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SYMMETRY RESULTS FOR CRITICAL ANISOTROPIC

p-LAPLACIAN EQUATIONS IN CONVEX CONES

GIULIO CIRAOLO, ALESSIO FIGALLI, AND ALBERTO RONCORONI

Abstract. Given n ≥ 2 and 1 < p < n, we consider the critical p-Laplacian equation ∆pu +

up∗−1 = 0, which corresponds to critical points of the Sobolev inequality. Exploiting the
moving planes method, it has been recently shown that positive solutions in the whole space
are classified. Since the moving plane method strongly relies on the symmetries of the equation
and the domain, in this paper we provide a new approach to this Liouville-type problem that
allows us to give a complete classification of solutions in an anisotropic setting. More precisely,
we characterize solutions to the critical p-Laplacian equation induced by a smooth norm inside
any convex cone. In addition, using optimal transport, we prove a general class of (weighted)
anisotropic Sobolev inequalities inside arbitrary convex cones.

1. Introduction

Given n ≥ 2 and 1 < p < n, we consider the critical p-Laplacian equation in R
n, namely

∆pu+ up
∗−1 = 0, (1.1)

where

p∗ =
np

n− p

is the critical exponent for the Sobolev embedding. The classification of positive solutions to
(1.1) in R

n started in the seminal papers [23] and [9] for p = 2 and it has been the object of
several studies. Recently, in [39] and [33], positive solutions to (1.1) in R

n belonging to the class

D1,p(Rn) :=
{

u ∈ Lp∗(Rn) : ∇u ∈ Lp(Rn)
}

(1.2)

have been completely characterized. In particular, it is proved that a positive solution u ∈
D1,p(Rn) to (1.1) must be of the form u(x) = Uλ,x0(x), where

Uλ,x0(x) :=











λ
1

p−1

(

n
1
p

(

n−p
p−1

)
p−1
p

)

λ
p

p−1 + |x− x0|
p

p−1











n−p
p

, (1.3)

for some λ > 0 and x0 ∈ R
n. The approach used to achieve this classification needs a careful

application of the method of moving planes, and it requires asymptotic estimates of u and ∇u
both from above and below.

When p = 2 it is well-known that (1.1) is related to Yamabe problem, and the classification
result gives a complete classification of metrics on R

n which are conformal to the standard one
(see [1, 32, 38, 41] and the survey [25]).
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For 1 < p < n, the study of solutions to (1.1) is also related to critical points of the Sobolev
inequality. Sobolev inequalities have been studied for more general norms as well as in convex
cones (see [4, 8, 19, 20, 27, 28]), where they take the form

‖u‖Lp∗ (Σ) ≤ SΣ,H‖H(∇u)‖Lp(Σ) , (1.4)

where H is a norm1 and Σ is a convex open cone in R
n given by

Σ = {tx : x ∈ ω, t ∈ (0,+∞)} (1.5)

for some open domain ω ⊆ S
n−1.

As far as we know, the sharp version of (1.4) is not available in literature and for this reason
we provide a proof in Appendix A by suitably adapting the optimal transportation proof of the
Sobolev inequality [15] to the case of cones. It is interesting to observe that our proof applies
also to the case of weighted Sobolev inequalities for the class of weights considered in [8], thus
generalizing [8, Theorem 1.3] to the full range of exponents p ∈ (1, n).

Hence, as shown in Appendix A, the extremals of (1.4) are of the form

u(x) = UH
λ,x0

(x) :=











λ
1

p−1

(

n
1
p

(

n−p
p−1

)
p−1
p

)

λ
p

p−1 +H0(x− x0)
p

p−1











n−p
p

(1.6)

for some λ > 0 (see also [2, 15, 28, 35] and the references therein), where H0 denotes the dual
norm associated to H, namely

H0(ζ) := sup
H(ξ)=1

ζ · ξ ∀ ζ ∈ R
n.

Moreover, if Σ = R
n then x0 may be any point of Rn; if Σ = R

k ×C with k ∈ {1, . . . , n− 1} and
C does not contain a line, then x0 ∈ R

k × {O}; otherwise, x0 = O (from now on, O denotes the
origin).

The aim of this paper is to provide a complete classification result for critical anisotropic
p-Laplace equations in convex cones. More precisely, we consider the problem



















div (a(∇u)) + up
∗−1 = 0 in Σ

u > 0 in Σ

a(∇u) · ν = 0 on ∂Σ

u ∈ D1,p(Σ) ,

(1.7)

where ν is the outward normal to ∂Σ,

a(ξ) = Hp−1(ξ)∇H(ξ) ∀ ξ ∈ R
n, (1.8)

and the space D1,p(Σ) is defined as in (1.2) (with R
n replaced by Σ). We will sometimes write

∆H
p u = div (a(∇u)) ,

where ∆H
p is called the Finsler p-Laplacian (or anisotropic p-Laplacian) operator. It is clear

that when we consider the case Σ = R
n no boundary conditions are given.

We observe that if u ∈ D1,p(Σ) is a positive critical point for the Sobolev functional

J(u) =

´

ΣH(∇u)pdx
(´

Σ |u|p∗dx
)

p
p∗
, (1.9)

1By abuse of notation, we say that H : Rn → R is a norm if H is convex, positively one-homogeneous (namely,
H(ℓξ) = ℓH(ξ) for all ℓ > 0), and H(ξ) > 0 for all ξ ∈ S

n−1. Note that we do not require H to be symmetric, so
it may happen that H(ξ) 6= H(−ξ).
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then u satisfies (1.7). The main goal of this paper is to classify the critical points for (1.9), i.e.
the classification of the solutions to (1.7).

Theorem 1.1. Let n ≥ 2, 1 < p < n , and let Σ = R
k × C be a convex cone, where C does not

contain a line. Let H be a norm of Rn such that H2 is of class C2(Rn \{O}) and it is uniformly
convex and C1,1 in R

n, namely there exist constants 0 < λ ≤ Λ such that

λId ≤ H(ξ)D2H(ξ) +∇H(ξ)⊗∇H(ξ) ≤ Λ Id ∀ ξ ∈ R
n \ {O} (1.10)

(note that D2(H2) = 2HD2H + 2∇H ⊗∇H).
Let u be a solution to (1.7). Then u(x) = UH

λ,x0
(x) for some λ > 0 and x0 ∈ Σ, where UH

λ,x0

is given by (1.6). Moreover,

(i) if k = n then Σ = R
n and x0 may be a generic point in R

n;
(ii) if k ∈ {1, . . . , n− 1} then x0 ∈ R

k × {O};
(iii) if k = 0 then x0 = O.

As already mentioned, case (i) in Theorem 1.1 has been already proved in [9, 16, 33, 39]
when Σ = R

n and H is the Euclidean norm. In that case, thanks to the symmetry of the
problem, the authors can apply the method of moving planes. In the Euclidean case and for
p = 2, the classification of solutions in convex cones was proved in [28, Theorem 2.4] by using
the Kelvin transform and inspired by [22]. Unfortunately, the Kelvin transform and the method
of moving planes are not helpful neither for anisotropic problems nor inside cones for a general
p ∈ (1, n). For this reason we provide a new approach to the characterization of solutions to
critical p−Laplacian equations, which is based on integral identities rather than moving planes.
This approach takes inspiration from [5, 6, 7] where classical overdetermined problems for PDEs
are considered (see also [13, 29] for analogous problems in convex cones).

Strategy of the proof and structure of the paper. The strategy of the proof can be ex-
plained as follows. First, using that u ∈ D1,p(Σ) we show that u is bounded (see Subsection 2.1).
Then, in Subsection 2.2 we prove that u satisfies certain decay estimates at infinity (in particular
it behaves as the fundamental solution both from above and below), so that one has optimal
upper bounds on H(∇u) in terms of the fundamental solution. We notice that, differently from
[33], we do not need asymptotic lower bounds on ∇u; instead, we use a Caccioppoli-type inequal-
ity to prove some asymptotic estimates on certain integrals involving higher order derivatives
(see Subsection 2.3).

Then, in Section 3 we consider the auxiliary function v = u
− p

n−p . We find the elliptic
equation satisfied by v and then, thanks to the asymptotic estimates on u, we show that v and
∇v satisfy explicit growth conditions at infinity. By using integral identities, the convexity of
Σ, and some suitable inequalities, we are able to prove that ∇a(∇v) is a multiple of the identity
matrix, from which the symmetry result follows.

In Appendix A we prove the sharp version of (1.4) for general norms and cones, and even
in a weighted setting.

Most of the paper will focus on the case in which Σ is a convex cone with nonempty boundary.
Indeed our approach perfectly works also when Σ = R

n. However, since the whole space case is
simpler to be proven, we prefer to focus the exposition to the case when Σ has boundary.

Acknowledgments. The authors wish to thank Andrea Cianchi and Alberto Farina for useful
discussions. G.C. and A.R. have been partially supported by the “Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the “Istituto Nazionale di Alta
Matematica” (INdAM, Italy). G.C. has been partially supported by the PRIN 2017 project
“Qualitative and quantitative aspects of nonlinear PDEs”. A.F. has been partially supported
by European Research Council under the Grant Agreement No 721675. Part of this manuscript
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was written while A.R. was visiting the Department of Mathematics of the ETH in Zürich, which
is acknowledged for the hospitality.

2. Preliminary results

In this section we collect some results that are well established when Σ = R
n and H is the

Euclidean norm. Since we are dealing with problem (1.7) and some modifications are needed,
we report here their counterpart when Σ is a convex cone and H a general norm, and provide
a sketch of the proofs emphasizing the main differences.

In the whole paper we denote by Br(x) the usual Euclidean ball, and by Br the ball Br(O)
centered at the origin.

2.1. Boundeness of solutions. In the following lemma we prove that solutions to (1.7) are
bounded. The result holds for more general Neumann problems, in particular for problems with
a differential operator modelled on the p-Laplace operator.

Lemma 2.1. Let Σ ⊆ R
n be a convex cone as in (1.5) and let u ∈ D1,p(Σ) be a solution to











div (a(∇u)) + up
∗−1 = 0 in Σ

u > 0 in Σ

a(∇u) · ν = 0 on ∂Σ ,

(2.1)

where the a : Rn → R
n is a continuous vector field such that the following holds: there exist

α > 0 and 0 ≤ s ≤ 1/2 such that

|a(ξ)| ≤ α(|ξ|2 + s2)
p−1
2 and ξ · a(ξ) ≥

1

α

ˆ 1

0

(

t2|ξ|2 + s2
)

p−2
2 |ξ|2 dt , (2.2)

for every ξ ∈ R
n. Then there exists δ > 0 with the following property: let ρ > 0 be such that

||u||Lp∗ (Bρ(x0))
≤ δ ∀x0 ∈ R

n.

Then

||u||L∞(Σ∩BR/2(x0)) ≤ CR
−n

p ||u||Lp(Σ∩BR(x0)) ∀R ≤ ρ,

where C depends only on n, α, p and the Sobolev constant of Σ.

Proof. We closely follow [30, Theorem E.0.20] and [34, Theorem 1] and we only give a sketch of

the proof. We first prove that u ∈ Lqp∗

loc (Σ) for any q < p∗/p. Given l > 0 and 1 < q < p∗

p , we

define

F (u) =

{

uq if u ≤ l

qlq−1(u− l) + lq if u > l ,
(2.3)

and

G(u) =

{

u(q−1)p+1 if u ≤ l

((q − 1)p + 1)l(q−1)p(u− l) + l(q−1)p+1 if u > l .

Let η ∈ C∞
0 (Rn) and use

ξ = ηpG(u)

as a test-function in (2.1); then an integration by parts gives
ˆ

Σ
a(∇u) · ∇(ηpG(u)) dx =

ˆ

Σ
up

∗−1ηpG(u) dx . (2.4)
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We aim at proving that

c

ˆ

Σ
ηpG′(u)|∇u|p dx ≤

ˆ

Σ
ηp−1G(u)|a(∇u) · ∇η| dx+

ˆ

Σ
up

∗−1ηpG(u) dx

+ sp
ˆ

Σ
ηpG′(u) dx

(2.5)

holds for 0 ≤ s ≤ 1/2. We distinguish between the cases 1 < p < 2 and 2 ≤ p < n.
If p ≥ 2, then (2.2) implies

ξ · a(ξ) ≥
1

α
|ξ|p ,

and from (2.4) we get

1

α

ˆ

Σ
ηpG′(u)|∇u|p dx ≤ p

ˆ

Σ
ηp−1G(u)|a(∇u) · ∇η| dx+

ˆ

Σ
up

∗−1ηpG(u) dx ,

which implies (2.5).
If 1 < p < 2 then (2.5) is obtained by using a more careful argument. We claim that

ˆ 1

0

(

t2|ξ|2 + s2
)

p−2
2 |ξ|2 dt ≥

1

2
(|ξ|p − sp) . (2.6)

To prove this we consider two cases. If s > |ξ| then the left-hand side of (2.6) is negative, and
so the result is clearly true. Otherwise, if s ≤ |ξ| then

t2|ξ|2 + s2 ≤ 2|ξ|2 for t ∈ [0, 1],

and therefore
ˆ 1

0

(

t2|ξ|2 + s2
)

p−2
2 |ξ|2 dt ≥

ˆ 1

0

(

2|ξ|2
)

p−2
2 |ξ|2 dt = 2

p−2
2 |ξ|p ≥

1

2
|ξ|p,

that again implies (2.6).
Thanks to (2.4), (2.2), and (2.6), we obtain

1

2α

ˆ

Σ
ηpG′(u)|∇u|p dx ≤ p

ˆ

Σ
ηp−1G(u)|a(∇u) · ∇η| dx+

ˆ

Σ
up

∗−1ηpG(u) dx

+
sp

2

ˆ

Σ
ηpG′(u) dx ,

and the proof of (2.5) is complete.
Note now that, by Young’s inequality and (2.2), for any ǫ ∈ (0, 1) we have

ηp−1|a(∇u) · ∇η| ≤ ǫ
p

p−1u−1|a(∇u)|
p

p−1 ηp + ǫ−pup−1|∇η|p

≤ C0ǫ
p

p−1u−1(|∇u|p + sp)ηp + ǫ−pup−1|∇η|p,

where C0 depends only on α and p. Thanks to this inequality and recalling (2.5), since G(u) ≤
uG′(u) (note that G is convex and G(0) = 0), for any ǫ ∈ (0, 1) we obtain

c

ˆ

Σ
ηpG′(u)|∇u|p dx ≤ C0ǫ

p
p−1

ˆ

Σ
ηpG′(u)|∇u|p dx+ (C0 + 1)sp

ˆ

Σ
ηpG′(u) dx

+ ǫ−p

ˆ

Σ
G(u)up−1|∇η|p dx+

ˆ

Σ
up

∗−1ηpG(u) dx .

Hence, choosing ǫ small enough so that C0ǫ
p

p−1 = c/2, we deduce that

c′
ˆ

Σ
ηpG′(u)|∇u|p dx ≤ sp

ˆ

Σ
ηpG′(u) dx+

ˆ

Σ
G(u)up−1|∇η|p dx+

ˆ

Σ
up

∗−1ηpG(u) dx ,
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where c′ > 0 depends only on n, α, and p. Using now that G′(u) ≥ c[F ′]p and that up−1G(u) ≤
C[F (u)]p, we obtain

ĉ

ˆ

Σ
|∇(ηF (u))|p dx ≤ sp

ˆ

Σ
ηpG′(u) dx+

ˆ

Σ
|∇η|pF p(u) dx+

ˆ

Σ
ηpup

∗−pF p(u) dx .

Hence, thanks to the Sobolev inequality (1.4) we get

c̄

(
ˆ

Σ
F p∗(u)ηp

∗

dx

)
p
p∗

≤ sp
ˆ

Σ
ηpG′(u) dx +

ˆ

Σ
|∇η|pF p(u) dx+

ˆ

Σ
ηpup

∗−pF p(u) dx , (2.7)

where c̄ > 0 depends only on n, α, p and the Sobolev constant for Σ.
Now, choose δ = (c̄/2)1/(p

∗−p), so that for any R ≤ ρ it holds

||u||p
∗−p

Lp∗ (BR(x0))
≤
c̄

2
∀x0 ∈ R

n.

Then, if we choose η such that supp(η) ⊂ B(x0, R), it follows from Holder’s inequality that we
can reabsorb the last term in (2.7), and we get

c̄

2

(
ˆ

Σ
F p∗(u)ηp

∗

dx

)
p
p∗

≤ sp
ˆ

Σ∩BR(x0)
ηpG′(u) dx+

ˆ

Σ∩BR(x0)
|∇η|pF p(u) dx .

Hence, taking the limit as l → ∞ in the definition of F and G, by monotone convergence we
conclude

c̄

2

(

ˆ

Σ∩BR(x0)
ηp

∗

uqp
∗

dx

)
p
p∗

≤ sp
ˆ

Σ∩BR(x0)
u(q−1)p dx+ ||∇η||p∞

ˆ

Σ∩BR(x0)
uqp dx .

Since qp < p∗ it follows that the right hand side is finite, hence by the inequality above and the

arbitrariness of x0 we conclude that u ∈ Lqp∗

loc (Σ).
Thanks to this information, we can rewrite the equation satisfied by u as follows:

−div (a(∇u)) = f(x)up−1 + g(x)

where

f(x) =

{

0 if u < 1

up
∗−p if u ≥ 1 ,

and

g(x) =

{

0 if u > 1

up
∗−1 if u ≤ 1 .

Since u ∈ Lqp∗

loc we get that f ∈ Lr with r > n
p and g ∈ L∞. Hence, as in the proof of [34,

Theorem 1], a classical Moser iteration argument yields the result. �

Remark 2.2. As observed in the proof of [30, Theorem E.0.20], the Moser iteration argument
can also be used to show that u is uniformly C0,θ up to the boundary.

2.2. Asymptotic bounds on u and ∇u. The main goal of this subsection is to prove Proposi-
tion 2.3 below. Proposition 2.3 is a generalization of [39, Theorem 1.1] to the conical-anisotropic
setting. The proof of Proposition 2.3 follows the one given in [39], although the lack of smooth-
ness of Σ creates some nontrivial extra difficulties.

Proposition 2.3. Let 1 < p < n and let u be a solution to (1.7). Then there exist two positive
constants C0 and C1 such that

C0

1 + |x|
n−p
p−1

≤ u(x) ≤
C1

1 + |x|
n−p
p−1

and |∇u(x)| ≤
C1

1 + |x|
n−1
p−1

, (2.8)

for all x ∈ Σ.
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Before giving the proof of Proposition 2.3, we first introduce a useful definition.

Definition 2.4. Given L > 0, we say that a convex cone C is L-Lipschitz if for any point x ∈ ∂C
there exist rx > 0 and a unit vector νx such that

Brx(x+ Lrxνx) ⊂ C.

Note that, by convexity of C, also the convex hull of Brx(x+ Lνx) ∪ {x} is contained in C.

In the spirit of [39, Lemma 2.3], we now prove a general lower bound on the Lp∗ norms
of solutions to our equation in convex cones, with a bound depending only on the Lipschitz
constant (see also [28]).

Lemma 2.5 (Lower bound on the mass). Let u be a nontrivial solution to


















div (a(∇u)) + up
∗−1 = 0 in C

u > 0 in C

a(∇u) · ν = 0 on ∂C

u ∈ D1,p(C) ,

(2.9)

where C is a L-Lipschitz convex cone and a(ξ) is as in (1.8). Then there exists a constant k0 > 0,
depending only on n, p, L, and minSn−1 H, such that

‖u‖Lp∗ (C) ≥ k0.

Proof. As in [39, Lemma 2.3], the proof is based on the Sobolev inequality in C, and on the
integral identity that one obtains by multiplying (2.9) by u and integrating in C. However in
this case a bit more carefulness is needed, especially to quantify the dependencies.

First of all, up to a translation, we can assume that C has vertex at O. Then, since C is
L-Lipschitz, there exist r0 > 0 and a unit vector ν0 such that Br0(Lr0ν0) ⊂ C. Therefore, since
C is a convex cone, this implies that the cone

ĈL :=
⋃

r>0

Br(Lrν0)

is contained inside C.
We now want to estimate the Sobolev constant of C. To this aim we define the following

constant:

SL := inf

{

(´

Ω |∇ϕ|pdx
)1/p

(´

Ω |ϕ|p∗dx
)1/p∗

: Ω is convex, B1 ∩ ĈL ⊂ Ω ⊂ B1, ϕ ∈ C1(Ω), ϕ|∂B1∩ĈL
= 0

}

.

Since the set of convex domains Ω ⊂ B1 containing B1 ∩ ĈL are uniformly Lipschitz, standard
arguments in the calculus of variations show that SL is positive.

We now notice that, given any function ψ ∈ C1
c (C), there exists λ > 0 large such that

ψλ(x) := ψ(λx) satisfies ψλ ∈ C1(C) and ψλ|∂B1∩ĈL
= 0 (since ∂B1 ∩ ĈL ⊂ ∂B1 ∩ C). Hence, we

can bound
(´

C |∇ψ|
pdx
)1/p

(´

C |ψ|
p∗dx

)1/p∗
=

(´

C |∇ψλ|
pdx
)1/p

(´

C |ψλ|p
∗dx
)1/p∗

≥ SL.

Since ψ ∈ C1
c (C) is arbitrary, it follows by approximation that

(
ˆ

C
|∇ψ|pdx

)1/p

≥ SL

(
ˆ

C
|ψ|p

∗

dx

)1/p∗

∀ψ ∈ D1,p(C).



8 GIULIO CIRAOLO, ALESSIO FIGALLI, AND ALBERTO RONCORONI

Applying this inequality to u and defining cH := min|ξ|=1H(ξ), we get

ˆ

C
H(∇u)pdx ≥ cpH

ˆ

C
|∇u|pdx ≥ (cHSL)

p

(
ˆ

C
up

∗

dx

)p/p∗

.

On the other hand, multiplying (2.9) by u and integrating in C, we get
ˆ

C
H(∇u)pdx =

ˆ

C
up

∗

dx.

Combining the last two equations yield the desired lower bound. �

Remark 2.6. An alternative proof of Lemma 2.5 can be obtained by computing the optimal
Sobolev constant of C (using Appendix A) and noticing that this constant is bounded below in
terms only of n, p, H0, and the volume of C ∩B1. In particular, whenever C is L-Lipschitz then
ĈL ⊆ C and |C ∩B1| ≥ |ĈL ∩B1|, and one concludes that the Sobolev constant of C is controlled

by (actually, it is larger or equal than) the one of ĈL.

We shall also need a doubling-type property on u which is proved in [31, Lemma 5.1] (see
also [39, Lemma 3.1]). Below we state a version of this doubling property which is suitable for
our setting.

Note that, by convexity, there exists a constant LΣ > 0 such that Σ is LΣ-Lipschitz. Then
we let k0 > 0 be the constant provided by Lemma 2.5 with L = LΣ.

Lemma 2.7 (Doubling property [31]). Let u be a solution to (2.9), let LΣ be the Lipschitz
constant of Σ, and let k0 > 0 be the constant provided by Lemma 2.5 with L = LΣ.

Let k ∈ (0, k0), r > 0, and r′ ∈ (0, r) be fixed, and set

r′′ =
r + r′

2
.

Then for any x ∈ Σ \Br′′ and α > 0 such that the distance d between x and Σ ∩Br′′ satisfies

d(x,Σ ∩Br′′)u(x)
p

n−p > 2α , (2.10)

there exists a point y0 ∈ Σ \Br′′ such that

d(y0,Σ ∩Br′′)u(x)
p

n−p > 2α , u(x0) ≤ u(y0) , (2.11)

and

u(y) ≤ 2
n−p
p u(y0) for all y ∈ Σ ∩Br̄(y0) , (2.12)

where r̄ = αu(y0)
− p

n−p .

Proof of Proposition 2.3. We divide the proof of Proposition 2.3 in three steps. In Step 1 we give
a preliminary decay estimate on u (which is not sharp). In Step 2 we prove that u ∈ Lp̂−1,∞(Σ)
for a suitable p̂. Finally, in Step 3 we prove (2.8).

• Step 1: Let u be a solution of (1.7), and for k ∈ (0, k0) define

rk(u) := inf{r > 0 : ||u||Lp∗ (Σ\Br) < k} . (2.13)

Then, for any fixed k ∈ (0, k0) and r > rk(u), there exists a constant K0 such that

|u(x)| ≤ K0H0(x)
p−n
p for all x ∈ Σ \Br . (2.14)

In order to prove the assertion, it suffices to show the existence of a constant K1 such that

d(x,Σ ∩Br′′)u(x)
p

n−p ≤ K1 for all x ∈ Σ \Br , (2.15)

where r′′ = (r + r′)/2 and r′ ∈ (0, r) is fixed. We prove (2.15) by contradiction.
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Suppose there exists a sequence of points {xα}α∈N ⊂ Σ \Br such that

d(xα,Σ ∩Br′′)u(xα)
p

n−p > 2α . (2.16)

Since Br′′ ⊂ Br, it follows from (2.16) and Lemma 2.7 that there exists a sequence of points
{yα}α∈N ⊂ Σ \Br′′ such that

d(yα,Σ ∩Br′′)u(yα)
p

n−p > 2α , u(xα) ≤ u(yα) , (2.17)

and

u(y) ≤ 2
n−p
p u(yα) for all y ∈ Σ ∩Br̄(yα) . (2.18)

We observe that, since u is bounded, the sequences {xα}α∈N and {yα}α∈N are both divergent as
α→ ∞.

For any α ∈ N and y ∈ Σ, we define

ũα(y) := u(yα)
−1u(m−1

α y + yα) (2.19)

where mα := u(yα)
−p
n−p . From (1.7) we obtain











−∆H
p ũα = ũp

∗−1
α in Σα

ũα(O) = 1,

a(∇ũα) · ν = 0 on ∂Σα ,

(2.20)

where

Σα := mα(Σ− yα) = {y ∈ R
n : m−1

α y + yα ∈ Σ}

is a convex cone.
It is immediate to check that the cones Σα are LΣ-Lipschitz. Furthermore, if we set µα :=

u(yα)
−1, (2.18) and (2.19) yield that

ũα(−yαmα) = µαu(O) 6= 0 and ũα(y) ≤ 2
n−p
p for all y ∈ Σα ∩Bα . (2.21)

At this point we consider the ratio

qα :=
mα

|yα|
.

Observe that (by (2.17)) qα → 0 as α→ ∞.
Since |yα| → +∞, the ratio between −yαmα and the scaling factor mα goes to infinity.

Hence, one of the following two cases may occur as α→ ∞ :

(i) the sequence of cones {Σα}α∈N converges to R
n (this happens if the distance between

mαyα and ∂Σα goes to infinity);
(ii) the sequence of cones {Σα}α∈N converges to a LΣ-Lipschitz convex cone C, not necessarily

centered at the origin (this happens if the distance between mαyα and ∂Σα remains
bounded).

We now look in both cases at the behavior of the functions {uα}α∈N. We consider the two cases
separately.

- Case (i): fix a ball BR. Then there exists α ∈ N such that Σα∩BR = BR for every α ≥ α;
moreover ũα (for every α ≥ α) is a solution of (2.20) in BR. From (1.10), (2.21), and [18], there
exist a constant C > 0 and a real number θ ∈ (0, 1) such that

||ũα||C1,θ(BR/2)
≤ C (2.22)

for any α ≥ α. Since R > 0 is arbitrary, Ascoli-Arzelà Theorem and a diagonal argument imply
that {ũα}α∈N converges (up to subsequence) in C1

loc(R
n) to some function ũ∞. By construction

we have that ũ∞ ∈ D1,p(Rn), ũ∞(O) = 1, and ũ∞ is a weak solution of

−∆H
p ũ∞ = ũp

∗−1
∞ in R

n . (2.23)
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- Case (ii): consider a ball BR. Then for every compact set K ⊂⊂ BR∩C there exists α ∈ N

such that K ⊂ Σα ∩ BR for every α ≥ α. As in Case (i), for every α ≥ α the function ũα is a
solution of (2.20) in K, and there exist a constant C > 0 and a real number θ ∈ (0, 1) such that

||ũα||C1,θ(K ′) ≤ C (2.24)

for any α ≥ α and K ′ ⊂⊂ K. In addition, it follows by Remark 2.2 that the functions ũα are
uniformly C0,θ inside BR∩C for any R > 0. Hence, again Ascoli-Arzelà Theorem and a diagonal
argument imply that {ũα}α∈N converges (up to subsequence) in C0(BR ∩ C) ∩ C1

loc(BR ∩ C) to
some function ũ∞, for any R > 0. Taking the limit in the weak formulation of the equation, we
obtain that ũ∞ ∈ D1,p(C), ũ∞(O) = 1, and ũ∞ is a weak solution of

{

−∆H
p ũ∞ = ũp

∗−1
∞ in C

a(∇ũ∞) · ν = 0 on ∂C .
(2.25)

We now notice that, in both cases, for any ρ > 0 we have

||ũα||Lp∗(Σα∩Bρ) = ||u||Lp∗ (Σ∩Bρmα (yα)) . (2.26)

Also, by (2.17), since rk(u) < r′′ we get

Bρmα(yα) ∩Brk(u) = ∅ (2.27)

for α large. Thus, from (2.26), (2.27), and by definition of rk(u), we obtain

||ũα||Lp∗(Σα∩Bρ) ≤ k (2.28)

for α large. Thus, taking the limit in (2.28) as α→ ∞ and then as ρ→ ∞, yields

||ũ∞||Lp∗(Rn) ≤ k or ||ũ∞||Lp∗ (C) ≤ k , (2.29)

in Case (i) or Case (ii), respectively. Since k < k0 with k0 > 0 as in Lemma 2.5, it follows by
(2.23) (resp. (2.25)) and (2.29) that ũ∞ ≡ 0 in Case (i) (resp. Case (ii)), a contradiction to the
fact that ũ∞(O) = 1. This completes the proof of the assertion of Step 1.

• Step 2: Let u be a solution of (2.9). Then u ∈ Lp̂−1,∞(Σ) for p̂ := p(n−1)
n−p .

Recall that, given a set Ω and r ≥ 1, one defines the space Lr,∞(Ω) as the set of all
measurable functions v : Ω → R such that

||v||Lr,∞(Ω) := sup
h>0

{

hmeas ({|u| > h})1/r
}

<∞ . (2.30)

Using the Sobolev inequality in cones, the proof of this step can be easily adapted from the case
of Rn (see [39, Lemma 2.2]) and for this reason is omitted.

• Step 3: Proof of (2.8).
The proof of this step closely follows the proof of [39, Theorem 1.1], which in turn uses

[37, Theorem 1.3] and [34, Theorem 5]. Even if [37, Theorem 1.3] and [34, Theorem 5] are
stated in a local setting, thanks to the homogeous Neumann boundary condition they can be
easily extended to our setting. For this reason we only give a sketch of the proof, following the
argument of [39, Theorem 1.1].

Let k and r be as in Step 1. For any R > 0 and y ∈ Σ, we define

uR(y) := R
n−p
p−1 u(Ry) . (2.31)

From (1.7) we obtain

−∆H
p uR = R− p

p−1up
∗−1

R in Σ . (2.32)

Also, writing up
∗−1

R = up
∗−p

R up−1
R and using (2.14), we have

R
− p

p−1up
∗−1

R ≤ Kp∗−p
0 up−1

R in Σ \B1 , (2.33)
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provided that R ≥ r. Thus, it follows from (2.32), (2.33), and [37, Theorem 1.3], that for any
ε > 0 it holds

||uR||L∞(Σ∩(B4\B2)) ≤ Cε||uR||Lp−1+ε(Σ∩(B5\B1)) (2.34)

for some constant Cε > 0. We fix ε0 = ε0(n, p) such that 0 < ε0 < p̂ − p, where p̂ is as in Step
2. Since

||uR||Lp−1+ε0 (Σ∩(B5\B1)) ≤ C0||uR||Lp̂−1,∞(Σ∩(B5\B1)) ,

for C0 = C0(n, p), recalling Step 2 we obtain that

||uR||L∞(Σ∩(B4\B2)) ≤ C1 (2.35)

for some constant C1. Hence, by (2.32), (2.35), and elliptic regularity theory for p-Laplacian
type equations [18, 36], we get

||∇uR||L∞(Σ∩(B7/2\B5/2)) ≤ C2 (2.36)

for some constant C2. Here we notice that, even if (2.36) is proved in [18, Section 3] in a local
setting (see also [10], where the authors prove global Lipschitz regularity in convex domains
for the case when H coincides with the Euclidean norm), the argument easily extends to our
setting by an approximation argument. Indeed, as in the proof of Proposition 2.8 below, one can
work in regularized domains and, because of the presence of the boundary, with respect to [18,
Section 3] it appears an extra boundary term. However, this can be dropped since the second
fundamental form of ∂Σ is nonnegative definite (compare with (2.46)-(2.49) below, or with [10,
Proof of Theorem 1.2, Step 1]).

Finally, for any x ∈ R
n \B3r, applying (2.35) and (2.36) with R = |x|/3 we obtain

u(x) ≤ C3|x|
p−n
p−1 and |∇u(x)| ≤ C3|x|

1−n
p−1 (2.37)

for some constant C3. Since u and ∇u are uniformly bounded in B3r, (2.8) follows. Finally, to
prove the lower bound in (2.8) one argues as in [39, pages 159-160]. �

2.3. Asymptotic estimates on higher order derivatives. By using a Caccioppoli-type
inequality, in this subsection we prove Proposition 2.8 below which will be useful in the proof of
Theorem 1.1. In particular it will avoid the use of an asymptotic lower bound on |∇u|, which is
crucial in [33].

Proposition 2.8. Let Σ be a convex cone, and let u be a solution to (1.7) with a(·) given by

(1.8), where H satisfies the assumptions of Theorem 1.1. Then a(∇u) ∈ W 1,2
loc (Σ), and for any

γ ∈ R the following asymptotic estimate holds:

ˆ

Br∩Σ
|∇(a(∇u))|2uγ dx ≤ C

(

1 + r
−n−γ n−p

p−1

)

∀ r ≥ 1, (2.38)

where C is a positive constant independent of r.

Proof. The estimate (2.38) is obtained by using a Caccioppoli-type inequality. We argue by
approximation, following the approach in [3, 11].



12 GIULIO CIRAOLO, ALESSIO FIGALLI, AND ALBERTO RONCORONI

We approximate Σ by a sequence of convex cones {Σk} such that Σk ⊆ Σ and ∂Σk \ {O} is
smooth. Also, we fix a point x̄ ∈ ∩kΣk, and for k fixed we let uk be the solution of2











div (a(∇uk)) + up
∗−1 = 0 in Σk

uk(x̄) = u(x̄)

a(∇uk) · ν = 0 on ∂Σk .

(2.39)

Set

aℓ(z) := (a ∗ φℓ)(z) for z ∈ R
n , (2.40)

where {φℓ} is a family of radially symmetric smooth mollifiers. Standard properties of convolu-
tion and the fact a(·) is continuous imply aℓ → a uniformly on compact subset of Rn. From [21,
Lemma 2.4] we have that aℓ satisfies the first condition in (2.2) with s replaced by sℓ, where
sℓ → 0 as ℓ→ ∞. In addition, since

1

α̃
(|z|2 + s2ℓ)

p−2
2 |ξ|2 ≤ ∇aℓ(z)ξ · ξ , for every ξ, z ∈ R

n,

for some α̃ > 0, we obtain that aℓ satisfies also the second condition in (2.2).
Let uk,ℓ be a solution of

{

div (aℓ(∇uk,ℓ)) + up
∗−1 = 0 in Σk

aℓ(∇uk,ℓ) · ν = 0 on ∂Σk
(2.41)

(this solution can be constructed analogously to uk).
We notice that uk,ℓ is unique up to an additive constant. Also, because u is locally bounded,

the functions uk,ℓ are C
1,θ
loc (Σk \{O})∩C0,θ

loc (Σk), uniformly in ℓ. In particular, assuming without
loss of generality that uk,ℓ(x̄) = u(x̄) for some fixed point x̄ ∈ Σk, as ℓ → ∞ one sees that uk,ℓ
converges in C1

loc to the unique solution ūk of










div (a(∇ūk)) + up
∗−1 = 0 in Σk

ūk(x̄) = u(x̄)

a(∇ūk) · ν = 0 on ∂Σk .

(2.42)

Since uk is also a solution of the problem above, it follows by uniqueness that ūk = uk and
therefore uk,ℓ converges to uk as ℓ→ ∞. Analogously, uk → u as k → ∞.

Given R > 1 large, we define

Ωk := Σk ∩BR , Γk,0 := Σk ∩ ∂BR , Γk,1 := ∂Σk ∩BR .

Note that, since u is uniformly positive inside Σ (see Proposition 2.3), for k large enough
(depending on R) also uk is uniformly positive inside Ωk, and hence for ℓ large enough we have
that uk,ℓ is also uniformly positive inside Ωk. In the sequel we shall always assume that k
and ℓ are sufficiently large so that this positivity property holds. We now fix k and deal with
the functions uk,ℓ. To simplify the notation, we shall drop the dependency on k and we write
uℓ,Σ,Ω,Γ0,Γ1 instead of uk,ℓ,Σk,Ωk,Γk,0,Γk,1, respectively.

The idea is to prove a Caccioppoli-type inequality for uℓ and then let ℓ → ∞. Since uℓ
solves a non-degenerate equation, we have that uℓ ∈ C1 ∩W 2,2

loc (Σ) and furthermore we have

2The function uk can be found by considering first the minimizer vk,R of the minimization problem

min
v

{
ˆ

Σk∩BR

[

1

p
H(∇v)p − u

p∗−1
v

]

dx : v = 0 on Σk ∩ ∂BR

}

,

then setting uk,R(x) := vk,R(x) + u(x̄) − vk,R(x̄), and finally taking the limit of uk,R as R → ∞ (note that
the functions ũk,R are uniformly C1,θ in every compact subset of Σ, and uniformly Hölder continuous up to the
boundary).
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aℓ(∇uℓ) ∈ W 1,2
loc (Σ). In addition, since Σ is smooth outside the origin, uℓ is of class C2 in Ω

away from Γ1 ∪ {O}.
Multiply (2.41) by ψ ∈ C∞

c (BR \B1/R) and integrate over Ω to get
ˆ

Ω
div (aℓ(∇uℓ))ψ dx = −

ˆ

Ω
up

∗−1ψ dx,

that together with the divergence theorem gives

−

ˆ

Ω
aℓ(∇uℓ) · ∇ψ dx+

ˆ

∂Ω
ψaℓ(∇uℓ) · ν dσ = −

ˆ

Ω
up

∗−1ψ dx . (2.43)

Since
ˆ

∂Ω
ψaℓ(∇uℓ) · ν dσ =

ˆ

Γ1

ψaℓ(∇uℓ) · ν dσ +

ˆ

Γ0

ψaℓ(∇uℓ) · ν dσ ,

from the fact that ψ ∈ C∞
c (BR \ B1/R) and from the boundary condition in (2.41), we obtain

that the second term in (2.43) vanishes; hence (2.43) becomes

−

ˆ

Ω
aℓ(∇uℓ) · ∇ψ dx = −

ˆ

Ω
up

∗−1ψ dx . (2.44)

Let ϕ ∈ C∞
c (BR \B1/R), and for δ > 0 small define the set

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ} .

Since Ω ∩ supp(ϕ) is smooth, for δ small enough we see that Ωδ \ Ω2δ is of class C∞ inside the
support of ϕ. In particular, every point x ∈ (Ωδ \Ω2δ) ∩ supp(ϕ) can be written as

x = y − |x− y|ν(y)

where y = y(x) ∈ ∂Ωδ is the projection of x on ∂Ωδ and ν(y) is the outward normal to ∂Ωδ at
y. Moreover the set (Ωδ \ Ω2δ) ∩ supp(ϕ) can be parametrized on ∂Ωδ by a C1 function g (see
[24, Formula 14.98]).

Let ζδ : Ω → [0, 1] be a cut-off function such that ζδ = 1 in Ω2δ, ζδ = 0 in Ω \ Ωδ, and

∇ζδ(x) = −
1

δ
ν(y(x)) inside Ωδ \ Ω2δ .

Using ψ = ∂m(ϕζδ) in (2.44) with m ∈ {1, . . . , n} and integrating by parts, we get

n
∑

i=1

(
ˆ

Ω
∂ma

ℓ
i(∇uℓ)ζδ∂iϕdx+

ˆ

Ω
∂ma

ℓ
i(∇uℓ)ϕ∂iζδ dx

)

=

ˆ

Ω
∂m(up

∗−1)ϕζδ dx ,

where we use the notation aℓ = (aℓ1, . . . , a
ℓ
n) to denote the components of the vector field aℓ.

Observe that, from the definition of ζδ, we have

lim
δ→0

ˆ

Ω
∂ma

ℓ
i(∇uℓ)ζδ∂iϕdx =

ˆ

Ω
∂ma

ℓ
i(∇uℓ)∂iϕdx .

Also, if we set

f(x) = ∂ma
ℓ
i(∇uℓ(x))ϕ(x) ,

by the coarea formula we have
ˆ

Ωδ\Ω2δ

f∂iζδ dx = −
1

δ

ˆ

Ωδ\Ω2δ

νi(y(x))fdx

= −
1

δ

ˆ 2δ

δ
dt

ˆ

∂Ωδ

νi(y(x))f(y − tν(y))|det(Dg)|dσ(y)

= −

ˆ 2

1
ds

ˆ

∂Ωsδ

f(y − sδν(y))νi(y)|det(Dg)|dσ(y) .



14 GIULIO CIRAOLO, ALESSIO FIGALLI, AND ALBERTO RONCORONI

Since f ∈ C0, we can pass to the limit and obtain

lim
δ→0

ˆ

Ω
∂ma

ℓ
i(∇uℓ)ϕ∂iζδ dx = −

ˆ

∂Ω
∂ma

ℓ
i(∇uℓ)ϕνidσ .

Hence, we proved that
n
∑

i=1

(
ˆ

Ω
∂ma

ℓ
i(∇uℓ)∂iϕdx −

ˆ

∂Ω
∂ma

ℓ
i(∇uℓ)ϕνidσ

)

=

ˆ

Ω
∂m(up

∗−1)ϕdx . (2.45)

Now, let

Ωt
δ := {x ∈ Ωδ : dist(x, ∂Ωδ) > t} .

We notice that, if x ∈ (Ωδ \ Ω2δ) ∩ supp(ϕ) with x = y − tν(y), then x ∈ ∂Ωt
δ and the outward

normal to ∂Ωt
δ at x coincides with the outward normal to ∂Ωδ at y. Hence, by writing ν(x) in

place of ν(y), we have

∂ma
ℓ
i(∇uℓ(x))ϕ(x)νi(x) =ϕ(x)∂m(aℓ(∇uℓ(x)) · ν(x))

− ϕ(x)aℓi(∇uℓ(x))∂mνi(x) .
(2.46)

Now, we take a cut-off function η ∈ C∞
c (BR \ B1/R), and for m ∈ {1, . . . , n} we set ϕ =

aℓm(∇uℓ)u
γ
ℓ η

2 where γ ∈ R, and in (2.46) we obtain

∂ma
ℓ
i(∇uℓ(x))ϕ(x)νi(x) = aℓm(∇uℓ(x))u

γ
ℓ (x)η

2(x)∂m
(

aℓ(∇uℓ(x)) · ν(x)
)

− aℓm(∇uℓ(x))u
γ
ℓ (x)η

2(x)aℓi(∇uℓ(x))∂mνi(x) .
(2.47)

We notice that ∂mνi(x) is the second fundamental form IItx of ∂Ωt
δ at x:

n
∑

i,m=1

∂mνi(x)a
ℓ
i(∇uℓ(x))a

ℓ
m(∇uℓ(x)) = IItx(a

ℓ(∇uℓ(x)), a
ℓ(∇uℓ(x))) .

Since the cone Σ is convex then IItx is non-negative definite, which implies that

n
∑

i,m=1

∂mνi(x)a
ℓ
i(∇uℓ(x))a

ℓ
m(∇uℓ(x)) ≥ 0 . (2.48)

Hence (2.47) becomes

n
∑

i,m=1

∂ma
ℓ
i(∇uℓ(x))ϕ(x)νi(x) ≤

n
∑

i,m=1

aℓm(∇un(x))u
γ
ℓ (x)η

2(x)∂m
(

aℓ(∇uℓ(x)) · ν(x)
)

, (2.49)

and so, with the choice ϕ = aℓm(∇uℓ)u
γ
ℓ η

2, we obtain

n
∑

i,m=1

ˆ

∂Ω
∂ma

ℓ
i(∇uℓ)ϕνidσ ≤

n
∑

i,m=1

ˆ

∂Ω
uγℓ η

2aℓm(∇uℓ)∂m
(

aℓ(∇uℓ) · ν
)

dx

=

n
∑

i=1

ˆ

∂Ω
uγℓ η

2 aℓ(∇uℓ) · ∇
(

aℓ(∇uℓ) · ν
)

dx = 0 ,

where the last equality follows from the condition aℓ(∇uℓ) · ν = 0 on ∂Σ. Indeed, this condition
implies that aℓ(∇uℓ) is a tangent vector-field and that the tangential derivative of aℓ(∇uℓ) · ν
vanishes on ∂Σ.

Hence, recalling (2.45), we proved that

n
∑

i,m=1

ˆ

Ω
∂ma

ℓ
i(∇uℓ)∂i

(

aℓm(∇uℓ)u
γ
ℓ η

2
)

dx ≤ n

ˆ

Ω
|∇(up

∗−1)||aℓ(∇uℓ)|u
γ
ℓ η

2 dx . (2.50)
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Inequality (2.50) can be used in place of Equation (4.11) in [3, Proof of Theorem 4.1], and by
arguing as in [3] we obtain
ˆ

Ω
|∇(aℓ(∇uℓ))|

2η2uγℓ dx ≤

C

ˆ

Ω
|∇(aℓ(∇uℓ))||a

ℓ(∇uℓ)|ηu
γ
2
ℓ |∇(ηu

γ
2
ℓ )| dx+ C

ˆ

Ω
|∇(up

∗−1)||aℓ(∇uℓ)|u
γ
ℓ η

2 dx .

From Hölder and Young inequalities, for any ǫ ∈ (0, 1) we can bound

C

ˆ

Ω
|∇(aℓ(∇uℓ))||a

ℓ(∇uℓ)|ηu
γ
2
ℓ |∇(ηu

γ
2
ℓ )| dx

≤ Cǫ

ˆ

Ω
|∇(aℓ(∇uℓ))|

2η2uγℓ dx+
C

ǫ

ˆ

Ω
|aℓ(∇uℓ)|

2|∇(ηu
γ
2
ℓ )|

2 dx,

so choosing ǫ small enough such that Cǫ = 1/2, we obtain
ˆ

Ω
|∇(aℓ(∇uℓ))|

2η2uγℓ dx ≤ C

ˆ

Ω
|aℓ(∇uℓ)|

2|∇(ηu
γ
2
ℓ )|

2 dx+ C

ˆ

Ω
|∇(up

∗−1)||aℓ(∇uℓ)|u
γ
ℓ η

2 dx.

Recall that here η ∈ C∞
c (BR \ B1/R). However, by approximation the same property holds for

any η ∈ C∞
c (Rn).

Now, we recall that we were writing uℓ in place of uk,ℓ. Then, since uk,ℓ → uk in C1
loc and

aℓ → a locally uniformly, we can let ℓ→ ∞ to deduce that
ˆ

Ωk

|∇(a(∇uk))|
2η2uγk dx ≤ C

ˆ

Ωk

|a(∇uk)|
2|∇(ηu

γ
2
k )|

2 dx+ C

ˆ

Ωk

|∇(up
∗−1)||a(∇uk)|u

γ
kη

2 dx.

(2.51)

In particular, taking γ = 0, (2.51) proves that a(∇uk) ∈W 1,2
loc (Σk), and {a(∇uk)}k∈N is uniformly

bounded in W 1,2
loc . Hence, letting k → ∞ in (2.51) we obtain

ˆ

Ω
|∇(a(∇u))|2η2uγ dx ≤ C

ˆ

Ω
|a(∇u)|2|∇(ηu

γ
2 )|2 dx+ C

ˆ

Ω
|∇(up

∗−1)||a(∇u)|uγη2 dx.

Finally, the asymptotic estimate (2.38) follows from (2.8). �

3. Proof of Theorem 1.1

As already mentioned in the introduction, we consider the auxiliary function

v = u
− p

n−p (3.1)

where u is a solution of (1.7). A straightforward computation shows that v > 0 satisfies the
following problem

{

∆H
p v = f(v,∇v) in Σ

a(∇v) · ν = 0 on ∂Σ ,
(3.2)

where ∆H
p v = div (a(∇v)) with a(ξ) as (1.8), and we set

f(v,∇v) =

(

p

n− p

)p−1 1

v
+
n(p− 1)

p

Hp(∇v)

v
. (3.3)

It is clear that v inherits some properties from u. In particular v ∈ C1,θ
loc , and it follows from

Proposition 2.3 that there exist constants C0, C1 > 0 such that

C0|x|
− p

p−1 ≤ v(x) ≤ C1|x|
− p

p−1 (3.4)

and

|∇v(x)| ≤ C1|x|
− 1

p−1 (3.5)
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for |x| sufficiently large. Higher regularity results for v are summarized in the following lemma.

Lemma 3.1. Let v be given by (3.1). Then, for every σ ∈ R, the asymptotic estimate
ˆ

Br∩Σ
|∇(a(∇v))|2vσ dx ≤ C

(

1 + rn+
σp
p−1

)

∀ r ≥ 1 (3.6)

holds.

Proof. We notice that

a(∇v) = −

(

p

n− p

)p−1

u
−n(p−1)

n−p a(∇u)

and

∇(a(∇v)) = −

(

p

n− p

)p−1 [

u
−n(p−1)

n−p ∇(a(∇u)) −
n(p− 1)

n− p
u

p(1−n)
n−p ∇u ⊗ a(∇u)

]

,

so it follows from Proposition 2.8 that

a(∇v) ∈W 1,2
loc (Σ) . (3.7)

Finally, the asymptotic estimate (3.6) follows from (2.38) and (2.8). �

3.1. An integral inequality. In this subsection, by using the convexity of the cone, we show
that v satisfies an integral inequality.

We recall that the second symmetric function S2(M) of a n × n matrix M = (mij) is the
sum of all the principal minors of A of order two, and we have

S2(M) =
1

2

∑

i,j

S2
ij(M)mij , (3.8)

where

S2
ij(M) = −mji + δijtr (M) .

As proved in [12, Lemma 3.2], given two symmetric matrices B,C ∈ R
n×n with B positive

semidefinite, and by setting M = BC, we have the following Newton’s type inequality:

S2(M) ≤
n− 1

2n
tr (M)2 . (3.9)

Moreover, if tr (M) 6= 0 and equality holds in (3.9), then

M =
tr (M)

n
Id ,

and B is positive definite. As we will describe later, we will apply (3.9) to the matrix M =
∇[a(∇v)].

We start from the following differential identity (see [5]). We use the Einstein convention
of summation over repeated indices.

Lemma 3.2. Let v be a positive function of class C3 and let V : Rn → R
+ be of class C3(Rn)

and such that V (∇v)div (∇V (∇v)) can be continuously extended to zero at ∇v = 0. Let

W = ∇[∇ξV (∇v)] = Vξiξj (∇v)vij . (3.10)

Then, for any γ ∈ R we have

2vγS2(W ) = div (vγS2
ij(W )Vξi(∇v)) − γvγ−1S2

ij(W )Vξi(∇v)vj (3.11)
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and
div
(

vγS2
ij(W )Vξi(∇v) + γ(p − 1)vγ−1V (∇v)Vξj (∇v)

)

=2vγS2(W ) + γ(γ − 1)(p − 1)vγ−2V (∇v)Vξi(∇v)vi

+ γvγ−1 ((p − 1)V (∇v) + Vξi(∇v)vi) tr (W )

+ γvγ−1
(

(p− 1)Vξi(∇v)Vξj (∇v)vij + Vξjξl(∇v)vliVξi(∇v)vj
)

.

(3.12)

In particular, if H is a norm and

V (ξ) =
Hp(ξ)

p
for p > 1 and ξ ∈ R

n , (3.13)

then

2vγS2(W ) =div
(

vγS2
ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)∇ξV (∇v)

)

− γ(γ − 1)p(p − 1)vγ−2V 2(∇v)− γ(2p − 1)vγ−1V (∇v)∆H
p v ,

(3.14)

where ∆H
p v = div (a(∇v)) and a(·) is given by (1.8). Observe that, in this particular case,

W (x) := ∇[a(∇v(x))].

Proof. See [5, Lemma 4.1]. �

The idea is to apply the above lemma to the function v solving (3.2) and integrate the
identity above on Σ. Due to the lack of regularity of v, Lemma 3.2 cannot be applied directly
but we can still prove its integral counterpart.

Lemma 3.3. Let v be given by (3.1), let V be as in (3.13), and W as in (3.10). Then, for any
ϕ ∈ C∞

c (Σ), we have
ˆ

Σ

(

2vγS2(W ) + γ(γ − 1)p(p − 1)vγ−2V 2(∇v) + γ(2p − 1)vγ−1V (∇v)∆H
p v
)

ϕ

=−

ˆ

Σ
ϕj

(

vγS2
ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)

)

.

(3.15)

Proof. We argue by approximation. So, first we extend v as 0 outside Σ, and then for ε > 0 we
define vε = v ∗ ρε and V ε = V ∗ ρε, where ρε is a standard mollifier. Also, we set aε = ∇V ε and
W ε = (wε

ij)i,j=1,...,n where wε
ij = ∂j(a

ε
i (∇v

ε)).

Since V ∈ C1(Rn) then aεi = ai ∗ ρ
ε for i = 1, . . . , n, where a is given by (1.8). Also, since

a(∇v) ∈W 1,2
loc (Σ), then a

ε
i (∇v

ε) → ai(∇v) and w
ε
ij → wij in L2

loc(Σ).

Moreover, since H0(∇H(ξ)) = 1 for any ξ ∈ R
n \ {0} we have that H0(a(ξ)) = Hp−1(ξ),

which implies that pV (ξ) = H
p

p−1

0 (a(ξ)). Since H
p

p−1

0 is locally Lipschitz and a(∇v) ∈ W 1,2
loc (Σ)

then V (∇v) ∈W 1,2
loc (Σ) and we have that ∂xj (V

ε(∇vε)) → ∂xj(V (∇v)) in L2
loc(Σ). Now we write

(3.12) for the approximating functions vε, V ε andW ε, we multiply by ϕ ∈ C∞
c (Σ) and integrate

over Σ. Since ϕ has compact support inside Σ, it follows from the divergence theorem that
ˆ

Σ

(

2(vε)γS2(W ε) + γ(γ − 1)(p − 1)(vε)γ−2V ε(∇vε)V ε
ξi(∇v

ε)vεi
)

ϕ

+

ˆ

Σ
γ(vε)γ−1

(

(p− 1)V ε(∇vε) + V ε
ξi(∇v

ε)vεi
)

tr (W ε)ϕ

+

ˆ

Σ
γ(vε)γ−1

(

(p − 1)V ε
ξi(∇v

ε)V ε
ξj (∇v

ε)vεij + V ε
ξjξl

(∇vε)vεliV
ε
ξi(∇v

ε)vεj

)

ϕ

=−

ˆ

Σ
ϕj

(

(vε)γS2
ij(W

ε)V ε
ξi(∇v

ε) + γ(p − 1)(vε)γ−1V ε(∇vε)V ε
ξj (∇v

ε)
)

.

(3.16)

Since V ε
ξi
(∇vε)vεij = ∂xj (V

ε(∇vε)), recalling (3.14) we conclude easily by letting ε→ 0. �
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Now we extend Lemma 3.3 to a generic cut-off function in R
n. Here, the convexity of Σ

plays a crucial role.

Lemma 3.4. Let v be given by (3.1), let V be as in (3.13), and W as in (3.10). Consider a
non-negative cut-off function η ∈ C∞

c (Rn). Then
ˆ

Σ

(

2vγS2(W ) + γ(γ − 1)p(p − 1)vγ−2V 2(∇v) + γ(2p − 1)vγ−1V (∇v)∆H
p v
)

η

≥−

ˆ

Σ
ηj
(

vγS2
ij(W )Vξi(∇v) + γ(p − 1)vγ−1V (∇v)Vξj (∇v)

)

.

(3.17)

Proof. As in the proof of Proposition 2.8, this proof requires a regularization argument consid-
ering the solutions of the approximating problems

{

div (aℓ(∇vk,ℓ)) = f(v,∇v) in Σk

aℓ(∇vk,ℓ) · ν = 0 on ∂Σk ,

where aℓ are defined as in (2.40) and f(v,∇v) is given by (3.3). Note that, since v ∈ C1,θ
loc (Σ \

{O}), the functions vk,ℓ are of class C
2,θ
loc in Σk\{O}, and this allows one to perform all the desired

computations on the functions vk,ℓ, and then let ℓ and k to infinity. Since this approximation
argument is very similar to the one in the proof of Proposition 2.8, to simplify the notation

and emphasize the main ideas we shall work directly with v, assuming that v is of class C2,θ
loc in

Σ \ {O} in order to justify all the computations.
Set

F = 2vγS2(W ) + γ(γ − 1)p(p − 1)vγ−2V 2(∇v) + γ(2p − 1)vγ−1V (∇v)∆H
p v (3.18)

and L = (L1, . . . , Ln) with

Lj = vγS2
ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)

for j = 1, . . . , n. Then we apply Lemma 3.3 with ϕ = ηζδ, where η ∈ C∞
c (Rn) is a cut-off

function as in the statement, and ζδ ∈ C
∞
c (Σ) is a cut-off function of the distance from ∂Σ that

converges to 1 inside Σ as δ → 0. In this way, as in the proof of (2.45), letting δ → 0 the term
involving ∇ζδ gives rise to a boundary term: more precisely, we obtain

ˆ

Σ
Fη = −

ˆ

Σ
∇η · L+

ˆ

∂Σ
ηL · νdσ . (3.19)

Now, to conclude the proof, we need to show that the last integral in (3.19) is non-negative;
indeed, for x ∈ ∂Σ \ {O}, by using the explicit expression of L and of S2

ij(W ) we get

L(x) · ν(x) =

vγ(x)a(∇v(x)) · ν(x)
[

tr (W )(x) + γ(p− 1)v−1(x)V (∇v(x))
]

− vγ(x)∂i(aj(∇v(x)))ai(∇v(x))νℓ(x) ,

(3.20)

where we used that wji(x) = ∂iaj(∇v(x)) and Vξi = ai.
We notice now that ∂iνℓ(x) is the second fundamental form of ∂Σ at x, which is non-negative

definite by the convexity of Σ. Hence

∂iνℓ(x)aj(∇v(x))ai(∇v(x)) ≥ 0. (3.21)

From (3.20) and (3.21) we get

L(x) · ν(x) ≥ vγ(x)a(∇v(x)) · ν(y)
[

tr (W )(x) + γ(p − 1)v−1(x)V (∇v(x))
]

− vγ(x)∇(a(∇v(x)) · ν(y)) · a(∇v(x)).

Now, since a(∇v) · ν = 0 on ∂Σ, the first term on the right-hand side vanishes. Moreover, since
the tangential derivative of a(∇v) · ν vanishes on ∂Σ and a(∇v) is a tangential vector-field, also
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the second term vanishes. This proves that L · ν ≥ 0 on ∂Σ \ {O}, that together with (3.19)
(recall that η ≥ 0) concludes the proof. �

Proposition 3.5. Let v be given by (3.1), let V be as in (3.13), and W as in (3.10). Then
ˆ

Σ

(

2vγS2(W ) + γ(γ − 1)p(p − 1)vγ−2V 2(∇v) + γ(2p − 1)vγ−1V (∇v)∆H
p v
)

≥ 0 (3.22)

for any γ < −n(p−1)
p .

Proof. From (3.2), (3.4), and (3.5) we know that |∆H
p v| ≤ C in Σ, and from Newton’s inequality

(3.9) we also have |S2(W )| ≤ C (recall that tr (W ) = ∆H
p v).

Now, let η be a non-negative radial cut-off function such that η = 1 in BR, η = 0 outside
B2R, and |∇η| ≤ 2

R . Thanks to (3.4) and (3.5), we can take the limit as R→ ∞ in the left-hand
side of (3.17) to obtain the left-hand side of (3.22). Hence, in order to prove (3.22) it is enough
to show that

lim
R→∞

ˆ

ER

ηj
(

vγS2
ij(W )Vξi(∇v) + γ(p− 1)vγ−1V (∇v)Vξj (∇v)

)

= 0 , (3.23)

where we set for simplicity

ER := Σ ∩ (B2R \BR)

Since |S2
ij(W )| ≤ |W |, using Holder’s inequality we get

∣

∣

∣

∣

ˆ

ER

ηjv
γS2

ij(W )Vξi(∇v)

∣

∣

∣

∣

≤
c(n)

R
‖W‖L2(ER)

(
ˆ

ER

v2γ |∇V (∇v)|2
) 1

2

.

Observe that (3.6) yields

‖W‖2L2(ER) ≤ CRn .

Also, from (3.4) and (3.5) we have
ˆ

ER

v2γ |∇V (∇v)|2 ≤ CR
2γp
p−1

+n+2
.

Hence, since by assumption γ < −n(p−1)
p , this proves that

lim
R→∞

ˆ

ER

ηjv
γS2

ij(W )Vξi(∇v) = 0 .

Analogously, using (3.4) and (3.5), the second term in (3.23) can be bounded as
∣

∣

∣

∣

ˆ

ER

ηjv
γ−1V (∇v)Vξj (∇v)

∣

∣

∣

∣

≤ CR
pγ
p−1

+n
, (3.24)

which also goes to zero as R→ ∞ since γ < −n(p−1)
p . This proves (3.23) and hence (3.22). �

3.2. Conclusion. We multiply (3.2) by v−n and integrate over Σ. By using the divergence
theorem, the boundary condition in (3.2), and the decay estimates (3.4) and (3.5), we get

(

p

n− p

)p−1 ˆ

Σ
v−n−1 −

n

p

ˆ

Σ
v−n−1Hp(∇v) = 0 . (3.25)

Now we use Newton’s inequality applied to W in (3.22). More precisely, since tr (W ) = ∆H
p v,

we have

2S2(W ) ≤
n− 1

n
(∆H

p v)
2 , (3.26)
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and from (3.22) we obtain
ˆ

Σ

(

n− 1

n
vγ(∆H

p v)
2 + γ(γ − 1)p(p− 1)vγ−2V 2(∇v) + γ(2p − 1)vγ−1V (∇v)∆H

p v

)

≥ 0 (3.27)

for any γ < −n(p−1)
p . Since p < n we can choose γ = 1− n in (3.27), and using (3.2), (3.3), and

(3.13), we obtain
(

p

n− p

)p−1 ˆ

Σ
v−n−1 −

n

p

ˆ

Σ
v−n−1Hp(∇v) ≥ 0 . (3.28)

Recalling (3.25), this implies that the equality case must hold in (3.28). Hence the equality case
must hold in (3.26) a.e., which implies that

W (x) = λ(x)Id for a.e. x ∈ Σ , (3.29)

for some function λ : Σ → R, where I is the identity matrix.
Now we show that the function λ is constant. Since

λ(x) =
1

n
tr (W ) =

1

n
∆H

p v(x) =
1

n
f(v,∇v)

(see (3.2)), and since v ∈ C1,θ
loc (Σ), we get that λ ∈ C0,θ

loc (Σ). Moreover, elliptic regularity theory

yields that v ∈ C2,θ
loc (Σ ∩ {∇v 6= 0}), which implies that λ ∈ C1,θ

loc (Σ ∩ {∇v 6= 0}). From (3.29)
we have that

∂i(aj(∇v(x))) = λ(x)δij (3.30)

for i, j ∈ {1, . . . , n}, which implies that a(∇v) ∈ C2,θ
loc (Σ ∩ {∇v 6= 0}).

Then, given i ∈ {1, . . . , n}, choosing j 6= i and using (3.30) we obtain

∂iλ(x) = ∂i
(

∂j(aj(∇v(x)))
)

= ∂j
(

∂i(aj(∇v(x)))
)

= 0

for any x ∈ Σ ∩ {∇v 6= 0}, which implies that λ is constant on each connected component of
Σ ∩ {∇v 6= 0}. Since λ is continuous in Σ and {∇v = 0} has no interior points (this follows
easily from (3.2)), we deduce that λ is constant. In particular, recalling (3.29), we get

∇[a(∇v(x))] =W (x) = λ I in Σ .

Hence a(∇v(x)) = λ(x − x0) for some x0 ∈ Σ, and from the boundary condition in (3.2) we

obtain that x0 ∈ ∂Σ. This implies that v(x) = c1 + c2H0(x− x0)
p

p−1 , or equivalently (recalling
(3.1)) u(x) = UH

µ,x0
(x) for some µ > 0. Finally, it is clear that:

- if Σ = R
n and x0 may be a generic point in R

n;
- if k ∈ {1, . . . , n− 1} then x0 ∈ R

k × {O};
- if k = 0 then x0 = O.

This completes the proof of Theorem 1.1.

Appendix A. Sharp anisotropic Sobolev inequalities with weight in convex

cones

In this appendix we prove a sharp version of the anisotropic Sobolev inequality in cones by
suitably adapting the optimal transportation proof of the Sobolev inequality in [15, Theorem
2]. As we shall see, the proof not only applies to the case of arbitrary norms, but it also allows
us to cover a large class of weights. In particular, our result extends the weighted isoperimetric
inequalities from [8, Theorem 1.3] to the full Sobolev range p ∈ (1, n) (note that the case p = 1
can be recovered letting p→ 1+).
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Theorem A.1. Let p ∈ (1, n). Let Σ be a convex cone and H a norm in R
n. Let w ∈ C0(Σ) be

positive in Σ, homogeneous of degree a ≥ 0, and such that w1/a is concave in case a > 0. Then
for any f ∈ D1,p(Σ) we have

(
ˆ

Σ
|f(x)|βw(x) dx

)p/β

≤ CΣ(n, p, a,H,w)

ˆ

Σ
Hp(∇f(x))w(x) dx (A.1)

where

β =
p(n+ a)

n+ a− p
. (A.2)

Moreover, inequality (A.1) is sharp and the equality is attained if and only if f = UH,a
λ,x0

, where

UH,a
λ,x0

(x) :=

(

λ
1

p−1 c(n, p, a,H,w)

λ
p

p−1 +H0(x− x0)
p

p−1

)

n+a−p
p

(A.3)

with λ > 0 , and H0(ζ) := supH(ξ)=1 ζ · ξ is the dual norm of H.

Furthermore, writing Σ = R
k×C with k ∈ {0, . . . , n} and with C ⊂ R

n−k a convex cone that
does not contain a line, then:

(i) if k = n then Σ = R
n and x0 may be a generic point in R

n;
(ii) if k ∈ {1, . . . , n− 1} then x0 ∈ R

k × {O};
(iii) if k = 0 then x0 = O.

Proof. We aim at proving that for any nonnegative f, g ∈ Lβ(Σ) with ‖f‖Lβ(Σ) = ‖g‖Lβ(Σ) and

such that ∇f ∈ Lp(Σ), we have that
ˆ

Σ
gγw dx ≤

γ

n+ a

(
ˆ

Σ
Hp(∇f)w dx

)1/p (ˆ

Σ
Hp′

0 g
βw dx

)1/p′

, (A.4)

with equality if f = g = UH,a
λ,x0

. The value of γ will be specified later. As shown in [15], inequality

(A.4) implies the Sobolev inequality (A.1).
Let F and G be probability densities on Σ and let T : Σ → Σ be the optimal transport map

(see e.g. [40]).3 It is well known that, by the transport condition T#F = G, one has

|det(DT )| =
F

G ◦ T

(see for instance [17, Section 3]). Then, if we choose

F = fβw and G = gβw ,

the Jacobian equation for T becomes

|det(DT )|
w ◦ T

w
=

fβ

gβ ◦ T
.

We observe that, since

T#(f
βw) = gβw ,

3 As explained in [19] (see also [20]), the argument that follows can be made rigorous using the fine properties
of BV functions (we note that T belongs to BV , being the gradient of a convex function). However, to emphasize
the main ideas, we shall write the whole argument when T : Σ → Σ is a C1 diffeomorphism, and we invite the
interested reader to look at the proof of [19, Theorem 2.2] to understand how to adapt the argument using only
that T ∈ BVloc(Σ; Σ).

Alternatively, arguing by approximation, one can assume that w is strictly positive in Σ \ {0}, and that f and

g are both strictly positive and smooth inside Σ. Then, if T : Σ → Σ denotes the optimal transport map from
fβw to gβw, [14, Theorem 1 and Remark 4] ensure that T : Σ → Σ is a diffeomorphism. This allows one to
perform the proof of (A.4) avoiding the use of the fine properties of BV functions.
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then for any 0 < γ < β we have
ˆ

Σ
gγw dx =

ˆ

Σ
(gγ−β ◦ T )fβw dx =

ˆ

Σ

[

|det(DT )|
w ◦ T

w

]
β−γ
β

fγw dx . (A.5)

We choose γ such that

β − γ

β
=

1

n+ a
i.e. γ =

p(n+ a− 1)

n+ a− p
.

Since T = ∇ϕ for some convex function ϕ, then DT is symmetric and nonnegative definite. In
particular det(DT ) ≥ 0, and it follows from Young and the arithmetic-geometric inequalities
that

[

|det(DT )|
w ◦ T

w

]
1

n+a

≤
n

n+ a
det(DT )1/n +

a

n+ a

(

w ◦ T

w

)1/a

≤
1

n+ a

[

div (T ) + a

(

w ◦ T

w

)1/a
]

.

Also, from the concavity of w1/a we have that

a

(

w ◦ T

w

)1/a

≤
∇w · T

w

(see [8, Lemma 5.1]), hence
[

|det(DT )|
w ◦ T

w

] 1
n+a

≤
1

n+ a

(

div (T ) +
∇w · T

w

)

. (A.6)

(If a = 0 then w is just constant and (A.6) corresponds to the arithmetic-geometric inequality.)
Noticing that

div (T ) +
∇w · T

w
=

1

w
div (Tw) ,

combining (A.5) and (A.6) we have
ˆ

Σ
gγw dx ≤

1

n+ a

ˆ

Σ
div (Tw)fγ dx

= −
γ

n+ a

ˆ

Σ
wfγ−1T · ∇f dx+

1

n+ a

ˆ

∂Σ
wfγT · ν dσ .

Here we notice that, since T (x) ∈ Σ for any x ∈ Σ, the convexity of Σ implies that T · ν ≤ 0 on
∂Σ. Thus we obtain

ˆ

Σ
gγw dx ≤ −

γ

n+ a

ˆ

Σ
fγ−1T · ∇f w dx ≤

γ

n+ a

ˆ

Σ
fγ−1H0(T )H(∇f)w dx ,

where the last inequality follows from the definition of the dual norm H0. Finally, setting
p′ = p

p−1 , it follows by Holder’s inequality that

ˆ

Σ
fγ−1H0(T )H(∇f)w dx ≤

(
ˆ

Σ
f
p(γ−1)− pβ

p′ Hp(∇f)w dx

)1/p (ˆ

Σ
Hp′

0 (T ) fβw dx

)1/p′

=

(
ˆ

Σ
Hp(∇f)w dx

)1/p(ˆ

Σ
Hp′

0 g
βw dx

)1/p′

,

where we used the transport condition T#(f
βw) = gβw and the identity

γ − 1−
β

p′
= 0 .

Hence, by this chain of inequalities we get (A.4).
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In order to prove the sharpness of our Sobolev inequality we choose f = g = UH,a
1,O . In

this particular case the transport map reduces to the identity map T (x) = ∇ϕ(x) = x and
det(DT ) = 1. Also the homogeneity of w implies that ∇w · x = aw. This implies that all the
inequalities in the previous computations become equalities and we obtain (A.1).

Finally, to prove the characterization of the minimizers one can argue as in [20, Appendix

A] and [15, Section 4]. More precisely, choose g = UH,a
1,O and let f be a minimizer. As noticed in

the proof of [15, Theorem 5], one can assume that f ≥ 0.
First one shows that the support of f is indecomposable (this is a measure-theoretic notion

of the concept that {f > 0} is connected, see [20, Appendix A] for a definition and more details).
Indeed, otherwise one could write f = f1 + f2 with

ˆ

Σ
Hp(∇f)w(x)dx =

ˆ

Σ
Hp(∇f1)w(x)dx +

ˆ

Σ
Hp(∇f2)w(x)dx

and then by applying (A.1) and the fact that f is a minimizer, we would get
(
ˆ

Σ
fβw(x)dx

)p/β

≥

(
ˆ

Σ
fβ1 w(x)dx

)p/β

+

(
ˆ

Σ
fβ2 w(x)dx

)p/β

.

Since
ˆ

Σ
fβw(x)dx =

ˆ

Σ
fβ1 w(x)dx +

ˆ

Σ
fβ2 w(x)dx

(because f1 and f2 have disjoint support), by concavity of the function t 7→ tp/β we conclude
that either f1 or f2 vanishes.

Once this is proved, one can then argue as in the proof of [15, Proposition 6] to deduce
(from the fact that all the inequalities in the proof given above much be equalities) that T must
be of the form T (x) = λ(x−x0) for some λ > 0 and x0 ∈ Σ, from which the result follows easily.
Finally, properties (i)-(ii)-(iii) on the location of x0 follow for instance from the fact that T has
to map Σ onto Σ. �
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