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Abstract: This work presents the experimental assessment of a hybrid control scheme based
on Deep Reinforcement Learning (DRL) for obstacle avoidance in robot manipulators. More
precisely, relying on an equivalent Linear Parameter Varying (LPV) state-space representation
of the system, two operative modes, one based on both joint positions and velocities, one only
based on velocity inputs, are activated depending on the measurement of the distance between
the robot and the obstacle. Therefore, when the obstacle is close to the robot, a switching
mechanism is introduced to enable the DRL algorithm instead of the basic motion planner,
thus giving rise to a self-configuring architecture to cope with objects randomly moving in the
workspace. The experimental tests of the DRL based collision avoidance hybrid strategy are
carried out on a physical EPSON VT6 robot manipulator with satisfactory results.
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1. INTRODUCTION

Learning control is a topic with a long history, which is
very much evolving over time, thus giving rise to new
methods in systems and control. Indeed, the number of
applications that have been experimentally validated on
laboratory test-beds and in some industrial context is
increasing. In this work, in particular, we focus on the
robotic applications where the use of learning techniques
is very promising, above all in cases where robots need to
cooperate with human operators [Bicchi et al., 2008; De
Santis et al., 2008]. More specifically, two aspects deserve
attention and require efficient and safety-oriented control
strategies. On one hand, although the computing power of
current devices is growing, in certain working conditions
lighter computational solutions might be alternated with
more computationally onerous methods needed only when
a high performance is required. On the other hand, the
presence of human operators makes an efficient motion
planner and collision avoidance mechanism mandatory
[De Luca and Flacco, 2012].

Among the possible approaches to cope with the previous
issues, recent promising alternatives are given by data-
driven optimal control, or by Reinforcement Learning
(RL) approaches [Brüggemann and Possieri, 2021; Possieri
et al., 2021; Kober et al., 2014]. Differently from optimal
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control problems, RL techniques rely on measured data
and instant feedback by interacting with the environment,
thus enabling the considered plant (the robot in our case)
to autonomously discover an optimal behaviour through
optimizing a reward function. In order to alleviate the
limitations related to practical RL training times and the
possible high number of involved data, general-purpose
Deep Neural Networks (DNN) are adopted [LeCun et al.,
2015].

As for robotics applications, RL has been successfully ap-
plied, for instance, in [Levine et al., 2017; Lenz et al., 2015],
where robots have been trained to grasp sparse objects
through convolutional neural networks for pose estimation,
in [Deisenroth et al., 2011] for dexterity operations, or in
[Haarnoja et al., 2018] to accomplish a stacking task by
using soft Q-learning. The main idea in [Sangiovanni et al.,
2018a; Ferrara et al., 2019] is instead that of introducing
a switch between pre-specified control approaches to en-
able the robot to solve a given task in an unpredictable
environment. To this end, a DRL based decision mech-
anism is introduced to select the most suitable control
architecture between a decentralized control scheme and
a centralized one based on the inverse dynamics. Collision
avoidance approaches based on end-to-end DRL and on
a hybrid learning method are proposed in [Sangiovanni
et al., 2018b], and [Sangiovanni et al., 2021], respectively.



1.1 Contributions

Making reference to [Sangiovanni et al., 2021], in this paper
we present the experimental assessment of the hybrid DRL
based collision avoidance approach therein introduced and
validated only in simulation. A LPV perspective of the
overall control scheme is also discussed in this work. The
main idea is that of suitably selecting the best motion
control approach in order to reach the desired target in an
operative space invaded by moving obstacles [Sangiovanni
et al., 2018b; Sangiovanni et al., 2021]. Since a switching
mechanism is adopted, this determines a time varying
closed-loop robot control scheme, thus resulting equivalent
to a LPV system whose dependency is related to the
joint variables, its derivatives, and the measurement of
the distance between the obstacles and the robot full
body. Successful experimental results carried out on an
anthropomorphic robot manipulator EPSON VT6 are
finally illustrated.

1.2 Organization of the paper

This paper is organized as follows. The model of the
robot environment and some preliminaries on DRL are
introduced in Section 2. The adopted hybrid DRL based
approach is recalled in Section 3, together with a discussion
on the LPV nature of the considered scheme. In Section
4 the EPSON VT6 anthropomorphic robot manipulator
setup is described, and experimental results are illustrated
and commented. Some concluding remarks are reported in
Section 5.

2. MODELING AND PROBLEM FORMULATION

In this section the model of the considered robot manipu-
lator is introduced and the problem to solve is described.
Then, having in mind to adopt the DRL based hybrid
approach in [Sangiovanni et al., 2021], some preliminaries
on RL are recalled.
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Fig. 1. EPSON VT6. (a) Physical setup. (b) Schematic
view of the robot with three joints

2.1 Model of the robotic environment

In this work we consider the robotic environment com-
posed of the robot manipulator and the obstacles, possi-
bly of different shape, randomly invading the workspace.
More specifically, let O ∈ R

nO represent the information
about the position of such obstacles moving around the
robot workspace. Note that, the scalar nO is related to

the obstacle representation, which can be for instance the
number of coordinates corresponding to the vertices of a
polygonal object.

Consider Figure 1, and let q ∈ R
nq be the joint variables,

with nq being the number of degrees of freedom. The
kinematics of the robot between the joint variables q and
the end-effector vector xe ∈ R

6×1, is therefore defined as

xe = k(q) , (1)

where k(q) ∈ R
6.

Relying instead on the Lagrangian equations [Siciliano
et al., 2009], the dynamics of the robot is captured by
the following model

B(q)q̈ + C(q, q̇)q̇ + Fvq̇ + Fs sgn(q̇) + g(q) = τ , (2)

where B(q) ∈ R
nq×nq is the inertia matrix, C(q, q̇) ∈

R
nq×nq represents centripetal and Coriolis torques, Fv ∈

R
nq×nq is the viscous friction matrix, Fs ∈ R

nq×nq is
the static friction matrix, g(q) ∈ R

nq is the vector of
gravitational torques, and τ ∈ R

nq represents the motors
torques.

We assume that the joint positions q and velocities q̇ can
be measured, and a vision system is adopted to observe
the robot environment. In particular, the vision sensor
is assumed to provide the end-effector position pe ∈ R

3,
as well as position and velocity of the obstacles, namely
pO ∈ R

3 and ṗO ∈ R
3. This allows to achieve instant by

instant the minimum distance, namely dO ∈ R, between
the obstacles position and the robot full body.

2.2 Collision avoidance control problem

Given the model (2), where the joints are also subject to
input and state constraints defined as h(q, q̇) ≤ 0, with
h : Rnq×Rnq 7→ R

ℓ, and ℓ being the number of constraints,
the objective is to make the robot move towards a target
or follow a desired trajectory (e.g., to execute an industrial
task such as spot welding, pick and place, or point-to-point
motions), while avoiding obstacles invading the workspace.
Precisely, this latter requirement can be formulated as

W(q(t)) ∩ O ≡ ∅ , (3)

where W(q(t)) ⊂ R
6 is the space occupied by the robot

at the instant t. In other words, our goal becomes to find
a suitable velocity input sequence {q̇⋆}, which makes the
robot end-effector perfectly reach a target point x⋆ from
the initial state xe0, while avoiding the obstacles O ⊂ R

nO .

As shown in [Sangiovanni et al., 2021], the previous prob-
lem can be written as a finite-horizon Collision Avoidance
Optimal Control Problem (CAOCP), whose solving diffi-
culties are however given by the presence of the collision
avoidance constraint (3), which in principle could be non-
convex and non-differentiable. The control objective can
be therefore achieved relying on a learning model-free
method.

2.3 Preliminaries on DRL

For the readers’ convenience, some preliminaries on DRL
are hereafter recalled.

RL is based on the fact that the involved agent can
understand from past experience which actions will lead



to maximize a function, namely the cumulative reward, in
a finite or even infinite temporal horizon given a current
state. In other words, a RL approach aims to maximize
not only the best current reward, but also the best future
ones.

Let us introduce the main notation and elements of RL.
Given a Markov Decision Process (MDP), let st ∈ S be
the state of the agent at the time t with S being the
state space, and let at ∈ A be the action by the agent
given a state, with A being the action space. Then, let
P (st+1 | at, st) be the transition probability function (also
called model), which rules the state changes through the
actions operated by the agent. A transition to state st+1

triggered by an action at determines a reward rt ∈ R to
the agent given by a function rt = r(at, st), which says
“how well” an agent has done at step t. For episodic tasks,
involving a sequence of actions, the cumulative reward Rt

is instead given by

Rt =

T∑
k=0

γkrt+k+1 , (4)

where 0 ≤ γ ≤ 1 is called discount rate and is used to
prioritize earlier rewards over later ones. The mapping
from states to action is given by a policy π : S 7→ A,
that can be either deterministic or probabilistic. The goal
is to find the optimal policy π⋆ that maximizes the expected
cumulative reward. More specifically, given a certain policy
π, the value function to optimize V π : S 7→ R is the
expected cumulative reward accumulated by the agent by
adopting π from a given state on. During the training
process, for each episode the agent interacts with the
environment for either a complete attempt to perform a
goal task or a fixed number of time-steps before being
reset.

Since the robotic application at hand, which involves struc-
tural variations of the robot and/or a rapidly changing en-
vironment, has a model that cannot be completely known
in advance, the so-called Q-learning approach is applied.
Specifically, let Qπ(s, a) be the so-called action value func-
tion or Q-function. This learning method allows the con-
vergent, incremental updating of a suitable approximation
Q̃ towards the optimal Q⋆, as experience progresses. Since
computing Q⋆ can become computationally expensive in
case of continuous action problems with a large number
of states, a possible solution is the use of a parametric
approximator Q̃, such as a DNN, that is

Q̃
(
s, a|θQ

)
= Ã

(
s, a|θA

)
+ Ṽ

(
s|θV

)
, (5)

where Ã and Ṽ are parametric approximators of the
advantage function Aπ(st, at) = Qπ(st, at) − V π(st) and
the value function V π(st), respectively, and θA and θV the
corresponding vectors of parameters. The learning process
aims to minimize a loss function given by

L(θQ) = Er,νβ ,β

[(
Q̃
(
st, at|θQ

)
− yt

)2
]
, (6)

where yt = r(st, at) + γQ̃
(
st+1, µ(st+1)|θQ

)
is the target,

θQ are parameters of the action-value function, β is a
stochastic behaviour policy such that at = β(st), and νβ

is the state visitation frequency with policy β. Finally, in
order to achieve the policy

µ̃(st, at) = argmaxa Q̃(st, at) , (7)

the Normalized Advantage Functions (NAF) algorithm is
adopted (see [Gu et al., 2016] and [Possieri et al., 2021]

for further details). The latter approximates the value Q̃
as a quadratic function for which the optimal output can
be directly computed.

3. THE ADOPTED APPROACH

In this section the used hybrid obstacle avoidance strategy
is recalled and a LPV control perspective is also provided.

3.1 Hybrid DRL approach

The collision avoidance approach experimentally assessed
for the first time in this paper is that in [Sangiovanni
et al., 2021]. The strategy consists of a switching algorithm
implementing both off-line motion planning and DRL-
based control, in order to enable a robot manipulator to
perform a reaching task whilst avoiding moving obstacles.
More in detail, given an initial robot configuration and a
target point in space, a feasible trajectory (q⋆, q̇⋆) is com-
puted off-line, using standard motion planning algorithms,
not considering the presence of obstacles. This allows for
a generally faster trajectory generation, as the target is
defined inside the robot’s operative space. In the case of
the paper the so-called Single-Query Bi-Directional Prob-
abilistic Roadmap Planner with Lazy Collision Checking
(SBL) algorithm is used.

Then, as the robot moves according to the position,
velocity and acceleration profiles generated during the
planning phase, the environment is sampled continuously.
In case an obstacle is detected within a certain critical
distance from the robot body, or according to any other
suitable switching metric, the motion is halted and the
control is switched to the end-to-end DRL control module.
In the considered case, the switching rule is given by

dO ≤ ϵ , (8)

where ϵ is the minimum distance threshold. The learning
control is performed by deploying the policy computed
by an agent trained with a model-free DRL algorithm.
This approach, instead of performing trajectory planning
and generation, directly outputs low-level joint control
commands at each time step, given the environment ob-
servations used at training time. Specifically, the so-called
state space is selected as

S = {q, q̇, pe, p⋆, pO, ṗO} , (9)

with p⋆ being the target position, while the action space
is given by the reference velocities for each joint, i.e.,

A = {q̇⋆} . (10)

Therefore, the agent is trained using the objective (reward)
function defined as

r = −(c1rT + c2rO + c3rA) , (11)

i.e., the weighted sum of three terms. The first one takes
into account the Euclidean distance d between the end-
effector and the target (the so-called Huber-Loss function)

rT =

{
1
2d

2 for d < δ

δ
(
d− 1

2δ
)

otherwise
, (12)

with δ ∈ R being a suitable selected scalar. The second
one is the distance between the obstacle and the robot,

rO = min

(
kr

rT
c2

;

(
d⋆

dO + d⋆

)g)
, (13)



where d⋆ is a constant parameter ensuring that 0 < rO <
1, g is a hyperparameter [Sangiovanni et al., 2018b], and
kr is a positive integer that ensures a minimum, fixed
proportion between rO and rT. Finally, the third one is
the magnitude of the actions performed, i.e.,

rA = ∥a∥2 , (14)

which has the scope to achieve smoother inputs. The value
of the weights c1, c2 and c3 are instead defined through
repeated tests.

This hybrid switched methodology allows exploiting the
advantages of both classical algorithms and DRL based
control, in order to ensure a higher degree of stability,
such as when following a pre-defined path, and at the same
time reducing the hand-engineering for complex operation,
such as full-body collision avoidance. In the presented case
study, indeed, it has been observed that using a classical
motion planner in combination with DRL strategy ensures
better performances in terms of tracking precision with
respect to the genuine end-to-end DRL controller. In fact,
the DRL policy introduces some randomicity elements to
the actions performed, thus causing jittering when little
movement is required. On the other hand, the activation
of the DRL approach allows avoiding the recomputation of
the classical motion planner every time the obstacle closely
invades the workspace of the robot.

3.2 LPV perspective

After the description of the adopted strategy, in this
paper we would like to highlight the LPV nature of the
considered controlled robotic system. Indeed, referring to
[Halalchi et al., 2010], letting z = [q̃⊤, ˙̃q⊤]⊤, with q̃ = q⋆−q

and ˙̃q = q̇⋆ − q̇, the considered system (2) can be written
as the following state-space LPV form{

ż(t) = A(z(t))z(t) +B(z(t))u(t)

y(t) = z(t)
, (15)

where A(z(t)) are B(z(t)) are suitable defined matrices
(see e.g., [Halalchi et al., 2010]) with the dependence on the
measured joint positions and velocities. In our case, we can

SBL/DRL
ρ

ż = ACL(ρ)z
(q⋆, q̇⋆)/q̇⋆ z

ρ

Fig. 2. LPV control representation of the hybrid obstacle
avoidance strategy

further rearrange the previous system, assuming first that
local joints controllers are capable to track the desired joint
path. This assumption is realistic as we have verified in
the experimental assessment described in the next section,
where the inner controllers of the robot perfectly track
the desired input trajectories. According to the adopted
hybrid strategy, the reference inputs of the closed-loop
system are different, and its linear dynamics changes due
to the fact that in case of standard motion planning a
cascade control scheme with velocity and position control
loops is activated, otherwise only the velocity control
loop is used for the DRL based mode. Therefore, letting
ρ = [z⊤, dO]

⊤ be the vector of measured parameters, and

u = K(ρ)z be the whole dynamic controller of the robot,
one has that{

ż(t)= (A(z(t)) +B(z(t))K(ρ(t)))z(t) =ACL(ρ(t))z(t)

y(t)= z(t) ,
(16)

where ACL(ρ(t)) is the closed-loop matrix of the equivalent
LPV system, for which the parametric dependence is with
respect to the time-varying parameter vector ρ. More
precisely, it depends on the measured distance which
determines not only the dynamics (16), but also the
suitable input reference to reach the target, while avoiding
obstacles (see Figure 2). In other words, the hybrid scheme
with DRL gives rise to a LPV system governed by ρ, as
equivalently done by the switching rule (8).

4. EXPERIMENTAL VALIDATION

In the following, the interfacing system predisposed for the
deployment of the adopted methodology on an EPSON
VT6, a 6-axis industrial manipulator, is described in
detail. Then, a case study featuring a spot-welding task
is introduced and experimental results are reported.

4.1 Settings

The EPSON VT6, placed in an environment together
with a randomly moving obstacle, needs to perform the
following two tasks:

T1) to track a desired trajectory in order to reach a pre-
specified target;

T2) to avoid collisions with elements invading the robot
workspace, while reaching the target.

To do this, the hybrid obstacle avoidance strategy dis-
cussed in Section 3 is used. The scenario considered re-
produces a spot-welding task, that is the robot must track
a target that moves along a path, on which it advances
after being reached.

The robot EPSON VT6, illustrated in Figure 3(a), is
designed for industrial applications and features built-in
controllers. It has an operation range of 900mm, and can
support a payload up to 6 kg. Moreover, the motion has a
repeatability of 0.1mm for all joints, whose specifications
are reported in Table 1.

(a) lab setup (b) simulator

Fig. 3. Working environment. (a) Lab setup. (b) Simu-
lation scenario with spherical obstacle (yellow) and
target point (green)



Table 1. EPSON VT6 joint specifications

Joint q (deg) q̇ (deg s−1) τ (Nm−1)

1 [-170,170] ±166.2 50
2 [-160,65] ±122.2 50
3 [-51,190] ±118.8 50
4 [-200,200] ±271.4 12
5 [-125,125] ±296.8 12
6 [-360,360] ±293.2 7

4.2 System interface

The commands to the robot are given via EPSON RC+,
which is the EPSON’s proprietary software to directly
interface a computer with the robot’s controllers, through
USB or Ethernet. Besides managing the proper setting and
communications of the robotic application, the software
features a proprietary IDE for high-level development of
programs for the robot’s controllers. As it is designed
for industry applications, the language features intuitive,
easy to interpret commands to define routines and robot
motions, in order to facilitate the operations by employees.

For the execution of the experiment, the EPSON VT6 pro-
prietary control software, EPSON RC+ 7.0, communicates
through TCP/IP with a virtual environment reproducing
the considered scenario (see Figure 3(b)), in order to sam-
ple the movements of the simulated robot and reproduce
them on the physical system. The virtual environment
is instead directly interfaced with the control algorithm
through a dedicated API.

4.3 Experimental results

The results achieved with the real EPSON VT6 industrial
manipulator are hereafter reported and compared to those
of the virtual version.

Fig. 4. Cumulative reward function over 550 episodes

The policy used for DRL control of collision avoidance
is selected after 550 episodes of training on the EPSON
VT6 model. Each episode has a duration of 18 s, with a
time-step duration of 50ms (i.e., a total of 360 steps per
episode). The cumulative reward function is represented
in Figure 4, where the convergence towards zero indicates
a successful learning process.

Figure 5 shows instead the time evolution of the end-
effector position for the three axes. One can observe that
the position of the real robot (cyan solid line), obtained
through the presented interfacing architecture, features
a satisfactory level of fidelity with what is obtained in
simulation (blue solid line), with a delay of about 0.5 s,
thus allowing a reliable deployment of the proposed ap-
proach. A rendering of the motion of the physical EPSON

Fig. 5. Position of the end-effector of the EPSON VT6
industrial manipulator: virtual (blue solid line) and
real (cyan solid line) position with respect to the
reference (red dashed line)

Fig. 6. Distances between end-effector and target point
(black solid line), and between robot and obstacle (red
solid line), in case of the hybrid approach (with DRL
used in the shadow windows when dO < ϵ)

VT6 with respect to the simulated environment during
the task execution is illustrated in Figure 7, where it is
evident the synchronism of the real environment with the
virtual one containing the obstacle. Finally, in Figure 6 the
distance from the target point and the distance between
robot and obstacle are reported, with DRL used in the
shadow windows when dO < ϵ, and ϵ = 0.16. To conclude,
satisfactory results are obtained, with the robot capable
to precisely reach the target by using the SBL algorithm
(for instance in the intervals between 1 and 10 s, and
between 17 and 27 s), while moving far from it whenever
the obstacle invades the robot workspace.

5. CONCLUSIONS

The paper presented the experimental assessment of a
DRL-based approach for robot obstacle avoidance. The
hybrid learning approach in [Sangiovanni et al., 2021] has
been recalled and described also from a LPV perspective.
Therefore, a realistic industrial scenario has been repro-



Fig. 7. Virtual environment compared with the real one. From the top: virtual scenario containing the simulated robot
and the obstacle (yellow); real scenario containing the robot moving as in the simulator; overlap between the
simulated robot and the physical one to show the effectiveness of the strategy with a virtual obstacle

duced in practice relying on the physical robot EPSON
VT6, obtaining satisfactory results that make the proposal
promising also for industrial field implementations.
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