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Abstract. Starting from any finite simple graph, one can build a reflexive polytope known
as a symmetric edge polytope. The first goal of this paper is to show that symmetric edge
polytopes are intrinsically matroidal objects: more precisely, we prove that two symmetric
edge polytopes are unimodularly equivalent precisely when they share the same graphical
matroid. The second goal is to show that one can construct a generalized symmetric edge
polytope starting from every regular matroid. Just like in the usual case, we are able to find
combinatorial ways to describe the facets and an explicit regular unimodular triangulation
of any such polytope. Finally, we show that the Ehrhart theory of the polar of a given
generalized symmetric edge polytope is tightly linked to the structure of the lattice of flows
of the dual regular matroid.

1. Introduction

Symmetric edge polytopes are a class of centrally symmetric reflexive lattice polytopes
which has seen a lot of interest in the last few years due to their fascinating combinato-
rial properties [HJM19, OT21a, OT21b, BB22, BBK22, CDK23, KT22a, DJKKV23] and
their connections to various branches of mathematics and physics [CDM18, DH20, ÇJM+21,
DDM22].

Given a finite simple graph G on vertex set V = [n] ∶= {1,2, . . . , n}, the symmetric edge
polytope associated with G is the lattice polytope

PG ∶= conv{±(ei − ej) ∣ {i, j} ∈ E(G)} ⊆ R∣V ∣,
where ei denotes the i-th standard basis vector.
Equivalently, after assigning an arbitrary orientation to each of the edges of G, one has

that

PG = conv[MG ∣ −MG],
where MG ∈ Z∣V ∣×∣E∣ is the signed incidence matrix of G with respect to the chosen orientation
(i.e., the matrix whose (v, e)-entry is 1 if v is the head of e, −1 if v is the tail of e, and 0
otherwise). The matrix MG also serves as a representation of the graphic matroid MG

associated with G. Several objects associated with PG, for instance the facets or some
triangulations, can be described via the combinatorial features of the graph G, and one
can rephrase many of these characterizations in terms of the matroid MG only. This is
not by accident; in fact, we will prove in Theorem 4.6 that two symmetric edge polytopes
PG and PH are unimodularly equivalent precisely when the graphical matroids MG and
MH are isomorphic. In particular, if G and H are both 3-connected, applying Whitney’s
2-isomorphism theorem yields that PG and PH are unimodularly equivalent if and only if
G and H are isomorphic. We remark that the characterization in Theorem 4.6 corrects an
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Figure 1. Some examples of symmetric edge polytopes.
The pictures were obtained using GeoGebra [HBA+18].

erroneous statement of Matsui, Higashitani, Nagazawa, Ohsugi and Hibi [MHN+11, Lemma
4.4, Theorem 4.5]: see Remark 4.8 for the details.

It is tempting to ask what happens if we take the polytope defined by the convex hull
of the columns of [M ∣ −M] for a more general matrix M , and whether this object bears
any relation to the matroid represented by M . The former question was investigated by
Ohsugi and Hibi in [OH14], while the latter appears to be new. In general, changing the
representation of a given matroid and applying the above “symmetrization” will produce
wildly different polytopes, so this question might seem to be too far-fetched at first sight.
However, as we show in Theorem 3.2, the construction described above does indeed yield a
unique lattice polytope (up to some unimodular equivalence not involving any translation)
when we consider any regular matroid M and restrict to its (full-rank) weakly unimodular
representations. We will call any polytope arising from such a setting a generalized symmetric
edge polytope. Throughout the paper, if we need the concrete polytope associated with a
specific representation M , we will denote it by PM ; if instead it is enough for our purposes
to just deal with the equivalence class, we will write PM.

Most of the properties that make the usual symmetric edge polytopes pleasant are pre-
served in this wider environment: for instance, generalized symmetric edge polytopes are
reflexive (as already observed in [OH14]) and terminal, and it is possible to describe their
facets in a purely combinatorial fashion (Theorem 5.8). We remark here that Kálmán and
Tóthmérész have been working on a similar statement for extended root polytopes in the
recent preprint [KT23].

The polars of generalized symmetric edge polytopes are special instances of Lipschitz
polytopes and enjoy a rich Ehrhart theory. More precisely, in the spirit of work by Beck and
Zaslavsky [BZ06], we show that the lattice points in the k-th dilation of the polar P∆

M
are

in bijection with the (k + 1)-cuts of M or, equivalently, with the (k + 1)-flows of the dual
matroid M∗ (Proposition 5.1).

Finally, the existence of a regular unimodular triangulation for PM had already been
proved by Ohsugi and Hibi [OH14], while an explicit one had been provided in the case
of graphs by Higashitani, Jochemko and Micha lek [HJM19]. We show that, via a careful
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analysis of signed circuits, it is possible to extend the latter result to generalized symmetric
edge polytopes (Theorem 6.11).

The paper is organized as follows. Section 2 contains some preliminaries about matroids,
polytopes and toric ideals, while Section 3 is devoted to define generalized symmetric edge
polytopes and prove that any two full-rank weakly unimodular representations of the same
regular matroid will yield unimodularly equivalent polytopes (Theorem 3.2). Section 4 stud-
ies properties of generalized symmetric edge polytopes, including a partial converse to The-
orem 3.2. Section 5 focuses on the polytopes polar to generalized symmetric edge polytopes
and their Ehrhart theory; the obtained results are then used to derive a facet description
for generalized symmetric edge polytopes, extending the one for the graphical case from
[HJM19]. Section 6 is devoted to the explicit description of a regular unimodular triangu-
lation of any generalized symmetric edge polytope. Finally, we collect some open questions
and suggestions for future work in Section 7.

2. Preliminaries

2.1. Regular matroids, cuts and flows. The aim of this subsection is to briefly introduce
regular matroids and their properties. We direct the reader to [Oxl11] for a more complete
treatment and for general matroid terminology.

Notation 2.1. IfM is a matroid, we will denote by B(M) and C(M) the sets of its bases
and circuits, respectively. If M is a matrix, we will sometimes write “basis/circuit of M” to
refer to a basis/circuit of the matroid represented by M . In this case, the ground set of such
a matroid will consist of the column indices of M .

Definition 2.2. Let M ∈ Zm×n be an integer matrix. We will say that M is:

● totally unimodular if the determinant of every square submatrix of M lies in {0,±1};
● weakly unimodular if the determinant of every square submatrix ofM of size max{m,n}

lies in {0,±1}.
Definition/Theorem 2.3. A matroidM of rank r > 0 is called regular if it satisfies any of
the following equivalent properties:

(i) M can be represented via a totally unimodular matrix;
(ii) M can be represented via a full-rank weakly unimodular matrix;

(iii) M is representable over any field.

Proof. The equivalence of (i) and (iii) is a well-known fact, see for instance [Oxl11, Theorem
6.6.3]. We will now prove for clarity’s sake that (i) and (ii) are equivalent: for a source in
the literature, the reader can check [Whi87, Theorem 3.1.1].

To see that (i) implies (ii) it is enough to show that, if M is represented by a totally
unimodular matrix, then it is also represented by a totally unimodular (and hence weakly
unimodular) matrix of the form [Ir ∣D], where r is the rank ofM. For a proof of this claim,
see [Oxl11, Lemma 2.2.21].

Let us now prove that (ii) implies (i). By assumption, there exists a full-rank matrix
M ∈ Zr×n that is weakly unimodular and represents M. We now proceed as in [SW10,
Subsection 2.2]: after choosing a basis B for M, we can shuffle the columns of M so that
the elements of B correspond to the first r columns. This amounts to multiplying M on the
right by an (n × n)-permutation matrix P , an operation preserving the weakly unimodular
property. Now consider the invertible submatrix N of MP obtained by taking the first
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r columns. Since MP is weakly unimodular and N is invertible, the determinant of the
integer matrix N is either 1 or −1; in other words, N ∈ GLr(Z). By construction, one has
that N−1MP = [Ir ∣D] represents M and is weakly unimodular; however, since it contains
the identity matrix Ir, it must actually be totally unimodular ([SW10, Lemma 3] or [Oxl11,
Exercise 10.1.1]), as desired. □

We illustrate the content of the previous definition with an example that will also serve
as a running example throughout.

Example 2.4. Let M be the rank 3 simple matroid with ground set [5], bases B(M) =
{123,124,134,135,145,234,235,245}, and circuits C(M) = {125,345,1234}, where we are
using the shorthand i1i2 . . . im for {i1, i2, . . . , im}. It is easy to check that M is represented
by the full-rank totally unimodular matrix

M =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 −1 1
0 1 0 −1 1
0 0 1 −1 0

⎤⎥⎥⎥⎥⎥⎦
,

and thus M is regular. In fact, in this case M is also graphic.

Remark 2.5. The assumption about the rank of M being nonzero is not part of the usual
definition of regular matroid in the literature: we include it to avoid nuisances with repre-
sentability, see for instance [Oxl11, Lemma 2.2.21].

The class of regular matroids (including those of rank zero) is closed under duality and
contains all graphic matroids.

We now introduce cuts and flows of a regular matroid, following Su and Wagner’s treatment
in [SW10]. Let M ∈ Rr×n (where 0 < r ≤ n) be a full-rank weakly unimodular matrix. We
define the lattice of integer cuts of M , denoted Γ(M), and the lattice of integer flows of M ,
denoted Λ(M), as

Γ(M) ∶= row(M) ∩Zn,

Λ(M) ∶= ker(M) ∩Zn.

The lattices of integer cuts and flows are orthogonal to each other with respect to the
usual dot product. In particular, if A = [Ir ∣ D] ∈ Rr×n (with 0 < r < n) is totally unimodular
and A∗ ∶= [−DT ∣ In−r], one has that

(1) Λ(A) = Γ(A∗).
Definition 2.6. If v ∈ Rn, the support of v, denoted by supp(v), is the set of indices i ∈ [n]
such that vi ≠ 0.

Given a full-rank weakly unimodular matrix M ∈ Rr×n with r ≤ n, we will call a flow
λ ∈ Λ(M) (respectively, a cut λ ∈ Γ(M))

● nowhere-zero if λi ≠ 0 for every i ∈ [n], i.e., if supp(λ) = [n];
● a k-flow (respectively, a k-cut) if ∣λi∣ < k for every i ∈ [n];
● a signed circuit or simple flow if it is a 2-flow and its support is a circuit of M . We

denote the set of signed circuits of M by
Ð→
C (M).

For a regular matroidM, we are able to talk about the lattice of integer cuts ofM up to
isometry : in fact, if M and M ′ are two full-rank weakly unimodular matrices representing
M, then the elements of Γ(M ′) correspond to elements of Γ(M) via multiplication by a
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signed permutation matrix (compare, e.g., [SW10, proof of Lemma 10]; their argument is
stated for totally unimodular matrices, but goes through for full-rank weakly unimodular
matrices as well). In particular, an element of Γ(M ′) will be a nowhere-zero cut, a k-cut or
a signed circuit if and only if the corresponding element of Γ(M) is. Moreover, due to (1),
all the above statements go through for flows as well.

Example 2.7. The matrix M from Example 2.4 has

● seventeen 2-cuts: (0,0,0,0,0), (1,0,0,−1,1), (−1,0,0,1,−1), (0,1,0,−1,1),
(0,−1,0,1,−1), (0,0,1,−1,0), (0,0,−1,1,0), (1,−1,0,0,0), (−1,1,0,0,0),
(1,0,−1,0,1), (−1,0,1,0,−1), (0,1,−1,0,1), (0,−1,1,0,−1), (1,−1,1,−1,0),
(−1,1,−1,1,0), (1,−1,−1,1,0), (−1,1,1,−1,0).
● seven 2-flows: (0,0,0,0,0), (1,1,0,0,−1), (−1,−1,0,0,1), (0,0,1,1,1),
(0,0,−1,−1,−1), (1,1,1,1,0), (−1,−1,−1,−1,0).
● six signed circuits: all the 2-flows except for the origin.

We record here for further reference some useful facts:

Proposition 2.8. Let M be a full-rank weakly unimodular matrix.

(i) If λ ∈ Λ(M) and supp(λ) is a circuit of M , then every coordinate of λ has the same
absolute value.

(ii) If C ∈ C(M), then there are exactly two signed circuits (differing by a global sign)
with support C.

Proof. Part (i) can be derived directly from [Stu96, Lemma 4.9] and constitutes a strength-
ening of [SW10, Lemma 7]. The proof of part (ii) is almost verbatim the same as the one of
[SW10, Lemma 8], using part (i) instead of [SW10, Lemma 7]. □

Definition 2.9. Let M be a regular matroid with ground set E. If B is a basis of M
and e ∈ E ∖ B, then the fundamental circuit of e with respect to B is the unique circuit
C(e,B) ∈ C(M) contained in B ∪ {e}. Note that e ∈ C(e,B).

If, moreover, M is a full-rank weakly unimodular representation of M, then by Proposi-

tion 2.8 there is a unique signed circuit
Ð→C (e,B) ∈ Λ(M) supported at C(e,B) whose e-th

entry equals 1. We will call such a signed circuit the fundamental signed circuit of e with
respect to B and M .

Example 2.10. Let M and M be as in Example 2.4. Then, for B = {1,2,3}, one has that
Ð→C (4,B) = (1,1,1,1,0) and

Ð→C (5,B) = (−1,−1,0,0,1).
Lemma 2.11. Let M ∈ Rr×n (where 0 < r ≤ n) be a full-rank weakly unimodular matrix and
assume that the first r columns of M are linearly independent. Then, for any a1, . . . , ar ∈ Z,
there exist unique ar+1, . . . , an ∈ Z such that (a1, . . . , an) ∈ Γ(M). In other words, there exists
a unique cut γ ∈ Γ(M) having a1, . . . , ar as its first r entries.

Proof. Call M the regular matroid represented by M .
If r = n, then Γ(M) = Zn and the claim is true. Assume now that r < n.
To prove existence, define γ ∈ Zn in the following way:

● γi = ai for every i ∈ [r];
● for every j ∈ {r+1, . . . , n}, we determine γj by imposing that γ ⋅Ð→C (j, [r]) = 0, where
Ð→C (j, [r]) is the fundamental signed circuit of j with respect to the basis [r] of M
and the representation M .
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To prove that the integer vector γ ∈ Zn we have just defined is indeed a cut, it is enough to
show that γ ∈ row(M); but since row(M) and ker(M) are orthogonal with respect to the
standard dot product, this amounts to proving that γ ⋅ v = 0 for every v ∈ ker(M). Since
the fundamental signed circuits of M with respect to [r] form an R-basis of ker(M) (being
n − r many linearly independent vectors by construction), the claim follows.

To prove uniqueness, assume there is another cut γ′ such that γ′i = ai for every i ∈ [r], and
consider β ∶= γ′−γ ∈ Γ(M). By assumption, βi = 0 for every i ∈ [r]. Since row(M) = ker(M)⊥,
it follows that β ⋅λ = 0 for every λ ∈ ker(M). In particular, for every j ∈ {r + 1, . . . , n}, one

has that β ⋅Ð→C (j, [r]) = 0, and thus βj = 0. This proves that γ′ = γ. □

Given a matroidM, denote byM○ the matroid obtained fromM by deleting all its loops.
Su and Wagner proved in [SW10] that knowing the lattice of integer cuts ofM is enough to
determine M○ up to isomorphism. In particular, if we know beforehand that M is loopless
(for instance, if M is simple), we can reconstruct completely M from the data of its lattice
of integer cuts. This idea will serve as a blueprint for the constructions in this paper.

2.2. Polarity. Let P ⊆ Rd be a full-dimensional lattice polytope with 0 ∈ P̊ ∩ Zd (here P̊
denotes the interior of P with respect to the Euclidean topology). We recall that the polar
of P is the polytope

P∆ ∶= {u ∈ Rd ∣ u ⋅ x ≤ 1 for every x ∈ P},
where we are using the usual dot product to identify Rd and its dual (Rd)∗.
The polar P∆ will not be a lattice polytope in general. If P∆ happens to be a lattice

polytope, then P is called reflexive.
For the rest of this subsection we fix a full-dimensional reflexive polytope P ⊆ Rd with

P̊ ∩Zd = {0}.
Notation/Remark 2.12. If u ∈ P∆ ∩ Zd, we denote by Fu the face of P obtained as
conv{vi ∣ vi ⋅u = 1}, where the vi’s are the vertices of P . Indeed, the polytope P lies entirely
inside one of the halfspaces defined by the hyperplane Hu ∶= {x ∈ Rd ∣ u ⋅ x = 1}.

By polarity, facets of the polytope P correspond to the vertices of the polar polytope P∆;
in particular, any facet of P will be of the form Fu for some u ∈ P∆ ∩Zd, and such a u will
be a vertex of P∆.

2.3. Toric ideals. We introduce some basic notation about toric ideals. For the concepts
not explained here and to get further insight, see for instance [Stu96, Chapters 4 and 8].

Definition 2.13. If M ∈ Zr×n is an integer matrix with columns v1, . . . ,vn, we will denote
by IM the toric ideal associated with M , i.e. the kernel of the map

π∶ K[x1, . . . , xn]→K[t±11 , . . . , t±1r ]
xi ↦ tvi ∶= tm1,i

1 t
m2,i

2 . . . t
mr,i
r ,

where K is a field. Every λ ∈ Zn can be uniquely written as λ+−λ−, where λ+ and λ− are in
Nn and have disjoint supports. Any column vector λ ∈ ker(M) ∩Zn gives rise to a binomial
xλ+ −xλ− ∈ ker(π), and the ideal IM is generated by binomials of this form. In what follows,
with a slight abuse of notation, we will use the expression “signed circuit” to denote both
an element λ ∈ {0,±1}n as in Definition 2.6 and the associated binomial xλ+ −xλ− in ker(π).
Remark 2.14. When M is full-rank weakly unimodular, the toric ideal IM is remarkably

well-behaved: in fact, the set
Ð→
C (M) of signed circuits is a universal Gröbner basis for IM



ON A GENERALIZATION OF SYMMETRIC EDGE POLYTOPES TO REGULAR MATROIDS 7

(and hence, in particular, the signed circuits of M generate IM). Actually, an even stronger

result is true, as
Ð→
C (M) turns out to be the Graver basis of IM [Stu96, Theorem 8.11]. (In

fact, since two signed circuits only differing by a global sign give rise to the same binomial
up to sign, one usually picks a representative for every pair; in particular, the Graver basis

of IM will have cardinality ∣C(M)∣ = 1
2 ∣
Ð→
C (M)∣.)

Example 2.15. Let M be as in Example 2.4. The enumeration of signed circuits in Ex-
ample 2.7 shows that the polynomials x1x2 − x5, x3x4x5 − 1 and x1x2x3x4 − 1 are the Graver
basis (and a universal Gröbner basis) of the toric ideal IM .

Throughout the paper, when we say that a certain polynomial inside a polynomial ring is
homogeneous, we are using the standard grading: i.e., each variable has degree 1. We record
here for further reference a useful observation.

Lemma 2.16. Let B ∈ Zm×n and let B′ ∈ Z(m+1)×(n+1) be the matrix defined via

b′ij ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

bij if i ≤m and j ≤ n
0 if i ≤m and j = n + 1

1 if i =m + 1

.

Let IB ⊆ K[x1, . . . , xn] and IB′ ⊆ K[x1, . . . , xn, z] be the respective toric ideals (here xi cor-
responds to the i-th column and z to the (n + 1)-st, when available). Then IB′ = IhomB , where
the homogenization is taken with respect to the variable z.

Proof. Let us first prove that IB′ ⊆ IhomB . The toric ideal IB′ is generated by the set of
its primitive binomials, i.e. its Graver basis. Let f be a primitive binomial of IB′ . Due
to primitivity, the variable z can appear at most on one side of the binomial; without of
loss of generality, we can hence write f = xλ+ − xλ−zk, where λ = λ+ − λ− ∈ Zn, k ≥ 0 and
(λ, k) ∈ ker(B′). By construction, λ ∈ ker(B) and f is homogeneous; more precisely, f is the
homogenization of a binomial in IB with respect to the variable z. It follows that IB′ ⊆ IhomB .

Let us now prove that IhomB ⊆ IB′ . By [CLO15, Theorem 8.4.4], in order to find a generating
set for IhomB it is enough to homogenize a set of polynomials forming a Gröbner basis of IB
with respect to a graded monomial order. Primitive polynomials provide such a set: in fact,
the Graver basis of IB contains the universal Gröbner basis of IB [Stu96, Lemma 4.6]. Let
g = xλ+ − xλ− be a primitive binomial in IB. We can assume without loss of generality that
k ∶= ∣λ+∣− ∣λ−∣ ≥ 0. By construction, the homogenized polynomial xλ+ −xλ−zk lies in IB′ . This
shows that IhomB ⊆ IB′ . □

3. Uniqueness up to unimodular equivalence

The main aim of this section is to describe how to extend the definition of a symmetric
edge polytope from the context of graphs to that of regular matroids. Let us first fix some
notation:

Notation 3.1. For any integer matrix M ∈ Zr×n with 0 < r ≤ n, we denote by PM the lattice
polytope of Rr obtained as conv [M ∣ −M].

For F ∈ GLr(Z), we denote by ψF ∶ Rr → Rr the affine map sending x to Fx.

It is our goal to show that any two full-rank weakly unimodular representations of a regular
matroid M produce the same lattice polytope (in the sense specified in Notation 3.1) up to
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unimodular equivalence, and the same holds for the polytopes obtained via polarity. More
precisely, we show the following:

Theorem 3.2. LetM be a regular matroid of rank r > 0 on n elements and letM1,M2 ∈ Rr×n

be two full-rank weakly unimodular representations ofM. Then there exists F ∈ GLr(Z) such
that

PM2 = ψF (PM1) and P∆
M2
= ψ(FT )−1(P∆

M1
).

We will show how to handle the case when the matrices representing M are not full-
rank in Remark 3.4. Moreover, a partial converse to Theorem 3.2 will be proved later, see
Theorem 4.5.

Proof. Pick two weakly unimodular full-rank (r ×n)-matrices M1 and M2 both representing
M. For each i ∈ {1,2}, write Pi ∶= PMi

. Multiplying Mi on the right by a (signed) permuta-
tion matrix has no effect on the polytope Pi: permuting the columns just permutes the list
L of points we are taking the convex hull of, and changing the sign of a column is harmless
because the list L consists of the columns of both Mi and −Mi. After some permutation of
the columns of M1 and M2, we can hence assume without loss of generality the following
two statements:

● the identity map [n]→ [n] yields an isomorphism between the matroids represented
by M1 and M2;
● the submatrices N1 and N2 obtained by selecting the first r columns of respectively
M1 and M2 are both invertible.

Proceeding as in the proof of “(ii) implies (i)” in Definition/Theorem 2.3, we can now
multiply each Mi on the left by N−1i ∈ GLr(Z), obtaining the totally unimodular matrix
[Ir ∣Di]. Since the identity map still yields an isomorphism between the matroids represented
by [Ir ∣D1] and [Ir ∣D2], we can apply [Oxl11, Proposition 6.4.1] to get that D1 and D2 are
congruent modulo 2, and hence so are [Ir ∣D1] and [Ir ∣D2]. Since [Ir ∣D1] and [Ir ∣D2] are
both totally unimodular, we are now in the position to use Camion’s signing lemma [Oxl11,
Lemma 10.1.7]: i.e., we can obtain the matrix [Ir ∣D2] by changing the signs of some rows
and columns of [Ir ∣ D1]. In other words, there exist diagonal matrices R ∈ GLr(Z) and
C ∈ GLn(Z) with only 1’s and −1’s on the diagonal and such that [Ir ∣D2] = R ⋅ [Ir ∣D1] ⋅C.

Now let F ∶= N2 ⋅R ⋅N−11 ∈ GLr(Z). It follows from the discussion above that P2 = ψF (P1),
as desired (note that C, being a signed permutation matrix, does not enter the picture).

The polar statement can now be derived like this:

P∆
2 = {u ∈ Rr ∣ u ⋅ x ≤ 1 for every x ∈ P2}
= {u ∈ Rr ∣ u ⋅ x ≤ 1 for every x ∈ ψF (P1)}
= {u ∈ Rr ∣ u ⋅ Fy ≤ 1 for every y ∈ P1}
= {u ∈ Rr ∣ F Tu ⋅ y ≤ 1 for every y ∈ P1}
= {(F T )−1v ∈ Rr ∣ v ⋅ y ≤ 1 for every y ∈ P1}
= ψ(FT )−1(P∆

1 ).

□
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Example 3.3. Let M be the uniform matroid U2,3. The two full-rank totally unimodular
matrices

M1 ∶= [
1 0 1
0 1 1

] and M2 ∶= [
1 0 1
0 1 −1]

both representM. Changing the signs of both the second row and the second column of M1

yields M2; in formulas,

[1 0 1
0 1 −1] = [

1 0
0 −1] [

1 0 1
0 1 1

]
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

It is easy to verify that the two polytopes P1 and P2 are unimodularly equivalent, as guar-
anteed by Theorem 3.2.

The usual symmetric edge polytope associated with a graph G is defined as PAG
, where

AG is any signed incidence matrix associated with G. The matrix AG provides a totally
unimodular representation of the graphic matroid MG, but is not full-rank. However, this
is not really an issue, as we now explain.

Remark 3.4. Let M be a regular matroid of rank r > 0 and let M ∈ Zm×n be a totally
unimodular representation ofM with m > r. Possibly after permuting the columns of M , we
can assume without loss of generality that the first r columns of M are linearly independent.
Pivoting repeatedly we can then reach a matrix

M ′ ∶= [ Ir D
0m−r,r 0m−r,n−r

] ,

which will again be totally unimodular by [Oxl11, Lemma 2.2.20].
The two polytopes PM and PM ′ are unimodularly equivalent, and projecting onto the first r

coordinates shows that PM ′ is in turn unimodularly equivalent to PM ′′ , where M ′′ ∶= [Ir ∣ D]
is a full-rank totally unimodular representation of M.

Example 3.5. Let G = C3 be the cycle graph on three vertices and pick

AG ∶=
⎡⎢⎢⎢⎢⎢⎣

1 1 0
−1 0 −1
0 −1 1

⎤⎥⎥⎥⎥⎥⎦
.

Then PAG
is the symmetric edge polytope PG. Successive row operations on AG yield that

⎡⎢⎢⎢⎢⎢⎣

1 −1 0
0 1 0
0 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 1 0
−1 0 −1
0 −1 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 1
0 1 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

and so PG is unimodularly equivalent to the full-dimensional polytope PM2 ⊆ R2, with M2

as in Example 3.3.

Remark 3.6. Selecting a directed spanning tree inside a connected finite simple graph G
on r + 1 vertices and n edges yields an explicit full-rank totally unimodular representation
for MG in the following way (compare [Oxl11, Section 5.1, p. 137]):

● fix an orientation for each edge of G;
● pick a spanning tree T for G and number its edges from 1 to r;
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● assign the i-th standard basis vector ei ∈ Rr to the i-th edge in T (taken with the
orientation selected at the beginning);
● for any edge e⃗ in G taken with its orientation, consider the unique directed path Pe⃗

from the starting vertex to the ending vertex that only uses edges of T ;
● assign to Pe⃗ the vector ve⃗ = (λ1, . . . , λr), where λi equals 1 if the i-th edge of T

appears in Pe⃗ with its “correct” orientation, −1 if it is traversed backwards, 0 if it
does not appear at all.

Putting together all the vectors ve⃗ as columns of a matrix yields a full-rank totally unimod-
ular matrix [Ir ∣ D] representing MG. By the results in this section, this also produces a
full-dimensional polytope P[Ir ∣ D] ⊆ Rr unimodularly equivalent to the symmetric edge poly-
tope of G (compare this to Example 3.5). If the graph G is not connected, one can select a
directed spanning tree for each connected component and argue analogously.

4. First properties of generalized symmetric edge polytopes

Due to Theorem 3.2, if we are given a regular matroid M of rank r > 0 on n elements,
we know how to define a full-dimensional polytope PM ⊆ Rr which is defined up to some
unimodular equivalence not involving any translation. We now wish to prove some results
about PM: in the proofs we will often need to fix a specific full-rank totally unimodular
representation of M.

We begin by noting that the polytope PM does not see potential loops or parallel elements
inside the matroid M, in analogy to the usual symmetric edge polytopes (see [DDM22,
Remark 60]).

Remark 4.1. Let M be a regular matroid of rank r > 0 and let M be a full-rank weakly
unimodular matrix representing M. Let M be the submatrix of M obtained by keeping
only the nonzero columns ci such that ci ≠ ±cj for every j < i. Then PM = PM , since the
redundant columns in M do not affect the structure of PM and, as 0 always lies in the
interior of PM , the same holds for the zero columns. Hence, the polytope PM does not see
loops or parallel elements of M; as a consequence, we can replace M by its simplification1

M.

Notation 4.2. In the setting of Remark 4.1, we will say M has irredundant columns if
M =M , i.e., if the regular matroid represented by M is simple.

We now wish to collect some properties of generalized symmetric edge polytopes. We point
out that parts (i) to (iii) of Theorem 4.3 below were essentially already known to Ohsugi
and Hibi [OH14, Lemma 2.11].

Theorem 4.3. Let M be a regular matroid of rank r > 0. The following properties hold:

(i) PM is centrally symmetric;
(ii) dim(PM) = rk(M);

(iii) PM is reflexive;
(iv) PM is terminal, i.e., the only points of PM with integer coordinates are its vertices

and the origin;
(v) The vertices of PM are twice as many as the atoms of the lattice of flats of M. In

particular, if M is simple, every antipodal pair of vertices of PM corresponds to an
element in the ground set of M.

1In [AHK18, Definition 4.6] this is called the combinatorial geometry of M.
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Proof. Part (i) is immediate by definition, no matter which representation M we choose for
M.

Due to Theorem 3.2 we know that, if M and M ′ are two full-rank weakly unimodular
matrices representing M, we can go from PM to PM ′ and from P∆

M to P∆
M ′ via unimodular

maps that do not involve any translation. In particular, it is enough to prove statements
(ii)–(v) for PM , where M is a full-rank totally unimodular r × n matrix representing M.

Part (ii) is now immediate and, together with part (i), implies that the origin lies in the
interior of PM ; hence, the polar polytope P∆

M is well-defined, and an H-presentation for it is

given by [M ∣ −M]T x ≤ 1. Since M is totally unimodular, so is [M ∣ −M]T ; the polar P∆
M

must then be a lattice polytope (see for instance [Sch86, Theorem 19.1]), and hence PM is
reflexive. This proves part (iii).

As regards part (iv), pick a lattice point x = (x1, . . . , xr) of PM different from the origin.
Then we can write x = ∑i λivi, where λi > 0, ∑i λi = 1, and the vertices vi form a set of
pairwise distinct nonzero columns of [M ∣ −M]. If r = 1, the claim is obvious. Assume
hence that r > 1. Since x ≠ 0 and PM is a centrally symmetric subset of the hypercube
[−1,1]r, we can assume without loss of generality that x1 = 1. Then the first coordinate of
every vi must also equal 1. If x = v1, there is nothing to prove. Assume otherwise. Then
there is a coordinate (without loss of generality, the second one) in which x and v1 differ.
This can happen only if x2 = 0 and (v1)2 ∈ {1,−1}. But then there must exist some j > 1 such
that (vj)2 = −(v1)2. As a consequence, the totally unimodular matrix [M ∣ −M] contains
the submatrix

[ 1 1
(v1)2 −(v1)2]

with determinant 2 or −2. This yields a contradiction.
Finally, it is enough to prove the statement of part (v) when M is simple. When this is

the case, then M has irredundant columns; denote by c1, . . . ,c2n the columns of [M ∣ −M].
Assume by contradiction that a column of [M ∣ −M] (without loss of generality, the first
one) can be expressed as a convex combination of the other ones; i.e., c1 = ∑j∈J λjcj for some
J ⊆ {2,3, . . . ,2n}, λj > 0, ∑j∈J λj = 1. Since M has no zero columns and PM is a centrally
symmetric subset of the hypercube [−1,1]r, we can assume without loss of generality that
(c1)1 = 1, and this in turn implies that (cj)1 = 1 for every j ∈ J . Arguing in a similar way to

part (iv), one can then build a submatrix of [M ∣ −M] with determinant 2 or −2, which in
turn yields the desired contradiction. □

Example 4.4. Let M and M be as in Example 2.4. Then PM is the polytope shown in
Figure 2. One has that dimPM = rk(M) = 3; since the matroid M is simple, the lattice
points of PM are the origin and the columns of [M ∣ −M].

Theorem 4.3 gives us the tools to establish a partial converse to Theorem 3.2.

Theorem 4.5. Let M,N ∈ Zr×n (where 0 < r ≤ n) be two full-rank weakly unimodular matri-
ces with irredundant columns, and assume that the polytopes PM and PN are unimodularly
equivalent. Then there exist F ∈ GLr(Z) and a signed permutation matrix P ∈ Zn×n such
that N = FMP . In particular, N and M represent the same simple regular matroid M.

Proof. By assumption there exist F ∈ GLr(Z) and v ∈ Zr such that PN = ψF (PM)+v. Since 0
is the only interior point of the reflexive polytopes PN and PM , it must be that v = 0, so that
no translation is actually involved. Moreover, one can easily check that PN = ψF (PM) = PFM .
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Figure 2. The polytope PM , where M is the matrix from Example 2.4. Plot
generated by SageMath [The23].

Since the matrices FM and N are both full-rank and weakly unimodular, Theorem 4.3(v)
implies that the columns of both [FM ∣ − FM] and [N ∣ −N] correspond to the vertices
of PFM = PN . As a consequence, the matrices FM and N can only differ by a signed
permutation of their columns; in other words, there exists a signed permutation matrix
P ∈ Zn×n such that N = FMP , as desired. □

As a consequence, we obtain that the matroidal setting is the “right” one to study even
the usual symmetric edge polytopes.

Theorem 4.6. Let G and H be finite simple graphs. Then the symmetric edge polytopes PG
and PH are unimodularly equivalent if and only if the graphic matroids MG and MH are
isomorphic.

Proof. The “if” part follows from Remark 3.6 and Theorem 3.2. The “only if” part follows
from Remark 3.6 and Theorem 4.5, noting that any signed incidence matrix of a simple
graph has irredundant columns by construction. □

Corollary 4.7. Let G and H be finite simple 3-connected graphs. Then the symmetric edge
polytopes PG and PH are unimodularly equivalent if and only if G and H are isomorphic.

Proof. This follows directly from Theorem 4.6 and Whitney’s 2-isomorphism theorem [Oxl11,
Theorem 5.3.1]. □

Remark 4.8. It was claimed in [MHN+11, Lemma 4.4] that, if G and H are finite simple
graphs and G is 2-connected, then PG and PH are unimodularly equivalent if and only if
G and H are isomorphic. Unfortunately, this claim is erroneous and affects the validity
of [MHN+11, Theorem 4.5] as well: indeed, there exist non-isomorphic 2-connected graphs
giving rise to the same graphic matroid, and thus having unimodularly equivalent symmetric
edge polytopes by Theorem 4.6. The key to build such objects is the Whitney twist operation,
see [Oxl11, Section 5.3]. We provide here an explicit example.
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Figure 3. Two non-isomorphic 2-connected graphs G and H giving rise to
unimodularly equivalent symmetric edge polytopes.

Let G and H be the 6-vertex graphs depicted in Figure 3. Both G and H are 2-connected;
moreover, since the vertex a has degree 4 in G and all vertices have degree at most 3 in H, the
graphs G and H are not isomorphic. After matching the i-th letter of the English alphabet
with the i-th coordinate of R6, consider the 5-dimensional symmetric edge polytopes PG and
PH in R6. Letting

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 0 0 0
0 1 0 0 0 0
1 1 2 2 1 1
0 0 0 0 1 0
−1 −1 −1 −1 −1 0
1 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ GL6(Z),

one checks that the unimodular map ψF ∶ R6 → R6 sending x to Fx transforms PG into
PH , and thus PG and PH are unimodularly equivalent.

5. Facets of PM and the Ehrhart theory of the polar polytope

After defining generalized symmetric edge polytopes and investigating their first structural
properties, it is our next goal to find a combinatorial characterization of their facets. In order
to achieve this, it is fruitful to focus on the Ehrhart theory of the polar polytope. Unless
specified differently, in this section we will only consider simple regular matroids of positive
rank, so that by Theorem 4.3(v) the vertices of PM will correspond to the columns of
[M ∣ −M] for any full-rank weakly unimodular matrix M representing M.

Inspired by work of Beck and Zaslavsky [BZ06], we begin by providing a description of
the lattice points in the k-th dilation of P∆

M
.

Proposition 5.1. Let k be a positive integer, M be a simple regular matroid of rank r > 0
and M be a full-rank weakly unimodular matrix representing M. Then the map

(k ⋅P∆
M) ∩Zr → {(k + 1)-cuts of M}

u↦MTu

is a bijection.
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Proof. Let us first describe in more detail the polar polytope P∆
M . A facet description of P∆

M

is given by [M ∣ −M]T u ≤ 1, which in turn implies that

(2) k ⋅P∆
M = {u ∈ Rr ∶ −k ⋅ 1 ≤MTu ≤ k ⋅ 1} ,

where the inequalities are meant to be taken componentwise. This implies that, if u ∈
(k ⋅ P∆

M) ∩ Zr, then (MTu) is an element of row(M) ∩ Zn such that ∣(MTu)i∣ ≤ k for every
i ∈ [n]. This means precisely that MTu is a (k + 1)-cut of M .

Vice versa, let γ be a (k + 1)-cut of M . Since γ ∈ row(M), there exists u ∈ Zr such that
MTu = γ. Since M is full-rank, the linear map Zr → Zn defined by MT is injective, and thus
u is uniquely determined. Since u satisfies the inequalities in (2), we have that u is a lattice
point of k ⋅P∆

M , and this finishes the proof. □

Example 5.2. Let M be as in Example 2.4. Then the polar polytope P∆
M is shown in

Figure 4. The lattice points of P∆
M are obtained from the 2-cuts in Example 2.7 by throwing

away the last two coordinates.

Figure 4. The polar polytope P∆
M , where M is the matrix from Example 2.4.

Plot generated by SageMath [The23].

Remark 5.3. A consequence of Proposition 5.1 is that the lattice of cuts Γ(M) can be
thought of as the union of the lattice points of k ⋅P∆

M as k varies in N (with the convention
that 0 ⋅P∆

M = {0}). This gives us an interpretation of the lattice of cuts as a “limit object”.

It follows from the argument in Notation/Remark 2.12 that, if u is a lattice point of P∆
M ,

then
Fu = conv({Mei ∣Mei ⋅ u = 1} ∪ {−Mei ∣Mei ⋅ u = −1})

is a face of PM with supporting hyperplane

Hu = {x ∈ Rr ∣ x ⋅ u = 1}
(where we are using the fact that the columns of [M ∣ −M] correspond to the vertices of
PM). Since by Proposition 5.1 γ ∶=MTu is a 2-cut of M , we can rewrite Fu in the following
way:

Fu = conv({Mei ∣ γi = 1} ∪ {−Mei ∣ γi = −1}).
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In other words, the 2-cut γ =MTu acts as an indicator vector for Fu, in the following sense:
the i-th entry of γ equals +1 (respectively, −1) if and only if the vertex Mei (respectively,
−Mei) belongs to Fu.

Next, we are going to define a partial order on {0,±1}-tuples that will enable us to give a
first characterization of the facets of PM.

Definition 5.4. Let u,v ∈ {0,±1}m. We will write that u ⪯ v if for every i ∈ [m] it holds
that ui = 0 or ui = vi. Equivalently, ⪯ is the partial order induced componentwise by the
relations “0 ≺ +1”, “0 ≺ −1” and “+1 and −1 are incomparable”.

Remark 5.5. Note that {0,±1}m equipped with the partial order from Definition 5.4 is
isomorphic to the face lattice of the m-dimensional cross-polytope: see for example [AR20,
Example 2.9]. More specifically, the isomorphism maps γ ∈ {0,±1}m to the face obtained as
conv({ei ∣ γi = 1} ∪ {−ei ∣ γi = −1}). This foreshadows the upcoming characterizations of the
facets of PM.

A direct consequence of the definition of ⪯ is that Fu ⊆ Fu′ if and only if MTu ⪯ MTu′.
This immediately yields a first characterization of the facets of PM when M is simple.

Corollary 5.6. LetM be a simple regular matroid of positive rank and let M be a full-rank
weakly unimodular representation of M. Then the facets of PM are the faces Fu of PM for
which MTu is a ⪯-maximal 2-cut of M .

The facet description in Corollary 5.6 is not completely satisfactory. Our next goal is to
develop an alternate characterization that will be the “right” generalization of the descrip-
tion obtained by Higashitani, Jochemko and Micha lek [HJM19, Theorem 3.1] for classical
symmetric edge polytopes: see Remark 5.10 below for a more detailed discussion.

Definition 5.7. Let M be a regular matroid of positive rank and let M be a full-rank
weakly unimodular representation of M. We will say that the cut γ ∈ Γ(M) is spanning if
the support of γ contains a basis of M.

Theorem 5.8. Let M be a simple regular matroid of rank r > 0 and let M be a full-rank
weakly unimodular representation of M. Then the facets of PM are the faces Fu of PM for
which MTu is a spanning 2-cut of M .

Proof. Let us recall once more that, since M is simple, the vertices of PM are in bijection
with the columns of [M ∣ −M] by Theorem 4.3(v).

Let us show that, if γ =MTu is a spanning 2-cut of M , then Fu is a facet of PM . Since γ
is spanning, by the discussion after Remark 5.3 we know that the face Fu contains r linearly
independent vertices. Since 0 ∉ Fu, such vertices are also affinely independent; but then,
since dim(PM) = r by Theorem 4.3(ii), it follows that Fu must be a facet.

Let us now prove that all facets of PM arise in this fashion. Let G be a facet of PM . Since
dim(PM) = r, the facet G must contain r linearly independent vertices v1, . . . ,vr; these will
correspond to certain columns of M or −M . If the i-th column of M appears among the vj’s,
set γi = 1; if the i-th column of −M does, set γi = −1. Possibly after some relabeling, we can
assume without loss of generality that γi ≠ 0 for every i ∈ [r]. By Lemma 2.11, there exists
a unique cut γ compatible with the above assignments; moreover, such a cut is spanning by
construction. It only remains to show that γ is a 2-cut. By polarity, the facet G corresponds
to a vertex u′ of the polar polytope P∆

M ; it then follows from Proposition 5.1 that

G = Fu′ = conv({Mei ∣ γ′i = 1} ∪ {−Mei ∣ γ′i = −1}),
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where γ′ =MTu′ is a 2-cut of M . Since γ and γ′ coincide on a basis of M, it follows from
the uniqueness of the cut in Lemma 2.11 that γ = γ′ and hence γ is a a 2-cut, as desired. □

Example 5.9. Let M be as in Example 2.4. Twelve of the seventeen 2-cuts enumer-
ated in Example 2.7 are spanning: these are (1,0,0,−1,1), (−1,0,0,1,−1), (0,1,0,−1,1),
(0,−1,0,1,−1), (1,0,−1,0,1), (−1,0,1,0,−1), (0,1,−1,0,1), (0,−1,1,0,−1), (1,−1,1,−1,0),
(−1,1,−1,1,0), (1,−1,−1,1,0), (−1,1,1,−1,0).

Hence, PM has twelve facets, and each of the spanning 2-cuts serves as an indicator vector
for one of them: for instance, the 2-cut (1,0,0,−1,1) corresponds to the facet obtained as
the convex hull of e1, e1 + e2 + e3 and e1 + e2 (respectively, the first, minus the fourth, and
the fifth column of M).

Remark 5.10. Some words are needed in order to explain in which sense Theorem 5.8
generalizes the characterization of facets obtained by Higashitani, Jochemko and Micha lek
for classical symmetric edge polytopes [HJM19, Theorem 3.1]. If G is a connected graph,
facets of the symmetric edge polytope PG were shown to be in bijection with integer vertex
labelings such that

(i) if i and j are adjacent in G, then their labels differ at most by one;
(ii) the subgraph of G consisting of the edges {i, j} whose vertex labels differ exactly by

one contains a spanning tree of G.

(For the statement to be precise, one further needs to identify any two vertex labelings that
differ by a fixed constant value on each vertex.) The first author, Delucchi and Micha lek
observed in [DDM22, proof of Proposition 61] that, after fixing an orientation of G, such a
characterization is equivalent to asking for integer edge labelings such that

(a) each label is either 1, 0 or −1;
(b) the sum of the labels on each oriented cycle of G is zero;
(c) the set of edges with nonzero labels contains a spanning tree of G.

This last characterization corresponds to Theorem 5.8 in the special case when M is the
graphic matroid associated with G and M is the signed incidence matrix associated with
the chosen orientation of G (although, to be fully precise, such a matrix is not full-rank).
Indeed, labeling the (oriented) edges of G can be thought of as labeling the columns of the
matrix M . More in detail, condition (b) can be expressed more succinctly by saying that
the desired edge labelings are cuts of M , while conditions (a) and (c) further specify that
they must be spanning 2-cuts.

Comparing the facet characterization from Corollary 5.6 with the one found in Theorem 5.8
immediately yields the following corollary:

Corollary 5.11. Let M be a simple regular matroid of positive rank and M a full-rank
weakly unimodular representation of M. Then a 2-cut of M is spanning if and only if it is
⪯-maximal.

The next result generalizes [DDM22, Proposition 61]. We recall that a matroid is said to
be bipartite if all of its circuits have even cardinality.

Proposition 5.12. Let M be a simple regular bipartite matroid of rank r > 0 and let M be
a full-rank weakly unimodular representation of M. Then the facets of PM are in bijection
with the nowhere-zero 2-cuts of M .
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Proof. By Theorem 5.8, it is enough to prove that the spanning 2-cuts of M are exactly the
nowhere-zero 2-cuts of M . Clearly, every nowhere-zero 2-cut must be spanning.

For the reverse containment, let n be the number of elements in the ground set of M. If
r = n, then M is the uniform matroid Un,n, the polytope PM is unimodularly equivalent to
the n-dimensional cross-polytope, and its 2n facets correspond to the nowhere-zero elements
of row(M) ∩ {0,±1}n = {0,±1}n (see also Remark 5.5).

Assume now that r < n. Let γ be a spanning 2-cut of M and assume without loss of
generality that γi ≠ 0 for every i ∈ [r]. Now pick any j ∈ {r + 1, . . . , n} and consider the

fundamental signed circuit
Ð→C (j, [r]), whose support has even cardinality because of the

bipartite assumption. Since γ ⋅Ð→C (j, [r]) = 0, one has that 0 is the sum of γj and an odd
number of elements in {+1,−1}. For parity reasons, it follows that γj ≠ 0, which proves the
claim. □

6. A regular unimodular triangulation for PM
It follows from a result of Ohsugi and Hibi [OH14, Theorem 2.7] that the polytope PM al-

ways admits a regular unimodular triangulation. The aim of this section is to find an explicit
description generalizing what Higashitani, Jochemko and Micha lek found in the context of
symmetric edge polytopes [HJM19, Proposition 3.8]. Since the desired characterization in-
volves signed circuits (see Definition 2.6), our results will be expressed in terms of a fixed
full-rank weakly unimodular representation of the given (simple) regular matroid M.

If M is a full-rank weakly unimodular matrix, then [M ∣ −M] is as well. It will be useful
to describe the signed circuits of the latter in terms of the former. To achieve this goal, we
need to introduce some more notation.

Notation 6.1. Let J ⊆ [n]. We will denote by ηJ the injective map Zn → Z2n sending

(λ1, . . . , λn) to (λ̃1, . . . , λ̃2n), where for every i ∈ [n]

λ̃i ∶= {
0 i ∈ J
λi i ∉ J and λ̃n+i ∶= {

−λi i ∈ J
0 i ∉ J.

Basically, given an integer vector, the map ηJ changes the sign of the entries indexed by
an element of J , and then moves them to the second half of an integer vector twice as long.
We will sometimes refer to this operation as a promotion. Note that ηJ restricts to a map
{0,±1}n → {0,±1}2n.

Remark 6.2. Note that λ̃ ∈ Z2n is in the image of ηJ precisely when λ̃i = 0 for every i ∈ J
and λ̃n+i = 0 for every i ∉ J . In particular, if the support of µ̃ ∈ Z2n is contained in the
support of λ̃ ∈ im(ηJ), then µ̃ ∈ im(ηJ).
Lemma 6.3. Let J ⊆ [n] and letM ∈ Zr×n (where 0 < r ≤ n) be a full-rank weakly unimodular

integer matrix. Then λ ∈Ð→C (M) if and only if ηJ(λ) ∈
Ð→
C ([M ∣ −M]).

Proof. Let λ ∈ Zn. By construction, one has that

Mλ = ∑
i∈[n]

λi(Mei) = ∑
i∈[n]

(λ̃i−λ̃n+i)(Mei) = ∑
i∈[n]

λ̃i(Mei)+∑
i∈[n]

λ̃n+i(−Mei) = [M ∣ −M] ηJ(λ).

In particular, λ ∈ ker(M) if and only if ηJ(λ) ∈ ker ([M ∣ −M]), and λ is a 2-flow if and
only if ηJ(λ) is. To prove the claim, we still need to show that supp(λ) is a circuit of M if
and only if supp(ηJ(λ)) is a circuit of [M ∣ −M].
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The definition of ηJ implies immediately that, if supp(λ) is not minimally dependent,
then supp(ηJ(λ)) is not minimally dependent either. Conversely, assume supp(ηJ(λ)) is not
minimally dependent. Then there exists µ̃ ∈ Z2n such that [M ∣ −M] µ̃ = 0 and supp(µ̃) ⊆
supp(ηJ(λ)). By Remark 6.2, µ̃ belongs to the image of ηJ and hence supp(λ) is not
minimally dependent, since supp(η−1J (µ̃)) ⊆ supp(λ). This proves the claim. □

Provided that M does not contain any zero column, the signed circuits of [M ∣ −M] come
in two flavors: on the one hand, we have the ones of the form ±(ei + en+i) (reflecting the
relation Mei + (−M)ei = 0), while on the other hand we have those obtained by promoting
a signed circuit of M . This is the content of the technical lemma below.

Lemma 6.4. Assume M ∈ Zr×n (where 0 < r ≤ n) is a full-rank weakly unimodular matrix
not containing any zero column. Then

(3)
Ð→
C ([M ∣ −M]) = {±(ei + en+i) ∶ i ∈ [n]} ∪ ⋃

J⊆[n]

ηJ(
Ð→
C (M)).

Proof. Let us first prove that the right hand side of (3) consists of signed circuits of [M ∣ −M].
This is clear for ±(ei + en+i), since

[M ∣ −M]ei + [M ∣ −M]en+i =Mei + (−M)ei = 0

and M does not contain any zero column by hypothesis. Moreover, by Lemma 6.3, ηJ(λ) is

a signed circuit of [M ∣ −M] for every choice of J ⊆ [n] and λ ∈Ð→C (M).
Let us now prove that every signed circuit of [M ∣ −M] arises as in the right-hand side

of (3). Let λ̃ = (λ̃1, . . . , λ̃2n) ∈ {0,±1}2n be a signed circuit of [M ∣ −M]. If there exists

i ∈ [n] such that λ̃iλ̃n+i ≠ 0 then, by support minimality, λ̃ must be equal to ei + en+i up

to sign. Assume then that λ̃iλ̃n+i = 0 for every i ∈ [n], and let J ∶= {i ∈ [n] ∶ λ̃n+i ≠ 0}. By

Remark 6.2, one has that λ̃ = ηJ(λ) for some λ ∈ {0,±1}n; moreover, by Lemma 6.3, such λ
is a signed circuit of M . This finishes the proof. □

We remark that the unimodularity assumption is not really crucial for Lemmas 6.3 and
6.4: one could prove similar statements by substituting “signed circuits” with “circuits” (in
the toric ideal meaning). However, since in this paper we are reserving the word “circuit”
for its matroidal meaning, we did not want to confuse the reader unnecessarily.

Before moving on, we need to introduce some notation about toric ideals naturally arising
in this context.

Notation 6.5. Let M be a simple regular matroid of rank r > 0 on n elements and let M
be a full-rank weakly unimodular representation of M. Then, by Theorem 4.3(iv)–(v), the
lattice points of PM are the columns of [M ∣ −M] and the origin 0. We will denote by IPM

the toric ideal associated with the polytope PM , i.e., the one obtained as the kernel of the
map

K[x1, . . . , xn, x−1, . . . , x−n, z]→K[t±11 , . . . , t±1r , s]
xi ↦ tMeis

x−i ↦ t−Meis

z ↦ s
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and by I[M ∣ −M] the toric ideal obtained as the kernel of the map

K[x1, . . . , xn, x−1, . . . , x−n]→K[t±11 , . . . , t±1r ]
xi ↦ tMei

x−i ↦ t−Mei ,

where K is a field.

We immediately obtain the following corollary of Lemma 2.16:

Corollary 6.6. LetM be a simple regular matroid of rank r > 0 and let M ∈ Zr×n be a full-
rank weakly unimodular matrix representing M. Then the ideal IPM

is the homogenization
of I[M ∣ −M] with respect to the variable z. In particular, the (irreducible) projective variety
V (IPM

) is the projective closure of the (irreducible) affine variety V (I[M ∣ −M]).
Lemma 6.4 and Remark 2.14 imply the following description for the universal Gröbner ba-

sis of the toric ideal I[M ∣ −M] when M is a full-rank weakly unimodular matrix not containing
any zero column:

Corollary 6.7. Let M ∈ Zr×n (where 0 < r ≤ n) be a full-rank weakly unimodular matrix
without any zero column. Then the set of signed circuits, the universal Gröbner basis and
the Graver basis of I[M ∣ −M] all coincide and consist of the following binomials:

● xix−i − 1 for every i ∈ [n];
● xηJ(λ)

+ − xηJ(λ)
−
for every J ⊆ [n], λ ∈Ð→C (M) such that ∣ηJ(λ)+∣ ≥ ∣ηJ(λ)−∣.

(With a slight abuse of notation, we identify those binomials that differ only up to a global
sign.)

Example 6.8. LetM be as in Example 2.4 and Example 2.7. The Graver basis of [M ∣ −M]
contains 37 binomials: 5 of the form xix−i − 1, 16 arising from the promotions of x1x2x3x4 −
1, 8 from the promotions of x1x2 − x5 and another 8 from the promotions of x3x4x5 − 1.

For instance, the promotions of λ = (1,1,0,0,−1) ∈ Ð→C (M) (corresponding to the binomial
x1x2 −x5) give rise to the following eight signed circuits of [M ∣ −M]: x1x2 −x5, x2 −x−1x5,
x1 − x−2x5, x1x2x−5 − 1, 1 − x−1x−2x5, x2x−5 − x−1, x1x−5 − x−2, x−5 − x−1x−2. Technically,
the statement of Corollary 6.7 only asks for the promotions such that ∣ηJ(λ)+∣ ≥ ∣ηJ(λ)−∣;
however, when this is not the case, we just take −λ instead of λ, and the global count is not
affected.

The next proposition, reminiscent of the results in [OH14, Section 2], proves the exis-
tence of a regular unimodular triangulation for IPM and serves as a first step towards an
explicit description. For the correspondence between regular unimodular triangulations and
squarefree initial ideals, we refer the reader to [Stu96, Chapter 8] and [HPPS21, Section 2.4].

Proposition 6.9. Let M be a simple regular matroid of rank r > 0 and let M ∈ Zr×n

be a full-rank weakly unimodular representation of M. Denote by S the polynomial ring
K[x1, . . . , xn, x−1, . . . , x−n]. Let < be a graded monomial order of S and let <h be any mono-
mial order of S[z] with the property that in<h f

h = in< f for every f ∈ S. Then the toric ideal
IPM

has a squarefree initial ideal with respect to <h.
Remark 6.10. A concrete choice for <h as in Proposition 6.9 (and later Theorem 6.11) is
any degrevlex order of S[z] such that z <h v for every variable v in S.
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Proof of Proposition 6.9. By Corollary 6.6, the toric ideal IPM
is the homogenization of

I[M ∣ −M] with respect to the variable z. In order to find a Gröbner basis for IPM
, by [CLO15,

Theorem 8.4.4] it is then enough to homogenize a set of polynomials forming a Gröbner
basis for I[M ∣ −M] with respect to a graded monomial order. The universal Gröbner basis of
I[M ∣ −M] is described in Corollary 6.7; since by definition signed circuits have coefficients in
{0,±1}, the claim follows. □

We are finally able to generalize the Gröbner basis description obtained by Higashitani,
Jochemko and Micha lek for the usual symmetric edge polytopes.

Theorem 6.11. Let M be a simple regular matroid and let M ∈ Zr×n be a full-rank weakly
unimodular representation of M. Let S[z], < and <h be as in Proposition 6.9. Then the
polynomials

(i) xix−i − z2 for every i ∈ [n];
(ii) xηJ(λ)

+ − xηJ(λ)
−
z for every J ⊆ [n], λ ∈Ð→C (M) such that ∣ηJ(λ)+∣ = ∣ηJ(λ)−∣ + 1;

(iii) xηJ(λ)
+ − xηJ(λ)

−
for every J ⊆ [n], λ ∈Ð→C (M) such that ∣ηJ(λ)+∣ = ∣ηJ(λ)−∣

form a Gröbner basis for IPM
with respect to <h.

Remark 6.12. The binomials of types (ii) and (iii) in Theorem 6.11 come from considering
those signed circuits of [M ∣ −M] where 1’s and −1’s are “as balanced as possible”; this is
exactly what happens for classical symmetric edge polytopes, recalling that both orientations
for every edge of the original undirected graph are available in that setting.

Proof of Theorem 6.11. By the proof of Proposition 6.9, we know that homogenizing the
polynomials of Corollary 6.7 with respect to the variable z yields a Gröbner basis for IPM

with respect to <h. For every i ∈ [n], the homogenization of xix−i − 1 gives us one of the

polynomials of type (i). Now let J ⊆ [n], λ ∈ Ð→C (M) and set k ∶= ∣ηJ(λ)+∣ − ∣ηJ(λ)−∣. After
possibly swapping λ with −λ, we can assume without loss of generality that k ≥ 0.

If k = 0 or k = 1, the homogenization of xηJ(λ)
+ −xηJ(λ)

−
yields one of the binomials of type

(iii) or (ii) in the list. It is then enough to show that the homogenization of xηJ(λ)
+ −xηJ(λ)

−

is redundant when k ≥ 2. Consider such a polynomial. There exists j ∈ [n] such that either
ηJ(λ)j = 1 or ηJ(λ)n+j = 1. If ηJ(λ)j = 1, one has that

xj ⋅ xηJ∪{j}(λ)+ = xηJ(λ)
+

and x−j ⋅ xηJ(λ)
− = xηJ∪{j}(λ)−

and we can write

xηJ(λ)
+ − xηJ(λ)

−
zk = xηJ(λ)

+ − xηJ(λ)
−
zk + xjx−jxηJ(λ)

−
zk−2 − xjx−jxηJ(λ)

−
zk−2

= xj ⋅ xηJ∪{j}(λ)+ − xηJ(λ)
−
zk + xjx−jxηJ(λ)

−
zk−2 − xj ⋅ xηJ∪{j}(λ)−zk−2

= xj ⋅ (xηJ∪{j}(λ)+ − xηJ∪{j}(λ)−zk−2) + xηJ(λ)
−
zk−2(xjx−j − z2).

If instead ηJ(λ)n+j = 1, one has that

x−j ⋅ xηJ∖{j}(λ)+ = xηJ(λ)
+

and xj ⋅ xηJ(λ)
− = xηJ∖{j}(λ)−

and an analogous computation leads to

xηJ(λ)
+ − xηJ(λ)

−
zk = x−j ⋅ (xηJ∖{j}(λ)+ − xηJ∖{j}(λ)−zk−2) + xηJ(λ)

−
zk−2(xjx−j − z2).

Iterating this procedure as many times as possible yields the claim. □
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Example 6.13. Let M be as in Example 2.4 and Example 2.7, and pick as a term order the
degree reverse lexicographic order with x1 > x−1 > x2 > x−2 > x3 > x−3 > x4 > x−4 > x5 > x−5 > z.
Then, by Theorem 6.11, there is a Gröbner basis for IPM

consisting of the following binomials
(where we underline the leading term):

● x1x−1 − z2, x2x−2 − z2, x3x−3 − z2, x4x−4 − z2, x5x−5 − z2
● x1x2 − x5z, x−1x−2 − x−5z, x−1x5 − x2z, x1x−5 − x−2z, x−2x5 − x1z, x2x−5 − x−1z
● x3x4 − x−5z, x−3x−4 − x5z, x3x5 − x−4z, x−3x−5 − x4z, x4x5 − x−3z, x−4x−5 − x3z
● x1x2−x−3x−4, x−1x−2−x3x4, x1x3−x−2x−4, x−1x−3−x2x4, −x−2x−3+x1x4, −x2x3+x−1x−4.

Note that this Gröbner basis is not reduced, as the monomials x1x2 and x−1x−2 are both
featured twice as the leading term of a binomial. The associated triangulation has sixteen
facets and is shown in Figure 5.

Figure 5. The triangulation described in Example 6.13. Plot generated by
SageMath [The23].

Finally, the γ-polynomial of a symmetric edge polytope has been the object of much
recent work after Ohsugi and Tsuchiya conjectured the nonnegativity of its coefficients in
[OT21a]. We wish to conclude the present article by extending to the matroidal setting a
characterization of γ1 which appeared independently in [DJKKV23] and [KT22a].

Corollary 6.14. Let M be a simple regular matroid of positive rank. Then γ1(PM) =
2 ⋅ rk(M∗). In particular, γ1(PM) is nonnegative.
Proof. In what follows, let E be the ground set of the matroid M. By Proposition 6.9, the
polytope PM admits a (regular) unimodular triangulation ∆<, and hence the h∗-polynomial
of PM and the h-polynomial of ∆< coincide. Then

γ1(PM) = h∗1(PM) − rk(M) by Theorem 4.3(ii)

= h1(∆<) − rk(M) by Proposition 6.9

= (f0(∆<) − rk(M)) − rk(M) by definition of h1

= 2 ⋅ (∣E∣ − rk(M)) since ∆< has 2 ⋅ ∣E∣ vertices

= 2 ⋅ rk(M∗).
□
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7. Future directions

We conclude the present paper with some questions.

Question 7.1. Are generalized symmetric edge polytopes γ-positive? A positive answer
would settle the conjecture by Ohsugi and Tsuchiya on symmetric edge polytopes [OT21a].
More modestly, one could try to prove or disprove that γ2 is always nonnegative, analogously
to the classical symmetric edge polytope case treated in [DJKKV23].

Question 7.2. How do properties of the generalized symmetric edge polytope (e.g., its
h∗-vector) change under operations on the associated matroid? Is there any way to use
Seymour’s characterization of regular matroids via 1−, 2− and 3−sums [Sey80]?

Question 7.3. Can one determine a formula for the h∗-vector of generalized symmetric edge
polytopes analogous to the one found by Kálmán and Tóthmérész in [KT22b]?

Question 7.4. Are there “nice” classes of regular matroids for which the h∗-polynomial of
the associated generalized symmetric edge polytope is real-rooted?

Question 7.5. To which extent can the formulas from [DDM22, Propositions 64 and 65] be
generalized to the matroidal setting?
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