QuantTree uses the same partitioning S.

D. Estimating the Number of Modalities

We benchmark our solution for estimating the number of
modalities M against classical clustering-validation methods,
namely, the Silhouette Index (SI) [45], Calinski—-Harabasz
(CH) Index [46], and Davies—Bouldin (DB) Index [47]. While
the definitions of these indexes are different, they all aim
to select the number of clusters that strike the best balance
between cluster cohesion and separation. Instead, we rely on
the theoretical properties of MMQT to derive the number of
modalities (Section IV-D) by controlling false alarms.

We test the accuracy of estimating M by MMQT over the
synthetic datasets generated as in Section V-A, varying both
the number of ground-truth modalities M € {2,4,6, 8, 10}
and the data dimension d € {2,4, 8, 16}. Fig. 5 shows the
distribution of the differences AM = M — M over 200 trials
as a function of M. Due to space limitations, we report only
d € {4, 16}. Other configurations yield consistent results. All
the baselines struggle in high dimensions, as they underesti-
mate M and suffer high variability when M and d increase.
This result is not surprising, given the known limitations of

TABLE I

ESTIMATION ERROR AM = M — M, AVERAGED OVER 200 RUNS,
ACHIEVED BY MMQT IN HIGH-DIMENSIONAL DATA. IN
PARENTHESIS, THE WIDTH OF THE 95%-CONFIDENCE INTERVAL

M
d 2 4 6 8 10
32 0.000 (0.000)  0.000 (0.000)  -0.070 (0.035) -0.260 (0.061)  -0.735 (0.148)
64 | 0.000 (0.000) -0.055 (0.032) -0.690 (0.073)  -0.980 (0.071)  -1.649 (0.171)
128 0.000 (0.020)  -0.615 (0.073)  -1.590 (0.092)  -2.640 (0.103)  -3.600 (0.114)

these indexes in high-dimensional settings [52]. In contrast,
our solution retrieves exactly M = M in most cases, with
only few overestimates having little impact on the detection
performance, as we commented in Section IV-D.

To further investigate the performance of Algorithm 1,
we consider synthetic data in R? for d € {32, 64, 128}. Table II
reports the estimation error AM averaged over 200 changes
¢o — ¢1 and shows that MMQT underestimates the number
of modalities in this high-dimensional setting. As commented
in Section IV-E, we argue that this is the consequence of the
setup of MMQT with only K = 64 bins. In the supplementary
material, we report additional results to show that different
values of o’ yield the same results when M = 10. We also
assess the accuracy of M on real-world datasets, assuming that
the number of modalities corresponds to the number of insect
species or motor speeds represented in the data. In the results
to the experiments on real-world data, we report AM alongside
the detection performance of the methods and shows that
MMQT accurately estimates three modalities for the CWRU
Multi Speed dataset and the exact number of species in the
INSECTS dataset.

E. CD in Synthetic Datastreams

In this experiment, we generate the 2M Gaussian distri-
butions {¢,»}_, and {¢1,,}_, characterizing the stationary
¢o and the post-change condition ¢, for M € {2,4, 6, 8§, 10}.
We generate distributions with different dimensions d €
{2,4,8,16,32,64, 128} and a minimum pairwise distribution
distance sKLy (see Section V-A). The generation procedure is
illustrated in detail in Section 1 of the supplementary material.
For each change ¢y — ¢, we generate a training set TR of
N,, = 64 batches of v = 128 samples per stationary modality
@o.m, for a total of 64 - M batches, thus 8192 - M training
samples. To compute stable FPR and AUC values, we process
2000 batches per modality in both stationary and post-change
conditions. Fig. 6 reports the FPR and AUC achieved by all the
methods for d € {4, 16, 32, 128} averaged over 200 changes,
together with a line indicating the target FPR o = 5%.

1) Low Dimensions (d € {2, 4, 8, 16}): The first row of
Fig. 6 reports the results for d € {4, 16} which are in line
with d € {2, 8} reported in the supplementary material.

2) FPR Control: First of all, we notice that MMQT (both
with and without calibration) guarantees an empirical FPR
close to the target « for all the values of d and M. Neverthe-
less, when d increases, the FPR exceeds the target. We argue
that this is a consequence of the shrinking ratio between v
and K, as commented in Section IV-E. In M-QuantTrees,
histograms have uniform bins, resulting in the Total Variation
statistics having discrete values as commented in [10]. There-
fore, the empirical FPR achieved by M-QuantTrees does not
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Fig. 6.

AUC (left) and FPR (right) values achieved on the synthetic dataset where M € {2, 4, 6, 8, 10} modalities, and d € {4, 16, 32, 128}. The dashed

lines in the FPR plots indicate the target FPR of 5%. Values out of the considered range are not reported. At low dimensions (top row), MMQT achieves
very high AUC scores by using the number of modalities M estimated from TR, and at the same time controls the FPR. Instead, on high-dimensional data

(bottom row) MMQT struggles to maintain its performance.

TABLE III

MODALITY-SPECIFIC AND AVERAGE FPR ACHIEVED BY THE CONSIDERED
METHODS ON SYNTHETIC DATA (d = 8, M = 4). MMQT-BASED
METHODS ALLOW FOR A MODALITY-SPECIFIC CONTROL OF FPR.
METHODS USING BOOTSTRAP CAN ONLY CONTROL
THE AVERAGE FPR

$0,1 $0,2 $0,3 90,4 Average
MMQT 4.80% 4.80% 4.70% 5.70% 5.00%
MMQT (w/o cal.) 5.20% 5.00% 4.50% 5.40% 5.03%
M-QuantTrees 3.20% 2.20% 3.60% 3.10% 3.02%
QuantTree 95.70%  94.80% 100.00%  88.70% 94.80%
SPLL 8.80% 0.60% 0.20% 11.90% 5.38%
PCA+SPLL 0.20% 0.00% 0.00% 18.00% 4.55%
Density Tree 0.10% 0.00% 21.00% 0.00% 5.27%

match the target. As expected, QuantTree does not control the
FPR, since it considers test batches from a single modality as
extremely rare with respect to the stationary distribution ¢y.

CD methods computing the detection threshold via boot-
strap on TR achieve an overall empirical FPR close to «.
However, the thresholds computed by these methods consider
the distribution of the test statistic as a whole, disregarding
the modality generating each batch, thus cannot control the
FPR on each modality. The empirical, modality-specific, FPR
typically departs substantially from «. To demonstrate our
intuition, we compute the modality-specific FPR for changes
¢o — ¢ where d = 8, M = 4, and we report a representative
run in Table III. The results of SPLL, PCA-SPLL, and
Density Tree confirm that thresholds computed by bootstrap
only guarantee an average FPR control, while MMQT-based
solutions control the FPR on each modality.

3) Detection Power: In terms of AUC, MMQT outperforms
all the considered alternatives, except for M-QuantTrees. This
is probably due to the fact that the latter constructs histograms
having uniform probabilities, which typically achieve higher

detection power [6], [24]. Nevertheless, using M-QuantTrees
is more computationally demanding than MMQT, so the over-
head might not be worth the slight gain in AUC. Remarkably,
while the performance of other methods decreases as the
number of modalities M increases, MMQT performance are
stable, indicating that M , the bin-probability vectors {z™}, and
thresholds {r™} have been correctly estimated.

4) Calibration of Bin Probabilities: Fig. 6 shows that,
in this scenario, the calibration has a negligible impact on the
detection performance of MMQT. We further investigate the
impact of bin-probability calibration in terms of FPR control
when varying the TR size and the distance between the station-
ary modalities. In these experiments, we compute the empirical
FPR achieved by MMQT with and without calibration over
a synthetic dataset in R® comprising M = 2 stationary
distributions ¢o; and ¢, with Kullback—Leibler distance
sKL(¢o.1, ¢p02) € {1,2,4,8}. We set K = 32, v =128 and
o = 5%, and we consider different numbers of training batches
Nn € {4,8,16,32,64, 128, 256} per modality.

Table IV reports the average FPR achieved over 100 dif-
ferent ¢y, and shows that the calibration procedure reduces
the gap between the empirical and the target FPR when TR
is small. In general, both methods achieve an empirical FPR
closer to @ when N,, increases and we also notice that the
control of the FPR improves when sKL(¢o 1, ¢o2) is larger.
We also remark that the impact of the calibration procedure
seems to be independent of the sKL distance between modal-
ities, as it can be appreciated from the Difference rows of
Table IV. We anticipate that these findings are in line with
the results obtained with the INSECTS dataset (presented in
Section V-F), where the calibration proved to be key when
only N,, = 10 training batches per modality are given (see
Table VI, bottom-left). We finally measure the norm of the
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TABLE IV

FPR ACHIEVED BY MMQT (WITH AND WITHOUT CALIBRATION) WHEN
VARYING THE SKL DISTANCE BETWEEN STATIONARY MODALITIES
AND THE NUMBER OF TRAINING BATCHES N,,

sKL(¢o,1, $0,2) 1 2 4 8 N
w/ calibration 5.88% 5.69% 530% 5.15%
w/o calibration 6.26% 6.16% 572%  5.45% 4
Difference 0.38% 0.47% 041%  0.30%
w/ calibration 5.36% 5.32% 533%  5.19%
w/o calibration 5.50% 5.45% 542%  5.35% 8
Difference 0.14% 0.13% 0.09% 0.16%
w/ calibration 5.20% 5.01% 5.07% 5.15%
w/o calibration 5.26% 5.00% 513%  5.21% 16
Difference 0.07%  -0.01% 0.06%  0.07%
w/ calibration 4.84% 5.06% 497%  5.03%
w/o calibration 4.85% 5.07% 5.00% 5.05% 32
Difference 0.02% 0.01% 0.03%  0.02%
w/ calibration 4.91% 4.96% 493%  5.08%
w/o calibration 4.92% 4.97% 493%  5.10% 64
Difference 0.01% 0.01% 0.00% 0.02%
w/ calibration 5.02% 4.91% 5.00% 5.01%
w/o calibration 5.01% 4.93% 5.00%  5.03% 128
Difference -0.01%  0.02% 0.00%  0.02%
w/ calibration 4.95% 4.96% 5.03%  5.00%
w/o calibration 4.95% 4.97% 5.02% 5.01% 256
Difference 0.00% 0.01% -0.01% 0.01%

difference between the reference bin-probability vectors before
and after the calibration ||z —C(x™)||,. Table V confirms that
the calibration changes the bin probabilities more substantially
when the training set is small.

5) High Dimension (d € {32, 64, 128}): The second row
of Fig. 6 reports the results for d € {32, 128}, while results
for d = 64 are in line with these and reported in the
supplementary material. Even though MMQT can be seam-
lessly applied to any dimension, our experiments show that
its performance degrades when operating on high-dimensional
data. As discussed in Section IV-E, employing K = 64 bins
with high-dimensional data harms the accuracy of the his-
togram, as shown in the estimation error AM reported in
Table II, which gets worse when d and M grow. By underes-
timating M, MMQT monitors batches drawn from different
distributions using the same test statistic. As a result, the
achieved empirical FPR exceeds the target «, and the AUC
tends to decrease. The effect of the estimation error is more
apparent on M-QuantTrees, which achieves extremely large
FPR values because it monitors multiple modalities with the
same QuantTree. The challenges of high dimensionality also
affect the other methods. The thresholds computed by SPLL
and PCA-SPLL through bootstrap lead to larger and larger
FPR when the dimension and number of modalities grow.
Density Tree controls the FPR at the expense of the detection
power.

FE. CD in Real-World Datastreams

1) CWRU Data: We consider two different CD exper-
iments involving vibration data processed as described in
Section V-A. The first one is the Single Speed scenario, where
we train the methods on TR acquired when the ball bearing
motor is operating at a specific speed Sp;, i € {1, 2, 3}. The
second one is the Multi Speed, where all of the speeds
{Sp,, Sp,, Sps} are represented in the training set. In both
experiments, we introduce distribution changes ¢y — ¢; using

TABLE V

AVERAGE L2-NORM OF THE DIFFERENCE BETWEEN THE BIN
PROBABILITIES ||[&” — C(x™)||» BEFORE AND AFTER THE
CALIBRATION PROCEDURE WHEN VARYING THE SKL
DISTANCE BETWEEN STATIONARY MODALITIES AND
THE NUMBER OF TRAINING BATCHES N,,

sKL

Nem 1 2 4 8
4 0,01183  0,00579 0,00382 0,00416
8 0,00535  0,00364 0,00185  0,00285
16 0,00512  0,00182 0,00147 0,00104
32 0,00336  0,00107  0,00080  0,00066
64 0,00115  0,00050  0,00054  0,00027
128 | 0,00078  0,00059 0,00012  0,00010
256 | 0,00036 0,00010 0,00010  0,00007

batches of faulty data. Moreover, we perform these experi-
ments setting the target FPR to « € {0.5%, 1%, 2%, 5%}.

Table VI (top) reports the detection performance of the
considered methods averaged on 100 changes. The Single
Speed scenario corresponds to a traditional CD problem, where
stationarity is described by a single distribution and as such,
most methods control the FPR. In contrast, in the Multi Speed
scenario, which represents a multimodal CD problem, only
MMQT controls the FPR, while bootstrap-based methods are
less accurate. This proves that MMQT is the only solution
able to operate seamlessly on multimodal batches.

2) INSECTS Data: In this experiment, we monitor insects’
wing-beat features to detect five distribution changes ¢y —
¢ that are triggered by temperature changes from 7 to
Tj41 as in the abrupt drift dataset [SO]. Each modality ¢,
corresponds to one of the six classes of insects. To this pur-
pose, we rearrange the datastream to obtain batches containing
instances from a single species. We consider both the known-
M scenario, where M is provided and CD algorithms are
trained on N,, = 10 batches per modality, and the estimated-
M scenario, where MMQT estimates M and all the CD
methods are trained on N,, = 60 batches per modality. More
training batches are required in the second case in order
to estimate M. We discard all those species that do not
contain at least N,, training batches, hence concepts can
contain a different number M of stationary modalities {¢g ,}.
We perform these experiments setting the target FPR to o €
{0.5%, 1%, 2%, 5%}.

Table VI (bottom) reports the detection performance of
the considered methods averaged on 100 changes ¢y —
¢1. In both the known- and estimated-M scenarios, MMQT
outperforms all the competitors in terms of AUC and achieves
an FPR close to the considered targets «. All the methods
that set detection thresholds by bootstrap struggle when TR is
small, while this is not a problem for MMQT, where thresholds
are defined a priori. Finally, in the known-M scenario, the
calibration procedure prevents MMQT from losing the FPR
control when the training set is small, confirming this is key
when TR is small, as discussed in Section V-E.

G. Concept-Drift Detection in Stream Learning Scenarios

In these experiments, we arrange the INSECTS dataset to
test MMQT and competing methods in two Stream Learning
problems, namely detecting: 1) the emergence of a novel class
and 2) distribution changes due to concept drift.
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TABLE VI

PERFORMANCE ON REAL-WORLD DATASETS: CWRU (TopP) AND INSECTS (BOTTOM). SINCE WE PROVIDE THE SAME ESTIMATE OF M TO MMQT,
MMQT w/0 CALIBRATION AND M-QUANTTREE, AM IS CONSTANT. IN PARENTHESIS, THE WIDTH OF THE 95%-CONFIDENCE INTERVAL

CWRU - Single speed CWRU - Multi Speed
AUC FPR (a=0.5%) FPR (a=1%) FPR (a=2%) FPR (a=5%) AM AUC FPR (a=0.5%) FPR (a=1%) FPR (a=2%) FPR (a=5%) AM
MMQT (w/ cal) 1.000 (.000) 0.49% (.04%) 0.98% (.06%) 1.78% (.09%) 4.72% (.16%) 0.27 (.05) | 0.999 (0.000) 0.50% (.04%) 0.98% (.07%) 2.04% (.09%) 4.93% (.15%)  -0.04 (.05)
MMQT (w/o cal) | 1.000 (000)  0.49% (.04%) 0.98% (.06%) 1.78% (.09%) 4.78% (.16%) 027 (05) | 0.999 (0.000)  0.50% (.04%) 1.00% (.07%) 2.06% (.10%) 490% (.15%)  -0.04 (.05)
M-QuantTrees 1.000 (.000)  0.26% (.03%) 0.27% (03%) 1.22% (07%) 4.19% (.15%) 027 (.05) | 1.000 (0.000)  0.98% (.12%) 1.01% (.13%)  2.39% (.14%) 6.17% (29%)  -0.04 (.05)
QuantTree 1.000 (.000) 0.27% (.03%)  0.27% (.03%) 1.30% (.07%) 4.29% (.17%) - 0.999 (0.001) 3.39% (.35%) 3.84% (43%)  9.33% (76%) 17.48% (1.01%) -
SPLL 1.000 (.000) 1.11% (.07%) 1.70% (.11%)  3.04% (.15%)  3.89% (.09%) 1.000 (0.000) 1.26% (.01%) 1.59% (.06%) 4.29% (.02%) 3.90% (.02%)
PCA+SPLL 1.000 (.000)  1.26% (.04%) 1.85% (01%) 2.67% (.11%) 2.78% (.04%) 1.000 (0.000)  0.88% (01%) 1.83% (01%) 3.81% (.01%) 4.78% (.02%)
Density Tree 0.918 (008)  1.54% (.12%) 2.30% (.14%) 3.55% (17%) 6.47% (22%) 0.918 (0.001)  0.99% (09%) 1.69% (12%)  2.77% (.13%) 6.35% (.19%)
INSECTS - M known INSECTS - M estimated
AUC FPR (0=0.5%) FPR (a=1%) FPR (0=2%) FPR (0=5%) AUC FPR (0=0.5%) FPR (a=1%) FPR (a=2%) FPR (0=5%) AM
MMQT (W/ cal) | 0.926 (.006)  0.74% (06%) _ 1.48% (.08%)  2.87% (.16%) _ 5.19% (.14%) | 0.976 (.001) 0.54% (.08%) 1.03% (.13%) 2.13% (.16%) 493% (23%) _ 0.00 (.00)
MMQT (w/o cal) | 0.926 (.006) 0.92% (.07%) 1.78% (.11%) 3.40% (.21%) 6.37% (.15%) | 0.976 (.001) 0.60% (.11%) 1.12% (.16%) 2.13% (.17%) 5.02% (.23%)  0.00 (.00)
M-QuantTrees 0.901 (.006)  0.72% (07%)  1.03% (09%)  2.11% (14%)  4.56% (.13%) | 0.957 (.002) 0.31% (.06%) 0.76% (.13%) 1.61% (.24%) 4.63% (24%)  0.00 (.00)
QuantTree 0.769 (.007)  84.59% (.79%)  88.21% (.66%) 91.44% (.56%) 94.76% (.42%) | 0.867 (.013)  46.00% (2.94%) 51.36% (2.97%) 57.61% (3.01%) 64.11% (3.18%) -
SPLL 0.709 (015)  9.51% (51%) 10.60% (.54%) 14.01% (61%) 20.16% (.70%) | 0.806 (.018) 1.84% (.20%) 2.45% (.20%) 4.04% (.28%) 7.35% (.40%)
PCA+SPLL 0.698 (.017) 8.23% (.50%) 9.38% (.53%) 11.80% (.58%) 17.45% (.66%) | 0.713 (.021) 1.83% (.20%) 2.47% (.21%) 3.98% (.28%) 7.93% (.41%)
Density Tree 0.808 (.006)  1.84% (.18%)  2.34% (21%)  3.00% (22%)  5.47% (31%) | 0.910 (.007) 1.22% (.20%) 1.44% (.20%) 2.74% (31%) 5.01% (.41%)
1) Novel Class Detection: In the INSECTS dataset, The stationary modalities ¢p ; and ¢, are mixtures of two

we denote the insect classes with letters A—F. We consider
two stationary modalities ¢p ;, containing insects A and B
and modality ¢y » containing insects D and E, always in equal
proportions. Change ¢y — ¢; corresponds to introducing a
novel class, thus batches drawn from ¢, ; (¢;2) contain 50%
of insects from species C (F), while the remaining ones are
from ¢,1 (¢p0.2). We configure MMQT and M-QuantTrees with
M = 2 clusters, one per stationary modality. In SPLL and
PCA-SPLL, the GMMs use four Gaussian components to take
into account the bimodal nature of each stationary modality.
For each change ¢9 — ¢, the algorithms have been provided
with N, = 32 training batches per modality.

Table VII (left) reports the detection performance and the
EDD averaged over 100 distribution changes and across all the
concept drifts. MMQT is the best method in terms of AUC
and FPR control. Similar AUC is attained by M-QuantTrees
with a slightly worse FPR control, followed by Density Tree,
which ranks third in terms of AUC but achieves an empirical
FPR significantly far from the target. As expected, QuantTree
and SPLL-based methods cannot manage these settings, as it
is evident from the EDD and the poor control of FPR.

2) Concept-Drift Detection: This experiment is designed to
show the potential of MMQT as an unsupervised drift detector
in a Stream Learning problem. In particular, we train an active
classifier over streaming data collected in batches, and we
employ a k-nearest neighbors (k-NN) classifier paired with
MMQT, which triggers corrective actions after detecting a
drift. We denote as Cvmqr our active classifier using MMQT
as a drift detector. As long as MMQT does not detect any
change, Cymqr classifies the incoming samples and tests the
batch for CD. Then, if no detection is triggered, Cmmor
updates the classifier using supervised samples that amount to
10% of the batch. After the first detection, the trained k-NN
shifts to a short-memory classifier trained in a sliding-window
manner, exclusively using the labels from the two most recent
batches. In this experiment, we compare our method with
three baseline classifiers: Cconge Which is never updated, Cyp
which is continuously updated with the supervised 10% of the
incoming batch, and Csw that uses the short-memory classifier
since the beginning. To initially train the classifiers, we provide
annotations to 25% of TR, except for Csw which is always
trained on the two most recent batches.

species of insects at a specific temperature, while the concept
drifts ¢9 — ¢; consist of temperature changes. Hence, the
post-change distributions ¢ ; and ¢, are drawn from the
same insects as ¢ ; and ¢o, but at a different temperature.
The training set TR comprises 16 batches of 128 samples for
each modality, and we set k = 4 in the k-NN. To reduce
false alarms triggering an unnecessary adaptation, we compute
detection thresholds with a target FPR of 0.5%.

In Fig. 7, we report the accuracy of the classifiers averaged
over windows of ten batches for two of the tested concept
drifts. The drift’s severity varies with the temperature change,
and we report only the changes that most affect the classifica-
tion accuracy. The supplementary material contains the results
for all the settings. The thick, dark-colored lines represent the
accuracy averaged over 1000 datastreams generated by sam-
pling the INSECTS dataset, and the light-colored green lines
represent the results of individual runs of Cwmmor. showing
the effect of a false alarm on the classification performance.
Moreover, we highlight with a gray background the time
interval following the drift, where the averaged accuracy of
the methods overlaps with the change point.

All the classifiers suffer an accuracy drop following the con-
cept drift. However, when using active approaches, promptly
detecting the drift enables quick recovery of the classification
performance. In this regard, MMQT achieves an average
detection delay of 1.51 batches, corresponding to 194 samples.
Thus, Cymmor quickly switches to the short-memory classifier
after the change, limiting the impact of the drift over its
classification accuracy. As expected, the (rare) false alarms
raised by MMQT affect the classification performance before
the change-point and consequently the average pre-change
accuracy of Cumgr 18 slightly lower than those of Ceongt and
Cup. Before the drift, the short-memory classifier Csw cannot
achieve the same accuracy as the other methods, which are
trained over 25% of TR and, in the case of Cymor and Cyp,
are updated on streaming data. After the drift, C.onse does not
recover from the accuracy loss. Cyp slowly gains accuracy
by incorporating new annotated samples, while Csw quickly
settles at a post-change accuracy level. As expected, after the
change, Cmmor and Csw achieve the same performance since
they implement the same update strategy. This experiment
demonstrates that MMQT can be successfully employed in
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TABLE VII

CD PERFORMANCE ON NOVEL CLASS (LEFT) AND CONCEPT DRIFT
(RIGHT) DETECTION. IN PARENTHESIS, THE WIDTH
OF THE 95%-CONFIDENCE INTERVAL

Novel Class Detection (o = 5%) Concept Drift Detection (a = 0.5%)

AUC FPR EDD AUC FPR EDD
MMQT 0.891 (.005) 5.20% (.06%) 209.8 | 0.942 (.004) 0.53% (.05%) 1982
MMQT (w/o cal) | 0.892 (.005) 5.25% (.07%) 209.0 | 0.942 (.004) 0.54% (.06%) 197.0
M-QuantTrees 0.898 (.005) 3.32% (.05%) 204.9 | 0.941 (.005) 0.40% (.06%)  207.1
QuantTree 0.679 (.013)  36.63% (1.47%) 2049 | 0.831 (.009) 10.66% (1.17%) 196.4
SPLL 0.551 (.008) 13.03% (.38%) 7733 | 0.759 (.021) 14.65% (1.10%) 211.1
PCA+SPLL 0.428 (.008) 12.51% (.38%)  1312.8 | 0.748 (.021) 11.52% (.96%)  238.0
Density Tree 0.764 (.015) 7.26% (.28%) 250.0 | 0.877 (.014) 4.63% (54%) 172.1

a Stream Learning problem, once paired with a classifier that
is updated upon detecting a drift.

To further investigate the benefit of MMQT in Stream
Learning, we run a concept drift detection experiment in
the same setting as the classification one, comparing the
performance of MMQT against the CD methods used in the
previous experiments. All the methods monitor the data distri-
bution disregarding the labels, and are trained on 16 batches.
Detection thresholds are set using o = 0.5%. Table VII (right)
reports the performance in terms of AUC and FPR averaged
over 100 drifts ¢y — ¢ and clearly shows that methods
defining thresholds by bootstrap struggle in this setting, where
few training batches are provided and « is very low. Since
each false positive triggers an unnecessary adaptation, these
bootstrap-based methods are unfit for a Stream Learning
problem where the training set is scarce. In contrast, MMQT
relies on strong theoretical results to compute the detection
thresholds and can control the FPR in both the classification
and detection scenarios where it achieves the highest AUC.
In our analysis, we focused on abrupt changes. However,
MMQT might also be employed to detect gradual, incremental,
or transient drifts at the expense of larger EDD. This is
common to all CD methods since, for these types of drifts,
the impact of change on their test statistic is lower than an
abrupt change once the drift starts.

To conclude, the major drawback of MMQT in the Stream
Learning scenario consists of the fact that it is a one-shot
detector, processing each incoming batch independently of the
previous ones. Interestingly, the research on MMQT could
follow the path of QT-EWMA [26], [38], which recently
combined QuantTree with a sequential monitoring scheme
based on the Exponential Weighted Moving Average.

H. Sensitivity Analysis of CD Algorithms

We finally perform a sensitivity analysis on critical param-
eters for the CD algorithms, to provide additional insights
on their configuration. First of all, the batch size v, which
we set to 128 in all the experiments, is tightly related to
the change-detection power. In fact, all the Hypothesis Test
underpinning the detection methods are consistent, meaning
that the detection power increases (resp. worsens) when v
grows (resp. decreases). This is confirmed by the additional
experiments, reported in the supplementary material, where
we set v € {64, 128,256} on synthetic datasets (d = 32).
As for the algorithm-specific parameters, the results reported
here and in the supplementary material show that the value of
o’ does not significantly affect the accuracy of the estimation
of the number of modalities in MMQT, thus we have safely set
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Fig. 7. Classification accuracy averaged over windows of ten consecutive

batches in the Stream Learning experiment. The light-green lines represent
individual runs of Cmmqr, the thick dark lines represent the average results.
The gray area highlights the time interval immediately following the drift.

o' = 5% in all our experiments. We have already discussed
guidelines for regulating the number of histogram bins K,
which requires taking into account v and the data dimension d.
Since the number of bins is key in MMQT, M-QuantTrees,
QuantTree, and Density Tree, we have carefully defined K
to yield the best performance (see Table I). To enable a
fair comparison, the number of Gaussian components C in
SPLL-based methods was also defined to achieve the best
performance in each dataset.

VI. LIMITATIONS

The most apparent limitation of MMQT concerns high-
dimensional datastreams. It is well known [9] that change
detectability worsens when d increases and histograms further
suffer when v is small and d is large, since it becomes
difficult to estimate bins that accurately match the target
probabilities [10]. MMQT is no exception, and, as expected,
its performance degrades when the data dimension scales,
as shown in Fig. 6 and Table VI. However, these limitations
emerge only in synthetic datasets at very high dimensions
(d = 64 128) and do not affect experiments on the INSECTS
dataset, which represents a real-world and high-dimensional
(d = 33) benchmark for CD. We remark that in this chal-
lenging setting, the performance drop is common to all the
considered CD algorithms.

Another issue we experienced consists in estimating the
number of modalities when M is large. In these cases, the set
of bin-probability vectors computed from TR, namely I"'(TR)
in (6), is cluttered, and the x-means falls short. Moreover,
in MMQT, M is estimated by an exhaustive search, which
might become computationally demanding. However, under
the assumption that we know a maximum number of modali-
ties Mpmax, more efficient strategies can be implemented, e.g.,
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performing bisection on the interval [1, Mp.x]. It is worth
noting that, so far, all the CD methods in the literature
have been limited to the case M = 1, and MMQT is the
first algorithm addressing multiple stationary modalities, i.e.,
M > 1. We hope our work will pave the way toward improved
methods for handling a large number of modalities.

Finally, MMQT relies on the assumption that each batch W
is drawn from a single modality ¢ ,. When this assumption
is violated, we have two possible scenarios. First, W might
contain both pre- and post-change samples, and MMQT would
correctly detect a change, as confirmed by our experiment on
novel class detection. However, the detection is expected to
be delayed with respect to batches entirely drawn from ¢, .
Second, a single batch W might include a transition among two
stationary modalities ¢o, and ¢q . In this case, MMQT is
expected to raise a false alarm. This is however rather unlikely
in high-throughput datastreams (like predictive maintenance),
where batches are acquired over a short time interval. Here,
it is reasonable to assume that the single-modality assumption
holds for most batches, and it is possible to validate each
detection over an additional batch to discard false positives
due to modality transition.

VII. CONCLUSION

We presented MMQT, the first algorithm performing
batch-wise CD in a multimodal scenario. These CD settings
have never been considered in the literature but represent an
extension of the classical CD setting. MMQT solves this prob-
lem by taking advantage of the efficient QuantTree scheme
together with a rule to map each batch to a reference modality.
We present an effective procedure for estimating the number
of modalities that, for the first time in the literature, relies
on false positive control rather than other clustering validation
measures. Moreover, we introduce a theoretically sound bin
probabilities calibration procedure that demonstrates to be very
effective for small training sets.

Our experiments demonstrate that MMQT achieves com-
pelling detection performance, guaranteeing a controlled FPR.
Moreover, we show how MMQT can be employed to detect
both novel classes and concept drifts, thus triggering adapta-
tion for classifiers in Stream Learning problems in NSE.

In future work, we plan to combine the ideas of MMQT
with QT-EWMA [38], a sequential extension of Quant-
Tree for streaming data. Specifically, we are studying
modality-specific statistics and smooth modality transitioning
as if the bin-probability vectors of stationary batches follow
a continuous trajectory in RX. We are also investigating
further applications of MMQT to design superior active clas-
sifiers for non-stationary datastreams, where data distribution
is multimodal or recurrent. Here, recurrent concepts can be
represented using our histogram-based embedding, enabling
the identification of a previously encountered concept and the
recovery of historical information.
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