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Assessment of Singularities in the EEG
During A-Phases of Sleep Based on
Wavelet Decomposition
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Abstract—Electroencephalography (EEG) signals con-
vey information related to different processes that take
place in the brain. From the EEG fluctuations during sleep,
it is possible to establish the sleep stages and identify
short events, commonly related to a specific physiolog-
ical process or pathology. Some of these short events
(called A-phases) present an organization and build up the
concept of the Cyclic Alternating Pattern (CAP) phenom-
enon. In general, the A-phases abruptly modify the EEG
fluctuations, and a singular behavior could occur. With
the aim to quantify the abrupt changes during A-phases,
in this work the wavelet analysis is considered to compute
Hoélder exponents, which measure the singularity strength.
We considered time windows of 2s outside and 5s inside
A-phases onset (or offset). A total number of 5121 A-phases
from 9 healthy participants and 10 patients with periodic leg
movements were analyzed. Within an A-phase the Holder
numerical value tends to be 0.6, which implies a less abrupt
singularity. Whereas outside of A-phases, it is observed that
the Hélder value is approximately equal to 0.3, which implies
stronger singularities, i.e., a more evident discontinuity in
the signal behavior. In addition, it seems that the number of
singularities increases inside of A-phases. The numerical
results suggest that the EEG naturally conveys singularities
modified by the A-phase occurrence, and this information
could help to conceptualize the CAP phenomenon from a
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new perspective based on the sharpness of the EEG instead
of the oscillatory way.

Index Terms—Cyclic alternating pattern, EEG, scaling
exponent, singular behavior, sleep, wavelet transform.

I. INTRODUCTION

LEEP is a fundamental process for any human being.
During sleep, different activities such as memorization,
resting, and growing, generally occur. However, sleep could be
interrupted by different sources, both internal or external to the
body. For instance, the internal sources could be derived from
apnea episodes or mental stress, while the external ones are
related to lights, environmental noise, or other disturbances.
Sleep interruptions caused by these sources may result in
fragmented sleep, which is reflected as social and physio-
logical problems. Among the most representative problems,
we can find metabolic syndrome [1], irritability, lack of
concentration and traffic accidents [2], [3]. The main clinical
tool for sleep evaluation is polysomnography (PSG), which
is based on the recording of bio-electrical signals, including
electroencephalogram (EEG), electrooculogram (EOG) and
electromyogram (EMG). These biosignals are used to identify
the sleep stages: rapid eye movement (REM) and non-rapid
eye movement (NREM). These stages alternate across the
sleep time producing cycles that have a duration between
90-120 minutes. Also, the NREM stage is subdivided into four
stages denoted as S1, S2, S3 and S4. Although the PSG test
uses several signals to assess sleep quality, the EEG signal is
often the main reference because it contains five main rhythms
(Delta, Theta, Alpha, Beta, and Gamma) which are useful
in determining the sleep stages [4]. Nevertheless, in recent
years some experts have observed that there are short and
recurrent events in the EEG that interrupt its basal rhythms.
These events, called A-phases, present rapid EEG changes in
frequency and amplitude. A-phases present duration between
2-60 seconds; and there is evidence of a significant correlation
with the sleep stage transitions [3]. It seems that A-phases
participate in the sleep stage continuity. The A-phases are
grouped into three types based on their spectral characteristics
and duration, as described below:
o Al-phase: Characterized by bursts and K-complexes of
Delta waves (0.5 Hz - 4 Hz).
e A2-phase: Presents rapid EEG waves (Alpha
(8 Hz - 12 Hz) and Beta (12 Hz - 30 Hz)) that
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cover between 20% and 50% of the A-phase duration
and the Delta waves in the rest of the event duration.

o A3-phase. Characterized by Alpha and Beta waves, which
occupy more than 50% of the A-phase duration.

Also, from the A-phase occurrence, we can visualize an oscil-
latory pattern, called Cyclic Alternating Pattern (CAP) from
sleep [5], that helps to measure the sleep quality employing the
ratio between the CAP time and total sleep time, named CAP
rate index [6]. Regardless of the importance of the CAP rate
for sleep evaluation, the A-phase scoring is visually performed
by a clinical expert. CAP evaluation requires the annotation of
approximately 300 A-phases, and as a consequence, this pro-
cedure is tedious, with large subjectivity and high inter-scorer
variability [7].

Many works have been published with the goal of quanti-
fying the A-phases characteristics, which may allow imple-
menting computational methods for clinical support during
the annotation process [8]. However, until the present time,
the automatic annotation remains an open topic. In order to
improve this process, the research of quantitative measures
of the EEG, capable of distinguishing the A-phases from the
background, is desirable.

Navona et al. developed an automatic method for A-phases
detection based on the extraction of different descriptors by
using a bank of band-pass filter, where each descriptor corre-
sponds to a different EEG frequency band. The computation
of these descriptors, followed by the superimposition of two
thresholds and the application of logical criteria, provided a
good performance [9]. A similar methodology to recognize
A-phases from the background was used by Barcaro et al. and
they reported a good accuracy for the A-phase detection [10].
With similar features, Mariani et al. trained different types of
classifiers, such as linear and quadratic discriminant, boost-
ing neural networks, support vector machines, and adaptive
boosting [8], [11].

In addition, a group of statistics (standard deviation, mode,
kurtosis, and skewness), frequency (power in the characteristic
EEG frequency bands) and complexity (LZC, FD, sample
entropy, and Tsallis entropy) features were evaluated by
Mendez et al., which were used as input in the k-nearest neigh-
bors classifier to show the ability to discriminate an EEG seg-
ment between the onset of A-phase and the background with
a good accuracy [12]. Some authors applied time-frequency
methods for feature extraction, for instance, Dhok et al. used
Wigner-Ville Distribution and Rényi entropy in consecutive
2-s segments and to fed with these parameters a support
vector machine to determine if each segment corresponds
to an A-phase or background [13]. Recently, Fantozzi et al.
introduced an alternative approach that consists of generating
features from EEG based on a bank of band-pass filters over
segments of 90s and divided into epochs of 30s. For each
frequency band and for each such epoch, the root mean square
of the signal was computed and a threshold was used as
1.5 RMS. Each epoch was identified and marked when the
variability measure 1.6 times higher than the variability of the
segment. This process was applied in each derivation of EEG
( F2-F4/Fp2-F4, F4-C4, C4-P4, P4-02, C4-Al, and F4-Al)
with interesting results using the F4-C4 derivation [14].

In recent years, some studies have used techniques based
on deep learning to detect and characterize A-phases. Arce-
Santana et al. and Murarka et al. used frequency and temporal
features, respectively, from the EEG signal across consecutive
segments to train a convolutional neural network to deter-
mine whether the segment belongs to an A-phase [15], [16].
Finally, Hartmann er al. and Mendonga ef al. have used a
long short-time memory neural network to include temporal
relation across EEG signal. They obtained features similar
to previous works and used them to feed the classifier [17],
[18]. In general, all these studies have reported interesting
results, however, there is a lack in the correct detection
in the onset/offset and alternative techniques that provide a
complementary characterization of the transitions between the
A-phases and the background activity are needed.

In fact, singularities or irregular structures can convey
essential information [19]. Within clinical applications, many
biological signals present irregular patterns or behaviors that
may be related to a condition of interest; therefore, it may be
useful to study this kind of structures as part of a health diag-
nosis. For instance, A-phases produce a short and fast change
in the EEG amplitude [12], whose magnitude was defined by
Terzano et al. [5] as one-third of the basal amplitude. In fact,
the amplitude change is commonly used as an important
feature in algorithms to automatically detect the A-phases [8].
Since the abrupt transition occurs in small time intervals or
at specific points, a local analysis of this change is required.
Moreover, it is often unclear whether this fast change is related
to a singularity, and numerical quantification of this change
could unveil previously unobservable characteristics. Thus,
it could be interesting to understand whether the appearance
of singularities in the EEG is related to the occurrence of
A-phases. In general, it is known that the EEG signals present
fast amplitude and frequency changes which can be related to
singularities [20], but they have not been associated to specific
events.

In the biomedical field, singularities may reveal relevant
information about the physiological systems, e.g. the res-
piratory system [21], [22], cardiac function [23], [24] and
muscular activity [25], [26]. Some methods based on time
and frequency domains have been developed and used for
singularity detection. One of the common tools to analyze sin-
gularities or irregular structures is the Fourier Transform [27].
However, this transform yields a global characterization of the
regularity of a mono-component signal. In multi-component
signals (where frequency changes occur at a certain time) the
Fourier Transform may be used to determine the frequency
components but the time localization of the frequency change
(i.e., the singularity) is lost.

The singularity temporal localization problem can be cir-
cumvented by Wavelet decomposition throughout the asymp-
totic decay at the different scales. This decomposition allows
one to evaluate the local regularity or smoothness of a signal
through a real number called the Holder exponent [27], [28],
[29], which can be computed in the time-scale plane by using
the Wavelet Transform Modulus Maxima (WTMM).

In this paper, we present a systematic method to evaluate
the local singularities in the EEG signal during the A-phase
occurrences. The proposed method is based on the wavelet
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analysis to estimate the Holder exponents, from which two
quantitative indices are derived, and the method is robust
to the Gaussian noise, which commonly affects biomedical
signals. Another contribution is to show that these indices are
modulated by the presence of an A-phase in a way that is
statistically significant.

Il. METHODS
A. Data Description

This study was carried out on two groups, the healthy
group (HLT) that consists of 9 recordings (three males and
six females) without sleep complaints, and the pathologic sleep
group that includes 10 pathological subjects (seven males and
three females) with Periodic Leg Movements (PLM). The
subjects ages range between 23 and 37 years for the HLT
group, and between 40 and 62 years, for the PLM group.
The PLM pathology was chosen for this study because the
database has a sufficient number of subjects and the necessary
conditions (sampling frequency, duration of the recording and
number of A-phases).

HLT and PLM recordings belong to the open Physionet CAP
Sleep Database (https://physionet.org/content/capslpdb/1.0.0/).
CAP Sleep Database is a collection of 108 polysomnographic
recordings acquired at the Sleep Disorder Center of the
Ospedale Maggiore of Parma, Italy. EEG was recorded from a
C3/A2 or a C4/A1 derivation integrated by bipolar montages
(Fpl-F3, F3-C3, C3-P3, P3- Ol, Fp2-F4, F4-C4, C4-P4,
P4-02) used to score CAP phenomenon. Each recording is
composed of at least three EEG channels, electromyography,
electrooculographic channels, respiratory signal and, electro-
cardiogram. The recordings were recorded with a sampling
rate of 100, 128, 200, 256, or 512 Hz.

Embla REMlogic software was used to score and visu-
alize all polysomnographic recordings, where the scores for
each recording were saved as text files. Score files have the
following fields: Sleep stage (W=wake, S1-S4=sleep stages,
R=REM, MT=body movements), Body position (Left, Right,
Prone, or Supine; not recorded in some subjects), Time of
the day [hh:mm:ss], Event (either sleep stage (SLEEP S0-S4,
REM, MT), A-phase, Duration (in seconds) and Location
(the signals in which the event can be observed). All the
annotations were revised by an expert physician in the area
based on the gold standard rules [4], [5].

In this study, we are interested in evaluating the singularities
around the onset and offset of A-phases in subjects that present
a normal and pathological sleep macro-structure, focusing
on a single pathology PLM. The Table I shows the general
information such as age, sleep stages, number and duration
of A-phases from all recordings used in this study. Also,
information about the number of A-phases, sleep time spent
in A-phases, and duration for each A-phase type is found.

B. Data Encoding

The sampling frequency of most of the signals used to
carry out this study is 512 Hz; however, some signals had
sampling frequencies below 512 Hz. Signals with a sampling
frequency equal or higher than 200 Hz were upsampled
to 512 Hz using cubic spline interpolation, since we are

looking for abrupt transitions that can only be represented by a
higher sampling rate. Subsequently, we perform the extraction
of EEG segments for each type of A-phase per recording.
We focused on the onset and offset instants of the A-phase
occurrence. Thus, each segment consists of two seconds before
the A-phase onset and five seconds of the A-phase onset
(seven seconds in total). A similar process is performed for
the A-phase offset. We extract segments of five seconds of the
A-phase offset and two seconds after the A-phase offset. The
rationale behind the decision for the specific segment size is to
study the singularities of the EEG signals around the A-phase
and not only to evaluate the specific time instant of the onset
and offset. As a consequence, A-phases with a duration of
less than five seconds were not considered. Please note that a
large quantity of the A-phases presents a duration greater than
5 seconds, see Table I.

Fig. 1 shows an example of the EEG signal during one
A-phase. The box function (orange line) is the clinical anno-
tation and represents the length of an A-phase. The arrow in
the upper part of the figure shows the seconds related to the
background activity (S,—1, Sn—2, Sm+1, Sm+2) and the ones
belonging to the A-phase (S, for onset and S, for offset).
Note that these segments are used in the analysis.

Also, to verify if the sleep stage activity modifies the behav-
ior of singularities produced by the A-phases, the A-phases
were analyzed separately in two groups: light sleep (stages S1
and S2) and deep sleep (stages S3 and S4).

C. Wavelet Singularity Analysis

In many situations, signals contain valuable information in
their transient characteristics and singular structures. To quan-
tify the singularities in a signal is necessary to consider the
local regularity of such a signal, which can be measured
by the Holder exponent a. The wavelet transform (WT) has
been demonstrated to be a successful and suitable tool to
estimate the Holder exponents, because the multiscale decom-
positions implied by the WT are well adapted to evaluate
scaling properties, and numerically is more stable than other
methods [19].

In the following we shortly describe the relationship
between the WT and Holder exponents. Let n be a positive
integer and o be in the interval n < a < n + 1. A function
f(t) is said to be Holder a at fy if and only if there exist a
constant A > 0 and a polynomial P,(t) of order n, such that

[f(t) — Pu(t —10)] < Alt — 10" . (1)

Consequently, a function f () is uniformly Holder, over the
interval [a, b], if there exist a constant A > 0 and a polynomial
P, (1) of order n, for which the previous equation holds for all
t, to € [a, b].

In order to detect and measure the singularities of a signal,
Mallat and Hwang [19] considered a method, which is in terms
of the decay/growth rate the wavelet coefficients. The reader
is referred to Appendix of this paper for a short introduction
of continuous wavelet transform. However, the decay rate
can be measured from the set of points where the wavelet
modulus reaches the local maxima values. In other words,
the singularities of a signal can be detected by finding the
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TABLE |
MEAN AND STANDARD DEVIATION OF GENERAL SLEEP INDEXES (MACRO- AND MICRO-STRUCTURES) FOR DATABASE UTILIZED IN THIS STUDY

A-Phase Macrostructure
Subjects Age No Time (s) Duration (s) | NREM (h) | REM (h) | WAKE (h) | RECORDING (h)
HLT 9 31.64+5.2 | 419496.8 | 3366.3£588 8.0345.5 5.7£0.8 1.840.6 0.84+0.5 8.3+0.6
PLM 10 55.1+£6.7 | 455+114 | 4078+805.7 8.9+6.5 4.7£0.75 1.2+0.6 1.6+£1.3 7.6£1.5
No. A-phases Total Time in A-Phase of A-phases (s) Time of A-Phase(s)

Al A2 A3 Al A2 A3 Al A2 A3
A-phases (HLT) 254+104 874+38.4 77.5£19 1583+652 737+£316.2 1046179 6.243.0 8.5+4.65 13.5+8.6
A-phases (HLT) > 5s 120+51 61+£33 68+£15 10304495 630+313 10054184 8.61+2.8 10.3£4.5 14.8£8.3
A-phases (PLM) 204+77.3 98+36 152+47.9 1149+517 8204278 21094600 | 5.64+2.75 8.3+4.2 13.8+8.1
A-phases (PLM) > 5s 78+45.5 71423 140+41.9 6481390 700.84+235 20534591 8.34+2.7 9.9+4 14.7+£8

A-phase Segmentation
T T T T T T T T T T T T T T T T T T
Sn—2 Sn-1 Sn Sni1 Spi2 Snis Snia Sm—4 Sm—3 Sm-2 Sm-1 Sm  Sm+1 Smi2
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Fig. 1. Example of a segment of the EEG signal during the occurrence of an A-phase. The orange line defines the clinical annotation.

abscissa where the wavelet modulus maxima converge at fine
scales. Any connected curve in the scale - time plane (s, t)
along which all points are modulus maxima is called a maxima
line [27]. The previous method is called the wavelet transform
modulus maxima (WTMM), and the regularity of a signal can
be determined by the decay of the maxima line generated
by the evolution of the WTMM at a given time point. The
measure of this decay is the Holder exponent of the signal
at a specific point. Therefore, by examining the exponent in
time, singularities can be localized.

It is worth to say that a signal without oscillations in a
neighborhood of the singularity means that it has an isolated
singularity. To quantify such a singularity, let f(¢) be a signal
whose wavelet transform is well defined over (a, b) and let #g
€ (a, b). Suppose there exists a scale so > 0, and a constant C,
such that for ¢ € (a, b) and s < sp, all the modulus maxima of
Wp(s,t) belong to a cone of influence given by |t — o] < Cs
(see the Appendix for the definition of the cone of influence).
Then the function f (¢) has a Holder exponent, a € (n,n + 1)
at 1o, if and only if there exists a constant A > 0 such that at
each modulus maxima (s, t) in the cone of influence |t — fp| <
Cs one has

[Wr(s, )| < As“t3, 5 > 0, )
which is equivalent to
1
log, |Wf (s, t)| <log, A + (a + 5) log, s. 3)

The Holder exponent a is numerically computed from (3)
with a linear regression of log, | Wy (s, t)| as a function log, s.
The analyzing wavelet functions which are most used for this
kind of analysis are the sgccessive derivatives of the Gaussian

d
7(exp(—t2/2)), n € Z7T, because
they are well localized %oth in space and frequency, and they

have the same number of vanishing moments as the order of
derivative, a crucial property to detect singularities.

function ™ (1)

D. Simulations for the Effect of Noise

Biomedical signals present a certain level of high-frequency
noise which is added during the acquisition process. The
nature of the noise is related to different factors such as elec-
tromagnetic interference, amplification, and digitalization [17].
This high-frequency noise can produce singularities in the
signal and, as a consequence, the results of the singularity
analysis could be corrupted or degraded. One way to mitigate
the problem is to filter the signal; however, the filtering process
smooths the signal and the singularities of interest may disap-
pear. With the aim to analyze the effect of the high-frequency
noise in the computation of singularities, we added Gaussian
noise to two simple signals with known singularity.

The first signal is the step function u(¢), which is defined
as:

0,
1,

t <0
t>0

u(t) = “)
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Fig. 2. Left column illustrates the synthetic signals and the right column shows the respective wavelet transform. The red lines correspond to the

Maxima Modules that defines Holder exponent a.
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Fig. 3. Left column illustrates the synthetic signals contaminated with Gaussian noise and the right column shows the respective Wavelet Transform
Modules Maxima. Note that the high levels of noise produce many spurious singularities, which can be confounded with the true singularity.

It is clear that u(¢) is singular and not differentiable at r = 0.
The second signal under study is defined as:

0,
106,

t <0
t>0

f@ = (5)

For this signal, the value of the derivative is indeterminate
at t+ = 0. The signals were generated with a sampling rate of
fs =512 Hz with —4 <t < 4. Fig. 2 shows the signals and
their WTMM based on the second derivative of the Gaussian
mother wavelet. The red line defines the Maxima Modules that
are used to compute the Holder exponent. Note the red line
moves from the large to small scales as ¢ approaches to the
singularity.

Subsequently, Gaussian noise was added with a signal-to-
noise ratio (SNR) in the interval [10 dB, 50 dB] in steps of
5 dB. Once the noise was added to the signals, we computed
the Holder exponent through the WTMM. The procedure was
performed 100 times (using different noise realizations) for
each SNR level. Fig. 3 shows the noise effect, where a large
number of spurious singularities can be observed; however, the
singularity of interest remains in the expected location and it

can be distinguished from spurious singularities produced by
noise.

The mean of Holder exponent a, and its concentration (in
windows, with one-second resolution), were computed for
each realization of noise. The results of all the realizations
were averaged. This procedure was applied to each noise
level. (The definitions of the mean of Holder exponent and
its concentration are described in EEG singularity analysis
section).

E. Statistical Analysis

The o behavior was analyzed inside and outside the
A-phases, with one second resolution. For the onset case, the
first two seconds have the singularities of the basal oscillations
corresponding to the current sleep stage while the following
five seconds belong to the A-phase. In the offset case, the first
five seconds are inside the A-phase and the last two seconds
belong to the basal stage. A comparison of the mean a value
among windows was carried out. This comparison was made
for each A-phase sub-type (Al-, A2-, and A3-phase) in the
onset and offset cases. The wilcoxon signed-rank test was
used for the comparison. A p-value of 5 % was used to define
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Fig. 4. Mean and standard deviation of HSlder exponent dsj for (a) the step function and (b) monomial function. Bottom panels show the concentration

of singularities Ci(%), respectively.

statistical significance. In addition, the test was used to reject
the global null hypothesis (that the mean of the distributions
is the same across all the groups being compared), a multiple
comparison procedure was also employed to determine which
means differ significantly in a pairwise manner. The same
procedure was performed separating the sleep in light and
deep stages. Finally, the statistical analysis was performed to
compare the onset/offset of A-phase against the first window
of basal EEG activity.

The results of the analysis of singularities in the EEG signal
around A-phase onset/offset are presented. The information is
shown for each A-phase sub-type. The singularity strength
was measured by the Holder exponent computed from the
Maxima Modules from the scales of the wavelet transforma-
tion. To carry out the singularity analysis, we choose as a
wavelet function the second derivative of the Gaussian having
two vanishing moments, because it presents a good tradeoff
between localization and computational cost, and it has been
extensively considered to detect singularities [19].

RESULTS

A. Singularity Detection in Simulated Data

Fig. 4 shows the results of the Holder exponent, o, for
u(t) and f(¢) functions at different noise levels (bars colors).
The analysis was carried out by considering the singularities
second-by-second, thus, the signal duration was divided into
windows of one second. The number of singularities, as well
as the mean and standard deviation of a for the detected sin-
gularities at each second, from all the noise realizations, were
computed at each window. The location of singularity was
defined at the sample 2304 (sampling frequency of 512 Hz),
this means the singularity has to be in the second 5, here
called S,,.

Fig. 4a shows the singularity analysis of the u(¢) function.
Here again, the localization of the singularity presents a good
performance, and for most of the SNR cases, the a strength is
close to 0. Thus, the method seems to correctly estimate this
singularity type.

In Fig. 4b shows the results of the function (5). We can
observe that the location of the singularities was correctly
identified for all SNR cases (bottom panel). The a values
are close to 0.6 (Figure 4, upper panel) which were correctly
measured for SNR higher than 30 dB (yellow bars). Thus,
for high noise values, the o value is affected, however, the
noise effect does not compromise their identification. This
means that the WTMM method is fairly robust to the spurious
singularities introduced by noise, as illustrated in the bottom
panels.

B. EEG Singularity Analysis

During the onset and offset of A-phases, at each second
S;, we can found various singularities with different Holder
exponent value. Considering Kg; as the number of singu-
larities at each S; second, the following indexes, for j
n—2,n—1,n,...,n+4, were computed:

Mean of a value:

|
as; = — > as;lkl, (6)
Ks; i3
where ag; is a Holder exponent value in the second S;.
Percentage of change:
Aj(%) = as; — as, ,, @)
Concentration:
Ks,
Cj(%) = - ®)

Ks, , +Ks,  +--+Ks,.\

Figure 5 shows the dynamics of these features across the
onset and offset of A-phases. We employed this strategy
since the number of singularities is different at each second.
From top to bottom, we present &sj, Aj(%), and C;j(%),
where the blue line represents Al-phase, the orange line
corresponds to A2-phase, and the yellow line is the A3-phase,
respectively.

The same procedure was applied for the onset and offset.
In the case of onset, we observe a statistical increment in
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Fig. 5. Singularity indexes of the A-phase sub-type for one healthy subject. For each A-phase sub-type the upper panels show the (mean of the
a value) ag, value, the middle panels shows the (percentage of change) Aj(%) of the Holder value with respect to the background (S,,_» for onset
and Sy, for offset). The bottom panels present the (concentration of singularities) Cj(%) values at each window. The symbol * stands for statistical
differences with respect to the background (S;,_» for onset and Sy, o for offset).

the a when the A-phase starts (x stands for statistical sig-
nificance with respect to the window S,_»), this increment
is independent of the A-phase sub-type. However, the o is
higher in the Al-phase, which suggests that the singularities
are not so strong as the singularities found during A2- and
A3-phase. Furthermore, this change in the Holder value could
be better observed in the A ;(%) value (middle panel), where
increments higher than 10% take place from S,,. These changes
are clearer on the Al-phase and the A2-phase, since most
of these phases seem to have similar behavior in the initial
part. On the contrary, A3-phases have different waveforms
at the onset. Finally, the bottom panel shows that the onset
of A-phases has a larger concentration of singularities with
respect to any other part, especially the background. By
analyzing the offset case, higher a with statistical significance
is observed, but just for the Al- and A2-phases (x stands
for p—value < 0.05 with respect to the window S;,42). One
possible reason for which A3-phases do not show significant
changes is that they are usually longer (> 10s), so the transition
from A3-phase to basal activity may occur more smoothly
than in the case of Al- or A2-phases. Thus, it seems that the
Holder exponents between EEG background and A3-phases
offset are similar. On the other hand, the maximum A ;(%)
value takes place two seconds before the end of the A-phase
(Sm—2), with changes between 20% and 10% for the Al-
and A2-phase. Finally, we cannot observe changes in the
A j (%) value across the offset segments for A3-phase, which
suggests that the number of singularities is the same between
EEG background and A3-phase offset. Statistical differences
were not found when comparing different groups (healthy vs
pathological) in a specific second (Sx). The behavior of the
A-phases, in terms of singularities during onset and offset,
are consistent in both groups. Consequently, all A-phase sub-
types belonging to healthy and pathological conditions were
grouped. Table II shows the behavior of the singularities dur-
ing the A-phases for all subjects in NREM (HLT_PLM), light

sleep (HLT_PLM_LS) and deep sleep (HLT_PLM_DS). The
left and right halves of the table show the results, respectively,
for the A-phase onset and offset segments. For each group,
we present the as;, A;(%) and C;(%) values. Significantly
different values at §; each index (p—value < 0.05) with
respect to S,_» (for the onset case) and S,y (for offset case)
are shown in bold font. In the upper part of Table II, the
HLT_PLM group showed a significant increment in the ag;
value at the starting of Al-phase, S,,. The A ;(%) value ranges
from 5% to 20% and it is more noticeable in S,4+1 and S, 4».
On the other hand, Table II also shows the concentration of
the singularity occurrence at each second. We can observe an
increment in the occurrence of singularities, specifically in S,,.
A similar result can be observed during the offset case, but in
the opposite direction. Higher values of as; and a high C; (%)
are found during the Al-phase. It must be noted that deep
sleep is characterized by slow waves similar to the Al-phase
waves, in the sense that they present similar frequency content.
Nevertheless, there seems to exist differences in the A ;(%)
values and their corresponding ag; values between EEG
background and onset/offset of Al-phases for all groups.

The middle part of Table II shows the behavior of the
Holder exponent ag; and the A ;(%) values during A2-phase.
We can observe that A2-phase presents a similar behavior
to Al-phase. This means, that higher concentration and as;
values, for both onset and offset cases, occur inside the A2-
phase. A different behavior of the singularities is found during
the onset and offset of the A3-phase (bottom of Table II). For
the onset case, the increment in the a value is not common
in all subjects and statistical differences are only found in
some cases. In addition, we can observe a large variation
in the A;(%) value, in fact, from S,,3 a decrement in a
is observed. However, it is important to note that S, shows
a clear increment in the A;(%) values. When analyzing the
offset case, no differences are observed between basal EEG
and A-phase.
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TABLE Il
&sj_, Aj(%) AND Cj(%) VALUES FOR ONSET AND OFFSET OF ALL A-PHASE SUB-TYPES. THE BOLD FONT REPRESENTS SIGNIFICANTLY
DIFFERENT SEGMENTS, (p-VALUE < 0.05) WITH RESPECT TO Sp_o (ONSET) OR Sy, 2(OFFSET)

| | Sa—2 | Su-1 | Sn | Snt1 | Sat2 | Sntz | Snta | Sm-a | Sm-3 | Sm-2 | Sm-1 | Sm | Smt1 | Smi2

ONSET Al IN NREM ‘ OFFSET Al IN NREM

as; \ 0.45+0.07 \ 0.460.07 \ 0.52+0.04 \ 0.574+0.05 \ 0.57+0.06 \ 0.55+£0.06 \ 0.560.06 \ 0.56--0.06 \ 0.55+0.06 \ 0.56-0.05 \ 0.5440.05 \ 0.49+0.05 \ 0.47+0.06 \ 0.4420.05

\
HLrpM | Aj%) | 0£0 | LIE00 | 7.6£01 | 121£02 | 122402 | 105£01 | IL1£03 | 115:0.2 | 108+02 | 116+03 | 92402 | 52+£01 | 2401 | 0£0

| Cj(%) | 13001 | 132001 | 16+0.02 | 154002 | 14001 | 152001 | 143001 | 15£0.01 | 152001 | 1520 | 16+0.02 | 14002 | 13£0.02 | 13001

| @s, | 03£0.07 | 034£0.08 | 0.4310.09 | 0.46::0.06 | 0.4310.09 | 0.44:£0.08 | 0.44:0.08 | 0.46=0.07 | 04301 | 0.45£0.11 | 0.42:£0.08 | 0.38:0.07 | 036:£0.08 | 0.33+0.08
HUTPIMLS | A5(%) | 0£0 | 46+05 | 133£09 | 16+06 | 133+12 | 13941 | 144309 | 132208 | 103207 | 12406 | 907 | 5104 | 34303 | 0£0

| Cj(%) | 132001 | 134004 | 16+0.06 | 16£0.05 | 13+0.1 | 142006 | 154009 | 15£005 | 133009 | 14+£0.06 | 17£0.1 | 14£006 | 13+0.05 | 14006

| as, \ 049006 | 0.49+£0.06 | 0.55:£0.04 | 0.6+£0.05 | 0.6£0.06 | 0.59:£0.05 | 0.59£0.06 | 0.59=0.06 | 0.59::0.05 | 0.59+0.06 | 0.57£0.06 | 053005 | 05006 | 0.48+0.06
HLTPLMDS | A5(%) | 0£0 | 03200 | 6302 | 1L7£03 | 115302 | 9.9+0.1 | 104203 | 115+0.8 | 10.6+07 | 114206 | 9.5+07 | 5404 | 2+03 | 00

| Cj(%) | 13£001 | 132001 | 16+0.02 | 154002 | 154002 | 152002 | 142001 | 15£0.01 | 153001 | 15£0.01 | 154002 | 13001 | 142002 | 13001

ONSET A2 IN NREM \ OFFSET A2 IN NREM

| @s, | 033007 | 035£007 | 0.4240.06 | 0.44=0.06 | 0.43:£0.07 | 0.41£0.07 | 04005 | 039:+0.06 | 0395005 | 0.39£0.07 | 0.37:£0.07 | 0.35£007 | 0.33+£0.06 | 0.32:£0.04
Hrem | A %)\ 00 | 22401 | 92400 | 10403 | 99402 | 78403 | 64402 | 74403 | 6902 | 69403 | 5603 | 38402 | 1601 | 00

| Cj(%) | 12£001 | 124002 | 18004 | 162001 | 14001 | 142001 | 14002 | 142002 | 153002 | 15£001 | 154002 | 14002 | 142001 | 13001

| @s, | 0294004 | 033£0.08 | 04+0.06 | 042005 | 0.4:£0.07 | 0.37£0.07 | 0.36:0.06 | 0.35£0.05 | 0.36:0.06 | 0.35£0.06 | 0.33:£0.06 | 031005 | 030 | 0.28+0.04
HLrpiMLs | Ai(%) | 0£0 46403 | 11202 | 1L6£02 | 115303 | 87104 | 7.7+02 7+0.5 71409 | 6.6£07 | 49408 | 25£05 | 16£04 | 0+0

| Cj(%) | 124001 | 124004 | 194006 | 16£0.02 | 144003 | 142001 | 144005 | 142007 | 14004 | 142002 | 16003 | 14£002 | 155002 | 13002

| @s, | 0412008 | 041£0.08 | 0482007 | 0.5:0.09 | 0.5120.09 | 047£0.07 | 0.45:0.06 | 0.4520.06 | 0.430.07 | 0.45:0.07 | 0.44:£0.08 | 0432011 | 042008 | 0.38+0.06
HLTPLMDS | 85(%) | 0£0 | 01203 | 75401 | 91406 | 99409 | 58+06 | 41404 | 75405 | 57409 | 7807 | 61+08 | 5+05 | 21404 | 040

| Cj(%) | 134005 | 124004 | 18:+£0.05 | 154006 | 154008 | 142003 | 14+0.12 | 142005 | 142005 | 15£0.03 | 16011 | 15£0.08 | 142005 | 13005

ONSET A3 IN NREM | OFFSET A3 IN NREM

| @s, | 0332006 | 035£0.06 | 0.4240.05 | 0.44:£0.05 | 0.4320.05 | 0.41£0.06 | 0.4£0.05 | 025£0.05 | 0.25+0.04 | 0252006 | 0.25:£0.03 | 0262004 | 025:£0.04 | 0.25£005
HLrem | A ‘/)\ 040 | 21401 | 68402 | 7.a+02 | 45401 | 05403 | 23203 | 04402 | 00402 | 02402 | 00201 | 06+0.0 | -03+0.1 | 00

| Cj(%) | 14£001 | 132003 | 194004 | 16£001 | 144001 | 132002 | 124002 | 132003 | 143001 | 14£002 | 152001 | 154002 | 154002 | 14002

| @s, | 028006 | 03+£006 | 0.34:0.05 | 0.35£0.05 | 032005 | 0294006 | 0.26+£0.05 | 024:£0.04 | 024004 | 0.24£0.05 | 024:£0.03 | 024004 | 0.23+£0.04 | 024005
HLTPLMLS | A5(%) | 0£0 | 22402 | 65£02 | 69403 | 42402 | 0903 | -174£03 | 0002 | -03+01 | 0.6£03 | 0£01 | 02£01 | 060 | 0£0

| Cj(%) | 14£001 | 132003 | 194005 | 162002 | 14001 | 132003 | 124003 | 12£0.04 | 142001 | 13£003 | 152002 | 15£002 | 16£0.03 | 15:£0.03

| @s, | 0432014 | 044£0.11 | 0472009 | 05£0.1 | 04701 | 041013 | 0.3940.19 | 0.3240.1 | 031201 | 0.34£0.09 | 0.28:£0.09 | 0324009 | 029:£0.08 | 0.2820.09
HLTPLMDS | 2i(%) | 0£0 16+1.6 | 4.6+18 7.8:+1 45416 | 25504 | -28+32 | 47+£02 | 34200 | 62403 | 02400 | 46+0.1 110 00

| Cj(%) | 14+02 | 12408 | 184014 | 16£029 | 144015 | 142006 | 13+0.16 | 142029 | 133022 | 13£023 | 16+043 | 14023 | 174038 | 12:+0.33

C. Discriminative Properties of Singularities

In Biomedical Engineering, it is of great relevance to under-
stand whether the information extracted from physiological
signals helps to automatically detect a medical condition.
Given the importance of exploring new features that could
improve the classification procedure, it is interesting to study
whether the EEG singularity, around the onset of A-phase,
is a discriminative feature. For this purpose, as; and C;(%)
values in the second S_; (class BKGRND) and the second S
(class ONSET), of the A-phase onset were used as inputs to a
multilayer shallow neural network (NN) with backpropagation
training. Table III shows the confusion matrix and the Cohen’s
kappa index of the test results of the NNs with an architecture
of two inputs, four hidden (transfer function: sigmoid) and
one output (transfer function: sigmoid), and the mean square
error as a performance function. We evaluated the following
cases: a) all the A-phases, b) A-phases in deep or light sleep,
and c) A-phases by subtype. Other architectures were also
evaluated varying the hidden layer from 2 to 10 neurons.
In each case, 10 different NNs were trained and tested by
taking 90% of the data for training and 10% for testing.
Samples from each set were randomly selected each time that
a new NN was trained. To ensure that the classification results
are produced by the presence of the A-phases, the values of
the singularities of all A-phases were randomly re-ordered,
and the training and testing (SURROGATE) procedures were
performed again. From Table III, it is observed that results
evaluated via the kappa coefficient for the surrogate data is
very small, while for the real data it is at least one order

of magnitude higher. In addition, the singularities present a
moderate level of discriminative power, therefore it could be
used as a complement to other features already used in the
literature. As expected classification with surrogate sets is not
possible and this helps to show that the singularity around the
onset of A-phase is related to the occurrence of the event.
Furthermore, other strategies based on singularities could be
evaluated to improve the classification task, for instance, the
highest singularity value, or take into account singularities
considering more seconds, among others.

D. Analysis of Individual Variability

Table IV shows the statistical analysis of the singulari-
ties behavior during A-phases for each subject in NREM
(HLT_PLM), light sleep (HLT_PLM_LS) and deep sleep
(HLT_PLM_DS). The left and right halves of the table show
the results, respectively, for the A-phase onset and offset
segments. Please note that this analysis is similar to the
one performed in the EEG singularity analysis Section. This
analysis was carried out per subject with the aim to quantify
the individual variability. Each cell contains the percentage
of subjects with significance difference in a second S; and
Sk with respect to S,_» and S,,_4, respectively, where j =
n—1,n, ,n+4,andk=m—3,m—2,...,m+2, please
see Fig. 1. In bold font are shown the seconds where more than
75% of the subjects have statistical difference. At first on the
onset segment, it is observed that most of the subjects present
statistical difference for the Al-phase from S,4; second for
all the cases. This suggests that Al-phase modifies the EEG
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TABLE IlI
CONFUSION MATRIX FOR THE TEST RESULTS OF THE NNS PERFORMANCE FOR THE A-PHASE ONSET
CLASSIFICATION BASED ON TRUE AND SURROGATE SINGULARITIES

TRUE A-phase

\ |
\ \ ALL |  DEEPSLEEP | LIGHT SLEEP |
\ | ONSET | BKGRND | ONSET | BKGRND | ONSET | BKGRND |
| ONSET | 2854 | 2246 | 1158 | 852 | 1916 | 1174 |
| BKGRND | 2018 | 3082 | 833 | 1177 | 1557 | 1533 |
| kappa coefficient | 0.1666 | 0.1214 | 0.1432 |
| | Al-phase | A2-phase | A3-phase |
| ONSET | 1037 | 819 | 707 | 547 | 1054 | 934 |
| BKGRND | 802 | 1052 | 510 | 746 | 917 | 1065 |
| kappa coefficient | 0.1416 | 0.1690 | 0.1366 |
| SURROGATE \
\ \ ALL |  DEEPSLEEP | LIGHT SLEEP |
\ | ONSET | BKGRND | ONSET | BKGRND | ONSET | BKGRND |
‘ ONSET ‘ 2510 ‘ 2590 ‘ 953 ‘ 1057 ‘ 1608 ‘ 1482 ‘
| BKGRND | 2493 | 2607 | 988 | 1022 | 1600 | 1490 |
| kappa coefficient | 0.0148 | 0.0244 | 0.0068 |
| | Al-phase | A2-phase | A3-phase |
| ONSET | 870 | 984 | 558 | 697 | 876 | 1109 |
| BKGRND | 82 | 1034 | 580 | 675 | 88l | 1104 |
| kappa coefficient | 0.0028 | -0.0138 | -0.023 |
TABLE IV

PERCENTAGE OF SUBJECTS WITH SIGNIFICANCE DIFFERENCE AT EACH SECOND DURING THE ONSET AND OFFSET OF A-PHASES

Seconds — | Sp—2 | Sn—1 | Sn | Sng1 | Snt2 | Sna3 | Sna | Sm—a | Sm=3 | Sm—2 | Sm—-1 | Sm | Sm+1 | Smi2

\
Case | Type | Onset | Offset
| Al | 0 | 16 | 63| 8 | 8 | 8 | 8 | 8 | 95 | 8 | 8 |47 | 05 | 0
wrpm | A2 | 0 | 11 [ 84| 8 | 8 | 68 | 6 | 6 | S8 | 47 | S8 [ 32| 16 | 0
| A3 | 0 | 05 [ 6] S8 | 37 | 11 | 1 | 1 | 16 | 05 | 0 [ 0] 05 | 0
| Al | 0 | 47 | 79| 8 | 8 | 8 | 8 | 8 | 79 | 79 | 68 |58 | 42 | 0
mTPiMis | A2 | 0 | 20 |95 1 | 1 | 74 | 6 | 4 | 6 | 53 | 53 [20] 05 | 0
| A3 | 0 | 21 |6 | 6 | 37 | 16 | 20 | 20 | 11 | 16 | 05 [ 16] 0 | 0
| Al | 0 | 11 |63 | 8 | s | 95 | 8 | 8 | 79 | 79 | 8 |37 | 16 | 0
wrpimps | A2 | 0 | 26 |68 | 74 | 53 | 42 | 47 | S8 | 53 | 79 | 68 |37 | 21 | 0
| A3 | 0 | 53 | 68| 68 | 68 | 47 | 47 | 47 | S8 | 74 | 471 | 47| 42 | 0

composition after one second of the A-phase onset. For the
A2-phase, most of the subjects present statistical difference
in the first three seconds of the A-phase onset, except for
the deep sleep case. Finally, A3-phase does not generate
any statistical difference in most of the subjects. On the
other hand, in the previous seconds of the offset segment,
most of the subjects during the Al-phase showed statistical
difference. These results are in agreement with those of
Table II.

V. DISCUSSION

The analysis of singularities in the EEG signal around the
A-phase onset and offset was presented. The singularities
were evaluated by the Maximum Module of the wavelet
decomposition. Our main observations are: a) EEG presents
a high content of singularities during the basal fluctuations

of the sleep stages, and b) the singularities of EEG around
A-phases seem independent of the subject condition.

The results provide evidence that the EEG signal presents
singularities during NREM sleep. These occur during the basal
oscillations of the different sleep stages and also during the
A-phases, but with different Holder value. It is interesting
since these results supports the idea that the A-phases have
different dynamics with respect to the background activity,
even when their frequency content is similar. Specifically,
this is better appreciated during deep sleep, where the EEG
oscillation is predominantly in the low part of the spectrum
(delta band), which is similar to the Al-phase spectral content.
Furthermore, an interesting outcome of this analysis arises
from the comparison of A-phase singularities between healthy
and pathological sleep. Although there is a different number
of A-phases between the healthy and pathological groups
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of subjects, the Holder exponent and the behavior of the
singularities across the analyzed segments were very similar
and no significant differences were observed between these
two groups. This suggests a consistent behavior of A-phases,
in both healthy and pathological sleep conditions. When
considering the singularities in light sleep and deep sleep
separately, it is worth noting a significant change (about 10%)
of the Holder exponent during the A-phases. This suggests
that the behavior of the singularities during the A-phases are
depends on the sleep stage in which they occur.

From the results, it seems the A-phase onset generally
presents an increment of singularities for all A-phase sub-
type. A similar behavior is observed during the offset with
the exception of A3-phase. The results complement previous
studies, such as, the work carried out by De Carli et al. [30].
They found significant changes in the spectral content of
the background activity and the A phases, even in cases
where the A-phases and background activity present a similar
behavior. Similarly, in [12], the authors present evidence
of a clear change in energy, power, entropy, and standard
deviation between background activity and the onset of Al-
and A2-phases. Concerning the A3-phases, our results are in
agreement with previous work [12], since the analysis of the
Holder exponent at the offset of these phases did not show
a consistent significant change, which could be related to the
long duration and variability of the A3-phases.

On the other hand, the identification of A-phases can be
a complicated task since there exist EEG sections with very
similar characteristics to the changes generated by A-phases
which produce false positives. However, the method used in
this study from a practical point of view could be part of
more complex algorithms to help the detection of onset of
A-phases and try to decrease the number of false positives.
Our results did not give an insight of a singularity correlated to
the precise time of clinician offset annotations. It suggests that
A-phase could involve a series of processes inside the brain
structures and the integration of a large number of neurons
move smoothly toward the new state, this is why we believe
that the change observed as a sudden transition, does not
convey a singularity. This follows the idea of the authors
in [31], where they mention that the A-phases are considered
as an oscillation and not a pulse.

The sampling frequency is an issue that needs to be carefully
analyzed. This is because clinicians generally consider the
frequency content of the EEG to annotate the sleep stages
and short cortical events. The sleep clinician usually considers
the frequency bands in the range between 0.05 Hz to 30 Hz;
only in cognitive tasks frequencies go up to 80 Hz. However,
singularity analysis benefits from a high frequency sampling
rate to capture the punctual changes that generate singularities.
If a low sampling rate is used, the singularities might not be
adequately represented.

We analyzed records with different sampling rates (100 Hz,
128 Hz, 200 Hz, and 512 Hz), and we observed a clear
difference in the ability to detect singularities between low
resolution recordings (100 Hz, 128 Hz) and high resolution
recordings (200 Hz and 512 Hz). Specifically, the recordings
of low resolution show a reduced number of singularities with
respect to the high resolution recordings. It is important to

comment that the singularities are lost in the low resolution
recording and could not be recovered for any mathematical
method since the information is not captured. On the other
hand, the high resolution can considerably increase the occur-
rence of singularities caused by noise, but the method used
in this study is quite robust and manages to eliminate most
of the unwanted information, which could be observed in the
experiment with synthetic signals.

The EEG signal is often contaminated by noise, or by
the interference of other physiological signals such as ECG,
resulting in spurious singularities. It could be argued that
this would produce a similar number of singularities in the
onset/offset and the background. However, this study showed
a statistical difference of singularities between A-phases and
background; which suggests this particular behavior in the
EEG dynamics is related to the A-phase. It is important to
observe that a standard filtering process could be applied to
reduce the noise levels, but the singularities could be smoothed
out or completely destroyed by most filtering strategies.

The numerical results obtained with the wavelet singularity
analysis suggest that the Holder exponent can be considered
as a marker of the local changes in EEG dynamics during
A-phases. This allows an alternative characterization of the
A-phases that could help to develop automatic methods for
their detection. Since the length of data is large (around
8 hours), we decided to use the WTMM method with the
second derivative Gaussian function as a wavelet to obtain a
better localization accuracy with an acceptable computational
cost. Finally, two possible veins for further study are derived
from the current work. The first one is to evaluate which
wavelet function with different number of vanishing moments
presents a better performance to characterize the different sleep
stages. The second one is the multifractal analysis that may
be helpful to characterize the relationship among neighboring
singularities.

V. CONCLUSION

The characterization of EEG signals based on singularities
and their strength during A-phases based on Holder exponent
was carried out. The EEG signal presented singularities inside
and outside the A-phases, which suggests abrupt changes in
the EEG during sleep. Additionally, during the A-phases a
higher number of singularities occurs suggesting a different
cerebral process, especially in Al- and A2-phases. These
findings contribute to understanding the effect of A-phases on
EEG signal and open the opportunity to develop a different
characterization of the CAP phenomenon. The computation
of the Holder exponent based on wavelet decomposition
seems to be a useful tool for this task, where the per-subject
analysis shows consistent results for Al-phases. As a final
remark, the singularity analysis alone does not seem to pro-
vide enough information for accurately detecting A-phases;
however, all A-phase features proposed so far suffer from this
issue.

APPENDIX
CONTINUOUS WAVELET TRANSFORM

The basic concepts of the continuous wavelet transform for
singularity detection are presented in this appendix.
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Let L?(R) denotes the space of all square-integrable func-
tions on R, and let w(r) € L*(R) be a fixed function.
We define the continuous wavelet transform (WT) of a signal

f(@) € L*(R) by

W (s, to) = \/% /_ Fow (’ - “)) dt, ©)

where y is the analyzing wavelet, #p € R is a translation
parameter, whereas s € RT (s # 0) is a dilation or scale
parameter, and the bar symbol denotes complex conjugation.
In order to analyze appropriately the singular behavior of a
function, signal or distribution, the wavelet functions ()
should have enough vanishing moments [27], [29], [32].
A wavelet function is said to have n vanishing moments if
and only if it satisfies

o0
/ t*y()dr =0, (10)
—00
fork=0,1,...,n—1, and
o
/ t*w(t)dt #0 fork = n. (11)
—0o0

This means that a wavelet with n vanishing moments is
orthogonal to all polynomials of degrees up to n — 1.

In addition, the concept of cone of influence is crucial in the
singularity analysis. Let us assume that y is non-zero in the
interval [—C, C]. The cone of influence of y at point 79 is the
set of points (s, ¢) in the scale-space plane, such that 7 is in the
support of y ((t — tg) /s). Since the support of v ((t — tg) /5)
is the set of points in the interval [tg — Cs, fg + Cs], the point
(s, t) belongs to the cone of influence of 7y if

It — 10| < Cs. (12)
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