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Abstract

This manuscript, the first of a two-part series, presents a methodology for ef-

ficiently implementing an equivalent circuit of nonlinear loudspeakers in the

discrete-time domain. This is a crucial step that will allow us to design new

algorithms for loudspeaker virtualization in part II of this series. The presented

implementation, in fact, is based on Wave Digital Filter (WDF) principles,

which lead to a fully explicit model, in the sense that no iterative solvers are

needed to compute the output signal. The proposed WDF is highly efficient

and modular, since the reference circuit is modeled as a computable intercon-

nection of input-output processing blocks. The accuracy of the implementation

is confirmed by comparing it to a ground-truth SPICE simulation of the refer-

ence circuit and to measurements on real loudspeakers. This confirms that the

proposed Wave Digital modeling approach can be reliably used for the rapid

simulation of the transduction behavior of a loudspeaker (within the frequency

limits of validity of the equivalent circuit), and can be employed to develop

the digital preprocessing method for loudspeaker virtualization described in the

second manuscript of this two-part series.

Keywords: Nonlinear Loudspeaker Modeling, Wave Digital Filters

∗Corresponding author
Email addresses: alberto.bernardini@polimi.it (Alberto Bernardini),

lucio.bianchi@elettromedia.it (Lucio Bianchi), augusto.sarti@polimi.it (Augusto
Sarti)

Preprint submitted to Journal of LATEX Templates August 29, 2022



2010 MSC: 00-01, 99-00

1. Introduction

Loudspeakers are electroacoustic transducers whose dynamics is character-

ized by coupled multiphysical phenomena (mechanical, magnetic, electrical,

thermodynamic, and acoustic) [1]. Nonidealities in the loudspeaker transduc-

tion process often cause nonlinear distortion, affecting the quality of sound,5

especially in the low-frequency range, when high-magnitude audio signals are

involved [2]. Building models of loudspeakers that are simultaneously accurate

and efficient is a challenging task. Such models are useful both for transducer

design purposes, and for the development of loudspeaker equalization, lineariza-

tion or virtualization algorithms based on digital signal processing [3, 4, 5, 6,10

7, 8, 9, 10, 11, 12, 13]. Particularly with the latter class of algorithms, the sim-

ulation processing is expected to be so efficient as to be suitable for on-the-fly

operation.

Several kinds of loudspeaker models are available in the literature. Some

rely on black-box system identification procedures, such as neural networks [14],15

NARMAX models [15], Volterra models [3, 16] or Volterra-Wiener-Hammerstein

models [17]. These models are generally very flexible and efficient to run, how-

ever they lack a physical interpretation and the estimation of their parameters

from input/output data is often a cumbersome process, especially dealing with

high-order filters.20

Another class of modeling methods is based on white-box approaches that

provide a physical representation of the transduction phenomenon using dif-

ferential equations. In particular, lumped electrical equivalent circuits can be

employed to accurately describe the nonlinear low-frequency behavior of loud-

speakers by using a set of physically interpretable parameters [18, 19, 20, 21,25

22, 2, 23, 24, 25]. The circuital models of loudspeakers that are most frequently

employed, both in academia and in industry, are based on the pioneering works

by Thiele and Small [18, 26, 19, 20]. These early works discuss linear modeling
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approaches that are accurate just when considering low-amplitude signals. Such

circuital models have been later extended in various ways in order to describe30

the behavior of loudspeakers driven by high-amplitude signals, specifically by

including different nonlinearities characterized by polynomial functions of the

voice coil displacement [2]. In some publications [22, 27], the low-frequency cir-

cuital description of the transducer is made of two interdependent subcircuits.

This is often the case when the loudspeaker is installed in an infinite baffle35

configuration [23, Chapter 15], [24, Chapter 6]. The first subcircuit represents

the electrical part of the transducer and it is coupled with the second subcircuit

representing the mechanical part through a transformer or gyrator. Considering

loudspeakers with enclosure, e.g., a closed box, in addition to the two aforemen-

tioned subcircuits, the low-frequency electrical equivalent often also includes a40

third subcircuit that is coupled with the mechanical one and is characterized

by acoustical parameters depending on the geometric properties of the enclo-

sure [23, Chapter 16], [24, Chapter 7]. Nonlinear extensions of the Thiele-Small

model presented in [2] are still considered the most effective compromise between

accuracy and efficiency and have been employed in many recent publications on45

the digital modeling of acoustic transducers [28, 29, 30, 31, 32, 33, 27, 14].

Once a suitable electrical equivalent of the loudspeaker has been chosen, its

parameters are estimated by employing well established system identification

methods [34] and, eventually, measuring the acoustical parameters related to

the geometry of the transducer cabinet. Small-signal analysis is performed to50

estimate the linear Thiele-Small parameters, e.g., by employing the measure-

ment of the electric input impedance [26, 19, 18]. The estimation of nonlinear

parameters, instead, is done by using large-signal analysis methods and solving

nonlinear optimization problems [35, 34]. One of the most widespread tools to

estimate the parameters of a nonlinear electrical equivalent of transducers based55

on the sensing of physical quantities is the Klippel Analyzer System [34], which

measures the linear and nonlinear parameters of the lumped model by sensing

the electric input current, the electric input voltage, and the voice coil displace-

ment, and finally solving a nonlinear optimization problem using the approach
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described in [35].60

In the Kirchhoff domain, i.e., the domain of voltage and current variables,

when stable implicit discretization methods, like the trapezoidal rule or the

Backward Euler method, are used to approximate time derivatives and time

integrals, discrete-time representations of nonlinear equivalent circuits of loud-

speakers are characterized by systems of implicit equations [25]. It follows that65

their implementation requires the use of nonlinear iterative solvers, which are

not always suitable to be employed in digital signal processing algorithms with

strong constraints on efficiency and robustness, because their convergence is

not guaranteed and the number of needed iterations per sample is difficult to

estimate a-priori.70

An alternative approach to the discrete-time implementation of equivalent

circuits is based on Wave Digital Filter (WDF) principles [36]. The literature

on WDFs has shown that modeling a circuit in the Wave Digital (WD) domain

might bring advantages over Kirchhoff domain approaches in terms of efficiency,

good numerical properties, and robustness of the digital realization of the refer-75

ence system [36, 37, 38, 39, 40, 41]. Among the many perks of WDF modeling

is the possibility to turn discrete-time models of circuits, which are implicit

in the Kirchhoff domain, into explicit WDF models based on the same sta-

ble discretization methods [42]. In the literature on electroacoustic transducer

modeling, WDF principles have been already used in [22] to derive an explicit80

discrete-time realization of a model composed of two coupled subcircuits de-

scribing the electrical and the mechanical parts of the loudspeaker.

In this manuscript, we consider the circuital model of loudspeakers in Fig. 1

composed of three subcircuits; one for the electrical part, one for the mechanical

part, and one representing the acoustical behavior of the enclosure. The lumped85

model contains three nonlinearities, all characterized by polynomial functions of

the diaphragm displacement as discussed in [2]: the force factor, the inductive

part of the voice coil impedance, and the mechanical stiffness. It is worth

recalling that the considered lumped description of the transduction process

is accurate when dealing with low-frequency audio signals [18, 24]. In fact,90
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according to [24, pp. 279-280], the lumped model considers the diaphragm as

a planar piston that moves with uniform velocity over the entire surface. This

approximation is valid if the depth of the diaphragm is less than about one-

tenth of the wavelength of the sound waves of interest. Under the assumption

of dealing with low-frequency audio signals, the model in Fig. 1 is quite general,95

and is capable of describing loudspeakers of different sizes and kinds of enclosures

[26, 19, 18, 23, 24, 27, 29, 30, 31]. The considered nonlinear model is then

realized using a novel fully explicit WDF which does not require any iterative

solver to be implemented. The WDF discussed in this manuscript is an essential

building block of the loudspeaker virtualization algorithm extensively described100

in the second part [43] of this two-part work. The present manuscript is therefore

self-contained, even though important applications of the presented WDF model

of loudspeakers are discussed in the companion article [43].

The structure of the manuscript is the following. Section 2 describes the

linear version of the employed equivalent circuit model of transducers and Sec-105

tion 3 discusses an explicit WDF realization of it. Section 4 describes a nonlin-

ear extension of the model in Section 2 and Section 5 presents its corresponding

explicit WDF implementation. Section 6 concludes this manuscript.

2. Linear Loudspeaker Model

In this section we consider a linear version of the circuit equivalent model110

of loudspeakers shown in Fig. 1, while in Section 4 we will describe a possible

extension where nonlinearities and further interdependencies between circuit

variables will be introduced. The considered linear model is suitable for de-

scribing the behavior of transducers when excited with low-amplitude signals

[2].115

The circuit is made of three subcircuits (referring to the electrical part, the

mechanical part, and the acoustical part of the system, respectively) [19], each

depending on the others. The circuital equivalent is derived according to the

impedance analogy, where mechanical velocity and acoustical volume velocity
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are represented by electrical currents; and mechanical force and acoustical pres-120

sure are represented by electrical voltages.

The first subcircuit representing the electrical part is composed of the fol-

lowing elements in series: a voltage generator with signal Vin that is the input

voltage applied to the loudspeaker; a resistor with resistance Re that represents

the resistive part of the voice coil impedance; an inductor with inductance Le125

that models the inductive part of the voice coil impedance; a current-controlled

voltage source that is controlled by the diaphragm velocity signal Ims weighted

by the so called force factor Bl.

The second subcircuit representing the mechanical part is composed of the

following elements in series: an inductor with inductance Mms that models the130

mass of all the moving components; a resistor with resistance Rms that refers to

the mechanical resistance; a capacitor with capacitance Cms = K−1ms that refers

to the mechanical compliance, where Kms is the mechanical stiffness; a current-

controlled voltage source that is controlled by the current signal Ie weighted

by the force factor Bl; a voltage-controlled voltage source that is controlled by135

the pressure signal Pout weighted by the parameter Sd indicating the effective

piston area which represents the diaphragm radiating surface.

The third subcircuit representing the acoustical part is composed of: a capac-

itor with capacitance Ccab that models the acoustic compliance of the cabinet;

a resistor with resistance Rcab that models the acoustic resistance of the cabi-140

net; a resistor with resistance Ral that represents a further acoustic damping;

a current-controlled current source controlled by the diaphragm velocity Ims

weighed by the parameter Sd.

Vin

Re

Le Ie

+−ImsBl

+− IeBl

Cms Mms Rms Ims

+−PoutSd ImsSd

Ccab

Rcab

Ral Pout

−

+

1

Figure 1: Transducer equivalent circuit.
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Table 1: Linear Model: Constitutive Equations of One-Port Circuit Elements

Element Constitutive Equation Element Constitutive Equation

Vin, Re v(t) = Vin(t) + Rei(t) Rms v(t) = Rmsi(t)

Le v(t) = Le
di(t)
dt

Rcab v(t) = Rcabi(t)

Kms i(t) = 1
Kms

dv(t)
dt

Ccab i(t) = Ccab
dv(t)
dt

Mms v(t) = Mms
di(t)
dt

Ral v(t) = Rali(t)

As the WDF implementation discussed in the next Section is based on a

port-wise consideration of the circuit, we collect in Table 1 the local constitu-

tive equations of the one-port circuit elements. Each one-port circuit element is145

characterized by a continuous-time constitutive equation relating its port volt-

age v(t) to its port current i(t), where t is the time variable in seconds. In this

section all the circuit elements are assumed to be linear. The voltage generator

Vin is combined with the resistance Re and the two are treated as a one-port

resistive voltage source. The resistive voltage source, Le, Kms, Mms, Rms, Rcab,150

Ccab, Ral are modeled as one-port elements.

As far as the controlled sources are concerned, they form two two-ports. The

first two-port is an ideal gyrator with gyration factor Bl. It is composed of the

current-controlled voltage source that delivers the signal ImsBl in the subcircuit

representing the electrical part and the current-controlled voltage source that155

delivers the signal IeBl in the subcircuit representing the mechanical part. The

second two-port is an ideal transformer with turn ratio Sd. It is composed of the

voltage-controlled voltage source that delivers the signal PoutSd in the subcircuit

representing the mechanical part and the current-controlled current source that

delivers the signal ImsSd in the subcircuit representing the mechanical part.160

As an example, Table 2 reports the values of the electrical equivalent pa-

rameters of two loudspeaker systems with drivers of significantly different sizes.

The first (named “Spk-1” in the rest of the manuscript) is characterized by a

LaVoce FSF122.02-8, which is a 12 inch fullrange driver with ferrite magnet,
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Table 2: Parameters of Linear Circuital Model and Corresponding Values

Param. Spk-1 Spk-2 Param. Spk-1 Spk-2

Re [Ω] 5.91 3.29 Rcab

[
kg

m2s

]
18.7072 136.9273

Le [mH] 0.547 0.036 Ccab

[
m4s2

kg

]
0.0000071487 0.0000071487

Kms

[
N

mm

]
4.99 1.54 Ral

[
kg

m4s

]
3741.4 1369.3

Mms [g] 38.606 1.476 Bl
[
N
A

]
13.854 2.219

Rms

[
kg
mm

]
2.814 0.344 Sd [cm2] 539.13 17.87

steel basket, and 300 W program power handling. The second (named “Spk-2”165

in the rest of the manuscript) is characterized by a LaVoce FSN020.71-4, which

is a 2 inch fullrange driver with neodymium magnet, steel basket, and 30 W

program power handling. The circuital model parameters of both loudspeakers

are measured using the Klippel Analyzer System [34, 44].

3. Wave Digital Realization of the Linear Loudspeaker Model170

In this section we discuss the WD realization of the reference circuit in Fig. 1.

We start by presenting the scattering relations of WD linear one-ports, we then

model the WD junctions, and we finally describe the signal flow used for the

implementation of the resulting WD structure shown in Fig. 2.

Circuit elements are represented with one-port input-output blocks, while175

WD junctions R1, P1, S1, S2, and S3 are represented with multi-port input-

output blocks. Ports of WD junctions are named with the numbers in gray

in Fig. 2; the numbers are chosen without any precise ordering criterion. It is

worth noting that, in order to not overcomplicate the WD model representation

and, consequently, the notation, we decided not to put numbers on ports of180

circuit elements. The sampling frequency of the WDF simulations is defined as

Fs = 1/Ts, where Ts is the sampling period.

3.1. WD Modeling of Circuit Elements

Assuming that time derivatives are approximated with stable linear multi-

step discretization methods (e.g., trapezoidal rule, backward Euler or higher
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WD 3-port Nonreciprocal
Scattering Junction

R1
2

1
3

S2
7 9

10

8

P1

16

15

14

S3
13 11

12

S1
4 6

5

Ccab
Ral

Rcab

Le Cms Rms

Mms

+−

Vin

Re

1

Figure 2: WDF realization of the transducer circuital model.

order backward differentiation formulas), each Kirchhoff constitutive equation

in the continuous-time domain in Table 1 can be expressed in the discrete-

time domain using the following formula [42] referred to a general time-varying

voltage generator

v[k] = Rg[k]i[k] + Vg[k] , (1)

where the variable k ∈ Z in square brackets indicates the discrete-time sample

index, v[k] is the port voltage, i[k] is the port current, Vg[k] is the source and

Rg[k] is the series resistance. Let us then apply the following transformation of

port variables [36]

v[k] =
a[k] + b[k]

2
, i[k] =

a[k]− b[k]

2Z[k]
, (2)

where a[k] is the wave incident to the element, b[k] is the wave reflected from

the element and Z[k] > 0 is a free parameter called reference port resistance.

Substituting (2) in (1) and then expressing b[k] as a function of a[k] we get [42]

b[k] =

(
Rg[k]− Z[k]

Rg[k] + Z[k]

)
a[k] +

(
2Z[k]

Rg[k] + Z[k]

)
Vg[k] . (3)

We notice that if we set Z[k] = Rg[k] the instantaneous dependence of b[k]

from a[k] is eliminated; in this case, the element is said to be adapted and the

scattering relation (3) reduces to

b[k] = Vg[k] with Z[k] = Rg[k]. (4)
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Table 3: Implementation of WD One-Ports

Imposed Constraint Scattering Relation

Vin, Re Z = Re b[k] = Vin[k]

Le Z = LeFs b[k] = (b[k − 1] − a[k − 1]) /2

Kms Z = KmsTs b[k] = (b[k − 1] + a[k − 1]) /2

Mms Z = MmsFs b[k] = (b[k − 1] − a[k − 1]) /2

Rms Z = Rms b[k] = 0

Rcab Z = Rcab b[k] = 0

Ccab Z = Ts/Ccab b[k] = (b[k − 1] + a[k − 1]) /2

Ral Z = Ral b[k] = 0

Table 3 shows the scattering relations of all the WD one-port elements of the

linear loudspeaker model that are all particular cases of (4). Time derivatives of185

dynamic elements (inductors and capacitors) are discretized using the backward

Euler method according to the formulas presented in [42].

3.2. WD Modeling of Connection Networks

In the WD domain, a N -port connection network is modeled as a N -port

junction characterized by a N ×N scattering matrix S such that b = Sa, where190

a = v + Zi is the vector of waves incident to the junction, b = v − Zi is the

vector of waves reflected from the junction, v is the vector of port voltages, i

is the vector of port currents and Z is a diagonal matrix containing the free

parameters [45, 40, 46, 47].

Series and parallel connections are implemented using series and parallel195

adaptors well established in WDF theory [36, 46].

As an example, let us consider the 3-port series adaptor S1 whose port num-

bers are 4, 5, and 6; hence the vector of waves incident to the junction, the

vector of waves reflected from the junction, and the diagonal matrix of port re-

sistances are aS1 = [a4, a5, a6]T , bS1 = [b4, b5, b6]T , and ZS1 = diag[Z4, Z5, Z6],

respectively. Port 6 is made reflection-free, i.e., the third diagonal entry of the

scattering matrix is set to zero, by imposing Z6 = Z4 + Z5. The scattering
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matrix of S1 is expressed as [36]

SS1 =


Z5

Z4+Z5

−Z4

Z4+Z5

−Z4

Z4+Z5

−Z5

Z4+Z5

Z4

Z4+Z5

−Z5

Z4+Z5

−1 −1 0

 . (5)

We can similarly derive also the scattering matrix of the 3-port series adaptor

S3, whose port numbers are 11, 12, and 13. Port 13 is made reflection-free by

setting Z13 = Z11 + Z12.

The ports of the 4-port series adaptor S2 are named 7, 8, 9, and 10; hence we

have aS2 = [a7, a8, a9, a10]T , bS2 = [b7, b8, b9, b10]T , and ZS2 = diag[Z7, Z8, Z9, Z10].

Port 10 is made reflection-free by imposing Z10 = Z7 +Z8 +Z9. The scattering

matrix of S2 is expressed as [46]

SS2 =


Z8+Z9

Z7+Z8+Z9

−Z7

Z7+Z8+Z9

−Z7

Z7+Z8+Z9

−Z7

Z7+Z8+Z9

−Z8

Z7+Z8+Z9

Z7+Z9

Z7+Z8+Z9

−Z8

Z7+Z8+Z9

−Z8

Z7+Z8+Z9

−Z9

Z7+Z8+Z9

−Z9

Z7+Z8+Z9

Z7+Z8

Z7+Z8+Z9

−Z9

Z7+Z8+Z9

−1 −1 −1 0

 . (6)

The three ports of the parallel adaptor P1 are 14, 15, and 16; hence we have

aP1
= [a14, a15, a16]T , bP1

= [b14, b15, b16]T , and ZP1
= diag[Z14, Z15, Z16]. Port

16 of P1 is made reflection-free by imposing Z16 = (Z14Z15)/(Z14 + Z15). The

scattering matrix of P1 is expressed as [36]

SP1
=


−Z14

Z14+Z15

Z14

Z14+Z15
1

Z15

Z14+Z15

−Z15

Z14+Z15
1

Z15

Z14+Z15

Z14

Z14+Z15
0

 . (7)

As pointed out in [40], when implementing circuits with multi-port linear ele-

ments, it might be convenient in terms of computability to embed such elements

inside junctions. We opt for this strategy and we consider a 3-port connection

network that absorbs the two controlled sources as shown in Fig. 3. The three

ports of the connection network are named 1, 2, and 3. Since the connection

network in Fig. 3 is non-reciprocal we follow the approach described in [40] in

order to derive the scattering matrix SR1
of the WD junction R1 and we obtain
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Ie

+−ImsBl

+− IeBl

Ims

+−v3Sd ImsSd

+

−

+

−

+ − DCBA

O

v1

i1

v2
i2

v3

i3

1

Figure 3: 3-port connection network implemented with WD R1 adaptor.

SR1
= ρ


Bl2 − Z1Z3S

2
d − Z1Z2 −2BlZ1 2BlSdZ1

2BlZ2 Bl2 + Z1Z3S
2
d − Z1Z2 2SdZ1Z2

−2BlSdZ3 2SdZ1Z3 Bl2 − Z1Z3S
2
d + Z1Z2


(8)

where ρ = (Bl2 + Z1Z3S
2
d + Z1Z2)−1.200

3.3. Implementation of the WD Structure

In the previous two subsections we discussed how to locally model one-

port elements and connection networks as input-output blocks characterized by

scattering relations. In this subsection we show how the WD structure in Fig. 2

can be globally implemented in such a way that we can solve the reference circuit

at each sampling step without using any iterative solver. Before presenting the

signal flow in the structure, we describe how two WD blocks can be linked

through a port connection. Let us consider, as an example, the port connection

between the two WD junctions S1 and R1. If a6 and b6 are the incident and

reflected waves to S1, respectively; and if a1 and b1 are the incident and reflected

waves to R1, respectively; the port connection between S1 and R1 is obtained

by setting the following constraints

a1 = b6 , b1 = a6 , Z1 = Z6 . (9)

Similarly, a one-port WD element can be connected to the port of a WD junction

by applying the same sort of constraints.
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The strategy used for the implementation of the WD structure in Fig. 2 is

similar to the one explained in [48] where WDFs are treated as connection trees205

with a root, nodes, and leaves. In our case, the leaves are all the adapted one-

ports, the nodes are the series and the parallel adaptors while the root is R1.

At each sampling step, waves reflected from the leaves are propagated toward

the root through the nodes using scattering relations. The three incident waves

facing the root are computed, so that that the three reflected waves can be210

readily computed via matrix-vector multiplication. A backward path is then

taken by the wave signals scattered through the nodes from the root toward the

leaves, so that the incident waves to all the one-ports can be computed. This

process is performed at each sampling step in a completely explicit fashion, i.e.,

no iterative solvers are used. This is possible because all the instantaneous215

relations between port variables have been eliminated by properly setting the

free parameters in such a way that some ports of the WD blocks are made

reflection-free. T-shaped symbols in Fig. 2 indicate reflection-free ports, in

accordance to the graphical notation used in traditional WDFs [36].

3.4. Linear WDF Model Validation220

In this subsection, we validate the behavior of the linear WDF model; firstly,

by comparing the results of its MATLAB implementation to SPICE simulations

performed with the Electrical Circuit interface of COMSOL Multiphysics, and

then by comparing them to measured signals of the two real loudspeaker sys-

tems Spk-1 and Spk-2 driven with low-amplitude signals. In particular, the225

loudspeaker input voltage Vin is a multi-tone composed of multiple sinusoids

whose fundamental frequencies are selected in such a way that we have 24 val-

ues per octave and amplitude is 0.3 Vrms. The employed measurement setup

is described in Appendix A. The circuital parameters used in the simulations

and referring to the two considered loudspeakers are reported in Table 2. The230

sampling frequency set in the WDF simulations is Fs = 96 kHz.

Fig. 4 shows the validation results in the domain of temporal frequency f .

The subfigure on the left refers to Spk-1, while the subfigure on the right to Spk-
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2. The upper plots include the amplitude response of the electrical impedance,

defined as |Ze(f)|= |Vin(f)|/|Ie(f)|, where Vin(f) and Ie(f) are the computed235

Fourier transforms of Vin(t) and Ie(t), respectively. The lower plots show the

amplitude response of the output pressure signal |Pout(f)|, where Pout(f) is the

Fourier transform of Pout(t). Upper and lower plots also include pairs of curves

of the absolute error between measured data and SPICE, and between measured

data and WDF. Both absolute errors are normalized w.r.t. measured data and240

expressed in percentage. The vertical green lines represent frequency thresholds

below which the used lumped model is assumed to be valid, in accordance to

the analysis provided in [24, pp. 279-280] which considers the diaphragm as a

planar piston that moves with uniform velocity over the entire surface. The

frequency thresholds are estimated using the formula fthr = c/(10d), where c is245

the speed of sound and d is the speaker cone depth.

We generally notice that there is a near-perfect correspondence between the

results of WDF and SPICE simulations. Also the matching between simulations

and measured data is very good, as confirmed by the normalized absolute errors

that are almost always under 10%, when frequencies below fthr are considered.250
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Figure 4: Linear model validation. Measured and simulated amplitude frequency responses

of electric impedance |Ze| and output pressure |Pout| (in blue), along with normalized abso-

lute errors in percentage between measured data and WDF simulation results, and between

measured data and SPICE simulation results (in red). (a) refers to Spk-1. (b) refers to Spk-2.
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Table 4: Coefficients of Force Factor, Inductor, and Mechanical Stiffness Polynomials

Coef. Spk-1 Spk-2 Coef. Spk-1 Spk-2

Bl0
[
N
A

]
13.854 2.219 Kms0

[
N

mm

]
4.99 1.54

Bl1
[

N
Amm

]
-0.0077114 0.15563 Kms1

[
N

mm2

]
-0.2607102 -0.34898

Bl2
[

N
Amm2

]
-0.6019057 -0.1576 Kms2

[
N

mm3

]
0.1466057 0.10891

Bl3
[

N
Amm3

]
-0.0016604 -0.0024596 Kms3

[
N

mm4

]
-0.0049665 -0.0090764

Bl4
[

N
Amm4

]
0.0101072 0.0033673 Kms4

[
N

mm5

]
0.0005919 0.0028738

Le0 [mH] 0.547 0.036

Le1

[
mH
mm

]
-0.0478768 -0.016303

Le2

[
mH
mm2

]
-0.0113542 0.0018228

Le3

[
mH
mm3

]
0.0010058 0.00072416

Le4

[
mH
mm4

]
0.000113 -0.000060094

4. Nonlinear Loudspeaker Model

According to [2], a nonlinear extension of the already presented linear model,

capable of accurately describing the low-frequency behavior of loudspeakers even

when excited with high-amplitude signals, is obtained by making some param-

eters (i.e., Bl, Kms, and Le) depend on the displacement of the loudspeaker

diaphragm defined as

x(t) =

∫
Ims(t) dt (10)

where Ims(t) is the diaphragm velocity as indicated in Fig. 1. The considered

nonlinear loudspeaker model is hence characterized by the same circuit of the

linear model in Fig. 1, but Bl, Kms, and Le are nonlinear and depend on x(t).

4.1. Polynomial Models of Nonlinearities255

To model the nonlinear force factor Bl as a function of x(t) we choose a

polynomial in the form

Bl (x(t)) = Bl0 +Bl1 x(t) +Bl2 x
2(t) +Bl3 x

3(t) +Bl4 x
4(t) , (11)

where the coefficients Bl0, Bl1, Bl2, Bl3, and Bl4 are estimated from measured

data according to the procedures described in [34, 44]. The gyrator connecting
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Figure 5: Nonlinear curves of force factor Bl, nonlinear inductance Le, and mechanical stiffness

Kms, all functions of the displacement x. (a) refers to Spk-1, while (b) refers to Spk-2.

the electrical part to the mechanical part is therefore characterized by the time-

dependent gyration factor Bl (x(t)).

To model the nonlinear inductive part of the voice coil impedance Le as a

function of x(t) we choose a polynomial in the form

Le (x(t)) = Le0 + Le1 x(t) + Le2 x
2(t) + Le3 x

3(t) + Le4 x
4(t) , (12)

where the coefficients Le0, Le1, Le2, Le3, and Le4 are estimated from measured

data [34, 44]. The inductor with inductance Le(x(t)) is therefore characterized

by the equation

v(t) =
d [Le(x(t))i(t)]

dt
= Le(x(t))

di(t)

dt
+ i(t)

dLe(x(t))

dt
. (13)

To model the nonlinear mechanical stiffness Kms as a function of x(t) we

choose a polynomial in the form

Kms (x(t)) = Kms0 +Kms1 x(t) +Kms2 x
2(t) +Kms3 x

3(t) +Kms4 x
4(t) , (14)

where the coefficients Kms0, Kms1, Kms2, Kms3, and Kms4 are again estimated

from measured data [34, 44]. The capacitor with capacitance K−1ms (x(t)) is

therefore characterized by the equation

i(t) =
d
[
K−1ms (x(t))v(t)

]
dt

= K−1ms (x(t))
dv(t)

dt
+ v(t)

dK−1ms (x(t))

dt
. (15)
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4.2. Estimation of Polynomial Coefficients260

In this work, the coefficients of the polynomial nonlinearities of equations

(11), (12), and (14) are estimated using the Klippel Analyzer System [34, 44].

The measured parameters of the three nonlinearities for loudspeakers Spk-1 and

Spk-2 are reported in Table 4, while the corresponding curves are shown in the

plots of Fig. 5.265

5. Wave Digital Realization of the Nonlinear Loudspeaker Model

The proposed WD implementation of the nonlinear loudspeaker model is

similar to the one of the linear model discussed in Section 3 and it does not

require the use of iterative solvers. The implementation relies on the estimate

of x(t) and on the consequent update of Bl(x(t)), Le(x(t)) and Kms(x(t)) at270

each sampling step. This means that since some port resistances depend on

the aforementioned three parameters they need to be updated at each sampling

step; therefore, the scattering matrices of the WD junctions need to be updated

as well.

In the discrete-time domain we compute the coil displacement using a unitary

delay element such that we can implement the circuit in an explicit fashion.

Therefore, at each sampling step we find an estimate x̂[k] of the instantaneous

coil displacement value as

x̂[k] = x[k − 1] , (16)

where

x[k − 1] = ξx (Ts Ims[k − 1] + x[k − 2]) . (17)

ξx is a forgetting factor close to, but smaller than, one (e.g., ξx = 0.9999)

whose role is to damp the local truncation error of numerical integration at

each sampling step in such a way that it does not accumulate over simulation

time. The velocity Ims[k] is calculated as

Ims[k] =
a9[k]− b9[k]

2Z9[k]
. (18)
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5.1. Nonlinear Force Factor in the Discrete-Time Domain275

At each sampling step, the nonlinear force factor is updated using the fol-

lowing expression

Bl(x̂[k]) = Bl0 +Bl1 x̂[k] +Bl2 x̂
2[k] +Bl3 x̂

3[k] +Bl4 x̂
4[k] . (19)

5.2. Nonlinear Voice Coil Inductive Impedance in the Discrete-Time Domain

In order to derive the discrete-time implementation of the nonlinear inductor,

let us rewrite the continuous-time constitutive equation (13) as

v(t) = Le(x(t))
di(t)

dt
+ i(t)L′e(x(t))

dx(t)

dt
, (20)

where

L′e(x(t)) =
dLe(x(t))

dx
= Le1 + 2Le2 x(t) + 3Le3 x

2(t) + 4Le4 x
3(t) , (21)

and
dx(t)

dt
= Ims(t) . (22)

Let us approximate equation (20) in the discrete-time domain as

v[k] = Le[k]
i[k]− ξLe

i[k − 1]

Ts
+ i[k]L′e[k]Îms[k] , (23)

where

Îms[k] = Ims[k − 1] , (24)

Le[k] = Le(x̂[k]) = Le0 + Le1 x̂[k] + Le2 x̂
2[k] + Le3 x̂

3[k] + Le4 x̂
4[k] , (25)

L′e[k] = L′e(x̂[k]) =
dLe(x̂[k])

dx
= Le1 +2Le2 x̂[k]+3Le3 x̂

2[k]+4Le4 x̂
3[k], (26)

and ξLe
is a forgetting factor close to, but smaller than, one (e.g., ξLe

= 0.9999)

whose role is to damp the local truncation error of numerical differentiation.

Rearranging equation (23) we get

v[k] =

(
L′e[k]Îms[k] +

Le[k]

Ts

)
i[k]− ξLe

i[k − 1]
Le[k]

Ts
. (27)
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The discrete-time Kirchhoff constitutive equation (27) of the time-variant in-

ductor can be expressed in the WD domain as

b[k] = ξLe (b[k − 1]− a[k − 1])
Le[k]

2TsZ[k − 1]
, (28)

with Z[k] = L′e[k]Îms[k] +
Le[k]

Ts
. (29)

5.3. Nonlinear Mechanical Stiffness in the Discrete-Time Domain

Equation (15) can be rewritten as

i(t) =
1

Kms (x(t))

dv(t)

dt
+ v(t)C ′ms(x(t))

dx(t)

dt
, (30)

or equivalently

i(t) =
1

Kms (x(t))

dv(t)

dt
+ v(t)i(t)C ′ms(x(t)) , (31)

since dx(t)
dt = Ims(t) = i(t), where

C ′ms(x(t)) = −K
′
ms (x(t))

K2
ms(x(t))

=
Kms1 + 2Kms2 x(t) + 3Kms3 x

2(t) + 4Kms4 x
3(t)

−K2
ms(x(t))

.

(32)

We approximate equation (31) in the discrete-time domain as

i[k] =
v[k]− ξCms

v[k − 1]

TsKms[k]
+ i[k]v[k − 1]C ′ms[k] , (33)

where

Kms[k] = Kms(x̂[k]) = Kms0 +Kms1 x̂[k]+Kms2 x̂
2[k]+Kms3 x̂

3[k]+Kms4 x̂
4[k] ,

(34)

C ′ms[k] = C ′ms(x̂[k]) = −K
′
ms (x̂[k])

K2
ms(x̂[k])

, (35)

K ′ms (x̂[k]) = Kms1 + 2Kms2 x̂[k] + 3Kms3 x̂
2[k] + 4Kms4 x̂

3[k] , (36)

and ξCms
is a forgetting factor close to, but smaller than, one (e.g., ξCms

=

0.9999).

Rearranging equation (33) we get

v[k] = Kms[k]Ts (1− v[k − 1]C ′ms[k]) i[k] + ξCms
v[k − 1] . (37)
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The discrete-time Kirchhoff constitutive equation (37) of the time-variant ca-280

pacitor can be expressed in the WD domain as

b[k] = ξCms

a[k − 1] + b[k − 1]

2
, (38)

with Z[k] = Kms[k]Ts

(
1− C ′ms[k]

a[k − 1] + b[k − 1]

2

)
. (39)

5.4. Nonlinear WDF Model Validation

In this subsection, we validate the behavior of the nonlinear WDF model;

firstly, by comparing the results of its MATLAB implementation with SPICE

simulations, again performed with the Electrical Circuit interface of COMSOL

Multiphysics; and then with signals measured from the two already described

loudspeaker systems, Spk-1 and Spk-2, driven by mid- and high-amplitude sig-

nals. In particular, the generic driving voltage signal is defined as

Vin(t) = Ain
sin(t)

rms{sin(t)} (40)

where Ain is an amplitude parameter in Vrms, rms{.} is an operator returning

the root mean square value of the argument, while sin(t) is the dimension-

less input signal. We perform three sets of experiments characterized by three285

different kinds of signals sin(t): sinusoids, 2-tone signals, and a music signal.

Comparisons between WDF results, SPICE results, and measured data are pro-

vided both in the time domain and in the frequency domain. The employed

measurement setup is the same used for validating the linear WDF model and

it is described in Appendix A. The coefficients of the polynomial nonlineari-290

ties of the two loudspeakers are reported in Table 4, while the parameters of

linear elements are those in Table 2. The sampling frequency set in the WDF

simulations is Fs = 96 kHz.

In the first set of experiments, the dimensionless input signals are sinusoids

in the form sin(t) = sin(2πfint), where fin is the fundamental frequency in295

Hz. Defined for each loudspeaker the resonance frequency, i.e., the frequency

corresponding to the maximum value of function |Ze| in Fig. 4, as fr, we perform

experiments in which we set fin = fr/2 and fin = 2fr and we vary Ain.
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In the second set of experiments, the dimensionless input signals are 2-tones

expressed as sin(t) = sin(2πfin1t + ϕin1) + sin(2πfin2t + ϕin2), where fin1 and300

fin2 are the fundamental frequencies of the two sinusoids, while ϕin1 and ϕin2

are random phase parameters. The amplitude parameter Ain is varied in the

different experiments.

In the third set of experiments, sin(t) is a music signal, i.e., the first 10

seconds of the recording “So tired” by E. Clapton, obtained as the average305

between the 2 stereo channels in order to get a mono signal. Also in this case,

the amplitude parameter Ain is varied in the different experiments.

Fig. 6, Fig. 7, and Fig. 8 are referred to the first, the second, and the third set

of aforementioned experiments, respectively. They show comparisons between

real measures of the output pressure signal Pout, results of WDF simulations,310

and results of SPICE simulations, both in the time domain and in the frequency

domain through the evaluation of the Power Spectral Density (PSD). The

values of input signal parameters used in each experiment are written on every

corresponding plot. Table 5 reports both the Normalized Root Mean Square

Error (NRMSE) between the measured Pout signal and corresponding WDF315

simulation output and the NRMSE between the measured Pout signal and the

SPICE simulation output for each experiment related to Spk-1. Table 6 does

the same for experiments related to Spk-2.

Looking at Fig. 6, Fig. 7, and Fig. 8, we can see that, in all the experiments,

the matching between proposed WDF results and SPICE results is near-perfect,320

as the corresponding curves are generally superimposed. Also the matching

between measured signals and outputs of digital simulations is almost perfect

and it confirms the ability of the circuital model to capture the loudspeaker

behavior even dealing with high-amplitude input signals. It is interesting to

notice that the ranges of NRMSE values in Table 5 and in Table 6 are in the325

same order of magnitude for all the experiments, suggesting that the considered

circuital model of loudspeakers is characterized by similar accuracy performance

when different input signals are considered. Moreover, the values in the two

columns named “NRMSE WDF” and “NRMSE SPICE” are really close, again
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Table 5: Spk-1 (FSF122.02-8) - NRMSE of Digital Models for Different Vin(t) Signals

Vin(t) Signal Parameters
NRMSE

WDF

NRMSE

SPICE

S
in
u
so

id
s

Ain = 4 Vrms, fin = 28.75 Hz 0.014356 0.035917

Ain = 11.5 Vrms, fin = 28.75 Hz 0.017774 0.035538

Ain = 4 Vrms, fin = 115 Hz 0.010293 0.026658

Ain = 11.5 Vrms, fin = 115 Hz 0.012417 0.02601

2
-T

o
n
e
s Ain = 4 Vrms, fin1 = 28.75 Hz, fin2 = 121.78 Hz 0.012172 0.034109

Ain = 7.5 Vrms, fin1 = 28.75 Hz, fin2 = 121.78 Hz 0.014454 0.038661

Ain = 11.5 Vrms, fin1 = 28.75 Hz, fin2 = 121.78 Hz 0.015543 0.040685

M
u
si
c
S
ig
.

Ain = 4 Vrms 0.0103 0.036996

Ain = 7.5 Vrms 0.014615 0.046251

Ain = 11.5 Vrms 0.017743 0.054391

confirming that the proposed explicit WDF implementation has the same level330

of accuracy of the SPICE implementation.

As far as the efficiency performance of the proposed WDF model is con-

cerned, its MATLAB implementation runs with an average execution time of

approximately 0.3 µs per sample, which is lower than Ts = 1/Fs = 1/(96 kHz) =

10.417 µs. This means that the MATLAB implementation of the proposed WDF335

can be executed on the fly.

6. Conclusions

In this manuscript we presented a WDF realization of a nonlinear lumped

model of dynamic loudspeaker composed of three interdependent subcircuits

representing the electrical part, the mechanical part, and the acoustical part340

of the transducer system. The proposed discrete-time implementation of the

model is highly modular, as each one-port circuit element is represented as an

input-output block by exploiting WDF principles. The accuracy of the pre-

sented nonlinear WDF has been verified by comparing its behavior with SPICE

simulations of the reference circuit and with data measured from two real loud-345
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Figure 6: Nonlinear WDF model validation. Experiments with sinusoidal input signals. Com-

parisons between WDF results, SPICE results, and measured signals from Spk-1 and Spk-2

with different configurations of input signal parameters. (a) and (b) show Pout signals in the

time domain. (c) and (d) show the PSD of Pout signals in the frequency domain.
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Figure 7: Nonlinear WDF model validation. Experiments with 2-tone input signals. Compar-

isons between WDF results, SPICE results, and measured signals from Spk-1 and Spk-2 with

different configurations of input signal parameters. (a) and (b) show Pout signals in the time

domain. (c) and (d) show the PSD of Pout signals in the frequency domain.
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Figure 8: Nonlinear WDF model validation. Experiments with musical input signals. Com-

parisons between WDF results, SPICE results, and measured signals from Spk-1 and Spk-2

with different configurations of input signal parameters. (a) and (b) show Pout signals in the

time domain. (c) and (d) show the PSD of Pout signals in the frequency domain.
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Table 6: Spk-2 (FSN020.71-4) - NRMSE of Digital Models for Different Vin(t) Signals

Vin(t) Signal Parameters
NRMSE

WDF

NRMSE

SPICE
S
in
u
so

id
s

Ain = 1 Vrms, fin = 81.4 Hz 0.039413 0.047134

Ain = 3 Vrms, fin = 81.4 Hz 0.021734 0.036001

Ain = 1 Vrms, fin = 325.6 Hz 0.066697 0.067224

Ain = 3 Vrms, fin = 325.6 Hz 0.026501 0.025626

2
-T

o
n
e
s Ain = 1 Vrms, fin1 = 81.4 Hz, fin2 = 344.79 Hz 0.047501 0.053242

Ain = 2 Vrms, fin1 = 81.4 Hz, fin2 = 344.79 Hz 0.028176 0.037087

Ain = 3 Vrms, fin1 = 81.4 Hz, fin2 = 344.79 Hz 0.022492 0.034156

M
u
si
c
S
ig
.

Ain = 1 Vrms 0.045245 0.051218

Ain = 2 Vrms 0.028884 0.038923

Ain = 3 Vrms 0.024178 0.038673

speakers of different sizes. The proposed WDF is fully explicit, as it does not

need any iterative solver for computing the circuit signals; and it is highly ef-

ficient, as confirmed by the fact that its MATLAB implementation is able to

process the input signal on the fly. It follows that the proposed WDF can be

integrated in digital signal processing algorithms for linearization, equalization,350

or, more generally, virtualization of loudspeakers. This will be demonstrated in

the second part of this two-part work [43].

Appendix A. Measurement Setup

The scheme in Fig. A.9 shows the structure of the measurement setup. A

custom-made MATLAB-based measurement software generates the audio sig-355

nals, feeding the D/A converter in the audio interface RME Fireface UFX II.

The analog signal from the D/A converter is amplified by a Crown MA-5002VZ

audio amplifier whose output feeds the loudspeaker under test. The rear surface

of the loudspeaker is loaded by a closed box in which a Earthworks M30 mi-

crophone is installed to sense the pressure generated by the loudspeaker in the360

box. The front face of the loudspeaker radiates in a low-reverberation chamber
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Figure A.9: Scheme of the measurement setup.

to minimize the effect of front loading. The displacement of the loudspeaker

diaphragm is sensed by a Panasonic ANR1282 laser with ANR5132 controller.

The current through the loudspeaker voice coil is sensed using a 0.03 ohm shunt

resistor. Laser and current signals are conditioned by a custom acquisition inter-365

face to protect the inputs of the interface RME Fireface UFX II A/D converters,

while the microphone signal goes directly to the interface input. The acquired

signals are recorded and processed by the MATLAB-based measurement soft-

ware.
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