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A B S T R A C T   

Image texture analysis has for decades represented a promising opportunity for cancer assessment and disease 
progression evaluation, evolving in a discipline, i.e., radiomics. However, the road to a complete translation into 
clinical practice is still hampered by intrinsic limitations. As purely supervised classification models fail in 
devising robust imaging-based biomarkers for prognosis, cancer subtyping approaches would benefit from the 
employment of distant supervision, for instance exploiting survival/recurrence information. In this work, we 
assessed, tested, and validated the domain-generality of our previously proposed Distant Supervised Cancer 
Subtyping model on Hodgkin Lymphoma. We evaluate the model performance on two independent datasets 
coming from two hospitals, comparing and analyzing the results. Although successful and consistent, the com
parison confirmed the instability of radiomics due to an across-center lack of reproducibility, leading to 
explainable results in one center and poor interpretability in the other. We thus propose a Random Forest-based 
Explainable Transfer Model for testing the domain-invariance of imaging biomarkers extracted from retrospec
tive cancer subtyping. In doing so, we tested the predictive ability of cancer subtyping in a validation and 
perspective setting, which led to successful results and supported the domain-generality of the proposed 
approach. On the other hand, the extraction of decision rules enables to draw of risk factors and robust bio
markers to inform clinical decisions. This work shows the potentialities of the Distant Supervised Cancer Sub
typing model to be further evaluated in larger multi-center datasets, to reliably translate radiomics into medical 
practice. The code is available at this GitHub repository.   

1. Introduction 

Cancer subtyping typifies the process of stratifying patients into 
classes of different risks. It is currently the trending approach in litera
ture for targeting personalized medicine and steering treatment de
cisions in oncological research [1,2]. Several methodological strategies 
have been explored, ranging from supervised, semi-supervised, and 
unsupervised learning models on both structured and unstructured data, 
above all genomics [3–5]. Furthermore, imaging data analysis - in the 
form of radiomic features [6] - is known to be a non-invasive surrogate 

of tumor biological underpinnings, extracted from routinely acquired 
exams. In fact, throughout machine learning literature, imaging-based 
cancer subtyping has started catching on and several associations have 
been found between imaging/radiomics data and molecular cancer 
subtypes, hormone receptor status, and cancer severity [7,8]. However, 
traditional supervised approaches as currently exploited in clinical 
literature have unveiled the limitations of the radiomics framework [9]. 
First, high dimensional data calls for massive feature selections which 
mostly require, as well as classification models, multiple and balanced 
data. Poor repeatability and reproducibility of the results are indeed due 
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to imbalance and scarcity of data. This can hardly be overcome: in fact, 
the number of samples is limited to the number of cases, few when 
dealing with rare diseases; the number of minority class observations is 
limited to the number of patients who do not heal and eventually recur, 
which is a small percentage over the total of patients; finally, the vari
ability of the reconstruction parameters, acquisition settings, and scan
ners is due to the lack of standardization in clinical practice. For these 
reasons, the current paradigm of radiomics has shifted towards more 
complex and non-fully supervised strategies for patient stratification and 
imaging-based risk factor identification. 

Several Image Clustering (IC) techniques have been proposed to 
match imaging features to clinical cancer subtypes and to quantify its 
prognostic association with survival and recurrence-free survival rates 
[10,11]. The most up-to-date IC approaches for survival risk prediction 
in medical imaging adopt unsupervised or semi-supervised deep 
learning solutions [12,13]. [14] developed an unsupervised encoder 
with Cox loss to compress clinical, mRNA, microRNA expression data, 
and histopathology Whole Slide Images (WSIs) to perform cancer sub
typing. Similarly, [15] performed a prognostic analysis of histopatho
logical images of hepatocellular carcinoma using a pre-trained CNN to 
extract latent features; they kept the features significant at Cox analysis 
and applied an SVM model for stratification. Moreover, [16] proposed a 
pipeline consisting of learning the image latent representation from 
survival CNN, a dimensionality reduction step, and the clustering eval
uation. Finally, in the framework of stochastic gradient variational 
inference, [17] proposed a deep probabilistic approach to retrieve 
clusters driven by latent variables and survival information. All such 
approaches extract imaging representation features from somewhat 
trained CNNs and need to apply an a posteriori supervised feature se
lection procedure, to either reduce the data dimensionality or to keep 
only survival-informative variables. Therefore, the fragmented nature of 
these pipelines prevents them from explainable assessing the imaging 
capability of devising risk factors in a perspective way. Moreover, deep 
embeddings, unlike radiomic vectors, do not entail standardized and 
interpretable features. 

In our previous work [18], we leveraged a Distant Supervision (DS) 
approach to perform Cancer Subtyping (CS) of Hodgkin Lymphoma 
patients according to their radiomic phenotype. Specifically, DS is a 
particular case of weekly supervision where some higher-level labels are 
used to perform the classification task [19]. This approach often allows 
for making the training more efficient and, here, permits boosting an 
unsupervised model. The prognostic reliability of the detected sub- 
populations, the scalable performance, and the interpretability of the 
model was shown to be the main advantages of this approach. In fact, 
the characterization of the groups emerging by subtyping the population 
may enhance the clinical interpretation of radiomic features in terms of 
both cancer severity and therapy response. We indeed provided a tool 
for reversing the paradigm of interpreting the biological meaning of 
higher-order radiomic variables. 

Based on these considerations, in this work, we explored the 
robustness of the Distant Supervised Cancer Subtyping (DS-CS) model to 
the domain shift, in particular concerning the across-center variability of 
the scans. Specifically, we compare the results obtained on two datasets 
coming from different hospitals to discuss the concordance of findings 
(Section 2.4). The consistency of the results suggests the DS-CS domain- 
generality, however, interpretability appears to be bounded by the 
informative content of data. Interestingly, the prognostic power of im
aging biomarkers improves with a borrowing strength strategy (Section 
3.1). Upon such findings, as a second contribution, we use a classifica
tion model to exploit the domain transfer in a perspective way. Specif
ically, we propose a Random Forest-based Explainable Transfer Model to 
transfer the cancer subtyping policy from one setting to the other 
(Section 2.5). We extract agnostic imaging-based rules that are shown to 
be both robust and prognostic (see Section 3.3). Although such results 
cannot be considered definitive, we believe that this work provides 
interesting insights for testing the robustness of Distant Supervised 

Cancer Sub typing in identifying imaging cancer subtypes in an agnostic 
and perspective way. 

2. Methods and analyses 

This section exposes the analytical pipeline. Before illustrating the 
models, in Sections 2.1 and 2.2 we describe the data collection and the 
harmonization process to provide an overview of the datasets summary 
information. The DS-CS model is described in Section 2.3 since it rep
resents the basic block on which the contributions of this work are built 
upon. 

As in Fig. 1, we then explain the analytical workflow to support the 
claims of the present work. In Section 2.4, we conduct a robust repro
ducibility analysis and compare the DS-CS model in different settings: 
two different single-center datasets and one multi-center dataset. Results 
are assessed in terms of cancer subtypes characterization, i.e., the group- 
wise probability to recur and between-groups discrimination power of 
radiomic features. 

As will be pointed out in Section 3.1, the intrinsic limitations of 
radiomic features are overcome with distant supervision, however, the 
identification of domain-general prognostic biomarkers could be boun
ded by the biases of the labels. Pertinently, in Section 2.5 we introduce a 
model for explainable transferring the DS-CS model onto different do
mains and deduce imaging-based perspective rules to be applied in other 
settings/domains. Performance evaluation, improvements, and inter
pretation of results follow this section. 

All models have been implemented in MATLAB [20] as well as 
evaluation results. However, we performed survival analysis and 
extracted explainability rules using R [21]. 

2.1. Data collection 

Data was collected from two hospitals in the Milan area, Humanitas 
Research Hospital (ICH - Istituto Clinico Humanitas) and the Italian 
National Cancer Institute (INT - Istituto Nazionale dei Tumori). The 
study was performed under the Declaration of Helsinki and approved by 
the local ethics committees. In light of the observational retrospective 
study design, the signature of a specific informed consent and the legal 
requirements of clinical trials were waived. 

ICH enrolled 128 patients in the study as they met the inclusion 
criteria. They were diagnosed with Hodgkin Lymphoma and were 
treated and followed up at the center. Pre-treatment [18F]FDG PET/CT 
imaging was available for all patients. Personal and clinical information 
regarding demography, therapy, follow-up, and qualitative disease in
formation was collected from Digital Medical Records per each patient. 
In addition, all the [18F]FDG-avid lesions were located and semi- 
automatically segmented by an expert nuclear medicine physician (M. 
S.) with a 40 % of SUVmax threshold. The LIFEx software was used for 
segmentation, as well as for imaging harmonization and feature 
extraction as explained in Section 2.2 (www.lifexsoft.org, [22]). In total, 
1340 lesions were collected and quantitatively assessed. Survival and 
recurrence-free survival information were also registered. Chemo
therapy starting dates, dates of ad interim PET (iPET), and End Of 
Treatment (EOT) PET were collected to extract temporal information of 
therapy pathways. The radiotherapy date was also made available when 
performed. For what treatment efficacy and recurrence/relapse are 
concerned, response to therapy was monitored over time, with check
points at the end of first-line of chemotherapy (iPET), at the end of all 
chemotherapy cycles (EOT PET), and at the time of the last follow-up 
(LFU). Patients were defined as responders and non-responders which 
included patients who progressed during or early after the first-line 
treatment (refractory) and patients who eventually relapsed within the 
observation period (recurrent/relapsing). Additionally, survival infor
mation at the time of the last follow-up was collected, yet only one 
patient experienced the event. Patient information is made available in 
Table 1 for categorical variables and Table 2 for numerical variables. 
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The same criteria were used to enroll patients and analyze images at 
INT. Most of the patients were diagnosed at the center and information 
about those patients for whom this was not the case was retrieved and 
properly annotated. [18F]FDG PET/CT images of 76 Hodgkin Lym
phoma patients (794 lesions) were analyzed by an expert nuclear 
medicine physician (M.K.) using LIFEx software. Clinical data about 
demographics, chemotherapy cycle length, radiotherapy treatment, and 
follow-up were collected. Both iPET and EOT PET were defined as 
positive in presence of an area of [18F]FDG uptake higher than the 

background as defined by a Deauville Score of DS4 or DS5. DS3 or lower 
was consistent with a negative exam [23]. Information about the specific 
Deauville Score of each patient was available only for the ICH dataset. 
For INT, no distinction was made if non-responding patients at LFU were 
refractory or relapsing, however, time to recurrence allowed to retrieve 
such information when compared to chemotherapy cycles duration. No 
survival information was collected. Patients’ information is made 
available in Table 3 for categorical variables and Table 4 for numerical 
variables. In Supplementary Tables 1 and 2, scanner specifications are 
detailed for both centers. Moreover, in Section 2 of Supplementary 
Materials, descriptive statistics of disease-free-survival times according 
to clinical variables are explored. 

2.2. Harmonization and patient representation 

For comparison purposes, a harmonization step was required both 
from clinical and imaging points of view. First, all clinical and personal 
information was processed with a strategy of compliance with the less 
rich dataset. That is, response to treatment and cancer progression were 

Fig. 1. Methodological workflow: objective (1) provides a comparison between the Distant Supervised Cancer Subtyping model applied to different domains. In 
particular: DS-CS model implementation on the ICH pillar is presented in Section 2.4.1; DS-CS model performance on the ICH pillar is presented in Section 3.1.1; DS- 
CS model implementation on the INT pillar is presented in Section 2.4.2; DS-CS model performance on ICH pillar is presented in Section 3.1.2; DS-CS model 
implementation on ICH + INT pillar is presented in Section 2.4.3; DS-CS model performance on ICH + INT pillar is presented in Section 3.1.3; overall across-center 
reproducibility is discussed in Section 3.1.4. Objective (2) describes the domain transfer of the DS-CS model via Explainable Transfer Model training (Sections 2.5 and 
3.2); validation performance on testing dataset and robustness concerning domain-shift are displayed in Section 3.3. Rule extraction explainability is shown in 
Section 3.4. 

Table 1 
Humanitas Research Hospital (ICH) patients’ categorical characteristics.  

Categorical variables – N (%) Responders (N = 107) Non-responders (N = 21) 

Stage I 9 (8 %) 0 (0 %) 
II 57 (53 %) 11 (52 %) 
III 12 (11 %) 2 (10 %) 
IV 30 (28 %) 8 (38 %) 

Sex F 62 (58 %) 14 (67 %) 
M 45 (42 %) 7 (33 %) 

B symptoms N 60 (56 %) 7 (33 %) 
Y 47 (44 %) 14 (67 %) 

Extranodal disease N 74 (69 %) 11 (52 %) 
Y 33 (31 %) 10 (48 %) 

Bone disease N 80 (75 %) 18 (86 %) 
Y 27 (25 %) 3 (14 %) 

Radiotherapy N 38 (35 %) 17 (81 %) 
Y 69 (65 %) 4 (19 %) 

iPET DS1 82 (77 %) 10 (48 %) 
DS2 12 (11 %) 2 (9 %) 
DS3 11 (10 %) 1 (5 %) 
DS4 2 (2 %) 5 (24 %) 
DS5 0 (0 %) 3 (14 %) 

PET EOT DS1 77 (72 %) 13 (62 %) 
DS2 11 (10 %) 3 (14 %) 
DS3 10 (9 %) 1 (5 %) 
DS4 3 (3 %) 1 (5 %) 
DS5 6 (6 %) 3 (14 %)  

Table 2 
Humanitas Research Hospital (ICH) patients’ numerical characteristics.  

Numerical variables – mean (std 
deviation) 

Responders (N =
107) 

Non Responders (N =
21) 

Age 39.252 (15.875) 40.143 (15.963) 
# Nodal lesions 6.673 (4.813) 6.619 (6.184) 
# Extranodal lesions 1.916 (5.750) 3.857 (10.256) 
Dispersion of nodal lesions 0.967 (0.441) 1.169 (0.564) 
Dispersion of extranodal lesions 0.827 (1.652) 1.882 (4.383) 
Dispersion of all lesions 0.931 (0.409) 1.352 (0.714) 
Mean volume (z-score) 0.028 (0.520) 0.455 (0.963) 
Std. dev. volume (z-score) 0.529 (0.833) 1.270 (1.702) 
Minimum volume (z-score) − 0.307 (0.141) − 0.326 (0.084) 
Maximum volume (z-score) 1.157 (2.136) 2.582 (3.352) 
Time to relapse [days] 1126.97 (704.94) 358.86 (322.854)  

L. Cavinato et al.                                                                                                                                                                                                                               



Artificial Intelligence In Medicine 138 (2023) 102522

4

flagged by a dichotomous variable, survival information was neglected 
and times to events were computed. 

Moreover, as LIFEx software participates in the Image Biomarker 
Standardization Initiative, consistent imaging harmonization and 
feature extraction were implemented. We performed homogeneous gray 
levels discretization with a Fixed Bin Number (FBN) of 64 and we 
rescaled pixels’ intensities according to absolute resampling bounds 
(min = 0 SUV; max = 20 SUV) to account for the tissue-specific vari
ability. No spatial resampling and further image pre-processing were 
implemented for managing the voxel volume dependency of features. 
However, only ROIs bigger than 64 voxels were considered adequate for 
radiomics analysis and kept. From Regions Of Interest (ROIs), i.e., le
sions, radiomic description was computed. The radiomic signature 
consisted of 45 radiomic features including conventional (e.g., intensity- 
based indexes), first (e.g., histogram-based and shape indexes), second 
(e.g., GLCM-derived indexes), and higher order (e.g., GLRLM-, GLZLM-, 
and NGLDM-derived indexes) statistics. The features’ definitions are 
described in the LIFEx 4.9 manual [22]. These groups are known to 
entail different texture information and can thus be seen as four different 
imaging views of the tumor. Additionally, to normalize features to 
remove the so-called batch, or center, effect, we performed z-score 
normalization to each radiomic variable separately for each hospital. Z- 
score normalization was proven to outperform other standardization 
methods [24]. Specifically, z-transform reshapes each variable to fit a 
Normal distribution μ = 0 and σ = 1 and applies the following 
transformation: 

zi =
xi − x

σ  

where xi is the un-normalized variable value, x the variable mean and σ 
the variable standard deviation. In principle, each radiomic variable was 
thus disentangled from the center effect. 

Given the multi-lesion nature of the patients, a single radiomic vector 
was built as described by [18]. Specifically, lesions’ radiomic features 
were averaged patient-wise to obtain the lesions’ mean radiomic pro
file/phenotype of patients. Additionally, some variables were added 
and/or transformed to enrich the disease description. The number of 
total lesions, number of nodal and extranodal lesions, and dispersions of 
all, nodal and extranodal lesions within a patient were computed as a 
proxy of tumor spread and heterogeneity. In this way, each patient i was 
described by a standardized vector Xi entailing all the tumor informa
tion, including the four quantitative radiomic views and the one clinical 
description of the disease, i.e., the six qualitative variables. A total of five 
types of features, i.e., five views, was thus accounted for in the imaging- 
based disease representation Xi of patients. After harmonization, the ICH 
dataset contained 128 patients described by 61 variables and the INT 
dataset held 76 patients described by the same 61 variables. 

2.3. Distant Supervised Cancer Subtyping (DS-CS) model 

The DS-CS model takes as input the imaging-based disease repre
sentation Xi of each patient. The pipeline is built through two method
ological steps and one interpretation step, as depicted in Fig. 2. First, the 
patient-to-patient graph describing the population under analysis is 
computed. Specifically, the affinity matrix needs to be estimated. Of 
course, the algorithm’s hyperparameters must be optimized. Conse
quently, the graph is segmented according to spectral clustering, that is, 
homogeneous sub-populations of nodes with similar properties are 
devised and clustered apart. To validate the subtyping procedure, sub- 
populations of patients need to be characterized with clinical vari
ables, endogenous and exogenous to the model building. 

2.3.1. Patient-to-patient graph estimation 
The patient-to-patient similarity graph is obtained by minimizing the 

following objective function as suggested by [25]: 

min
w;S

∑m

k=1

(

−
∑n

i=1
δi

(

Xk
i wk − log

∑

j∈Ri

exp
(

Xk
j wk
)
))

+λ
∑

k∕=j

⃦
⃦Xkwk − Xjwj

⃦
⃦2

2 + η
∑m

k=1

⃦
⃦wk
⃦
⃦

+min
S

γ
∑n

i=1

∑n

j=1

(⃦
⃦Xi − Xj

⃦
⃦2

+
⃦
⃦Xiw − Xjw

⃦
⃦2
)

Si,j + μS2
i,j

s.t.
∑n

j
Si,j = 1; Si≽0; i = 1, 2,…, n.

(1) 

The loss function (1) allows estimating the distance between patients 
in terms of both imaging-based disease representation and disease-free 
survival prediction. Specifically, it develops in four terms. We recall 
that each patient is described by a set of radiomic and qualitative fea
tures Xi as described in Section 2.2 and their disease-free survival in
formation {δi,Ti}, where δi is the censoring variable indicating if the 
recurrence has taken place or not and Ti the time to recurrence. More
over, as previously stated, the Xi imaging-based disease representation is 
a vector containing features of m = 5 different natures (or views), whose 
contribution may be weighted differently in the following model. 

The first term in (1) implements the distant supervision of the model. 
Specifically, the negative partial log-likelihood of the Cox (survival) 
model is computed, where Xk

i is the set of variables belonging to k −
th view of i − th patient and Ri is the set of patients observed alive almost 
at time Ti. Additionally, n is the total number of patients, and m is the 
number of imaging views. In other words, per each patient, the survival 
risk is obtained as a linear combination of the risks associated with every 

Table 3 
National Cancer Institute (INT) patients’ categorical characteristics.  

Categorical variables – N (%) Responders (N = 59) Non-responders (N = 17) 

Stage I 1 (2 %) 0 (0 %) 
II 31 (52 %) 4 (23 %) 
III 6 (10 %) 1 (6 %) 
IV 21 (36 %) 12 (71 %) 

Sex F 34 (58 %) 8 (47 %) 
M 25 (42 %) 9 (53 %) 

B symptoms N 35 (59 %) 4 (23 %) 
Y 24 (41 %) 13 (77 %) 

Extranodal disease N 39 (65 %) 7 (41 %) 
Y 20 (45 %) 10 (59 %) 

Bone disease N 44 (75 %) 13 (77 %) 
Y 15 (25 %) 4 (23 %) 

Radiotherapy N 20 (45 %) 14 (82 %) 
Y 39 (65 %) 3 (18 %) 

iPET Negative 55 (93 %) 8 (47 %) 
Positive 4 (7 %) 9 (53 %) 

PET EOT Negative 59 (100 %) 0 (0 %) 
Positive 0 (0 %) 17 (100 %)  

Table 4 
National Cancer Institute (INT) patients’ numerical characteristics.  

Numerical variables – mean (std 
deviation)   

Age 36.478 (13.915) 42.867 
(17.868) 

# Nodal lesions 7.271 (5.499) 9.706 (6.362) 
# Extranodal lesions 2.288 (5.789) 3.706 (7.355) 
Dispersion of nodal lesions 0.900 (0.463) 1.405 (2.049) 
Dispersion of extranodal lesions 0.747 (1.636) 1.938 (3.425) 
Dispersion of all lesions 0.900 (0.443) 1.406 (1.886) 
Mean volume (z-score) 0.075 (0.542) 0.176 (0.784) 
Std. dev. volume (z-score) 0.625 (1.030) 0.931 (1.394) 
Minimum volume (z-score) − 0.331 (0.090) − 0.358 (0.087) 
Maximum volume (z-score) 1.312 (2.453) 2.304 (3.368) 
Time to relapse [days] 1105.72 

(546.490) 
257.59 
(167.17)  
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input feature Xk
j ⋅wk. The loss function computes the distance between 

the i − th patient’s survival risk and the risks of the rest of the patients in 
the population and minimizes it by estimating the risk coefficients w. In 
this way, patients at similar disease-free survival risks will be closer in 
the graph than patients at different risks. The recurrence probability is 
thus the distant label for supervising the model. 

The second and the third terms in (1) carry out the L2 and L1 reg
ularization over the input features. In fact, given the high dimensionality 
of the vector Xi, some feature selection may be needed. λ drives the 
regularization between the views, shrinking the contributions of views 
with similar information. The sparsity parameter η removes non- 
informative features, penalizing their contribution to the overall model. 

Finally, the fourth term in (1) minimizes the distance between 
imaging-based disease representations of patients (i.e., the five-view 
vector). It computes the pairwise difference between the input vectors 
of every pair of patients 

(
Xi,Xj

)
and their survival probabilities 

(
Xi⋅ 

w,Xj⋅w
)

estimated in the first term. In this way, the overall graph affinity 
matrix S ∈ ℜn×n is learnt. The entries Si,j of the affinity matrix constitute 
the recurrence-informed similarity between each pair of patients. 
Finally, the parameter γ represents the learning rate and μ is a 
information-complexity trade-off parameter. 

According to this formulation, a two-fold objective is pursued: the 
survival analysis with the computation of risks w given S and the esti
mation of the similarity graph S given the risks w. As proposed by [25], 
an alternating optimization algorithm was used to solve the corre
sponding problem. 

2.3.2. Hyperparameters optimization 
Hyperparameters are optimized according to grid search. In fact, λ 

(the co-regularization parameter), η (the L1 penalization parameter), 
and γ (the learning rate) contribute to modulating the distance between 
patients. Since the only supervision involved in the estimation is rep
resented by the Cox survival loss, a concordance index with survival 
information may be exploited. Specifically, we select the parameter 
values among a range experimentally, estimate the graph’s affinity 
matrix, and compute the Harrell’s concordance index (c-index) of the 
estimated survival risks [26]. The values that maximize Harrell’s c-index 
are selected as the optimal ones. 

2.3.3. Spectral clustering 
To segment the population graph, the spectral clustering algorithm is 

used as it represents an efficient strategy for the clustering of hetero
geneous disease expression data [27]. Specifically, spectral clustering 
uses information from the spectrum of the graph affinity matrix to 
cluster nodes. The affinity matrix indeed entails the information about 
the quantitative pairwise relationship between nodes and encodes such 
interaction in a way that it can be exploited for clustering purposes. 
Resulting clusters, or classes, are then intended as groups of patients 
with similar properties, in terms of both imaging-based disease pheno
type and survival expectation. Accordingly, each class corresponds to a 
cancer subtype. 

To choose the number of clusters k, the eigengap heuristic is fol
lowed. Once the Laplacian of the graph, either normalized or non- 
normalized, is computed, k is equal to the number of its null eigen
values [28]. If k leads to obtaining subgraphs with <10 nodes, every 
small subgraph is merged with its closest subgraph and k is accordingly 
decreased. 

2.4. Across-center reproducibility 

Having described the data and the DS-CS model, we proceed to detail 
the assessment of across-center reproducibility. This represents the first 
step towards the evaluation of DS-CS domain-invariance. 

2.4.1. DS-CS model on ICH data 
The DS-CS model was first applied to the ICH dataset. The loss 

function was optimized and tuned on data for estimating the patient-to- 
patient similarity graph. The optimal choice was 0.1 for γ, meaning that 
convergence requires several iterations to be guaranteed, whereas reg
ularization parameters were set to 0.4 and 0.01 for η and λ respectively. 
Since η ∕= 0, the less informative features were indeed removed from the 
model. The value of λ ∼ 0 suggests a disagreement between imaging 
views, that is, they provide different perspectives of imaging informa
tion which need to be exploited in full. The spectral clustering procedure 
devised k = 2 classes of patients (nodes), bringing to the separation of 
different cancer imaging phenotypes with different prognoses (results 
will be discussed in Section 3.1.1). 

2.4.2. DS-CS model on INT data 
For comparison and qualitative assessment purposes, the very same 

procedure was applied to and optimized for the INT dataset. Optimal 
parameters for γ, η and λ were found as described in Section 2.3.2. Their 
values were set to 0.1, 0.4, and 0.02 respectively, being in line with the 

Fig. 2. The Distant-Supervised Cancer Subtyping pipeline: a) computation and optimization of patient-to-patient similarity graph via minimization of the loss 
function (1) as described in Sections 2.3.1 and 2.3.2 respectively; b) clustering/segmentation of patient-to-patient graph into subgraphs, i.e., clusters of nodes 
(Section 2.3.3); c) cluster-wise characterization and comparison in terms of survival probabilities and imaging variables. 
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Table 5 
Discrimination power of radiomic variables in stratifying low-risk and high-risk patients in the three datasets (ICH, INT, multi-center). The table presents the p-values of the Mann-Whitney U tests for the difference in 
imaging variables’ distributions in each model. Significance is marked with a “.”’ if 0.05 < p-value < 0.1, with “*”’ if$0.01 < p-value < 0.05, with “**”’ if 0.001 < p-value < 0.01, and with “***”’ if p-value < 0.001.  

Variable P-values on ICH dataset P-values on INT dataset P-values on multi-center dataset Variable P-values on ICH dataset P-values on INT dataset P-values on multi-center dataset 

Stage 0.0098 ** 0.0026 ** 0.0000 *** GLCM Contrast 0.0328 * 0.295 0.0612 . 
Sex 0.3503 0.3869 0.4478 GLCM Correlation 0.0099 ** 0.840 0.0935 . 
Age 0.9176 0.1265 0.2906 GLCM Entropy log1 0.0480 * 0.626 0.3539 
B Symptoms 0.0000 *** 0.0014 ** 0.0000 *** GLCM Entropy log2 0.0480 * 0.626 0.3539 
Extranodal disease 0.0111 * 0.0753 . 0.0002 *** GLCM Dissimilarity 0.0546 . 0.386 0.1052 
Bone disease 0.1767 0.6932 0.6338 GLRLM SRLGE 0.2018 0.949 0.3490 
Radiotherapy 0.0000 *** 0.0000 *** 0.0000 *** GLRLM LRE 0.1700 0.824 0.3466 
# nodal lesions 0.0547 . 0.1087 0.0288 * GLRLM LGRE 0.0882 . 0.369 0.1795 
# extranodal lesions 0.0032 ** 0.3415 0.0005 *** GLRLM HGRE 0.0086 ** 0.330 0.0503 . 
Dispersion nodal 0.1226 0.0359 * 0.2131 GLRLM SRLGE 0.0836 . 0.357 0.1689 
Dispersion extranodal 0.0045 ** 0.8894 0.0008 *** GLRLM SRHGE 0.0092 ** 0.330 0.0532 . 
Dispersion all 0.0047 ** 0.0557 . 0.0046 ** GLRLM LRLGE 0.1087 0.519 0.233 
Volume mean 0.1214 0.4658 0.0388 * GLRLM LRHGE 0.0094 ** 0.285 0.0535 . 
Volume std 0.0019 ** 0.1662 0.0025 ** GLRLM GLNU 0.0087 ** 0.253 0.0481 * 
Volume min 0.0010 ** 0.1933 0.0064 ** GLRLM RLNU 0.0001 ** 0.115 0.0040 ** 
Volume max 0.0003 *** 0.0970 . 0.0003 *** GLRLM RP 0.2127 0.991 0.3442 
Conventional SUVmin 0.0123 * 0.3523 0.1052 NGLDM Coarseness 0.0043 ** 0.136 0.0978 . 
Conventional SUVmean 0.0155 * 0.3204 0.0632 * NGLDM Contrast 0.1931 0.352 0.2105 
Conventional SUVstd 0.0048 ** 0.3634 0.0245 * NGLDM Busyness 0.1965 0.695 0.4669 
Conventional SUVmax 0.0021 ** 0.2857 0.0157 * GLZLM SZE 0.0074 ** 0.485 0.0383 * 
Conventional SUVpeak 0.0002 *** 0.4097 0.0353 * GLZLM LZE 0.2439 0.719 0.3948 
Conventional TLG (mL) 0.0049 ** 0.3634 0.0173 * GLZLM LGZE 0.0533 . 0.352 0.1363 
HISTO Skewness 0.0067 ** 0.7998 0.2062 GLZLM HGZE 0.0058 ** 0.290 0.0423 * 
HISTO Kurtosis 0.0463 * 0.8161 0.1032 GLZLM SZLGE 0.0521 . 0.216 0.1057 
HISTO ExcessKurtosis 0.0463 * 0.8161 0.1032 GLZLM SZHGE 0.0044 ** 0.295 0.0360 * 
HISTO Entropy log10 0.0185 * 0.6419 0.0707 . GLZLM LZLGE 0.8165 0.924 0.9706 
HISTO Entropy log2 0.0185 * 0.6419 0.0707 . GLZLM LZHGE 0.0007 ** 0.147 0.0099 ** 
HISTO Energy Uniformity 0.0509 . 0.7036 0.1826 GLZLM GLNU 0.0036 ** 0.125 0.0211 * 
SHAPE Volume (mL) 0.0403 * 0.4658 0.0347 * GLZLM ZLNU 0.0001 ** 0.330 0.0023 ** 
GLCM Homogeneity 0.1327 0.6495 0.2376 GLZLM ZP 0.2358 0.634 0.1873 
GLCM Energy 0.1700 0.857 0.8858      
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ICH model. Similarly to the ICH dataset, k = 2 groups of different cancer 
subtypes were identified by spectral clustering (see Section 3.1.2) and 
could be compared with ICH results (see Section 3.1.4). 

2.4.3. DS-CS model on ICH + INT data 
As an additional level of analysis, the two datasets have been merged 

and the DS-CS pipeline was run on the multi-center dataset to evaluate 
the results irrespectively to the provenience of the observations. As will 
be pointed out in Section 3.1, we anticipate that the DS-CS ICH model 
brought to high discrimination power of imaging features while DS-CS 
INT model did not. For such reason, we have investigated whether 
such power could be used to improve the DS-CS INT model, inflating the 
variability of the data coming from a different population, i.e., ICH 
center. The values of the parameters that led to the higher c-index 
performance were 0.1 for the learning rate (γ), 0.5 for L1-penalization 
(η), and 0.01 for L2-regularization (λ). Accordingly, convergence was 
guaranteed, non-informative features were deleted and a mild shrinkage 
between views was accounted for. Similarly to ICH and INT cases, the 
spectral clustering procedure on the multi-center dataset resulted in k =

2 clusters of patients exhibiting different cancer subtypes. Results are 
described in Section 3.1.3 and compared with the ones of DS-CS ICH 
model and DS-CS INT model in Section 3.1.4. 

2.5. Explainable transfer model 

As it will be further discussed in Section 3.1, the application of DS-CS 
models to different datasets did produce consistent cancer subtyping 
policies. However, it was not possible to validate the across-domain 
agreement of the imaging biomarkers because of the DS-CS INT model 
lack of interpretability and the retrospective nature of the model. 
Generally speaking, it is a literature open problem to perspectively apply 
a retrospective model to new observations. Here, we propose an 
Explainable Transfer Model (ETM), that is, a perspective and inter
pretable approach for transferring any retrospective and unsupervised 
model, e.g. the DS-CS model, in a validation setting. In our context, we 
implemented the domain transfer of the DS-CS model via ETM to test DS- 
CS domain-generality. 

2.5.1. Training 
To build the ETM, ICH decision rules have been extracted from DS-CS 

ICH model with the scope of exploiting its prognostic power and its 
robustness. A Random Forest (RF) of 100 trees, cross-validated with Out- 
of-Bag prediction, with a minimum leaf size of 5 and empirical prior was 
used for rule extraction. The model was trained on the ICH dataset, 
considering only those features that were significant at univariate 
testing in DS-CS ICH model (see Mann-Whitney U tests in Section 3.1.4 
and Table 5). The training performance of the transfer model is dis
cussed in Section 3.2. 

2.5.2. Testing 
Upon model training, it was applied to the INT dataset and perfor

mance has been evaluated in terms of survival differences and radiomics 
prognostic power. A new set of labels resulted from the model trans
ferring, which led to grouping patients into two risk classes, one with a 
poorer and one with a milder prognosis. The new labels were compared 
with the one resulting from the DS-CS INT model described in Section 
2.4.2 and improvements were evaluated in terms of interpretability 
(Section 3.3). 

2.5.3. Explainability 
As for interpretability, decision rules were extracted from ETM and 

were interpreted to identify clinical and radiomic features as risk factors 
and/or biomarkers. Every rule of every tree split was annotated and kept 
when common enough in the forest to be relevant; similar rules were 
then post-treated and aggregated to define a stable, interpretable, and 
unique set of elementary rules driving the decisions making [29,30]. The 
algorithm was first trained in a cross-validation fashion to estimate the 
optimal hyperparameter p0 used to select the number of relevant rules to 
extract. Specifically, p0 represents the proportion of RF’s trees in which a 
rule must appear to be defined as relevant, and is estimated according to 
a performance-stability trade-off. The algorithm was then run on the 
trained Random Forest to retrieve the n most relevant decision rules. 
Section 3.4 details the findings. 

Fig. 3. Feature importance plot of the ETM: the most relevant features in the Random Forest-based model are presented with a descending order The importance of 
the features was computed according to Out-of-bag (OOB) permuted predictor delta error [33]. 
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3. Results 

Section 3 of Supplementary Materials describes the limitations of 
performing a traditional machine learning-based radiomics model 
following current literature guidelines. Supervised frameworks are 
proven to fail in discriminating tumor subtypes, laying the foundation 
for this work’s objectives. In fact, the retrospective nature of the models 
and the limited variability of observations prevent translating the 
traditional radiomic approach into clinical practice. Additionally, the 
clinical conclusions that may derive are tightly dependent on the 
observed dataset – and their labels – and result in poor validation per
formance. It happens quite frequently in literature to find in
consistencies and lack of consensus in radiomics literature, even 
concerning same cancer [31]. The very same questions have been 
inquired about the DS-CS model. 

3.1. Across-center reproducibility 

In this section, we first present the results of each DS-CS model 
separately and, then, discuss the concordance of the findings. 

3.1.1. DS-CS model on ICH data 
As displayed in Section 4 of Supplementary Materials (Fig. 3), two 

groups were identified and the Kaplan-Meier curves of groups’ proba
bility to recur were built for each group. The p-value of the Log Rank test 
between the two Kaplan-Meier curves resulted to be ≪0.01, showing 
strong significance. Moreover, the Hazard Ratio was computed as the 
ratio between the risk of recurrence in group 1 and the risk of recurrence 
in group 2. According to Hazard Ratio (0.2176, IC 95 %: 
0.1202–0.3937), group 1 was characterized by a better prognosis with 
almost no recurrence experienced, while group 2 contained patients 
with a poorer prognosis, who were instead more likely to recur. Clinical 
and radiomic features were used to interpret the risk classes, emerging 
significantly different in several cases. To compare the average imaging 
description of one class with respect to the other class, two-sided non 
parametric tests on averages (Mann-Whitney U tests) were used and p- 
values lower than the threshold of 0.1 were considered significant (see 
Table 5, first column). 

3.1.2. DS-CS model on INT data 
As displayed in Section 4 of Supplementary Materials (Fig. 3), two 

groups were obtained and tested to be significantly different in terms of 
prognosis (p-value of the Log Rank test between the two Kaplan-Meier 
curves ≪ 0.01). As emerged from Hazard Ratio (0.0627, IC 95 %: 
0.0321–0.1223), group 1 featured those patients with a better prognosis 
with no events of recurrence, while group 2 was populated by patients 
with poorer prognosis and a higher chance of recurrence. Mann-Whitney 
U tests were performed to evaluate differences between the two groups 
and to characterize the cancer subtyping policy (see Table 5, second 
column). The clustering characterization was interpreted as a rule for 
describing cancer subtypes. Such characterization could thus be 
compared with the one coming from the ICH dataset for repeatability 
purposes. 

3.1.3. DS-CS model on ICH + INT data 
Similarly to ICH and INT cases, the cancer subtyping model resulted 

successfully on the multi-center dataset. Two Kaplan-Meier curves were 
computed for the patients belonging to the two risk classes and the Log 
Rank test led to significant results (p-value of the Log Rank test ≪ 0.01). 
From the Hazard Ratio assessment (0.1117, IC 95 %: 0.0732–0.1705), it 
was clear how group 1 was again related to non-recurrent patients and 
group 2 to recurrent and bad prognosis cases. Mann-Whitney U tests on 
variables were performed to compare the two groups, resulting to be 
significant in almost all cases (see Table 5, third column). 

3.1.4. Comparison between models 
The three models brought a significant classification of patients with 

different prognoses as survival curves were tested to be different in all 
cases. The Hazard Ratios were consistent in all three cases (HRICH < 1, 
HRINT < 1, HRICH+INT < 1), suggesting the coherency of the cancer 
subtyping policies. In each dataset, two - severe and mild - classes of 
risks were obtained and could thus be compared. In principle, all three 
classes of mild cancer should present the same radiomic characterization 
while all three classes of severe cancer should display a similar imaging 
phenotype. To investigate this point, tests on input features were per
formed and compared in the three cases. Results are displayed in 
Table 5. For each of the three datasets - namely ICH, INT, and multi- 
center ICH + INT datasets - we list the p-values of the univariate tests 
performed on every variable. Significance is marked with a “.” if 0.05 <
p-value < 0.1, with “*” if 0.01 < p-value < 0.05, with “**” if 0.001 < p- 
value < 0.01, and “***” if p-value < 0.001. 

45/61 features were significant in ICH dataset, 7/61 in INT dataset 
and 34/61 in multi-center dataset. 33/61 features were significant in 
both the ICH dataset and multi-center dataset while 6/61 in both the INT 
dataset and multi-center dataset. Features significant in both the ICH 
dataset and INT dataset preserved significance in the multi-center 
dataset and showed consistency. Specifically, these were 6/61: Stage, 
B Symptoms, Extranodal disease, Radiotherapy, Dispersion of all lesions, 
and Volume (i.e., lesions’ maximum value). Most of the features that 
resulted significant in the DS-CS ICH model but not in the DS-CS INT 
model (27/45) were strong enough to remain significant in the multi- 
center DS-CS ICH + INT model. Such variables were equally found 
among first-order, second-order, and higher-order radiomic features, as 
well as qualitative disease information like volume and number of nodal 
and extranodal lesions. The remaining features did not hold significance 
in the multi-center DS-CS ICH + INT model, being overshadowed by INT 
data noise. Of course, variables that were not significant in DS-CS ICH 
model nor DS-CS INT model remained not significant in the multi-center 
case (14/61). These include Sex, Age, Bone disease, and 11 radiomic 
features. 

As the patient-to-patient similarity graph was estimated by mini
mizing patients’ differences both in terms of imaging-based disease 
representation and disease-free-survival probabilities (distant supervi
sion), we evaluated the imaging-survival balance in the graph estima
tion in each of the three models via Logistic Regression. Specifically, we 
fed the radiomic features into a Logistic Regression to predict the cancer 
subtypes (clustering labels). The pseudo – R2 of the model was 
computed as the ratio between the log-likelihood of the intercept model, 
i.e., the one with no features, and the log-likelihood of the full model, 
with all radiomic features. The pseudo – R2 thus quantifies the 
improvement offered by the full model over the intercept model [32] 
and can be intended as the capacity of radiomics to explain the cancer 
subtyping. As expected from tests’ significance, the pseudo – R2 statis
tics was 65 % (p-value ≪ 0.01) in the DS-CS ICH model and 46 % (p- 
value = 0.045) in the DS-CS INT model. In fact, features that are not 
significant in univariate testing are less likely to be predictive in a 
multivariate setting. In the multi-center DS-CS ICH + INT model, the 
informative content of radiomic data rose thanks to the higher vari
ability, suggesting the strength of having multiple - even if domain- 
shifted - data. The pseudo – R2 statistics of the Logistic Regression 
was 70 % (p-value ≪ 0.01), testifying the preponderant role of 
radiomics. 

3.2. Explainable transfer model training performance 

The cross-validated ETM was successfully trained on the ICH dataset 
and intentionally let overfit. As expected from univariate testing and 
pseudo− R2 values, the model was able to capture all the variability 
entailed in the data ready to be exploited to classify new observations 
into risk classes. Since radiomics contribution was high in the DS-CS ICH 
model, a purely radiomics-based model was informative enough to 
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perfectly fit the data into cluster labels. Besides accuracy, which resulted 
to be 97.66 %, other more relevant performance evaluation criteria were 
found to be widely satisfactory: sensitivity and specificity were respec
tively 98.82 % and 95.34 %, while F-measure was 98.24 %. We remark 
that such performance values reveal a model highly overfitting the 
training data, with the clear aim of obtaining an interpretable and 
predictive mirror of the cancer subtyping model. Contrary to common 
machine learning best practices, here we want to discard generability to 
appreciate the peculiar intrinsic structure of the model we are 
mimicking. 

Also, the Log Rank test on the Kaplan-Meier curves of the two groups 
was significant (p-value < 0.01), suggesting that the ETM-based classi
fication was indeed associated with cancer prognosis. The classification 
devised one group with fast-relapsing patients and one with long- or 
non-relapsing patients (Hazard Ratio = 0.2230, IC: 0.1227–0.4054). 
Being the fitting robust enough to be intended as a Rule Extractor of the 
DS-CS model, the ETM was worth to be applied on the INT dataset to test 
domain-generality of DS-CS and to deduce robust risk factors and im
aging biomarkers. 

3.3. Explainable transfer model testing performance 

The ETM model was transferred to the INT dataset. The resulting 
classification identified two risk classes. Having borrowed the infor
mation about radiomic variability and cutoffs from the ICH dataset, 
classes of patients are expected by construction to have characteristics of 
imaging phenotypes similar to ICH groups. Furthermore, the obtained 
classification showed an appreciable agreement with the stratification 
performed by the ad hoc DS-CS INT model (see Section 2.4.2). In fact, 
the concordance index between the two reached 0.7. 

The two groups resulting from the Explainable Transfer Model 
classification were compared in terms of recurrence probabilities (Log 
Rank test on groups’ Kaplan-Meier curves), leading to significant 
discrimination between a better prognosis and a poorer prognosis class 
(p-value = 0.0105). As highlighted by the Hazard Ratio (0.2496, IC 95 
%: 0.1240–0.5026), group 1 was characterized by a higher disease-free 
life expectancy than group 2. Moreover, unlike CS-DS INT model (see 
Sections 2.4.2 and 3.1.2), the Explainable Transfer Model led to 38 
radiomic variables being significantly different between the two groups. 

Fig. 4. Example of two patients with HL and different outcomes. a) [18F]FDG PET/CT in a 35-year-old male with HL presenting B symptoms. Baseline MIP image (a1) 
shows [18F]FDG uptake in lymph nodes, lungs, spleen, and bones; accordingly, the patient was staged as a stage IV HL. Interim PET/CT (a2) obtained after two cycles 
of chemotherapy, shows a complete metabolic response (Deauville Score 1) demonstrating the disappearance of all sites of pathological [18F]FDG uptake and a mild 
diffuse bone marrow hypermetabolism, as typically observed shortly after chemotherapy (B). End-Of-Treatment MIP (a3) was negative confirming the previous 
finding. The patient had no evidence of disease at the last follow-up, 17 months after the end of chemotherapy; b) [18F]FDG PET/CT in a 19-year-old male with HL 
presenting B symptoms. Baseline MIP image (b1) shows [18F]FDG uptake in lymph nodes, lungs, spleen, and bones; accordingly, the patient was staged as a stage IV 
HL. Interim PET/CT (b2) obtained after two cycles of chemotherapy, shows a complete metabolic response (Deauville Score 1) demonstrating the disappearance of all 
sites of pathological [18F]FDG uptake and a diffuse moderate bone marrow hypermetabolism, as typically observed shortly after chemotherapy (B). End-Of- 
Treatment imaging was negative, but the disease relapsed 12 months after the end of chemotherapy as confirmed by MIP image (b3) which shows [18F]FDG up
take in lymph nodes, lungs, and bones. At the last follow-up, the patient was alive with evidence of disease. 
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These include conventional, first and second-order texture statistics. It 
follows coherently that the pseudo – R2 statistics of the Logistic 
Regression resulted to be 63 % (p-value < 0.01), attesting to the 
radiomics contribution in the cancer subtyping policy. Of course, these 
features were consistent with the evaluation of CS-DS ICH model and CS- 
DS ICH + INT model. 

3.4. Explainability of the extracted rules 

As to interpret the rules extracted by the ETM, we first want to look at 
the feature importance plot. As displayed in Fig. 3, the ranking of the 
Random Forest predictors has been computed based on their importance 
and the top relevant ones were plotted. We selected the first variables 
which presented higher absolute importance, for a total of 18 features. 
Most of them (13/18) were found among those features that showed 
significance also in the DS-CS INT model or held significance in the DS- 
CS ICH + INT model (see Table 5). Of interest, the most important factor 
that dragged the classification was radiotherapy, followed by conven
tional and second-order radiomic features. Volume and dispersion of 
lesions were relevant as well. Intuitively, the most relevant features 
were the ones driving the decisions throughout the trees of the Random 
Forest. 

In line with the importance plot, different clinical and radiomic 
features were found in the common rules set. The lists of common rules 
can be assessed in Appendix A. The lists’ order should not be intended as 
consecutive, but all rules are rather as important (and frequent) as the 
others and are divided according to the type of variable they refer to. 
Moreover, the thresholds of continuous features (that is, all features 
except for Radiotherapy and B Symptoms) refer to the z-standardized 
feature values and can be interpreted in terms of quantiles of the cu
mulative distribution function. 

Among the extracted rules, radiotherapy was a strong factor to pre
dict the cancer subtypes: absence of radiotherapy treatment led to a 
higher probability of incurring into cancer relapsing subtype (Pr =
0.909). Although such finding was already known in clinical practice 
more severe patients are often treated with both chemotherapy and 
radiotherapy - it is worth noticing that radiotherapy was frequently 
observed together with dispersion and radiomic variables. The absence 
of radiotherapy and values of lesions dispersion higher than 67 % of the 
samples (z = − 0.431) brought a higher probability of recurrence (Pr =
0.979). Moreover, when considered together with values of GLRLM Run 
Length Non-Uniformity higher than 77 % of the samples (z = − 0.744), 
the probability of recurring cancer subtype without radiotherapy rose to 
Pr = 0.959. It follows that clinical information about patients’ demog
raphy and therapeutic pathways are solid markers for patients’ disease 
progression, yet their power is deeply increased when taking the im
aging and heterogeneity information into account as well. 

Other relevant rules also testify to the same point. In fact, other 
clinical variables were fundamental for cancer prognosis, i.e., the pres
ence of B symptoms [34], related to a higher probability of recurrence 
(Pr = 0.869), the volume of the patient’s smallest lesion, leading to 
poorer outcomes (Pr = 0.81) when lower than 81 % of the samples (z =
− 0.0889) and the volume of the patient’s biggest lesion, leading to 
poorer outcomes (Pr = 0.779) when higher of the 66 % of the samples (z 
= − 0.439). Indeed, huge differences in lesions’ volume within the same 
patient are proxies of intra-patient heterogeneity. All the other decision 
rules account for radiomic variables, in particular lesions’ heterogeneity 
measures. Conventional SUV Peak, GLZLM Zone Length Non- 
Uniformity, GLCM Correlation, GLZLM Long Zone High Gray-level 
Emphasis, and GLRLM Gray Level Non-Uniformity led to worse tumor 
progression when assuming high values compared to the population 
distribution (Pr = 0.779 with z = − 1.05, Pr = 0.792 with z = − 0.326, Pr 
= 0.779 with z = − 0.482, Pr = 0.897 with z = − 0.0908, Pr = 0.843 with 
z = − 0.158 respectively). Interestingly, stronger results were found in 
the correspondence of rules exploiting higher-order radiomic features, 
supporting the prognostic value of radiomics. 

4. Discussion 

Clinical practice has for long relied on purely visual inspection of 
images for diagnosis, treatment planning, and follow-up. However, 
some crucial information might not be caught, affecting clinical de
cisions. For instance, as shown in Fig. 4, apparently identical patients 
may develop diseases with different outcomes. For these patients, visual 
analysis of the medical imaging would result in the same treatment 
approach, producing ineffective results. 

On purpose, imaging-based cancer subtyping promises to be a reli
able tool for tumor evolution prediction, especially when informed by 
survival/recurrence information. However, its robustness and domain- 
generality are yet to be explored. In this work, we intended to address 
this question and provide a domain-transfer framework for the DS-CS 
model. The first aim of this work was to compare the model tuned in 
different settings, as to discuss the consistency of the results. Cancer 
subtyping on the ICH dataset was appreciably driven by imaging tumor 
characterization, as most of the features resulted to be significantly 
different in the two groups. It follows that distant supervision helped in 
properly modulating the information already entailed in the imaging 
data. On contrary, although DS-CS INT model was successfully carried 
out and showed consistency with DS-CS ICH model, very few variables 
emerged significant at testing. Also, the pseudo – R2 statistics of the 
Logistic Regression between radiomic variables and cancer subtypes 
(clustering labels) supported this point. In fact, the pseudo – R2 metric 
was considered as a quantification of the radiomic features’ predictive 
power in the cancer subtyping model. The low percentage of the 
contribution of radiomics in the model suggests that the classification of 
INT data was mainly dragged by the survival estimation (first term of the 
loss function), whereas radiomic variables played a limited role. In other 
words, the supervision overshadowed the imaging information, and no 
prognostic risk factors could be extracted to inform the clinical practice 
in a perspective way. This issue was overcome with the DS-CS ICH + INT 
model. In fact, merging the two datasets improved the interpretability of 
the model. Inflating INT data with the variability of a different source of 
information (ICH) increased the imaging features significance without 
affecting the performances, in a borrowing strength strategy [35]. 

Furthermore, comparing radiomic variable significance across 
models enabled us to acknowledge variables that are agnostic to imaging 
acquisition settings and texture extraction parameters. As expected, 
agnostic variables were mainly related to clinical and qualitative in
formation about the disease, i.e., the stage, the B symptoms, the extra
nodal disease status, radiotherapy, and – more importantly – the 
dispersion of lesions. Such disease information was proven to be 
agnostic to the center of provenience and could be acknowledged as 
robust in a prospective study. We recall that dispersion is the variability 
over the lesions’ radiomic features of a patient. Here, this variability was 
computed as the average distance between radiomic variables of peer 
lesions, i.e., belonging to the same patient. Accordingly, it can be 
intended as a proxy of biological tumor heterogeneity that has been 
previously shown to cause treatments’ inefficacy and relapsing [36,37]. 
Indeed, this definition of tumor dispersion emerges robust as it aggre
gates the imaging information in a standardized way [38,39]. 

As a second point of contribution, we extracted imaging-based rules 
via Random Forest to explainable perform the domain transfer of the DS- 
CS model and ensure its repeatability. We built the DS-CS model on one 
dataset (ICH) and transferred the knowledge to a domain-shifted dataset 
(INT). Of note, in previous literature – and in Section 3 of Supplementary 
Materials – such transferring has been shown often unreliable and un
stable due to the limitation of radiomics, which is known to be depen
dent on operators, i.e., the segmentation of regions of interest, 
acquisition settings, scanner characteristics, and other independent 
factors [40,41]. Nevertheless, our results demonstrated the domain- 
generality of the DS-CS model, being robust throughout different cen
ters/domains. The proposed Explainable Transfer Model was in fact 
successful in devising groups of at-different-risk patients with 
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significantly different time-to-recurrence probabilities in the testing 
domain (INT). That is, it allowed us to exploit the imaging information 
in the data to correctly predict the cancer subtypes. Also, the ICH- 
informed cancer subtyping showed agreement with the ad hoc DS-CS 
INT model. We remind that the DS-CS model trained on INT did lead 
to a significant and consistent classification of patients with different 
prognoses, but the prognostic interpretation of radiomic features was 
limited by the informative content of data. The fact that the purely 
radiomics-based classification model showed concordance with the 
ground truth strengthens the domain-generality of the transferring. In 
fact, the INT dataset did contain information, although it was masked by 
radiomic well-known limitations and such information could not be 
appreciated. ICH-informed model behaved as a magnifying glass and 
enabled the extraction of radiomic-based knowledge from noisy data. As 
Hodgkin Lymphoma, like several other tumor diseases, is a rare condi
tion, this approach would support decisions in those cases where only a 
few observations are available. Also, the aggregated information coming 
from other sources may aid the evaluation/assessment. We may 
acknowledge that the ETM was used to provide a proof-of-concept for 
transferring the subtyping from one domain to another. Of course, under 
a federated learning perspective, it would be necessary to further test it 
in other cohorts, to enrich the generality of the information it carries. 

At explainability analysis, both clinical and imaging variables 
emerged as relevant risk factors. The extracted rules have, on one hand, 
confirmed the prognostic power of known qualitative factors such as 
tumor volume, radiotherapy, and the presence of B symptoms; on the 
other hand, they brought out the benefit of accounting for imaging- 
based tumor heterogeneity measures to consistently improve the can
cer subtyping. In fact, several radiomic features – conventional, first, 
second and higher-order features – significantly rose the precision of 
clinical variables in estimating the probability of relapsing. Several of 
them were exploited in the decision-making (although we showed and 
discussed only the more common ones among the tree splits of the 
Random Forest). In line with these findings, recent literature has 
sharpened its focus towards repeatability and reproducibility of radio
mics in multi-center studies [42–44]. Although sensitive to all the 
above-mentioned acquisition criteria, far from a few lower and higher 
order radiomic features were proven to be robust and agnostic. 

In conclusion, the proposed approach showed the reliability of the 
proposed Distant Supervised Cancer Subtyping model and discussed the 
domain-generality of its transfer to different domains. Of course, these 
findings could be further confirmed by collecting more data from many 
different centers/hospitals and integrating the harmonized information 
to build more informative and agnostic decision models. As only highly 
anonymous and aggregated data is needed, this step might not represent 
a bottleneck from the privacy point of view, which is often an issue when 
sharing medical data. Collected datasets could thus update the current 
decision rules with an online-updating framework as new observations 
become gradually available, in a federated fashion. Larger graphs can be 
estimated from a higher number of patients and more robust rules can be 
derived from the procedure. In this direction, an additional point of 
improvement could be acknowledged: other harmonization strategies 
could be implemented. Among these, a grouping strategy would be 
suitable to exploit the hierarchical nature of a multi-center dataset. For 
instance, frailty loss instead of Cox loss could be implemented to 

consider the nesting levels (patients into centers) in the graph estimation 
phase of the algorithm. 

Ultimately, alternative patient representation strategies could be 
considered. Our approach currently relies on a weighting strategy be
tween patients’ lesions to end up with an easy-to-handle vector repre
sentation where the dispersion indexes account for the multi-level 
structure of observations. On one hand, the employed wide data format 
– as the transformation of the long data format – has been shown to 
entail an exhaustive summary of the patient’s relevant information that 
lets exploiting the reliability of the matrix data. Of course, additional 
information, including other sources of data such as genomics and blood 
analysis, could be included in the vector to better describe the cancer 
assessment from a multi-omic point of view. On the other hand, other 
weighting strategies and/or lesion selection approaches could be 
explored to exhaustively represent the complexity of the tumors. 

5. Conclusions 

In this work, we discussed the potentialities of our previously pro
posed Distant Supervised Cancer Subtyping model. Robustness and 
domain-generality were investigated in a multi-center setting of Hodg
kin Lymphoma patients. The model was applied and evaluated in two 
one-center datasets and one multi-center dataset. We quantified and 
compared findings when considering diverse populations, acquisition 
protocols, and operator variability, remarking on the limitations of a 
retrospective approach. Cancer subtypes were coherently found in the 
three cases, although radiomic predictive power was controversial. To 
transfer the cancer sub-typing model to different domains, we employed 
an Explainable Transfer Model. This allowed us to confirm the trans
ferable properties of the model and to extract decision rules to be 
interpreted in a perspective way. This work provides preliminary yet 
robust evidence of the reliability of Distant Supervised Cancer Subtyping 
in properly highlighting cancer subtypes, ready to inform clinical 
practice. 
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Appendix A. Common rules sets  

Verbose common rules set are listed and divided into radiotherapy informed by radiomics features (Common 
rules set 1), clinical features (Common rules set 2), and stand-alone radiomic features (Common rules set 3). The 
thresholds of continuous features (that is, all features except for Radiotherapy and B Symptoms) refer to the z- 
standardized feature values and can be interpreted in terms of quantiles of the cumulative distribution function.  

Common rules set 1 Radiotherapy and Radiomics 

Rule 1: 
if Radiotherapy = 0 then Pr = 0.909 
else if Radiotherapy = 1 then Pr = 0.47 

Rule 2: 
if (Radiotherapy = 0 & Dispersion all ≥− 0.431) then Pr = 0.979 
else if (Radiotherapy = 1 & Dispersion all <− 0.431) then Pr = 0.481 

Rule 3: 
if (Radiotherapy = 0 & GLRLM RLNU >− 0.744) then Pr = 0.959 
else if (Radiotherapy = 1 & GLRLM RLNU ≤− 0.744) then Pr = 0.481   

Common rules set 2 Clinical variables 

Rule 1: 
if B symptoms = 0 then Pr = 0.478 
else if B symptoms = 1 then Pr = 0.869 

Rule 2: 
if Volume (min) <− 0.0889 then Pr = 0.810 
else if Volume (min) ≥− 0.0889 then Pr = 0.523 

Rule 3: 
if Volume (max) <− 0.439 then Pr = 0.490 
else if Volume (max) ≥s− 0.439 then Pr = 0.779   

Common rules set 3 Radiomics 

Rule 1: 
if GLZLM ZLNU <− 0.326 then Pr = 0.471 
else if GLZLM ZLNU ≥− 0.326 then Pr = 0.792 

Rule 2: 
if GLCM Correlation <− 0.482 then Pr = 0.490 
else if GLCM Correlation ≥− 0.482 then Pr = 0.779 

Rule 3: 
if GLZLM LZHGE <− 0.0908 then Pr = 0.562 
else if GLZLM LZHGE ≥− 0.0908 then Pr = 0.897 

Rule 3: 
if SUV Peak <− 1.05 then Pr = 0.490 
else if SUV Peak ≥− 1.05 then Pr = 0.779 

Rule 3: 
if GLRLM GLNU <− 0.158 then Pr = 0.545 
else if GLRLM GLNU ≥− 0.158 then Pr = 0.843  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.artmed.2023.102522. 
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