A Minimally Supervised Approach Based on
Variational Autoencoders for Anomaly
Detection in Autonomous Robots*

Davide Azzalini**, Luca Bonali, and Francesco Amigoni

Politecnico di Milano, Milan, Italy
{davide.azzalini, francesco.amigoni}@polimi.it
luca.bonali@mail.polimi.it

Abstract. Detection of anomalies and faults is a crucial ability for
fully autonomous robots. This paper proposes a new deep learning-based
minimally supervised method for detecting anomalies in autonomous
robots. We contribute a new Variational Auto-Encoder architecture able
to model very long multivariate sensor logs exploiting a new incremental
training method, which induces a progress-based latent space that can
be used to detect anomalies both at runtime and offline. While most
existing approaches are trained in a semi-supervised fashion and require
big batches of nominal observations, our method is trained using unla-
beled observations of a robot performing a task, containing both nominal
and anomalous executions. Only a very little amount (even just one) of
labeled nominal executions is then required to partition the learned la-
tent space into nominal and anomalous regions. Experimental results
show that our method outperforms state-of-the-art anomaly detectors
commonly used in robotics both in terms of false positive rate and alert
delay.

Keywords: Anomaly detection - Autonomous robots - Long-term au-
tonomy.

1 Introduction

Robots are increasingly expected to operate for long periods of time without hu-
man supervision, toward the goal of achieving Long-Term Autonomy (LTA) [16].
One of the fundamental ingredients of LTA is anomaly detection [7], namely the
ability of robots to autonomously detect their anomalies and faults. In fact, a
fault which is not promptly detected and addressed may result in the robot dam-
aging itself or, even worse, in harming surrounding people. Different data-driven
methods for detecting anomalies in robot systems have been proposed, most of

* This paper is an extended version of [2] that provides further experimental results
and discussions (Sections 4.5 and 4.6).
** Davide Azzalini is supported by the ABB-Politecnico di Milano Joint Research Cen-
ter, which provides financial support.

2 D. Azzalini et al.

them being semi-supervised and requiring big batches of observations labeled as
nominal by human experts for their training (e.g., [3,21-23]).

This paper proposes a new deep learning-based minimally supervised method
for detecting anomalies in autonomous robots. Anomaly detection can be done
at different levels of abstraction, in our case we are interested in identifying
anomalies not at a component-level, but in the overall behavior of a system. In
particular, we propose a new VAE (Variational Auto-Encoder) [14] architecture
able to model very long multivariate sensor logs of a robot performing a task.
We also introduce a new incremental method for training VAEs, which induces a
progress-based latent space that can be used to detect anomalies both online (at
runtime) and offline. An original feature of our approach is that, differently from
most approaches for anomaly detection in robotics, it is trained with unlabeled
observations, possibly including both nominal and anomalous executions. Only
few (even just one) labeled nominal executions are then required to partition
the learned latent space into nominal and anomalous regions. This minimally
supervised approach provides a big advantage over semi-supervised approaches
in practical settings, where collecting several nominal runs of a robot perform-
ing a task could be hard, since a human expert is usually required to supervise
the system in order to label runs as nominal. This is true especially when us-
ing deep learning-based algorithms which notoriously demand big datasets to be
trained effectively. Experimental results on datasets collected from real robots
show that our method outperforms state-of-the-art methods for anomaly detec-
tion in robots both in terms of false positive rate and alert delay.

This paper thus presents a novel application of VAEs to anomaly detection
in autonomous robots and provides the following main original contributions:

— A new VAE architecture and a new training method, which induces a progress-
based latent space that is suitable to detect anomalies (Sections 3.3 and 3.4).

— A new online and a new offline anomaly detection algorithms that require
as little as one execution labeled as nominal (Sections 3.5 and 3.6).

— An experimental evaluation on datasets collected from real robots involved
in three applications requiring LTA (Section 4).

2 Related Work

2.1 Anomaly Detection

Anomaly detection approaches in robot systems can be divided into three broad
categories: model-based, knowledge-based, and data-driven [12]. Model-based
approaches require explicit analytical models (i.e., mathematical equations) of
robot systems and therefore need expert knowledge to be built. Knowledge-based
approaches typically associate each known fault to a detection rule which is trig-
gered when a specific behavior is observed. Data-driven approaches are based on
(usually probabilistic) descriptions of behaviors or faults that are automatically
learnt from observations of the system. Their advantage is that they do not need

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 3

any explicit prior knowledge of the system nor of the faults. Since in this paper
we propose a data-driven approach, the rest of this section surveys this category.

Online data-driven methods are typically used for autonomous robots. In
their basic form, they generate probabilistic representations of robots’ behaviors
in real-time, from data streams, and use them to statistically differentiate poten-
tial faults from nominal behaviors. Some approaches (e.g., [9]) adopt supervised
machine learning methods to classify data acquired in real-time from a robot.
Supervised methods need fully labeled data for training, which are not always
available; moreover, they assume to already know all possible kinds (i.e., classes)
of anomalies that will ever occur. Hence, recent developments shift to unsuper-
vised and semi-supervised learning. Unsupervised methods (e.g., [13]) do not re-
quire a labeled training set but have the drawback of relying on the assumption
that anomalies are rarely occurring. Semi-supervised methods (e.g., [3,21-23])
relax the assumption on the rarity of anomalies, but require labeled instances
for the nominal class (which are usually easier to collect with respect to, w.r.t.,
anomalous ones) [7]. The method we propose in this paper is trained with un-
labeled data, but needs at least one execution labeled as nominal in order to
detect anomalies. In this sense, we call it minimally supervised.

Recently, deep learning models have been employed to re-address several
spatio-temporal modeling tasks, including those relative to anomaly detection in
robotics, providing significant improvements over classical state-of-the-art meth-
ods. We first introduce some background on these techniques and then survey
the literature most relevant for our contribution.

2.2 Autoencoders and Variational Autoencoders

Autoencoders (AEs) [11] are particular kinds of artificial neural networks which
are trained to reconstruct their input, in a self-supervised manner. An AE is
composed of an encoder network and a decoder network. The encoder takes as
input the training data = € R?, where d is the dimension of the data, and com-
presses these data into a latent space z € R, where h is the dimension of the
encoding, usually h < d. Then, the decoder tries to map back the latent internal
representation z to the original input space & € R, through reconstruction. The
encoder structure can be considered as a bottleneck, in which data pass and are
compressed to extract a meaningful encoded representation. The decoder does
the opposite. The two networks are characterized by fg, the encoding function,
and fg, the decoding function, where fy : R¢ — R" and fy : R* — R?. Finding
weights (parameters) ¢ and 6 for the two functions can be done by backpropaga-
tion, minimizing the loss function Lap(z, &) = || z — & ||%, called reconstruction
error, given input « and model output Z.

Variational Autoencoders (VAEs) [14] differ from plain AEs in the fact that
they assume the existence of a probabilistic model parametrized by the latent
variable z € R” that generates the observed input values = € R%. Being z latent
(i.e., hidden), we can infer its characteristics by computing the posterior p(z|z) =

%; unfortunately, computing the marginalization p(z) = [p(z|z)p(z)dz

4 D. Azzalini et al.

at the denominator is intractable when z is high-dimensional. Variational in-
ference can be used to overcome this issue by approximating p(z|z) with a
distribution ¢(z|z) which is tractable and by minimizing their KL-divergence
Dkr(q(z|z) || p(z]x)) to ensure that g(z|z) is similar to p(z|z). By replacing
p(z|z) in Dgr(q(z|x) || p(z]x)) with %, the minimization problem becomes
equivalent to the maximization of E .|, [log p(x|2)] — Drr(q(z|z) || p(2)), where
the first term represents the reconstruction likelihood (analogous to the recon-
struction error in AEs), while the second term ensures that the learned distri-
bution ¢(z|x) is similar to the true prior distribution p(z) (with the effect of
regularizing the latent variable z). The distributions ¢(z|z) and p(z|x) can be
parametrized by means of two artificial neural networks which can be considered
as encoder (with weights ¢), and decoder (with weights), respectively. Find-
ing weights parameters ¢ and 6 can be done by backpropagation, minimizing
the loss function Lyag(r) = Dkr(qs(2]7) || pe(2)) — Eq, (2]2) (log pe(|2)), which
represents the variational lower bound of the data x according to the Jensen’s
inequality (see [14] for full details). The posterior g4(z|x) is usually assumed to
be normally distributed with parameters N (u, 2.,), while a common choice for
the prior distribution pg(z) is an isotropic normal distribution N (0, I).

2.3 AEs and VAEs for Anomaly Detection

The main idea behind the current use of AEs for anomaly detection is to train
them only on nominal data so that they will not be able to accurately reconstruct
anomalous behaviors (that the AEs have never seen), which will thus produce
high reconstruction errors. AEs have been widely used for anomaly detection on
time series, and more rarely on data coming from robots. For example, authors
of [19] propose an LSTM (Long Short-Term Memory) based encoder decoder
(EncDec-AD) that learns to reconstruct nominal time series and thereafter uses
reconstruction error of observed samples to detect anomalies. Similarly, [30] pro-
poses a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED) to
perform anomaly detection and diagnosis in multivariate time series data. One
significant example of application of AEs to detect anomalies in robots is [20],
where the authors propose to convert sensor logs into images and then use a
convolutional AE to detect anomalous behaviors resulting from cyber-security
attacks.

After the introduction of VAESs, a lot of interest has developed around this
new framework due to the continuity of its latent space and to its ability of pro-
ducing probabilistic anomaly scores (see below) which are in general more power-
ful than AEs’ reconstruction error. In [22], the authors propose an LSTM-VAE-
based detector using a reconstruction-based anomaly score and a state-based
threshold to detect anomalies for robot-assisted feeding, while authors of [27]
apply the STORN model [4] to anomaly detection by introducing a trending
prior on the latent representation. The AE/VAE-based approaches described so
far use some variants of the reconstruction error as anomaly score. However,
after its adoption in [1], the reconstruction probability By, (.|.)[logpe(r|2)] has

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 5

become a more popular anomaly score than the reconstruction error. In this case,
for each sample from the encoder, the probabilistic decoder outputs the mean
and variance parameters of the reconstruction instead of the reconstructed value
itself. Then, the reconstruction probability is calculated using the output param-
eters of the encoder, given the original input as a sample. For instance, in [8], a
sliding-window convolutional variational autoencoder (SWCVAE) is proposed,
which can perform real-time anomaly detection on multivariate time series ac-
quired from an industrial robot. Another example of the use of the reconstruction
probability is in [24], which presents a variational recurrent autoencoder with
attention.

All the above approaches, and many others, are trained on nominal data in
a semi-supervised fashion. However, some AE/VAE-based approaches trained
in an unsupervised fashion exist, such as [29], which proposes an unsupervised
anomaly detection algorithm based on a VAE to detect anomalies on web servers
usage time series. Also in this case, detection exploits the reconstruction proba-
bility. Another interesting approach has been proposed in [25], whose model is
trained in a fully unsupervised fashion and applied to univariate healthcare time
series in which anomalies are detected directly in the latent space by computing
the Wasserstein distance between a test sample latent representation and other
encoded samples in the test set.

Our method employs VAEs but differs from semi-supervised approaches in
requiring only minimal supervision, and from unsupervised ones in modelling
multivariate time series and not assuming rarity of anomalies.

3 The Proposed Method

3.1 Problem Definition

We represent by O = [0y, ...,0,] a d-dimensional time series composed of n
observations of a robot system performing a task, where each observation o; is
a d-dimensional vector representing the multivariate (multi-valued) observation
of the robot at (discrete) time step t. Typically, o; is extracted from sensors
logs of the robot. We assume to know at least one nominal execution O =
[0}, ...,o,]yN] corresponding to the robot correctly performing its task. If the
robot can display k different types of nominal behaviors when performing its
task, we assume the availability of at least a nominal execution O for each
of them. The observed behavior of the same robot along some time period is
denoted by O° = [0?, ..., ogo}. Informally, we consider an observed run O° to
be anomalous if there exists a time step t4 < no from which on 0° starts to
differ from one of the nominal executions {O” }. The details on the way in which
an observation is classified as anomalous are discussed in Sections 3.5 and 3.6.

If we consider O as a (possibly infinite) data stream, online anomaly de-
tection at time step t is the task of classifying the portion of the stream up to ¢
as anomalous or non-anomalous w.r.t. {OV}.

6 D. Azzalini et al.

(a) (b)

Fig. 1: Schematic representation of water drone nominal (a) and anomalous (b)
behaviors, as they appear in the original data.

Given a finite time series of observations O, offline anomaly detection is the
task of classifying the whole behavior displayed by the robot in O° as anomalous
or non-anomalous w.r.t. {OV}.

3.2 Running Example

As a running example we consider a synthetic dataset derived from that used
in [3] and collected from a water drone (called Platypus) while performing a
coverage task (Fig. la) on a lake to collect water samples. The experimental
setting takes inspiration from the H2020 EU project INTCATCH!, devoted to
develop user-friendly water monitoring strategies and systems for improving the
quality of surface water in lakes and rivers [6]. Starting from some real runs, we
generate 340 runs in which the following variables are recorded at each time step
(1 Hz): heading, speed, acceleration, power signals to the left and right propellers,
latitude, and longitude. From the anomalies observed in the real data (see [3]),
which present a recurring curve leaning to the left in the descending traits (Fig.
1b), we incorporated in our simulated dataset 8 possibles nuances of similar
anomalies (Fig. 2).

3.3 Network Architecture

We present a new VAE architecture (Fig. 3) in which we replace the typical
feed-forward layers with 1D-convolutional (Conv-1D) and Bidirectional LSTM
(Bi-LSTM) layers, which are better suited to represent the temporal dependency
of multivariate time series collected from robots’ sensors. Moreover, the use of
Conv-1D and Bi-LSTM layers allows our network to model very long runs.
Before being passed to the network for training, runs in the training set are
standardized, then a Gaussian noise n, is added to each non-padded value of
the runs in the training set X4 (See next section for a detailed explanation) in
order to perform training using the denoising principle [28]. The noise variance o
is set to 1. The noise-corrupted input X train 1S passed to stacked pairs of Conv-1D
and MaxPooling layers, then a Bi-LSTM takes the output of the previous levels
of convolution and returns the concatenated final states [h—f> , 71_1,] (i.e., the contexts

! http://www.intcatch.eu/

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 7

(a) UR-DL (b) UR (c) UR-DR
(d) DL (e) Nominal (f) DR
(g) UL-DL (h) UL (i) UL-DR

Fig.2: Simulated trajectories of a water drone. The nominal behavior of the
robot is in the center (e): the robot starts from the bottom and goes up and
down moving rigthward. (a) depicts the behavior of leaning to the right in the
upward segments and to the left in the downward ones (UR-DL), (b) the behavior
of leaning to the right in the upward segments (UR), (c¢) the behavior of leaning
to the right in both the upward and the downward segments (UR-DR), (d) the
behavior of leaning to the left in the downward segments (DL), (f) the behavior
of leaning to the right in the downward segments (DR), (g) the behavior of
leaning to the left in both the upward and the downward segments (UL-DL),
(h) the behavior of leaning to the left in the upward segments (UL), (i) the
behavior of leaning to the left in the upward segments and to the right in the
downward ones (UL-DR).

in both directions). This concatenation is passed to 2 fully connected layers zpean
and zjog—yar, which learn the parameters 1, and o2 of the approximate posterior
distribution g4 (z|z), where ¢ is the matrix of the encoder’s weights. These last
two layers, together with the next one, represent the core of our VAE, in which
a sample is extracted from a multivariate Gaussian distribution A (u,,02I) by
means of the reparametrization trick z = p, + 0, - ¢, where e~N(0, 1), resulting
in the value of the latent variable z of the layer zsgmpied, that will be used by
the decoder to reconstruct the input. The decoder network is composed of an
initial fully-connected layer which reshapes zgampiea in order to be compatible
with the following layers. This is passed to the decoder Bi-LSTM that computes,
for each time step of its input, a new value based on its context. Then, these
sequences are passed to the stacked levels of Conv-1D and upsampling layers
which expand the number of time steps of the sequences to match the original

8 D. Azzalini et al.

length while reconstructing their values. The final output of the last upsampling
layer is used to compute the loss function Lyag (see Section 2.2) to update the
network weights by backpropagation. According to the denoising criterion, the
network is trained to output the reconstruction X,.., as an approximation of
the original non-corrupted input Xyyqi,. From now on, we will refer to our VAE
architecture described above as Incr-VAE (code is publicly available?).

3.4 Incremental Training

Instead of training Incr-VAE on runs corresponding to complete task executions
performed by the robot or on windowed slices of such executions, as it would
be the norm, we originally build a training dataset that includes also incomplete
task executions in an incremental manner. The detailed procedure is reported
in Algorithm 1. Given a batch 2 of B unlabeled task executions and chosen an
increment 7, we represent by Xy, the (initially empty) training set (line 1).
Each multivariate time series O in 2 is inserted in Xy, (lines 2-10) at differ-
ent stages of completion by progressively including 7 additional time instants
(lines 3-4). Incomplete runs are zero-padded in oder to have the same length of
complete ones (lines 5-7). Complete runs are also added to Xypgin (line 11). In
our experiments, we use 7 = 10 and a maximum length of T" = 500 (shorter
complete runs are zero-padded).

When using our incremental training approach based on the augmented train-
ing set Xyqin, the VAE induces a progress-based latent space, where runs at
different levels of completion are encoded in different regions of the space. Fig. 4
shows the first 3 principal components of the latent space of our running exam-
ple extracted using Principal Component Analysis (PCA) [5]. We use the same
PCA projection also for the following figures. In the rightmost part of Fig. 4
it can be noted how incomplete runs containing just the first few observations
are all represented in the same spot of the latent space as they are all indistin-
guishable from each other. Then, as anomalous executions start to deviate from
the expected rectilinear paths (Fig. 2), three different bundles start to emerge,
which represent the behaviors showing the same attitude in the first upward seg-
ment (e.g., UL, UL-DR, and UL-DL all lean towards left). When the water drone

2 https://github.com/lucabonali/Incr-VAE

1D convolution 1D convolution
+ max pooling + upsampling
\ Zmean reshape p
- e 2z
\\[h £, h b]”/. .\sample/d
(:, \ N /
X train Xrec

/Bi — LSTM Ziog-var Bi— LSTM ™,

Fig. 3: Incr-VAE architecture.

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 9

Algorithm 1: Incremental Training

Input: £ ={0,...,Op}, increment T
Output: Xirein

1 Xirain < { }
2 forall O = [01,...,0r] € 2 do
3 for:=1,..,|T/7| do
4 Xtmp <_{01»~-,0i*‘r}
5 for j=(i*x7)+1,..,7 do
6 | append(Ximp,0) // zero-padding
7 end
8 Xitrain +— Xtrain U Xtmp
9 end
10 end

11 Xirain < Xirain U £2

@ Nominal
® UR

@ uL

@® DR

O DL

© UR-DR
© UL-DL
O UL-DR
O UR-DL

15

PC3

PC1

Fig.4: Water monitoring robot latent space (¢t = 7 on the right in the back-
ground, completed runs at ¢ = 7' in the foreground).

reaches the beginning of the first downward segment, the three bundles split and
become nine as at this point all the different behaviors are distinct. Please note
that in Fig. 4 (and in the following figures) the different behaviors have been
depicted using different colors just for visualization clarity: the data used for
training are unlabeled. From the figure, it appears clearly how our method leads
to a structured latent space in which different behaviors are well separated.

As a consequence of the fact that our method induces a latent space which
encodes both incomplete and complete executions, the same network trained
only once can be used for both online and offline anomaly detection. Moreover,
as a consequence of the fact that the incremental training involves some data
augmentation, fewer runs are needed for training (as few as 6 runs, in our ex-
periments) w.r.t. training VAEs in the standard way.

10 D. Azzalini et al.

e :r& ; \r";q] & £ ¢
2 & & ’ 5 s a9
,/ < —){ v J ’(ﬁ ; é&?(
. A% v & &
. &' N . -
. L S “~ v [m, ”
s W;; » MRS 2
6 | By
(a) t =10 (b) t =30 (c) t =80 (d) t+ = 200 (e) t = 500

Fig. 5: Water monitoring robot latent space evolution (non-transparent encod-
ings represent the slice to which the clustering refers to).

3.5 Online Anomaly Detection

Assuming an Incr-VAE trained as illustrated above and the availability of at least
one nominal execution for each of the k different types of nominal behaviors
for the robot performing its task, online anomaly detection is performed by
partitioning the latent space into nominal and anomalous regions according to
the provided nominal executions {OY} and by testing, at runtime, to which
region a new incoming partial run belongs to. Note that our method detects
anomalies in the latent space, differently of other methods based on AEs and
VAEs (e.g., [19,20,22]) that detect anomalies thresholding the reconstruction
error or probability.

Given X ¥, obtained by applying Algorithm 1 to {O"}, the latent space seg-
mentation (Algorithm 2) is performed offline (after training) using the DBSCAN
algorithm [18], a density-based clustering algorithm that relies on the assump-
tion that clusters are contiguous regions of high point density, separated from
other clusters by regions of low point density. Clustering (line 8) is performed
on each “slice” (line 2) of the latent space Zsgmpied (i-€., on each set of points
corresponding to runs with the same progress (line 5)) with the addition of the
encodings of the nominal executions {O"}, zero-padded in order to represent
the same level task completion (line 6-7). Clusters containing points belonging to
nominal executions are considered nominal regions (lines 10-11), while clusters
not containing points from nominal executions, outliers, and the rest of the la-
tent space are considered as anomalous regions. Fig. 5 shows how clusters evolve
at different slices for the water monitoring robot running example.

At runtime (Algorithm 3), an incoming incomplete run O that needs to be
tested for abnormality is firstly standardized (w.r.t. the mean and standard devi-
ation used for the standardization of the training set) and zero-padded (line 1-2),
then it is encoded into its latent representation Z (line 5). The cosine similarity
between Z and the encodings of all the runs in the same slice is computed and if
2 is within a distance of € (i.e., DBSCAN'’s threshold on the maximum distance
between two samples for being considered as neighbors of each other, ¢ = 0.5
is the default value we use in our experiments) from an encoding belonging to

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 11

Algorithm 2: Latent Space Segmentation

Input: increment 7, training set Xyain, XV (output of Algorithm 1 on {ON}),
VAE encoder fg

Output: RN
1 RY «—{} // nominal region
2 fori=1,..,|T/7] do

(1)

3 Xtr_a,m
a XON e XN | progress =i %7
6 ZON fu(XON)
v | 20« z0 yzON
8 C) « DBSCAN(Z(®)
9 forall ¢ € C) do

& € Xipain | progress =i x T

10 if (Z(ON N ¢) # @ then
11 ‘ RN — RNV Ue

12 end

13 end

14 end

a nominal region, the partial run is considered nominal, while an anomaly is
detected otherwise (lines 9-11). For test runs whose progress is not a multiple of
7 (line 6), the cosine similarity is computed w.r.t. the two slices immediately pre-
ceding and following (lines 14-20). In our experiments, we use training datasets
containing few hundreds of executions, hence we perform linear search at run-
time; for larger datasets it may be worth considering nearest neighbor search
algorithms with sub-linear time complexity, such as space partitioning (e.g., the
K-D trees) or Locality-Sensitive Hashing (LSH) [26].

3.6 Offline Anomaly Detection

Assuming the availability of an Incr-VAE trained as discussed in Sections 3.3 and
3.4, offline anomaly detection is obtained by performing DBSCAN on the last
slice (the one containing the encodings of complete executions) of the latent space
with the addition of the encodings of the nominal executions and the encoding 2
of the run under scrutiny. As the DBSCAN algorithm either assigns each point
to a cluster or treats it as an outlier, in case Z belongs to a cluster containing the
encoding of a nominal run, the behavior will be considered nominal, anomalous
otherwise. In case a domain expert provides also runs labeled as anomalous and 2
belongs to a cluster containing one such anomalous run, it will also be possible to
specify the nature of the anomaly. Outliers are considered as generic anomalies.

4 Experimental Results

In this section we present the results obtained by detecting anomalies in three
different datasets collected from real robots.

12 D. Azzalini et al.

Algorithm 3: Online Anomaly Detection

Input: increment 7, nominal region |, test run O < [o1, ..., 0¢], threshold ¢, VAE
encoder fg
Output: flag € {0,1}
1 forj=t+1,..,7 do

2 ‘ append(0O, 0) // zero-padding
3 end

4 flag < True // anomaly flag
6 if t%7 = 0 then

7 i t)T

8 forall z € Z(¥) do

9 if Cosine(2,z) <e A z € RN then

10 ‘ flag < False

11 end

12 end
13 else

14 forall ¢ € {|t/7],[¢t/7]} do

15 forall z € Z(¥) do

16 if Cosine(2,2) <e A z € RN then

17 ‘ flag < False

18 end

19 end

20 end
21 end

We use two common metrics in the field of anomaly detection, namely, alert
delay and false positive rate. Given an anomaly occurring at time step ¢4, the
alert delay da is computed as dg4 = t — t4 where t > t4 is the time step at
which the occurrence of the anomaly is detected by a method. Given the set
W containing the time steps at which a method reports an anomaly, the false
positive rate (FPR) is computed as the fraction of the time steps preceding
the actual occurring of an anomaly which have been identified as anomalous
FPR = w The use of just the FFPR without the TPR is meaningful
since the case in which one could obtain a FFPR = 0 by always saying that
everything is nominal is prevented from the fact that in that case the alert delay
would result to be substantially increased.

We compare our system against a baseline and four other methods proposed
in the literature for online anomaly detection in robotics:

— A one-class support vector machine (OSVM) trained with a sliding window
size w = 10.

— HMM-H [3], an HMM-based anomaly detector which detects anomalies by
computing the Hellinger distance between the probability distribution of
observations made in a sliding window and the corresponding nominal emis-
sion distribution. HMM parameters are chosen minimizing the BIC score,
the window size is set to 10 and the 3o-rule is used to select the detection
threshold.

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 13

— ENC-DEC AD [19], the first work that proposed to employ LSTM-based
AEs for anomaly detection on time series. ENC-DEC AD learns to recon-
struct nominal time series and then uses the reconstruction error on unseen
executions to detect anomalies. We optimize the detection threshold 7 by
maximizing Fp (a function of precision and recall), as suggested by the au-
thors of the method.

— Conv-AE [20], based on transforming system logs into images, which are
then used to train a convolutional (2D) AE. As for ENC-DEC AD, the
reconstruction error on unseen executions is used to detect anomalies. We
optimize the sensitivity parameter z for each dataset according to authors’
suggestions (i.e., z € [0, 3]).

— LSTM-VAE [22], a state-of-the-art LSTM-based VAE with a varying state-
based threshold obtained by employing a progress-based prior and a support
vector regressor (SVR) for threshold prediction. We optimize the sensitivity
parameter c for each dataset.

While our method is trained in a minimally supervised fashion (i.e., knowing
the nominal label for k executions, where k is the number of different types of
nominal behaviors), all four competitors are trained in a semi-supervised fashion
(i.e., assuming that all training data are nominal) on the same datasets. Given a
dataset, training our method takes some minutes on a commercial laptop, while
online and offline detection of anomalies takes few milliseconds.

4.1 Water Monitoring Robot Dataset

This is the same dataset introduced in the running example. Our Incr-VAE
network is trained using the Adam optimizer with one level of convolution in the
encoder and decoder, h = 20 as latent dimension, 10 filters for the convolution,
and 10 as convolution window. A single nominal run is used to partition the
latent space.

4.2 Patrolling Robot Dataset

This publicly available? dataset has been collected within the scope of the
STRANDS* project [10], where an autonomous robot called SCITOS-G5 per-
forms a patrolling task in a small office every 5 minutes. A complete description
of the data collection process is provided in [15]. We consider a total of 463 dif-
ferent executions sub-sampled at 1 Hz. We restrict the set of available sensors to
those that are intuitively useful for anomaly detection, namely, robot location (z
and y) and robot and camera headings. After a visual inspection of the logs, only
one type of nominal behavior (k = 1) has been assumed and a subset of the runs
have been manually labeled as anomalous in order to be used for testing. Ex-
amples of anomalies are deviations from the predefined path and incorrect uses

3 https://lcas.lincoln.ac.uk /nextcloud/shared /datasets/
* http:/ /strands.acin.tuwien.ac.at/

14 D. Azzalini et al.

Fig. 6: Patrolling robot latent space (¢ = 7 in the background, completed runs
at t = T in the foreground). Nominal runs in blue, anomalies in red.

of the RGB-D camera when checking for the presence of intruders. The latent
space of our VAE induced by this dataset is shown in Fig. 6. Anomalies (in red)
are clearly detached from the central nominal bundle (in blue). The network is
trained using the Adam optimizer with 2 levels of convolution on both encoder
and decoder, 10 as number of filters and window of convolution, h = 20 as latent
dimension. A single nominal run is used to partition the latent space.

4.3 Assistive Robot Dataset

The third dataset has been collected within a project developing an innovative
multi-actor platform, centered around an autonomous robot for supporting the
independence of elderly people living alone at home [17]. The socially assistive
autonomous mobile robot is a human-sized robot which moves in domestic envi-
ronments, which represent a typical context for LTA. To localize the elder it has
to assist, the robot starts from its charging base and visits in sequence different
rooms of the house until the person is found. Data are collected in a 9-day ex-
periment simulating the same number of interventions performed in a month of
use of this social assistive robot, thus performing multiple interventions per day.
The dataset contains 238 runs, each one composed of a sequence of observations
collected at 1 Hz including: heading, speed, acceleration, position w.r.t. the z-
axis, and position w.r.t. the y-axis. The dataset presents k = 4 different types
of nominal behaviors (corresponding to reaching one of four different rooms) for
each of which a domain expert provided a single nominal run. Out of the 238
runs, 12 have been classified by a domain expert as anomalies which are used
for testing and correspond to the robot not being able to return back to its
charging station because it remains stuck in forniture, the robot departing from
its nominal trajectory, or the robot moving too fast. We use the same network
hyperparameters as in the patrolling robot dataset. The latent space induced by
this dataset is in Fig. 7. As said, a single nominal run for each one of the k =4
types of nominal behaviors is used to partition the latent space.

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 15

® Room 1
® Room 2
¢ . ® N ~ ® Room 3
T ® ® Room 4

g Anomaly 1

Anomaly 2

® Anomaly 3

-4
-2
0

PC2

2
PC1 ° N

Fig. 7: Assistive robot latent space (¢t = 7 on the right, completed runs at t =T
on the left).

4.4 Results

Alert delays and FPRs are reported in Table 1 and Table 2, respectively. Our
method provides the best performance across all datasets despite using just 1
labeled nominal execution for the first two datasets and 4 for the third one.

As highlighted also in [22], the higher alert delay and FPR of ENC-DEC AD
have to be attributed to the fact that sometimes the reconstruction error is high
also in nominal situations. In fact, depending on the stage of the execution, the
reconstruction quality may vary. An example is when spikes (i.e., impulses to
make the boat turn) appear on the currents to the motors in the time series of the
first dataset, which result in high anomaly scores also in nominal runs. Thanks
to its varying state-based threshold, LSTM-VAE is able to overcome the above
issue after we set a tolerance value to be added to the state-based threshold of
the model to avoid the incorrect detection of the spikes, even though this comes
at the cost of a slight worsening of the alert delay. Comparing the two AE-based
methods, Conv-AE always outperforms ENC-DEC AD, probably due to the use
of convolution, that is more stable and easier to train than recurrent layers. We
also note that the VAE-based methods outperform the AE-based ones, as also
pointed out in [22]. The high alert delay for HMM-H in the third dataset has to be
ascribed to its inability to detect anomalies on the velocity of the robot due to the
Markov assumption. To enable HMM-H to detect also such anomalies, velocity
should be explicitly modeled as an additional dimension of the multivariate time
series as done in [3]. OSVM’s higher FPR and bad performance in general on
the second dataset result from its inability to represent the portion of time series
inside the window as an actual sequence instead of as a feature vector without
any time dependence. Moreover, it is difficult to adjust OSVM’s threshold after
training as it coincides with the SVM decision boundary.

We finally remark that our method reaches an accuracy of 100% when per-
forming offline anomaly detection on the three datasets.

16 D. Azzalini et al.

4.5 Latent Space Analysis

As said, instead of training Incr-VAE on runs corresponding to complete task
executions performed by the robot or on windowed slices of such executions, as it
usually happens, we originally build a training dataset that includes also incom-
plete task executions in an incremental manner. Here, we investigate how the
latent space would be learnt in the two usual cases just mentioned for the water
monitoring robot dataset. We include in our comparison also the latent space
induced by LTSM-VAE, the other method based on a variational autoencoder
we consider in our experimental assessement. As a reference, the latent space of
Incr-VAE when trained in the incremental way is reported in Fig. 4.

Complete Executions Fig. 8 depicts the latent space resulting from train-
ing Incr-VAE on complete executions only. As it can be seen, our architecture
manages to encode very long sequences in a meaningful way (i.e., nominal runs
and each anomaly are clearly separated). Note that, as one would expect, this
arrangement coincides also with the last slice of Fig. 5 (i.e., the one encoding
complete executions). Looking at Fig. 8 it can be noted a very interesting fea-
ture: not only each anomaly type has its own “cluster” clearly detached from
the others, but they are arranged in a meaningful and intuitive way. Take for
example UL and DL, if we start from the nominal area (in the center) and pro-
ceed along a line passing between UL and DL, we reach the area of latent space
in which UL-DL is located, i.e., the anomalous behavior affected by both UL
and DL anomalies (note that this desired feature is true also when Incr-VAE is
trained in the incremental way). One drawback of training on complete runs is
that in this case the online anomaly detection problem reduces to the offline one,
as complete executions are required to be provided as input to the Incr-VAE.
Another drawback is that, according to our experiments, in this way Incr-VAE
is harder to train (almost five times more epochs compared to incremental train-

ing).

Sliding Window When trained using a sliding window, the latent space of Incr-
VAE is not structured as in Fig. 4, where there is a clear concept of beginning
and end of a run. Our method, when trained incrementally, can tell if a partial
run is nominal or anomalous up to a given point; when using sliding windows, it

Platypus SCITOS-G5 Assistive robot
OSVM 1.375 (2.18) 60.5 (65.19) 5.0 (7.07)
HMM-H 3.48 (2.11) 8.38 (2.18) 46.17 (58.91)
ENC-DEC AD 19.23 (11.60) 10.66 (13.42) 6.83 (6.47)
Conv-AE 6.22 (5.16) 3.40 (3.65) 6.42 (7.48)
LSTM-VAE 3.68 (2.25) 4.88(6.33) 5.42 (6.81)
Incr-VAE 0.5 (2.18) 3.13 (5.56) 3.34 (4.71)

Table 1: Alert delay results.

Py iy iy iy

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 17

Platypus SCITOS-G5 Assistive robot
OSVM 0.123 (0.200) 0.180 (0.204) 0.130 (0.130)

)
HMM-H 0.019 (0.053) 0.169 (0.120) _ 0.073 (0.103)
ENC-DEC AD 0.107 (0.151) 0.142 (0.245) _ 0.200 (0.200)
Conv-AE _ 0.049 (0.086) 0.109 (0.058) _ 0.170 (0.100)
LSTM-VAE 0.0 (0.0) 0.191 (0.197) 0.084 (0.119)

Incr-VAE 0.0 (0.0) 0.065 (0.115) 0.007 (0.009)
Table 2: FPR results.

ouL
@®DR
o DL

. © URDR
. . @ uL-DL

O UL-DR
&
Q)
&
0.

O UR-DL
1
~ 1.

° ~

PC2 ! i

. (. @ Nominal
@)) @ . @ LR

-1

0
PC3
by
2
>
>

L%

Fig. 8: Incr-VAE latent space when trained on complete runs.

@ Nominal
@ UR

@ uL

@ DR

© DL

© UR-DR
@ UL-DL
O UL-DR
O UR-DL

Fig.9: Incr-VAE latent space when trained using a sliding window.

would tell only if a specific window is anomalous. For example, Fig. 9 depicts the
latent space when Incr-VAE is trained using a sliding window of 10 time-steps.
Some structure is still present (as reflected by the groupings of the colors),
but most of the interpretability is lost. The temporal progression is also lost
and consecutive instances of the same sub-task (e.g., the first and the second
ascending traits in Fig. 1la) are now encoded in the same spot. Moreover, our
incrementally-trained method can do both online and offline anomaly detection
with a single network trained only once. When training using sliding windows,
offline anomaly detection could not be performed.

18 D. Azzalini et al.

@ Nominal
@® UR

@ uL

@® DR

o DL

@ UR-DR
@ UL-DL
O UL-DR
© UR-DL

PC2

(a) (b)

Fig. 10: LSTM-VAE latent space.

LSTM-VAE Fig. 10 depicts the latent space of LSTM-VAE when trained only
with nominal executions of the water drone. Fig. 10a represents the encodings of
the training set (i.e., only nominal runs). In order to make LSTM-VAE’s latent
space comparable to the other ones, Fig. 10b shows the encodings of the training
set and of some anomalous runs, in different colors (the model is trained on
nominal runs only, then, after training, some anomalous runs have been passed
through the encoder). As it can be seen, some structure is present, which is
enough for the model to learn good reconstructions and, as a consequence, detect
correctly most of the anomalies (as our experimental results show). However,
the latent space of LSTM-VAE is less separable, not very interpretable, and a
progress-based structure is not present.

4.6 Latent Space Interpolation

One of the most important features of VAEs is the smoothness and continuity
of their latent spaces, which means that, for example, by interpolating points
between two encoded values that represent two different runs O, and O, and
generating new runs using the decoder, the in-between generated runs will change
smoothly from O; to Os. In Fig. 11 it is shown the case in which starting from
the embedding (i.e., latent representation) of a nominal run for the water moni-
toring robot dataset, and interpolating towards the embedding of an anomalous
one (DL), the reconstructed runs becomes incrementally more anomalous when
approaching the anomaly. This feature could be used to generate possible anoma-
lies that could affect a robot system, in order to develop contingency strategies
before the anomalies actually occur. Moreover, latent space interpolation could
be useful to explain observed anomalies. Both directions are left as future work.

5 Conclusions

In this paper we have presented a new approach based on VAEs for detect-
ing, both online and offline, anomalies in the behavior of autonomous robots.

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 19

TSR o[:
T N\ . :
N N - N

Start 2nd step 3rd step

15 15
10 10
05 05
o0 00
05 o5
10 10
15 as

4th step (f) 6the step
: : RN
. . . N
: : : A
s s s XN
7th step (h) 8th step (i) end

Fig. 11: Interpolation (reconstructions in blue, input runs in orange).

Our method outperforms other methods that have been recently proposed for
anomaly detection in robotics and does so by requiring significantly less la-
beled data. We have shown how just even a single labeled nominal execution is
sufficient for our method to partition a latent space (previously learned in an
unsupervised fashion) in a meaningful way for detecting anomalies.

Future work includes employing a Gaussian mixture prior on z to better rep-
resent different types of nominal behaviors. Another interesting future direction
is employing 3-VAEs, as their ability of inducing a disentangled z could lead
to an even more intuitive and interpretable latent space. Finally, we plan to
apply the proposed approach to other robot applications involving the need of
detecting anomalies in the context of LTA.

References

1. J. An and S. Cho. Variational autoencoder based anomaly detection using recon-
struction probability. Special Lecture on IE, 2(1):1-18, 2015.

2. D. Azzalini, L. Bonali, and F. Amigoni. A minimally supervised approach based
on variational autoencoders for anomaly detection in autonomous robots. IEEE
RAL, 2021. to appear.

3. D. Azzalini, A. Castellini, M. Luperto, A. Farinelli, and F. Amigoni. HMMs for
anomaly detection in autonomous robots. In Proc. AAMAS, pages 105-113, 2020.

4. J. Bayer and C. Osendorfer. Learning stochastic recurrent networks.

https://arxiv.org/abs/1411.7610, 2014.

. C. Bishop. Pattern recognition and machine learning. Springer, 2006.

6. A. Castellini, D. Bloisi, J. Blum, F. Masillo, and A. Farinelli. Multivariate sen-
sor signals collected by aquatic drones involved in water monitoring: A complete
dataset. Data Brief, page 105436, 2020.

ot

20

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

D. Azzalini et al.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Comput Surv, 41(3):1-58, 2009.

T. Chen, X. Liu, B. Xia, W. Wang, and Y. Lai. Unsupervised anomaly detection
of industrial robots using sliding-window convolutional variational autoencoder.
IEEE Access, 8:47072-47081, 2020.

A. Christensen, R. OGrady, M. Birattari, and M. Dorigo. Fault detection in au-
tonomous robots based on fault injection and learning. Auton Robot, 24(1):49-67,
2008.

N. Hawes, C. Burbridge, et al. The STRANDS project: Long-term autonomy in
everyday environments. IEEE RAM, 24(3):146-156, 2017.

G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504-507, 2006.

E. Khalastchi and M. Kalech. On fault detection and diagnosis in robotic systems.
ACM Comput Surv, 51(1):9, 2018.

E. Khalastchi, M. Kalech, G. Kaminka, and R. Lin. Online data-driven anomaly
detection in autonomous robots. Knowl Inf Syst, 43(3):657-688, 2015.

D. Kingma and M. Welling. Auto-encoding variational Bayes. In Proc. ICLR,
2014.

T. Krajnik, J. Fentanes, G. Cielniak, C. Dondrup, and T. Duckett. Spectral anal-
ysis for long-term robotic mapping. In Proc. ICRA, pages 3706-3711, 2014.

L. Kunze, N. Hawes, T. Duckett, M. Hanheide, and T. Krajnik. Artificial intel-
ligence for long-term robot autonomy: A survey. [EEE RA-L, 3(4):4023-4030,
2018.

M. Luperto, J. Monroy, J. Ruiz-Sarmiento, F.-A. Moreno, N. Basilico, J. Gonzalez-
Jimenez, and N. A. Borghese. Towards long-term deployment of a mobile robot for
at-home ambient assisted living of the elderly. In Proc. ECMR, pages 1-6, 2019.
M-Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proc. KDD, pages
226-231, 1996.

P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff.
LSTM-based encoder-decoder for multi-sensor anomaly detection. In Proc. ICML
Anomaly Detection Workshop, 2016.

M. Olivato, O. Cotugno, L. Brigato, D. Bloisi, A. Farinelli, and L. Iocchi. A com-
parative analysis on the use of autoencoders for robot security anomaly detection.
In Proc. IROS, pages 984-989, 2019.

D. Park, Z. Erickson, T. Bhattacharjee, and C. Kemp. Multimodal execution
monitoring for anomaly detection during robot manipulation. In Proc. ICRA,
pages 407-414, 2016.

D. Park, Y. Hoshi, and C. Kemp. A multimodal anomaly detector for robot-assisted
feeding using an LSTM-based variational autoencoder. IEEE RA-L, 3(3):1544—
1551, 2017.

D. Park, H. Kim, and C. Kemp. Multimodal anomaly detection for assistive robots.
Auton Robot, 43(3):611-629, 2019.

J. Pereira and M. Silveira. Unsupervised anomaly detection in energy time series
data using variational recurrent autoencoders with attention. In Proc. ICMLA,
pages 1275-1282, 2018.

J. Pereira and M. Silveira. Learning representations from healthcare time series
data for unsupervised anomaly detection. In Proc. BigComp, pages 1-7, 2019.

A. Rajaraman and J. Ullman. Mining of massive datasets. Cambridge University
Press, 2011.

27.

28.

29.

30.

A Minimally Supervised Approach Based on VAEs for Anomaly Detection 21

M. Soelch, J. Bayer, M. Ludersdorfer, and P. van der Smagt. Variational inference
for on-line anomaly detection in high-dimensional time series. In Proc. ICML
Anomaly Detection Workshop, 2016.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proc. ICML, pages 1096-1103,
2008.

H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng,
J. Chen, Z. Wang, and H. Qiao. Unsupervised anomaly detection via variational
auto-encoder for seasonal KPIs in web applications. In Proc. WWW, pages 187—
196, 2018.

C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Nj,
B. Zong, H. Chen, and N. Chawla. @A deep neural network for unsu-
pervised anomaly detection and diagnosis in multivariate time series data.
https://arxiv.org/abs/1811.08055, 2018.

