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Abstract— Electroencephalography (EEG) signals con-1

vey information related to different processes that take2

place in the brain. From the EEG fluctuations during sleep,3

it is possible to establish the sleep stages and identify4

short events, commonly related to a specific physiolog-5

ical process or pathology. Some of these short events6

(called A-phases) present an organization and build up the7

concept of the Cyclic Alternating Pattern (CAP) phenom-8

enon. In general, the A-phases abruptly modify the EEG9

fluctuations, and a singular behavior could occur. With10

the aim to quantify the abrupt changes during A-phases,11

in this work the wavelet analysis is considered to compute12

Hölder exponents, which measure the singularity strength.13

We considered time windows of 2s outside and 5s inside14

A-phases onset (or offset). A total number of 5121 A-phases15

from 9 healthy participants and 10 patients with periodic leg16

movements were analyzed. Within an A-phase the Hölder17

numerical value tends to be 0.6, which implies a less abrupt18

singularity. Whereas outside of A-phases, it is observed that19

the Hölder value is approximately equal to 0.3, which implies20

stronger singularities, i.e., a more evident discontinuity in21

the signal behavior. In addition, it seems that the number of22

singularities increases inside of A-phases. The numerical23

results suggest that the EEG naturally conveys singularities24

modified by the A-phase occurrence, and this information25

could help to conceptualize the CAP phenomenon from a26
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new perspective based on the sharpness of the EEG instead 27

of the oscillatory way. 28

Index Terms— Cyclic alternating pattern, EEG, scaling 29

exponent, singular behavior, sleep, wavelet transform. 30

I. INTRODUCTION 31

SLEEP is a fundamental process for any human being. 32

During sleep, different activities such as memorization, 33

resting, and growing, generally occur. However, sleep could be 34

interrupted by different sources, both internal or external to the 35

body. For instance, the internal sources could be derived from 36

apnea episodes or mental stress, while the external ones are 37

related to lights, environmental noise, or other disturbances. 38

Sleep interruptions caused by these sources may result in 39

fragmented sleep, which is reflected as social and physio- 40

logical problems. Among the most representative problems, 41

we can find metabolic syndrome [1], irritability, lack of 42

concentration and traffic accidents [2], [3]. The main clinical 43

tool for sleep evaluation is polysomnography (PSG), which 44

is based on the recording of bio-electrical signals, including 45

electroencephalogram (EEG), electrooculogram (EOG) and 46

electromyogram (EMG). These biosignals are used to identify 47

the sleep stages: rapid eye movement (REM) and non-rapid 48

eye movement (NREM). These stages alternate across the 49

sleep time producing cycles that have a duration between 50

90-120 minutes. Also, the NREM stage is subdivided into four 51

stages denoted as S1, S2, S3 and S4. Although the PSG test 52

uses several signals to assess sleep quality, the EEG signal is 53

often the main reference because it contains five main rhythms 54

(Delta, Theta, Alpha, Beta, and Gamma) which are useful 55

in determining the sleep stages [4]. Nevertheless, in recent 56

years some experts have observed that there are short and 57

recurrent events in the EEG that interrupt its basal rhythms. 58

These events, called A-phases, present rapid EEG changes in 59

frequency and amplitude. A-phases present duration between 60

2-60 seconds; and there is evidence of a significant correlation 61

with the sleep stage transitions [3]. It seems that A-phases 62

participate in the sleep stage continuity. The A-phases are 63

grouped into three types based on their spectral characteristics 64

and duration, as described below: 65

• A1-phase: Characterized by bursts and K-complexes of 66

Delta waves (0.5 Hz - 4 Hz). 67

• A2-phase: Presents rapid EEG waves (Alpha 68

(8 Hz - 12 Hz) and Beta (12 Hz - 30 Hz)) that 69

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8290-7460
https://orcid.org/0000-0001-7239-8968


2722 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

cover between 20% and 50% of the A-phase duration70

and the Delta waves in the rest of the event duration.71

• A3-phase. Characterized by Alpha and Beta waves, which72

occupy more than 50% of the A-phase duration.73

Also, from the A-phase occurrence, we can visualize an oscil-74

latory pattern, called Cyclic Alternating Pattern (CAP) from75

sleep [5], that helps to measure the sleep quality employing the76

ratio between the CAP time and total sleep time, named CAP77

rate index [6]. Regardless of the importance of the CAP rate78

for sleep evaluation, the A-phase scoring is visually performed79

by a clinical expert. CAP evaluation requires the annotation of80

approximately 300 A-phases, and as a consequence, this pro-81

cedure is tedious, with large subjectivity and high inter-scorer82

variability [7].83

Many works have been published with the goal of quanti-84

fying the A-phases characteristics, which may allow imple-85

menting computational methods for clinical support during86

the annotation process [8]. However, until the present time,87

the automatic annotation remains an open topic. In order to88

improve this process, the research of quantitative measures89

of the EEG, capable of distinguishing the A-phases from the90

background, is desirable.91

Navona et al. developed an automatic method for A-phases92

detection based on the extraction of different descriptors by93

using a bank of band-pass filter, where each descriptor corre-94

sponds to a different EEG frequency band. The computation95

of these descriptors, followed by the superimposition of two96

thresholds and the application of logical criteria, provided a97

good performance [9]. A similar methodology to recognize98

A-phases from the background was used by Barcaro et al. and99

they reported a good accuracy for the A-phase detection [10].100

With similar features, Mariani et al. trained different types of101

classifiers, such as linear and quadratic discriminant, boost-102

ing neural networks, support vector machines, and adaptive103

boosting [8], [11].104

In addition, a group of statistics (standard deviation, mode,105

kurtosis, and skewness), frequency (power in the characteristic106

EEG frequency bands) and complexity (LZC, FD, sample107

entropy, and Tsallis entropy) features were evaluated by108

Mendez et al., which were used as input in the k-nearest neigh-109

bors classifier to show the ability to discriminate an EEG seg-110

ment between the onset of A-phase and the background with111

a good accuracy [12]. Some authors applied time-frequency112

methods for feature extraction, for instance, Dhok et al. used113

Wigner-Ville Distribution and Rényi entropy in consecutive114

2-s segments and to fed with these parameters a support115

vector machine to determine if each segment corresponds116

to an A-phase or background [13]. Recently, Fantozzi et al.117

introduced an alternative approach that consists of generating118

features from EEG based on a bank of band-pass filters over119

segments of 90s and divided into epochs of 30s. For each120

frequency band and for each such epoch, the root mean square121

of the signal was computed and a threshold was used as122

1.5 RMS. Each epoch was identified and marked when the123

variability measure 1.6 times higher than the variability of the124

segment. This process was applied in each derivation of EEG125

( F2-F4/Fp2-F4, F4-C4, C4-P4, P4-O2, C4-A1, and F4-A1)126

with interesting results using the F4-C4 derivation [14].127

In recent years, some studies have used techniques based 128

on deep learning to detect and characterize A-phases. Arce- 129

Santana et al. and Murarka et al. used frequency and temporal 130

features, respectively, from the EEG signal across consecutive 131

segments to train a convolutional neural network to deter- 132

mine whether the segment belongs to an A-phase [15], [16]. 133

Finally, Hartmann et al. and Mendonça et al. have used a 134

long short-time memory neural network to include temporal 135

relation across EEG signal. They obtained features similar 136

to previous works and used them to feed the classifier [17], 137

[18]. In general, all these studies have reported interesting 138

results, however, there is a lack in the correct detection 139

in the onset/offset and alternative techniques that provide a 140

complementary characterization of the transitions between the 141

A-phases and the background activity are needed. 142

In fact, singularities or irregular structures can convey 143

essential information [19]. Within clinical applications, many 144

biological signals present irregular patterns or behaviors that 145

may be related to a condition of interest; therefore, it may be 146

useful to study this kind of structures as part of a health diag- 147

nosis. For instance, A-phases produce a short and fast change 148

in the EEG amplitude [12], whose magnitude was defined by 149

Terzano et al. [5] as one-third of the basal amplitude. In fact, 150

the amplitude change is commonly used as an important 151

feature in algorithms to automatically detect the A-phases [8]. 152

Since the abrupt transition occurs in small time intervals or 153

at specific points, a local analysis of this change is required. 154

Moreover, it is often unclear whether this fast change is related 155

to a singularity, and numerical quantification of this change 156

could unveil previously unobservable characteristics. Thus, 157

it could be interesting to understand whether the appearance 158

of singularities in the EEG is related to the occurrence of 159

A-phases. In general, it is known that the EEG signals present 160

fast amplitude and frequency changes which can be related to 161

singularities [20], but they have not been associated to specific 162

events. 163

In the biomedical field, singularities may reveal relevant 164

information about the physiological systems, e.g. the res- 165

piratory system [21], [22], cardiac function [23], [24] and 166

muscular activity [25], [26]. Some methods based on time 167

and frequency domains have been developed and used for 168

singularity detection. One of the common tools to analyze sin- 169

gularities or irregular structures is the Fourier Transform [27]. 170

However, this transform yields a global characterization of the 171

regularity of a mono-component signal. In multi-component 172

signals (where frequency changes occur at a certain time) the 173

Fourier Transform may be used to determine the frequency 174

components but the time localization of the frequency change 175

(i.e., the singularity) is lost. 176

The singularity temporal localization problem can be cir- 177

cumvented by Wavelet decomposition throughout the asymp- 178

totic decay at the different scales. This decomposition allows 179

one to evaluate the local regularity or smoothness of a signal 180

through a real number called the Hölder exponent [27], [28], 181

[29], which can be computed in the time-scale plane by using 182

the Wavelet Transform Modulus Maxima (WTMM). 183

In this paper, we present a systematic method to evaluate 184

the local singularities in the EEG signal during the A-phase 185

occurrences. The proposed method is based on the wavelet 186
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analysis to estimate the Hölder exponents, from which two187

quantitative indices are derived, and the method is robust188

to the Gaussian noise, which commonly affects biomedical189

signals. Another contribution is to show that these indices are190

modulated by the presence of an A-phase in a way that is191

statistically significant.192

II. METHODS193

A. Data Description194

This study was carried out on two groups, the healthy195

group (HLT) that consists of 9 recordings (three males and196

six females) without sleep complaints, and the pathologic sleep197

group that includes 10 pathological subjects (seven males and198

three females) with Periodic Leg Movements (PLM). The199

subjects ages range between 23 and 37 years for the HLT200

group, and between 40 and 62 years, for the PLM group.201

The PLM pathology was chosen for this study because the202

database has a sufficient number of subjects and the necessary203

conditions (sampling frequency, duration of the recording and204

number of A-phases).205

HLT and PLM recordings belong to the open Physionet CAP206

Sleep Database (https://physionet.org/content/capslpdb/1.0.0/).207

CAP Sleep Database is a collection of 108 polysomnographic208

recordings acquired at the Sleep Disorder Center of the209

Ospedale Maggiore of Parma, Italy. EEG was recorded from a210

C3/A2 or a C4/A1 derivation integrated by bipolar montages211

(Fp1-F3, F3-C3, C3-P3, P3- O1, Fp2-F4, F4-C4, C4-P4,212

P4-O2) used to score CAP phenomenon. Each recording is213

composed of at least three EEG channels, electromyography,214

electrooculographic channels, respiratory signal and, electro-215

cardiogram. The recordings were recorded with a sampling216

rate of 100, 128, 200, 256, or 512 Hz.217

Embla REMlogic software was used to score and visu-218

alize all polysomnographic recordings, where the scores for219

each recording were saved as text files. Score files have the220

following fields: Sleep stage (W=wake, S1-S4=sleep stages,221

R=REM, MT=body movements), Body position (Left, Right,222

Prone, or Supine; not recorded in some subjects), Time of223

the day [hh:mm:ss], Event (either sleep stage (SLEEP S0-S4,224

REM, MT), A-phase, Duration (in seconds) and Location225

(the signals in which the event can be observed). All the226

annotations were revised by an expert physician in the area227

based on the gold standard rules [4], [5].228

In this study, we are interested in evaluating the singularities229

around the onset and offset of A-phases in subjects that present230

a normal and pathological sleep macro-structure, focusing231

on a single pathology PLM. The Table I shows the general232

information such as age, sleep stages, number and duration233

of A-phases from all recordings used in this study. Also,234

information about the number of A-phases, sleep time spent235

in A-phases, and duration for each A-phase type is found.236

B. Data Encoding237

The sampling frequency of most of the signals used to238

carry out this study is 512 Hz; however, some signals had239

sampling frequencies below 512 Hz. Signals with a sampling240

frequency equal or higher than 200 Hz were upsampled241

to 512 Hz using cubic spline interpolation, since we are242

looking for abrupt transitions that can only be represented by a 243

higher sampling rate. Subsequently, we perform the extraction 244

of EEG segments for each type of A-phase per recording. 245

We focused on the onset and offset instants of the A-phase 246

occurrence. Thus, each segment consists of two seconds before 247

the A-phase onset and five seconds of the A-phase onset 248

(seven seconds in total). A similar process is performed for 249

the A-phase offset. We extract segments of five seconds of the 250

A-phase offset and two seconds after the A-phase offset. The 251

rationale behind the decision for the specific segment size is to 252

study the singularities of the EEG signals around the A-phase 253

and not only to evaluate the specific time instant of the onset 254

and offset. As a consequence, A-phases with a duration of 255

less than five seconds were not considered. Please note that a 256

large quantity of the A-phases presents a duration greater than 257

5 seconds, see Table I. 258

Fig. 1 shows an example of the EEG signal during one 259

A-phase. The box function (orange line) is the clinical anno- 260

tation and represents the length of an A-phase. The arrow in 261

the upper part of the figure shows the seconds related to the 262

background activity (Sn−1, Sn−2, Sm+1, Sm+2) and the ones 263

belonging to the A-phase (Sn for onset and Sm for offset). 264

Note that these segments are used in the analysis. 265

Also, to verify if the sleep stage activity modifies the behav- 266

ior of singularities produced by the A-phases, the A-phases 267

were analyzed separately in two groups: light sleep (stages S1 268

and S2) and deep sleep (stages S3 and S4). 269

C. Wavelet Singularity Analysis 270

In many situations, signals contain valuable information in 271

their transient characteristics and singular structures. To quan- 272

tify the singularities in a signal is necessary to consider the 273

local regularity of such a signal, which can be measured 274

by the Hölder exponent α. The wavelet transform (WT) has 275

been demonstrated to be a successful and suitable tool to 276

estimate the Hölder exponents, because the multiscale decom- 277

positions implied by the WT are well adapted to evaluate 278

scaling properties, and numerically is more stable than other 279

methods [19]. 280

In the following we shortly describe the relationship 281

between the WT and Hölder exponents. Let n be a positive 282

integer and α be in the interval n ≤ α < n + 1. A function 283

f (t) is said to be Hölder α at t0 if and only if there exist a 284

constant A > 0 and a polynomial Pn(t) of order n, such that 285

| f (t)− Pn(t − t0)| ≤ A |t − t0|α . (1) 286

Consequently, a function f (t) is uniformly Hölder, over the 287

interval [a, b], if there exist a constant A > 0 and a polynomial 288

Pn(t) of order n, for which the previous equation holds for all 289

t , t0 ∈ [a, b]. 290

In order to detect and measure the singularities of a signal, 291

Mallat and Hwang [19] considered a method, which is in terms 292

of the decay/growth rate the wavelet coefficients. The reader 293

is referred to Appendix of this paper for a short introduction 294

of continuous wavelet transform. However, the decay rate 295

can be measured from the set of points where the wavelet 296

modulus reaches the local maxima values. In other words, 297

the singularities of a signal can be detected by finding the 298
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TABLE I
MEAN AND STANDARD DEVIATION OF GENERAL SLEEP INDEXES (MACRO- AND MICRO-STRUCTURES) FOR DATABASE UTILIZED IN THIS STUDY

Fig. 1. Example of a segment of the EEG signal during the occurrence of an A-phase. The orange line defines the clinical annotation.

abscissa where the wavelet modulus maxima converge at fine299

scales. Any connected curve in the scale - time plane (s, t)300

along which all points are modulus maxima is called a maxima301

line [27]. The previous method is called the wavelet transform302

modulus maxima (WTMM), and the regularity of a signal can303

be determined by the decay of the maxima line generated304

by the evolution of the WTMM at a given time point. The305

measure of this decay is the Hölder exponent of the signal306

at a specific point. Therefore, by examining the exponent in307

time, singularities can be localized.308

It is worth to say that a signal without oscillations in a309

neighborhood of the singularity means that it has an isolated310

singularity. To quantify such a singularity, let f (t) be a signal311

whose wavelet transform is well defined over (a, b) and let t0312

∈ (a, b). Suppose there exists a scale s0 > 0, and a constant C ,313

such that for t ∈ (a, b) and s < s0, all the modulus maxima of314

W f (s, t) belong to a cone of influence given by |t − t0| ≤ Cs315

(see the Appendix for the definition of the cone of influence).316

Then the function f (t) has a Hölder exponent, α ∈ (n, n + 1)317

at t0, if and only if there exists a constant A > 0 such that at318

each modulus maxima (s, t) in the cone of influence |t − t0| ≤319

Cs one has320 ∣∣W f (s, t)
∣∣ ≤ Asα+ 1

2 , s → 0, (2)321

which is equivalent to322

log2

∣∣W f (s, t)
∣∣ ≤ log2 A +

(
α + 1

2

)
log2 s. (3)323

The Hölder exponent α is numerically computed from (3) 324

with a linear regression of log2

∣∣W f (s, t)
∣∣ as a function log2 s. 325

The analyzing wavelet functions which are most used for this 326

kind of analysis are the successive derivatives of the Gaussian 327

function ψ(n)(t) = dn

dtn
(ex p(−t2/2)), n ∈ Z+, because 328

they are well localized both in space and frequency, and they 329

have the same number of vanishing moments as the order of 330

derivative, a crucial property to detect singularities. 331

D. Simulations for the Effect of Noise 332

Biomedical signals present a certain level of high-frequency 333

noise which is added during the acquisition process. The 334

nature of the noise is related to different factors such as elec- 335

tromagnetic interference, amplification, and digitalization [17]. 336

This high-frequency noise can produce singularities in the 337

signal and, as a consequence, the results of the singularity 338

analysis could be corrupted or degraded. One way to mitigate 339

the problem is to filter the signal; however, the filtering process 340

smooths the signal and the singularities of interest may disap- 341

pear. With the aim to analyze the effect of the high-frequency 342

noise in the computation of singularities, we added Gaussian 343

noise to two simple signals with known singularity. 344

The first signal is the step function u(t), which is defined 345

as: 346

u(t) =
{

0, t < 0

1, t ≥ 0
(4) 347
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Fig. 2. Left column illustrates the synthetic signals and the right column shows the respective wavelet transform. The red lines correspond to the
Maxima Modules that defines Hölder exponent α.

Fig. 3. Left column illustrates the synthetic signals contaminated with Gaussian noise and the right column shows the respective Wavelet Transform
Modules Maxima. Note that the high levels of noise produce many spurious singularities, which can be confounded with the true singularity.

It is clear that u(t) is singular and not differentiable at t = 0.348

The second signal under study is defined as:349

f (t) =
{

0, t < 0

t0.6, t ≥ 0
(5)350

For this signal, the value of the derivative is indeterminate351

at t = 0. The signals were generated with a sampling rate of352

fs = 512 Hz with −4 < t < 4. Fig. 2 shows the signals and353

their WTMM based on the second derivative of the Gaussian354

mother wavelet. The red line defines the Maxima Modules that355

are used to compute the Hölder exponent. Note the red line356

moves from the large to small scales as t approaches to the357

singularity.358

Subsequently, Gaussian noise was added with a signal-to-359

noise ratio (SNR) in the interval [10 dB, 50 dB] in steps of360

5 dB. Once the noise was added to the signals, we computed361

the Hölder exponent through the WTMM. The procedure was362

performed 100 times (using different noise realizations) for363

each SNR level. Fig. 3 shows the noise effect, where a large364

number of spurious singularities can be observed; however, the365

singularity of interest remains in the expected location and it366

can be distinguished from spurious singularities produced by 367

noise. 368

The mean of Hölder exponent α, and its concentration (in 369

windows, with one-second resolution), were computed for 370

each realization of noise. The results of all the realizations 371

were averaged. This procedure was applied to each noise 372

level. (The definitions of the mean of Hölder exponent and 373

its concentration are described in EEG singularity analysis 374

section). 375

E. Statistical Analysis 376

The α behavior was analyzed inside and outside the 377

A-phases, with one second resolution. For the onset case, the 378

first two seconds have the singularities of the basal oscillations 379

corresponding to the current sleep stage while the following 380

five seconds belong to the A-phase. In the offset case, the first 381

five seconds are inside the A-phase and the last two seconds 382

belong to the basal stage. A comparison of the mean α value 383

among windows was carried out. This comparison was made 384

for each A-phase sub-type (A1-, A2-, and A3-phase) in the 385

onset and offset cases. The wilcoxon signed-rank test was 386

used for the comparison. A p-value of 5 % was used to define 387
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Fig. 4. Mean and standard deviation of Hölder exponent ᾱSj
for (a) the step function and (b) monomial function. Bottom panels show the concentration

of singularities Cj(�), respectively.

statistical significance. In addition, the test was used to reject388

the global null hypothesis (that the mean of the distributions389

is the same across all the groups being compared), a multiple390

comparison procedure was also employed to determine which391

means differ significantly in a pairwise manner. The same392

procedure was performed separating the sleep in light and393

deep stages. Finally, the statistical analysis was performed to394

compare the onset/offset of A-phase against the first window395

of basal EEG activity.396

III. RESULTS397

The results of the analysis of singularities in the EEG signal398

around A-phase onset/offset are presented. The information is399

shown for each A-phase sub-type. The singularity strength400

was measured by the Hölder exponent computed from the401

Maxima Modules from the scales of the wavelet transforma-402

tion. To carry out the singularity analysis, we choose as a403

wavelet function the second derivative of the Gaussian having404

two vanishing moments, because it presents a good tradeoff405

between localization and computational cost, and it has been406

extensively considered to detect singularities [19].407

A. Singularity Detection in Simulated Data408

Fig. 4 shows the results of the Hölder exponent, α, for409

u(t) and f (t) functions at different noise levels (bars colors).410

The analysis was carried out by considering the singularities411

second-by-second, thus, the signal duration was divided into412

windows of one second. The number of singularities, as well413

as the mean and standard deviation of α for the detected sin-414

gularities at each second, from all the noise realizations, were415

computed at each window. The location of singularity was416

defined at the sample 2304 (sampling frequency of 512 Hz),417

this means the singularity has to be in the second 5, here418

called Sn .419

Fig. 4a shows the singularity analysis of the u(t) function.420

Here again, the localization of the singularity presents a good421

performance, and for most of the SNR cases, the α strength is422

close to 0. Thus, the method seems to correctly estimate this423

singularity type.424

In Fig. 4b shows the results of the function (5). We can 425

observe that the location of the singularities was correctly 426

identified for all SNR cases (bottom panel). The α values 427

are close to 0.6 (Figure 4, upper panel) which were correctly 428

measured for SNR higher than 30 dB (yellow bars). Thus, 429

for high noise values, the α value is affected, however, the 430

noise effect does not compromise their identification. This 431

means that the WTMM method is fairly robust to the spurious 432

singularities introduced by noise, as illustrated in the bottom 433

panels. 434

B. EEG Singularity Analysis 435

During the onset and offset of A-phases, at each second 436

Sj , we can found various singularities with different Hölder 437

exponent value. Considering KS j as the number of singu- 438

larities at each Sj second, the following indexes, for j = 439

n − 2, n − 1, n, . . . , n + 4, were computed: 440

Mean of α value: 441

ᾱS j = 1

KS j

KS j∑
k=1

αS j [k], (6) 442

where αS j is a Hölder exponent value in the second Sj . 443

Percentage of change: 444

� j (%) = ᾱS j − ᾱSn−2, (7) 445

Concentration: 446

C j (%) = KS j

KSn−2 + KSn−1 + · · · + KSn+4

. (8) 447

Figure 5 shows the dynamics of these features across the 448

onset and offset of A-phases. We employed this strategy 449

since the number of singularities is different at each second. 450

From top to bottom, we present ᾱS j , � j (%), and C j (%), 451

where the blue line represents A1-phase, the orange line 452

corresponds to A2-phase, and the yellow line is the A3-phase, 453

respectively. 454

The same procedure was applied for the onset and offset. 455

In the case of onset, we observe a statistical increment in 456



MEDINA-IBARRA et al.: ASSESSMENT OF SINGULARITIES IN THE EEG DURING A-PHASES OF SLEEP 2727

Fig. 5. Singularity indexes of the A-phase sub-type for one healthy subject. For each A-phase sub-type the upper panels show the (mean of the
α value) ᾱSj

value, the middle panels shows the (percentage of change) Δj(�) of the Hölder value with respect to the background (Sn−2 for onset
and Sm+2 for offset). The bottom panels present the (concentration of singularities) Cj(�) values at each window. The symbol * stands for statistical
differences with respect to the background (Sn−2 for onset and Sm+2 for offset).

the α when the A-phase starts (∗ stands for statistical sig-457

nificance with respect to the window Sn−2), this increment458

is independent of the A-phase sub-type. However, the α is459

higher in the A1-phase, which suggests that the singularities460

are not so strong as the singularities found during A2- and461

A3-phase. Furthermore, this change in the Hölder value could462

be better observed in the � j (%) value (middle panel), where463

increments higher than 10% take place from Sn . These changes464

are clearer on the A1-phase and the A2-phase, since most465

of these phases seem to have similar behavior in the initial466

part. On the contrary, A3-phases have different waveforms467

at the onset. Finally, the bottom panel shows that the onset468

of A-phases has a larger concentration of singularities with469

respect to any other part, especially the background. By470

analyzing the offset case, higher α with statistical significance471

is observed, but just for the A1- and A2-phases (∗ stands472

for p−value < 0.05 with respect to the window Sm+2). One473

possible reason for which A3-phases do not show significant474

changes is that they are usually longer (>10s), so the transition475

from A3-phase to basal activity may occur more smoothly476

than in the case of A1- or A2-phases. Thus, it seems that the477

Hölder exponents between EEG background and A3-phases478

offset are similar. On the other hand, the maximum � j (%)479

value takes place two seconds before the end of the A-phase480

(Sm−2), with changes between 20% and 10% for the A1-481

and A2-phase. Finally, we cannot observe changes in the482

� j (%) value across the offset segments for A3-phase, which483

suggests that the number of singularities is the same between484

EEG background and A3-phase offset. Statistical differences485

were not found when comparing different groups (healthy vs486

pathological) in a specific second (Sk). The behavior of the487

A-phases, in terms of singularities during onset and offset,488

are consistent in both groups. Consequently, all A-phase sub-489

types belonging to healthy and pathological conditions were490

grouped. Table II shows the behavior of the singularities dur-491

ing the A-phases for all subjects in NREM (HLT_PLM), light492

sleep (HLT_PLM_LS) and deep sleep (HLT_PLM_DS). The 493

left and right halves of the table show the results, respectively, 494

for the A-phase onset and offset segments. For each group, 495

we present the ᾱS j , � j (%) and C j (%) values. Significantly 496

different values at Sj each index (p−value < 0.05) with 497

respect to Sn−2 (for the onset case) and Sm+2 (for offset case) 498

are shown in bold font. In the upper part of Table II, the 499

HLT_PLM group showed a significant increment in the ᾱS j 500

value at the starting of A1-phase, Sn . The � j (%) value ranges 501

from 5% to 20% and it is more noticeable in Sn+1 and Sn+2. 502

On the other hand, Table II also shows the concentration of 503

the singularity occurrence at each second. We can observe an 504

increment in the occurrence of singularities, specifically in Sn . 505

A similar result can be observed during the offset case, but in 506

the opposite direction. Higher values of ᾱS j and a high C j (%) 507

are found during the A1-phase. It must be noted that deep 508

sleep is characterized by slow waves similar to the A1-phase 509

waves, in the sense that they present similar frequency content. 510

Nevertheless, there seems to exist differences in the � j (%) 511

values and their corresponding ᾱS j values between EEG 512

background and onset/offset of A1-phases for all groups. 513

The middle part of Table II shows the behavior of the 514

Hölder exponent ᾱS j and the � j (%) values during A2-phase. 515

We can observe that A2-phase presents a similar behavior 516

to A1-phase. This means, that higher concentration and ᾱS j 517

values, for both onset and offset cases, occur inside the A2- 518

phase. A different behavior of the singularities is found during 519

the onset and offset of the A3-phase (bottom of Table II). For 520

the onset case, the increment in the α value is not common 521

in all subjects and statistical differences are only found in 522

some cases. In addition, we can observe a large variation 523

in the � j (%) value, in fact, from Sn+3 a decrement in α 524

is observed. However, it is important to note that Sn shows 525

a clear increment in the � j (%) values. When analyzing the 526

offset case, no differences are observed between basal EEG 527

and A-phase. 528
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TABLE II
ᾱSj

, Δj (�) AND Cj(�) VALUES FOR ONSET AND OFFSET OF ALL A-PHASE SUB-TYPES. THE BOLD FONT REPRESENTS SIGNIFICANTLY

DIFFERENT SEGMENTS, (p-VALUE < 0.05) WITH RESPECT TO Sn−2 (ONSET) OR Sm+2(OFFSET)

C. Discriminative Properties of Singularities529

In Biomedical Engineering, it is of great relevance to under-530

stand whether the information extracted from physiological531

signals helps to automatically detect a medical condition.532

Given the importance of exploring new features that could533

improve the classification procedure, it is interesting to study534

whether the EEG singularity, around the onset of A-phase,535

is a discriminative feature. For this purpose, ᾱS j and C j (%)536

values in the second S−2 (class BKGRND) and the second S1537

(class ONSET), of the A-phase onset were used as inputs to a538

multilayer shallow neural network (NN) with backpropagation539

training. Table III shows the confusion matrix and the Cohen’s540

kappa index of the test results of the NNs with an architecture541

of two inputs, four hidden (transfer function: sigmoid) and542

one output (transfer function: sigmoid), and the mean square543

error as a performance function. We evaluated the following544

cases: a) all the A-phases, b) A-phases in deep or light sleep,545

and c) A-phases by subtype. Other architectures were also546

evaluated varying the hidden layer from 2 to 10 neurons.547

In each case, 10 different NNs were trained and tested by548

taking 90% of the data for training and 10% for testing.549

Samples from each set were randomly selected each time that550

a new NN was trained. To ensure that the classification results551

are produced by the presence of the A-phases, the values of552

the singularities of all A-phases were randomly re-ordered,553

and the training and testing (SURROGATE) procedures were554

performed again. From Table III, it is observed that results555

evaluated via the kappa coefficient for the surrogate data is556

very small, while for the real data it is at least one order557

of magnitude higher. In addition, the singularities present a 558

moderate level of discriminative power, therefore it could be 559

used as a complement to other features already used in the 560

literature. As expected classification with surrogate sets is not 561

possible and this helps to show that the singularity around the 562

onset of A-phase is related to the occurrence of the event. 563

Furthermore, other strategies based on singularities could be 564

evaluated to improve the classification task, for instance, the 565

highest singularity value, or take into account singularities 566

considering more seconds, among others. 567

D. Analysis of Individual Variability 568

Table IV shows the statistical analysis of the singulari- 569

ties behavior during A-phases for each subject in NREM 570

(HLT_PLM), light sleep (HLT_PLM_LS) and deep sleep 571

(HLT_PLM_DS). The left and right halves of the table show 572

the results, respectively, for the A-phase onset and offset 573

segments. Please note that this analysis is similar to the 574

one performed in the EEG singularity analysis Section. This 575

analysis was carried out per subject with the aim to quantify 576

the individual variability. Each cell contains the percentage 577

of subjects with significance difference in a second Sj and 578

Sk with respect to Sn−2 and Sm−4, respectively, where j = 579

n − 1, n, . . . , n + 4, and k = m − 3,m − 2, . . . ,m + 2, please 580

see Fig. 1. In bold font are shown the seconds where more than 581

75% of the subjects have statistical difference. At first on the 582

onset segment, it is observed that most of the subjects present 583

statistical difference for the A1-phase from Sn+1 second for 584

all the cases. This suggests that A1-phase modifies the EEG 585
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TABLE III
CONFUSION MATRIX FOR THE TEST RESULTS OF THE NNS PERFORMANCE FOR THE A-PHASE ONSET

CLASSIFICATION BASED ON TRUE AND SURROGATE SINGULARITIES

TABLE IV
PERCENTAGE OF SUBJECTS WITH SIGNIFICANCE DIFFERENCE AT EACH SECOND DURING THE ONSET AND OFFSET OF A-PHASES

composition after one second of the A-phase onset. For the586

A2-phase, most of the subjects present statistical difference587

in the first three seconds of the A-phase onset, except for588

the deep sleep case. Finally, A3-phase does not generate589

any statistical difference in most of the subjects. On the590

other hand, in the previous seconds of the offset segment,591

most of the subjects during the A1-phase showed statistical592

difference. These results are in agreement with those of593

Table II.594

IV. DISCUSSION595

The analysis of singularities in the EEG signal around the596

A-phase onset and offset was presented. The singularities597

were evaluated by the Maximum Module of the wavelet598

decomposition. Our main observations are: a) EEG presents599

a high content of singularities during the basal fluctuations600

of the sleep stages, and b) the singularities of EEG around 601

A-phases seem independent of the subject condition. 602

The results provide evidence that the EEG signal presents 603

singularities during NREM sleep. These occur during the basal 604

oscillations of the different sleep stages and also during the 605

A-phases, but with different Hölder value. It is interesting 606

since these results supports the idea that the A-phases have 607

different dynamics with respect to the background activity, 608

even when their frequency content is similar. Specifically, 609

this is better appreciated during deep sleep, where the EEG 610

oscillation is predominantly in the low part of the spectrum 611

(delta band), which is similar to the A1-phase spectral content. 612

Furthermore, an interesting outcome of this analysis arises 613

from the comparison of A-phase singularities between healthy 614

and pathological sleep. Although there is a different number 615

of A-phases between the healthy and pathological groups 616
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of subjects, the Hölder exponent and the behavior of the617

singularities across the analyzed segments were very similar618

and no significant differences were observed between these619

two groups. This suggests a consistent behavior of A-phases,620

in both healthy and pathological sleep conditions. When621

considering the singularities in light sleep and deep sleep622

separately, it is worth noting a significant change (about 10%)623

of the Hölder exponent during the A-phases. This suggests624

that the behavior of the singularities during the A-phases are625

depends on the sleep stage in which they occur.626

From the results, it seems the A-phase onset generally627

presents an increment of singularities for all A-phase sub-628

type. A similar behavior is observed during the offset with629

the exception of A3-phase. The results complement previous630

studies, such as, the work carried out by De Carli et al. [30].631

They found significant changes in the spectral content of632

the background activity and the A phases, even in cases633

where the A-phases and background activity present a similar634

behavior. Similarly, in [12], the authors present evidence635

of a clear change in energy, power, entropy, and standard636

deviation between background activity and the onset of A1-637

and A2-phases. Concerning the A3-phases, our results are in638

agreement with previous work [12], since the analysis of the639

Hölder exponent at the offset of these phases did not show640

a consistent significant change, which could be related to the641

long duration and variability of the A3-phases.642

On the other hand, the identification of A-phases can be643

a complicated task since there exist EEG sections with very644

similar characteristics to the changes generated by A-phases645

which produce false positives. However, the method used in646

this study from a practical point of view could be part of647

more complex algorithms to help the detection of onset of648

A-phases and try to decrease the number of false positives.649

Our results did not give an insight of a singularity correlated to650

the precise time of clinician offset annotations. It suggests that651

A-phase could involve a series of processes inside the brain652

structures and the integration of a large number of neurons653

move smoothly toward the new state, this is why we believe654

that the change observed as a sudden transition, does not655

convey a singularity. This follows the idea of the authors656

in [31], where they mention that the A-phases are considered657

as an oscillation and not a pulse.658

The sampling frequency is an issue that needs to be carefully659

analyzed. This is because clinicians generally consider the660

frequency content of the EEG to annotate the sleep stages661

and short cortical events. The sleep clinician usually considers662

the frequency bands in the range between 0.05 Hz to 30 Hz;663

only in cognitive tasks frequencies go up to 80 Hz. However,664

singularity analysis benefits from a high frequency sampling665

rate to capture the punctual changes that generate singularities.666

If a low sampling rate is used, the singularities might not be667

adequately represented.668

We analyzed records with different sampling rates (100 Hz,669

128 Hz, 200 Hz, and 512 Hz), and we observed a clear670

difference in the ability to detect singularities between low671

resolution recordings (100 Hz, 128 Hz) and high resolution672

recordings (200 Hz and 512 Hz). Specifically, the recordings673

of low resolution show a reduced number of singularities with674

respect to the high resolution recordings. It is important to675

comment that the singularities are lost in the low resolution 676

recording and could not be recovered for any mathematical 677

method since the information is not captured. On the other 678

hand, the high resolution can considerably increase the occur- 679

rence of singularities caused by noise, but the method used 680

in this study is quite robust and manages to eliminate most 681

of the unwanted information, which could be observed in the 682

experiment with synthetic signals. 683

The EEG signal is often contaminated by noise, or by 684

the interference of other physiological signals such as ECG, 685

resulting in spurious singularities. It could be argued that 686

this would produce a similar number of singularities in the 687

onset/offset and the background. However, this study showed 688

a statistical difference of singularities between A-phases and 689

background; which suggests this particular behavior in the 690

EEG dynamics is related to the A-phase. It is important to 691

observe that a standard filtering process could be applied to 692

reduce the noise levels, but the singularities could be smoothed 693

out or completely destroyed by most filtering strategies. 694

The numerical results obtained with the wavelet singularity 695

analysis suggest that the Hölder exponent can be considered 696

as a marker of the local changes in EEG dynamics during 697

A-phases. This allows an alternative characterization of the 698

A-phases that could help to develop automatic methods for 699

their detection. Since the length of data is large (around 700

8 hours), we decided to use the WTMM method with the 701

second derivative Gaussian function as a wavelet to obtain a 702

better localization accuracy with an acceptable computational 703

cost. Finally, two possible veins for further study are derived 704

from the current work. The first one is to evaluate which 705

wavelet function with different number of vanishing moments 706

presents a better performance to characterize the different sleep 707

stages. The second one is the multifractal analysis that may 708

be helpful to characterize the relationship among neighboring 709

singularities. 710

V. CONCLUSION 711

The characterization of EEG signals based on singularities 712

and their strength during A-phases based on Hölder exponent 713

was carried out. The EEG signal presented singularities inside 714

and outside the A-phases, which suggests abrupt changes in 715

the EEG during sleep. Additionally, during the A-phases a 716

higher number of singularities occurs suggesting a different 717

cerebral process, especially in A1- and A2-phases. These 718

findings contribute to understanding the effect of A-phases on 719

EEG signal and open the opportunity to develop a different 720

characterization of the CAP phenomenon. The computation 721

of the Hölder exponent based on wavelet decomposition 722

seems to be a useful tool for this task, where the per-subject 723

analysis shows consistent results for A1-phases. As a final 724

remark, the singularity analysis alone does not seem to pro- 725

vide enough information for accurately detecting A-phases; 726

however, all A-phase features proposed so far suffer from this 727

issue. 728

APPENDIX 729

CONTINUOUS WAVELET TRANSFORM 730

The basic concepts of the continuous wavelet transform for 731

singularity detection are presented in this appendix. 732



MEDINA-IBARRA et al.: ASSESSMENT OF SINGULARITIES IN THE EEG DURING A-PHASES OF SLEEP 2731

Let L2(R) denotes the space of all square-integrable func-733

tions on R, and let ψ(t) ∈ L2(R) be a fixed function.734

We define the continuous wavelet transform (WT) of a signal735

f (t) ∈ L2(R) by736

W f (s, t0) = 1√
s

∫ ∞

−∞
f (t)ψ̄

(
t − t0

s

)
dt, (9)737

where ψ is the analyzing wavelet, t0 ∈ R is a translation738

parameter, whereas s ∈ R
+ (s 	= 0) is a dilation or scale739

parameter, and the bar symbol denotes complex conjugation.740

In order to analyze appropriately the singular behavior of a741

function, signal or distribution, the wavelet functions ψ(t)742

should have enough vanishing moments [27], [29], [32].743

A wavelet function is said to have n vanishing moments if744

and only if it satisfies745 ∫ ∞

−∞
tkψ(t)dt = 0, (10)746

for k = 0, 1, . . . , n − 1, and747 ∫ ∞

−∞
tkψ(t)dt 	= 0 for k = n. (11)748

This means that a wavelet with n vanishing moments is749

orthogonal to all polynomials of degrees up to n − 1.750

In addition, the concept of cone of influence is crucial in the751

singularity analysis. Let us assume that ψ is non-zero in the752

interval [−C,C]. The cone of influence of ψ at point t0 is the753

set of points (s, t) in the scale-space plane, such that t0 is in the754

support of ψ ((t − t0) /s). Since the support of ψ ((t − t0) /s)755

is the set of points in the interval [t0 − Cs, t0 + Cs], the point756

(s, t) belongs to the cone of influence of t0 if757

|t − t0| ≤ Cs. (12)758
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