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Abstract 

Electromagnetic components greatly contribute to the peculiar timbre of analog audio gear. Indeed, distortion effects 
due to the nonlinear behavior of magnetic materials are known to play an important role in enriching the harmonic 
content of an audio signal. However, despite the abundant research that has been devoted to the characterization of 
nonlinearities in the context of virtual analog modeling over the years, the discrete-time simulation of circuits exhibit-
ing rate-dependent hysteretic phenomena remains an open challenge. In this article, we present a novel data-driven 
approach for the wave digital modeling of rate-dependent hysteresis using recurrent neural networks (RNNs). Thanks 
to the modularity of wave digital filters, we are able to locally characterize the wave scattering relations of a hysteretic 
reluctance by encapsulating an RNN-based model into a single one-port wave digital block. Hence, we successfully 
apply the proposed methodology to the emulation of the output stage of a vacuum-tube guitar amplifier featuring a 
nonlinear transformer.
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1  Introduction
The practice of emulating analog circuits and devices in 
the context of digital audio effects is known as virtual 
analog (VA) modeling  [1–3]. Over the last few years, a 
lot of research effort has been devoted to deriving effi-
cient and accurate digital implementations of circuit 
nonlinearities found in analog audio gear, which are well 
appreciated for their peculiar tonal character by indus-
try professionals. Among such nonlinear phenomena, 
frequency-dependent saturation effects due to magnetic 
materials are of particular interest. Indeed, electromag-
netic components can be found along the entire analog 
sound recording chain, which comprises, e.g., guitar pick-
ups, electrodynamic microphones, loudspeaker drivers, 

electrical transformers, and magnetic tapes. A distinctive 
characteristic of magnetic materials is rate-dependent 
hysteresis  [4] which affects the magnetic flux density B 
in response to a variation in the magnetic field H and its 
gradient [5, 6]. In general, the output of a system exhib-
iting hysteresis follows different paths with increasing or 
decreasing inputs, resulting in various loops depending 
on the past history. For this reason, modeling hysteresis is 
known to be a challenging task, especially for what con-
cerns discrete-time circuital simulation. Furthermore, 
modeling the dynamic ferromagnetic effects that modify 
the hysteresis characteristics depending on the input fre-
quency adds a further aspect of complexity when trying 
to tackle the problem with conventional VA methods.

In the literature, VA modeling approaches can be 
divided into two main categories: black-box meth-
ods that try to infer the global behavior of a reference 
circuit from observational input/output data using, 
e.g., Volterra series  [7] or neural networks  [8], and 
white-box methods that emulate the reference circuit 
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by solving the underlying system of ordinary differ-
ential equations using, e.g., state-space models  [9, 
10], port-Hamiltonian methods  [11], or wave digi-
tal filters (WDFs)  [3]. In particular, among white-box 
approaches, WDFs have recently proved to be an effi-
cient framework for deriving digital representations of 
electromagnetic circuits [12, 13].

First introduced by A.  Fettweis in the 70s to derive 
digital implementations of passive analog filters  [14], 
WDFs are realized describing a reference analog circuit 
as an interconnection of wave digital (WD) blocks. This 
is accomplished by substituting Kirchhoff port variables 
(port voltages and port currents) with linear combina-
tions of wave variables (incident waves and reflected 
waves) through the addition of a free parameter at each 
port called port resistance. Circuit elements and con-
nection networks are dealt with separately as they are 
described by one-port or multi-port blocks characterized 
by input/output scattering relations.

Several works in the literature on WDFs are devoted 
to the modeling of circuit nonlinearities, includ-
ing diodes  [15–21], transistors  [22–25], and vacuum 
tubes  [26–29]. Paiva et  al.  [15] derived an explicit WD 
description of exponential diodes and diode pairs based 
on the Lambert function, which was later extended 
in [30]. A general approach based on the Lambert func-
tion to derive closed-form scattering relations for expo-
nential nonlinearities, such as the Shockley diode model 
or simplifications of the Ebers-Moll model for certain 
bipolar junction transistor (BJT) amplifier configura-
tions, was later discussed in [17]. D’Angelo et al. [20], in 
order to reduce computational cost, proposed to refor-
mulate the expressions involving the main branch of the 
Lambert function in terms of the Wright omega function. 
A different approach based on one-dimensional Newton-
Raphson (NR) solvers was presented in  [18] and  [19]. 
Canonical piecewise linear (CPWL) representations of 
nonlinear functions [31, 32] were also employed to derive 
explicit WD scalar mappings [12], whereas models of the 
diode and of triode nonlinearities based on multilayer 
perceptrons [21, 29] have been recently proposed.

Linear circuits and circuits with up to one nonlin-
ear element, as long as the nonlinearity is characterized 
by an explicit wave mapping, can be modeled via sta-
ble discretization methods without the need of iterative 
solvers [19, 33]. This is a considerable advantage of WD 
modeling over VA methods that operate in the Kirch-
hoff domain, as the latter are typically characterized by 
systems of implicit equations and entail the use of itera-
tive algorithms  [33–35]. Moreover, although the use 
of iterative solvers is still required if multiple nonlinear 
elements are present in the circuit  [36, 37], the modu-
lar structure of WDFs and the freedom in selecting the 

port parameters have proven advantageous in terms of 
efficiency and robustness compared to iterative methods 
designed in the Kirchhoff domain [12, 18, 19, 38, 39].

Despite a rich literature on WDFs, only few works to 
date have focused on the modeling of nonlinearities with 
memory. For instance, [40] presented an approach based 
on mutators for the implementation of a class of non-
linear dynamic one-port elements. In  [41], instead, the 
modeling of generic memristors in the WD domain was 
discussed. Unfortunately, however, none of the existing 
methods can be readily used for the WD implementation 
of rate-dependent hysteresis.

Thanks to their excellent nonlinear approximation 
capabilities [42], deep neural networks have been recently 
employed for the modeling of hysteretic phenomena in 
various physical domains  [43–49]. However, whilst neu-
ral networks had been previously introduced in the field 
of WDFs as an alternative methodology to define explicit 
wave mappings for static nonlinear components, deep 
learning methods capable of dealing with nonlinearities 
with memory and input rate dependency have yet to be 
integrated in a general WDF framework for discrete-time 
circuit simulation.

In this article, we bridge this gap by studying the mod-
eling and implementation of electromagnetic audio cir-
cuits with rate-dependent hysteretic nonlinearities in 
the WD domain. We locally model a nonlinear reluc-
tance exhibiting hysteresis as a one-port circuit element 
making use of a recurrent neural network (RNN)  [45]. 
In fact, RNNs are capable of modeling the long-term 
memory effects that characterize rate-dependent hys-
teresis. The resulting WD block is trained using wave 
variables, and it can be readily inserted into multiphys-
ics WD structures  [12, 13] in order to implement non-
linear electromagnetic reference circuits. To the best 
of our knowledge, this constitutes the first example 
of using RNNs to model the dynamic behavior of cir-
cuital blocks in the WD domain. Ultimately, we pursue 
a hybrid approach, supplementing the white-box WDFs 
formalism with purely data-driven modules. Notably, the 
modular structure of WDFs allows us to limit the scope 
of black-box modeling only to the characterization of 
specific circuit elements by learning the respective wave 
scattering relations from measurement data.

The remainder of this manuscript is organized as follows. 
In Section  2, we provide the theoretical background on 
WDFs. Section 3 is devoted to the analysis of rate-depend-
ent hysteresis models. In Section  4, we illustrate how to 
implement reluctances with hysteresis in the WD domain 
using an RNN-based model. In Section 5, we present the 
model training procedure. In Section 6, we utilize the pro-
posed WD circuital block for the emulation of the output 
stage of a vacuum tube guitar amplifier. Conclusions are 
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drawn in Section 7, where future work and applications are 
also discussed.

2 � Background on wave digital filters
The design of WDFs is based on a port-wise description 
of a reference analog circuit. Circuit elements and topo-
logical connection networks are modeled using one- or 
multi-port WD blocks characterized by scattering rela-
tions. This is made possible by substituting each pair of 
Kirchhoff variables, i.e., port voltage v and port current i, 
with a pair of wave variables. Although different types of 
waves exist in the literature on WDFs [14, 35, 50, 51], the 
most used definition is that of voltage waves [14]

where a and b are the incident and reflected waves, 
respectively, whereas Z is a free parameter called port 
resistance. The inverse mapping of (1) is given by

which holds true if and only if Z  = 0 . Since it can be arbi-
trarily selected, Z constitutes a powerful degree of free-
dom in the port description. Indeed, a proper choice of Z 
is of fundamental importance for the numerical solution 
of WD structures [14].

2.1 � Linear circuit elements
As a representative example, let us consider a generic 
linear one-port circuit element as the one in Fig.  1a. A 
large class of linear one-port circuit elements, including 
resistors, resistive voltage/current sources, and dynamic 
elements such as capacitors and inductors discretized 
using stable methods, can be described by means of the 
discrete-time Thévenin equivalent model [19]

where k is the sampling index, v[k] is the port voltage, 
i[k] is the port current, Rg[k] is a resistive parameter, 

(1)a = v + Zi , b = v − Zi ,

(2)v =
a+ b

2
, i =

a− b

2Z
,

(3)v[k] = Rg[k]i[k] + Vg[k] ,

and Vg[k] is a voltage parameter. According to (1), the 
Thévenin equivalent model can be expressed in the WD 
domain as follows

The instantaneous dependence between b[k] and a[k] 
can be eliminated by setting Z[k] = Rg[k] ; in this case, (4) 
reduces to b[k] = Vg[k] , and the linear one port-element is 
said to be adapted [14] (see Fig. 1b).

2.2 � Topological connection networks
In the Kirchhoff domain, a N-port topological connec-
tion network [51, 52] is characterized by a vector of port 
voltages v = [v1, . . . , vN ]

T and a vector of port currents 
i = [i1, . . . , iN ]

T . Let vt ∈ R
χ be the vector of independ-

ent port voltages and il ∈ R
ψ be the vector of independ-

ent port currents, where χ + ψ = N  . Thus, it is possible 
to write

where B is the fundamental loop matrix and Q is the 
fundamental cut-set matrix  [53]. Given that topologi-
cal connection networks are lossless and reciprocal, the 
ortogonality property QBT = 0 holds true  [51, 53]. The 
matrix Q of size χ × N  and the matrix B of size ψ × N  
can be derived performing a tree-cotree decomposition 
of the reference circuit [54]. In the WD domain, topologi-
cal connection networks are modeled using N-port junc-
tions characterized by the wave variables

where a = [a1, . . . , aN ]
T is the vector of waves incident to 

the junction and b = [b1, . . . , bN ]
T is the vector of waves 

reflected by the junction, while Z = diag[Z1, . . . ,ZN ] 
is a diagonal matrix having port resistances as diagonal 
entries. The scattering relation between a and b is given 
by b = Sa , where S ∈ R

N×N is a scattering matrix that 

(4)b[k] =
Rg[k] − Z[k]

Rg[k] + Z[k]
a[k] +

2Z[k]

Rg[k] + Z[k]
Vg[k] .

(5)v = QTvt , i = BTil ,

(6)a = v + Zi , b = v − Zi ,

Fig. 1  Generic linear one-port element a in the Kirchhoff domain and b in the wave digital domain. The T-shaped stub indicates port adaptation
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can be computed using either of the two following equiv-
alent equations [51]

where I is the N × N  identity matrix. If ψ > χ , (7) is 
computationally cheaper than (8). If χ > ψ , the opposite 
holds true.

2.3 � Magnetic/electric junction
As shown in  [55], an analogy can be drawn between 
the magneto-motive force and the electric voltage and 
between the magnetic flux and the electric current. Con-
sequently, the coupling between magnetic and electric 
domains can be realized by means of the magnetic/elec-
tric (ME) junction [12, 13], shown in Fig. 2a, whose con-
tinuous-time constitutive equations are

where F is the magneto-motive force (m.m.f.), φ is the 
magnetic flux, and nt is the number of winding turns of 

(7)S = 2QT(QZ−1QT)−1QZ−1 − I ,

(8)S = I− 2ZBT(BZBT)−1B ,

(9)v(t) = −nt
dφ
dt

F (t) = nti(t)
,

an inductive coil. The port facing the electrical subcircuit 
is called electric port, and the relative signals are marked 
with the subscript “e,”  whereas the port facing the mag-
netic subsystem is referred to as magnetic port, and the 
relative signals are marked with the subscript “m.” We set 
ve = v , vm = F , ie = i , and im = φ , and we rewrite (9) to 
express the electrical variables as functions of the mag-
netic variables

In order to implement the ME junction in the discrete-
time domain, the time derivative in (10) can be discretized 
using the Backward Euler method obtaining

where Ts is the sampling period, and k is the sampling 
index. To obtain the WD implementation of the ME 
junction [12, 13] shown in Fig. 2b, we express the Kirch-
hoff variables in terms of the wave variables ae , be , am , 
and bm by using (2):

where Ze and Zm are the free parameters of the electric 
and the magnetic ports, respectively. By substituting (12) 
and (13) into (11) and solving for the reflected waves, we 
obtain the following system of equations

where

and β[k] = Ze[k]
nt

+ nt
TsZm[k]

 . The two matrices SME and 
MME need to be recomputed whenever a variation of the 
two port resistances Ze and Zm occurs.

(10)

{

ve(t) = −nt
dim(t)
dt

ie(t) =
1
nt
vm(t)

.

(11)

{

ve[k] = − nt
Ts
(im[k] − im[k − 1])

ie[k] =
vm[k]
nt

(12)ve[k] =
ae + be

2
, ie[k] =

ae − be

2Ze[k]
,

(13)vm[k] =
am + bm

2
, im[k] =

am − bm

2Zm[k]
,

(14)

[

be[k]
bm[k]

]

= SME

[

ae[k]
am[k]

]

+MME

[

am[k − 1]
bm[k − 1]

]

,

(15)

SME =









−
2Ze[k]
nt

−β[k]

β[k]
1
2

�

�

2Ze[k]
nt

−β[k]
�2

β[k]
− β[k]

�

2
β[k]

−
2Ze[k]
nt

−β[k]

β[k]









,

(16)MME =

[

Ze[k]
TsZm[k−1]

1
β[k]

− Ze[k]
TsZm[k−1]

1
β[k]

− nt
TsZm[k−1]

1
β[k]

nt
TsZm[k−1]

1
β[k]

]

,

Fig. 2  Magnetic/electric junction a in the Kirchhoff domain and b in 
the wave digital domain
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In order to efficiently solve WD structures, it is desir-
able to remove as many implicit relations as possible. As 
mentioned in Section  2.1, this can be achieved through 
the adaptation process. Since the diagonal entries of SME 
are equal, it is possible to make both the electric and the 
magnetic port reflection-free at the same time by prop-
erly setting the free parameters Ze and Zm . By imposing 
the constraint

we can solve for Ze to obtain the adaptation condition for 
the electric port

or solve for Zm to obtain the adaptation condition for the 
magnetic port

For example, Fig.  3 shows an ME junction adapted 
using (19). Finally, it is worth pointing out that other dis-
cretization methods can be considered for the implemen-
tation of the ME junction, as shown in [13].

2.4 � WD structures
WDFs can be organized into tree structures called con-
nection trees. Three types of constitutive blocks can be 
identified in a WD connection tree: the root, which has 
no upward-facing ports and can have one or more down-
ward-facing ports; nodes (typically multi-port topologi-
cal or ME junctions), which have one upward-facing port 
and one or more downward-facing ports; leaves (typically 
circuit elements), which have upward-facing ports and 
no downward-facing ports [12].

(17)
Ze
nt

− nt
TsZm[k]

Ze
nt

+ nt
TsZm[k]

= 0 ,

(18)Ze[k] =
n2t

TsZm[k]
,

(19)Zm[k] =
n2t

TsZe[k]
.

A WD structure can be solved without employing 
iterative solvers only if there are no delay-free loops [14]. 
Delay-free loops are formed every time instantaneous 
implicit relations exist among wave variables. Breaking 
delay-free loops at each upward-facing port makes the 
structure realizable and computable in the WD domain. 
This is achieved through adaptation of all the elements 
and upward-facing junctions except for the root, which 
has no upward-facing ports.

2.5 � Solving WD structures with at most one nonlinear 
element

Contrary to linear elements, nonlinear elements cannot 
be adapted as described in Section 2.1 [12, 18, 19, 38, 39]. 
However, in the WD domain, it is possible to implement 
circuits with up to one nonlinear element without resort-
ing to iterative solvers as long as the nonlinear element is 
characterized by an explicit WD mapping. This is accom-
plished by choosing the nonlinear element as the root of 
the connection tree and adapting all nodes and leaves. As 
done in [12] for solving electromagnetic circuits charac-
terized by an arbitrary number of WD topological junc-
tions, we divide the WD structure in levels, where level 
ℓ = 1 contains only the root and level ℓ = L contains only 
leaves, and we index each node/leaf on the ℓ-th level with 
the subscript u. At each sampling step k, the computa-
tional flow comprises four stages, depicted in Fig. 4: 

1	 Leaves scattering stage: the waves reflected by the 
leaves are computed using their scattering relations 
(4).

2	 Forward scattering stage: the wave reflected by each 
node of level ℓ is computed and propagated towards 
level ℓ− 1 , until the root is reached. The generic 
reflected wave is computed as 

 where sℓ,u,n is the nth row of the scattering matrix 
Sℓ,u[k] corresponding to the port with index n fac-
ing level ℓ− 1 . In case the considered node is a ME 
junction, the reflected wave is computed using one of 
the scalar scattering relations in (14), depending on 
which port (electric or magnetic) faces level ℓ− 1.

3	 Root scattering stage: the wave reflected by the root is 
computed according to the WD scattering relation f 
characterizing the nonlinear element 

4	 Backward scattering stage: the waves scattered by the 
nodes in the ℓ th level are computed and propagated 
towards level ℓ+ 1 . The computation starts at level 

bℓ,u,n[k] = sℓ,u,n[k]aℓ,u[k] ,

b1,1[k] = f1,1(a1,1[k]).

Fig. 3  ME junction showing adapted ports symbolically represented 
by a T-shaped stub. The magnetic port resistance is set according to 
the adaptation condition given in (19)
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ℓ = 2 and ends at ℓ = L− 1 . The vector of reflected 
waves is evaluated as 

 In case the considered node is a ME junction, the 
reflected wave is computed using one of the scalar 
scattering relations in (14), depending on which port 
(electric or magnetic) faces level ℓ+ 1.

3 � Background on hysteresis modeling
In the literature, two main categories of hysteresis models 
can be found: physical and phenomenological. Physical 
models are based on the physics laws governing the target 
system [56, 57]. Typically, such models are mathematically 
complex and require detailed knowledge of the physical 
properties of the materials. Phenomenological models, 
instead, make use of conventional system identification 

bℓ,u[k] = Sℓ,u[k]aℓ,u[k].

techniques and often lack a direct physical interpreta-
tion [58, 59]. Most phenomenological models approximate 
the whole hysteretic nonlinearity by weighting elementary 
hysteretic operators, known as hysterons, characterized by 
a simple mathematical description  [60–62]. Such models 
are mostly empirical and rely on acquired experimental 
data [60].

The most popular operator-based phenomenologi-
cal model is the Preisach model [63], which is used in a 
wide range of applications. The Preisach model is a rate-
independent model, which means that the variation rate 
of the input signal within a given range does not affect 
the shape of the hysteresis loop. If instead the output 
hysteresis depends both on the value of the input and on 
the speed at which it changes, we call it rate-dependent 
hysteresis or dynamic hysteresis. Although rate-depend-
ent extensions of the Preisach model exist  [64, 65], they 
entail solving computationally-intensive parameter iden-
tification problems, which make their use in practical 
applications very challenging.

More recently, starting from the definition of the Prei-
sach model, new phenomenological methods based on 
neural networks have been introduced in the literature. 
Such methods model rate-dependent hysteretic non-
linearities in a data-driven fashion, relying on physical 
measurements of ferromagnetic or ferroelectric mate-
rials  [44–46, 49]. Specifically, Farrokh et  al.  [44] pro-
posed a multi-layer feedforward neural network called 
extended Preisach neural network (XPNN), based on 
newly defined hysteron-like neurons, which proved to 
be capable of simulating both rate-independent and 
rate-dependent hysteresis loops. Chen et al. [46] proved 
that diagonal recurrent neural networks (dRNNs) are 
able to realize the superposition of a number of rate-
dependent hysterons. Moreover, Amodeo et  al.  [49] 
employed multilayer nonlinear autoregressive exog-
enous neural networks (NARX) for both quasi-static 
and dynamic hysteretic modeling of iron-dominated 
magnets. In the following, we focus on the recently 
proposed Preisach-RNN  [45] which showed promising 
results for predicting the behavior of dynamic hysteresis 
in ARMCO pure iron.

3.1 � Preisach‑RNN
The Preisach-RNN  [45] is a rate-dependent implemen-
tation of the Preisach model based on a single-layer 
RNN [66, 67].

The traditional mathematical formulation of the Prei-
sach model [63, 68] can be written as

(20)ŷ(t) =

∫∫

α≥β

µ(α,β)γαβ(u(t))dαdβ ,

Fig. 4  WD connection tree computational flow. Black elements are 
nodes, white elements are the leaves. The root is the red element
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where ŷ(t) is the model output at time t, u(t) is the model 
input at time  t, whereas µ(α,β) is the density function 
that weights the elementary rectangular hysteresis opera-
tors γαβ , also called Preisach hysterons  [46, 47], with α 
and β being the ascending and descending switching 
thresholds, respectively. Applying the following change in 
coordinates [69]

the Preisach half-plane {(α,β) |α ≥ β} is mapped onto 
the half-plane {(r, ν) | r > 0, ν ∈ R} , where the boundary 
between the +1 and −1 regions is described by the curve 
ν = P(u(t)) , known as Play Operator. This allows us to 
rearrange (20) as

where the function ρ is defined as

(21)
r =

α − β

2
, ν =

α + β

2
, µ̂ = µ(ν + r, ν − r),

(22)ŷ(t) =

∫ ∞

0
ρ(r,P(u(t)))dr ,

(23)𝜌(r,P(u(t))) = ∫
P(u(t))

−∞

𝜇̂(r, 𝜈)d𝜈 − ∫
∞

P(u(t))

𝜇̂(r, 𝜈)d𝜈 .

Equation (22) can be approximated by considering only 
M operators, yielding

where Pj(u(t)) is the jth Play Operator, and ϕj represents 
its density function. In the literature, (24) is commonly 
referred to as Prandtl-Ishlinskii model  [44, 70]. Figure 5 
shows a Play Operator, which is defined as

where κ0 is the initial condition for the operator and rj , 
which represents the discrete counterpart of r, is defined 
as

for j = 1, 2, . . . ,M.
The idea behind the Preisach-RNN, shown in Fig. 6, is 

to model the density function ϕj in (24) in the discrete-
time domain using an RNN. Furthermore, RNNs allow us 
to model rate-dependent hysteresis, extending the tradi-
tional Preisach model to this case. The hidden state of a 
U-node RNN at sample k is computed as

where h[k] , h[k − 1] ∈ R
U are the current and previous 

hidden states. The scalar output at sample k is computed 
as

The input vector x[k] ∈ R
M+2 is built concatenat-

ing the input signal u[k], the input derivative u̇[k] , 
and M Play Operators Pj(u[k]) with j = 1, ...,M . 

(24)ŷ(t) =

M
∑

j=1

ϕjPj(u(t)) ,

(25)
Pj(u(t)) =max(u(t)− rj ,

min(u(t)+ rj ,Pj(u(t − 1)))),

(26)
Pj(u(0)) =max(u(0)− rj ,

min(u(0)+ rj , κ0)),

(27)rj =
j − 1

M
(max(u(t))−min(u(t))) ,

(28)h[k] = fh(Wxhx[k] +Whhh[k − 1] + bh) ,

(29)ŷ[k] = fo

(

wT
hyh[k] + by

)

.

Fig. 5  Play Operator Pj(u)

Fig. 6  Diagram of a Preisach-RNN architecture
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Wxh ∈ R
U×(M+2), Whh ∈ R

U×U , why ∈ R
U , bh ∈ R

U , 
and by ∈ R are the network weights and biases. Finally, 
the hidden state activation function fh , which is applied 
element-wise to the output of each hidden neuron, is the 
hyperbolic tangent, and the output activation function fo 
is a linear activation, i.e., fo(x) = x.

4 � Wave digital hysteretic nonlinearities
The conventional approach to develop a magnetic equiv-
alent circuit, employed, for example, in  [71], is based 
on the analogy between magneto-motive force F and 
electric voltage v  and between the magnetic flux φ and 
electric current i  [55]. In the rest of this manuscript, 
with an abuse of nomenclature, we will generally refer to 
both pairs of v-i variables and φ-F variables at the cir-
cuit ports as variables in the Kirchhoff domain, in order 
to distinguish them from the corresponding variables in 
the WD domain. The electrical variables v and i in linear 
resistors are related by the Ohm’s law v = Ri , whereas the 
two magnetic variables are related by an equivalent linear 
and instantaneous Ohm-like law

known as Hopkinson’s law, which relates F and φ 
through the reluctance parameter R , which is analogous 
to the electrical resistance. Since, as a first approxima-
tion, higher-order magnetic effects can be considered 
negligible in the audio frequency band, we can assume 
φ to be uniform along cross sections, and thus that the 
topology of the magnetic equivalent circuit can be 
directly derived from the magnetic structure: each wind-
ing of nt turns is represented by an ideal magnetic volt-
age generator F = nti , whose polarity is given by the 
sign convention depicted in Fig. 7, where i is the winding 
current. The magnetic path is represented by an equiva-
lent reluctance, possibly nonlinear, whose value depends 
on the geometry and physical properties of the magnetic 
material. Although (30) refers to the linear case, in the 

(30)F = R φ,

following we will consider a nonlinear mapping between 
φ and F to address rate-dependent hysteresis.

While the reluctance defines the constitutive relation 
between the magnetic variables φ-F , the pair B-H, where 
B is the flux density and H is the magnetic field, is related 
by the permeability. In fact, as a first approximation, the 
relation between B and H can be defined by the formula 
B = µ0µrH , where µ0 is the vacuum permeability and µr 
is the relative permeability. Moreover, we can convert the 
B-H curve of the material into its φ-F representation as 
follows

where � and Ŵ are the cross-section and the length of the 
magnetic path expressed in meters, respectively [12, 13, 
55]. Therefore, if we consider the magnetic structure to 
be made of a magnetic material with a B-H characteris-
tic exhibiting rate-dependent hysteresis, the equivalent 
nonlinear reluctances that model the different magnetic 
paths across the magnetic material are going to exhibit 
hysteresis. The dynamic nonlinearity is thus confined 
into the constitutive equation of the reluctance R , i.e., the 
relation between φ and F.

In the Kirchhoff discrete-time domain, we can recast 
the problem of modeling the constitutive equation of a 
reluctance with rate-dependent hysteresis into a nonlin-
ear regression problem, i.e.,

where the mapping g is modeled by a suitable RNN. The 
set of parameters θKD is obtained by training the net-
work in the Kirchhoff domain to predict the current 
value of the magnetic flux φ[k] given the input time-
series F [k],F [k − 1], . . . ,F [0] . RNNs are particularly 
suitable for modeling non-instantaneous nonlinearities, 
because they are fed with input time-series data and use 
recurrent connections to implement an infinite dynamic 
response.

(31)φ = B�, F = HŴ ,

(32)φ̂[k] = g(F [k],F [k − 1], . . . ,F [0] ; θKD) ,

Fig. 7  Sign convention of magnetic voltage generators. a Coil wound counter-clockwise. b Coil wound clockwise. The figure is taken from [12]
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The strategy employed to avoid the shortcomings 
of learning long-term dependencies from excessively 
long time-series [72] is to limit the length of the input 
sequence. Each time-series is thus split into sequences 
of length K, which are then sequentially fed to the RNN. 
To ensure long-term memory, however, we propagate the 
hidden states of the recurrent layers between consecutive 
sequences, according to a cross-batch statefulness para-
digm. Hence, the rate-dependent hysteresis nonlinear 
regression problem in (32) can be rewritten as

where θ ′KD are obtained by training a stateful RNN.
A similar approach can be adopted in the WD domain 

by properly converting Kirchhoff variables into wave var-
iables according to (1). This yields

where θ ′WD is the set of parameters obtained by train-
ing the neural network to predict the reflected wave b[k] 
given an input sequence composed of the incident wave 
a[k] and its K − 1 previous values, thus obtaining an 
explicit scattering relation. This relation can be then used 
to implement the one-port WD realization of a nonlinear 
reluctance with rate-dependent hysteresis.

It is interesting to note that the newly defined WD 
block shares some common characteristics with WD 
models of linear dynamic elements such as capacitors 
and inductors [19], as their behavior depends on (buffers 
of ) past samples of wave variables.

In the following, we implement the rate-dependent 
hysteretic mapping g using a Preisach-RNN architecture 
(see Section  3.1) with U = 32 hidden units and M = 8 
Play Operators.

5 � Model training and evaluation
We hereby present the training procedure of the WD 
hysteretic block for the specific application scenario 
described in Section 6. In particular, we will assume that 
a single nonlinear reluctance component is sufficient to 
model the characteristics of the constitutive magnetic 
material. Let us consider the magnetic components to 
be made of Pearlitic Steel R260, whose measurements 
are used to determine the B-H hysteretic behavior under 
consideration.

Presented in  [73], the available dataset  [74] consists 
of magnetic measurements obtained driving the system 
with a triangular input current sampled at 100 kHz hav-
ing 11 different input frequencies, i.e., 0.5, 1, 2, 5, 10, 
20, 50, 100, 200, 500, 1000  Hz. For each frequency, the 
curves include measurements of two periods of the trian-
gular input signal H and the corresponding flux density 

(33)φ̂[k] = g(F [k], . . . ,F [k − K + 1] ; θ ′KD) ,

(34)b̂[k] = g(a[k], . . . , a[k − K + 1] ; θ ′WD) ,

B: the first period contains the first magnetization curve, 
whereas the second period fully describes the main hys-
teresis loop. The first magnetization curve is defined as 
the B-H curve branch that describes the material mag-
netization process starting from a state of no magnetiza-
tion ( B = 0 ). A suitable measurement procedure would 
involve a complete de-magnetization of the magnetic 
material between two consecutive acquisitions, leading 
to the same initial condition H [0] = B[0] = 0 , regardless 
of the input frequency. However, each hysteresis loop in 
the available dataset is characterized by a different initial 
magnetization value B[0], probably due to incomplete de-
magnetization. In fact, in order to obtain a coherent data-
set, it would be desirable to have each hysteresis curve 
characterized by the same B[0]. With the aim of reduc-
ing possible inconsistencies during training, we preproc-
ess the dataset by excluding the first period of each curve 
and circularly shifting the result by a quarter of a period. 
As shown in Fig.  8, this ensures that all training exam-
ples start from the same rate-independent value, i.e., the 
magnetic saturation value. Furthermore, we discard the 
0.5 Hz measurements due to discontinuities in the result-
ing B-H curve. We repeat periods to let all remaining 
curves match the duration of two periods of the lowest 
frequency curve (1  Hz); this corresponds to fixing the 
duration of the measurement session to two seconds for 
all input rates and allows us to balance the training set 
across frequencies. To transform the B-H pair of varia-
bles into WD variables a-b, it is first necessary to convert 
the Pearlitic Steel R260 curves into the corresponding φ
-F curves, by using the equalities in (31). Then, since F 
is the magnetic equivalent of voltage and φ is the equiva-
lent of current, the dataset can be expressed in the WD 
domain via a transformation similar to (1), i.e., [12]

where the free parameter Z is fixed and can be set accord-
ing to the adaptation condition of the junction port to 
which the reluctance is connected. The inverse transfor-
mation of (35) is given by

The wave variables are then rescaled in [−1, 1] . In order 
to accomplish this, the values amin , amax , bmin , bmax are 
estimated from the WD data, and used to scale the wave 
variables according to

(35)a = F + Zφ, b = F − Zφ ,

(36)F =
a+ b

2
, φ =

a− b

2Z
.

(37)
ã[k] =2 ·

a[k] − amin

amax − amin
− 1,

b̃[k] =2 ·
b[k] − bmin

bmax − bmin
− 1,
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where ã[k] is the scaled incident wave, and b̃[k] is the 
scaled reflected wave. It is then possible to scale back 
ã[k] and b̃[k] into their original range using the following 
equations

Given the audio application scenario, data are resampled 
at a common audio sampling frequency, i.e., fs = 48 kHz. 
Input sequences ã[k] = ã[k], . . . , ã[k − K + 1] are 
obtained by shifting a rectangular window of length 
K = 20 over the input waves with unitary hop-size and 
assigning the corresponding ground truth value b̃[k] 
to each of them. The pairs (ã[k], b̃[k]) are assembled 
in batches containing one sequence for each input rate 
included in the training set; this is done to let all train-
ing frequencies contribute to each optimization step. The 
Preisach-RNN described in Section  4 is implemented in 
Python using Pytorch  [75] and comprises 1441 trainable 
parameters. It is trained to minimize the following loss 
function defined in the Kirchhoff domain:

(38)
a[k] =amin +

ã[k] + 1

2
· (amax − amin),

b[k] =bmin +
b̃[k] + 1

2
· (bmax − bmin).

where

is the normalized mean squared error (NMSE), whereas 
a[k] and b[k] are obtained from the scaled network inputs 
ã[k] and outputs b̃[k] through  (38). Notably, the loss 
function in (39) comprises two NMSE terms, one for F̂ 
and one for φ̂ , as both depend on the predicted wave b̂.

To evaluate the model, we perform leave-one-out 
cross-validation (LOOCV). Namely, we train ten dif-
ferent Preisach-RNNs, each time selecting nine of the 
ten frequencies as training set and using the remaining 
one for evaluation. Each training consists of ten epochs 
using Adam [76] and a learning rate of 10−4 , and it is run 
on a single NVIDIA TITAN V with 12 GB of RAM. The 
results are reported in Table 1. Figure 9a shows the model 
predictions for the test curve at 20 Hz in the WD domain, 
whereas Fig.  9b shows the corresponding Kirchhoff 

(39)

L =E(F , F̂ )+ E(φ, φ̂)

=E

(

a+ b

2
,
a+ b̂

2

)

+ E

(

a− b

2Z
,
a− b̂

2Z

)

,

(40)E
(

y, ŷ
)

=

∑

k (y[k] − ŷ[k])2
∑

k y
2[k]

Fig. 8  a Exemplificative H and B curves contained in the measurement dataset before time shift. b The corresponding H and B curves after circular 
time shift. The curves are starting from positive saturation values
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variables obtained applying the inverse wave transforma-
tion in (36). Despite the limited amount of available data, 
LOOCV shows an average NMSE in the order of magni-
tude of 10−4 for both the WD variables and the Kirchhoff 
domain variables. These results suggest that the network 
may exhibit good generalization properties when used to 
predict waves with an input rate that was not included 
in the training set. In turn, this gives us confidence that 
the proposed rate-dependent hysteresis model, trained 
on the entire measurement dataset, could be successfully 
applied in a discrete-time circuital simulation scenario.

In the next section, we will describe the use of the pro-
posed WD hysteretic block for the emulation of the out-
put stage of a vacuum tube guitar amplifier.

6 � Example of application
As a reference circuit, let us consider the push-pull 
output stage of a vacuum tube guitar amplifier shown 
in Fig.  10. Let us assume that the output stage consists 
only of the nonlinear three-winding audio transformer 
directly driving the loudspeaker.1 The secondary side 
of the transformer is connected to the speaker, mod-
eled by means of the series between the resistor RL and 
the inductor LL . Without loss of generality, we consider 
two identical input signals Vin1 and Vin2 and, thus, two 

Table 1  Leave-one-out cross-validation results

1Hz   2Hz 5Hz 10Hz 20Hz 50Hz 100Hz 200Hz 500Hz 1000Hz Average

E(b, b̂) 1.66 · 10−4 4.10 · 10−5 3.67 · 10−5 2.24 · 10−5 2.45 · 10−5 1.55 · 10−5 3.73 · 10−4 1.05 · 10−4 2.90 · 10−4 4.73 · 10−4 1.55 · 10−4

E(F , F̂ ) 5.96 · 10−4 1.46 · 10−4 1.31 · 10−4 7.99 · 10−5 8.75 · 10−5 5.60 · 10−5 1.39 · 10−3 3.90 · 10−3 1.10 · 10−3 1.62 · 10−3 9.11 · 10−4

E(φ, φ̂) 2.67 · 10−5 6.65 · 10−6 5.93 · 10−6 3.64 · 10−6 3.97 · 10−6 2.52 · 10−6 6.25 · 10−5 1.65 · 10−4 4.87 · 10−5 7.80 · 10−5 4.04 · 10−5

Fig. 9  a Predictions of a Preisach-RNN in the WD domain with 
U = 32 hidden units and M = 8 Play Operators (blue) vs. the ground 
truth (orange). Input rate: f = 20Hz . b WD predictions transformed 
into Kirchhoff domain variables by means of (36)

Fig. 10  A possible output stage of vacuum tube guitar amplifier

1  If the push-pull power amplifier was to be taken into account, one could 
resort to the modeling approach discussed in [28] and drive the audio trans-
former with the output of such an additional stage.
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primary windings with nt1 and nt2 turns, respectively. 
The secondary side of the transformer presents a single 
winding with nt3 turns. Rp1 and Rp2 are the primary coil 
resistances, whereas Rs corresponds to the secondary 
coil. Let us assume that the transformer in Fig. 10 has a 
UI geometry. We also assume that the three windings are 
positioned on the core structure, as depicted in Fig. 11.

The core geometry is taken from one of GRAU GmbH data-
sheets [77], and all of its dimensions are reported in Fig. 12.

The magnetic equivalent circuit of the UI core struc-
ture shown in Fig. 11 is derived according to Section 4. 
The result is shown in Fig. 13, where we notice the m.m.f. 
sources modeling the three windings with nt1 , nt2 , and nt3 
turns, respectively, as well as the nonlinear reluctance R 
modeling the magnetic material. Given its specific topol-
ogy and disregarding the effect of eddy currents or other 
higher-order effects, a single nonlinear reluctance is, in 
fact, enough to model the whole magnetic core [13, 71]. 
The geometric parameters of the magnetic path of the 
considered UI core are Ŵ = 240mm and � = 400mm2 . 
The circuit parameters are summarized in Table 2.

Once we derived the magnetic subcircuit, we con-
nect it to the electrical subcircuits by means of the ME 
junctions (introduced in Section 2.3), thus obtaining a 
modular multiphysics model  [12, 13]. The multiphys-
ics model of the reference circuit in Fig. 10 is shown in 
Fig.  14. The magnetic domain is represented by the 
central subcircuit, and it is coupled to the electrical 
subcircuits by means of three ME junctions.

The WD realization of the circuital model in Fig.  14 
is shown in Fig. 15. The scattering matrix Ss1 of the WD 
4-port junction that embeds the topological information 
related to the circuit at the secondary side of the trans-
former can be computed substituting the fundamental 
loop matrix Bs1 =

[

−1 1 1 1
]

 into (8). Port 1 is connected 
to the electric port of junction M1/E3 , resistor Rs is con-
nected to port  2, while resistor RL and inductor LL are 
connected to port 3 and 4, respectively. All these circuit 
elements are linear and can be thus adapted as described 
in Section 2.1. The scattering matrix Ss2 of the WD 4-port 
junction related to the magnetic subcircuit is again 
obtained from  (8) but considering Bs2 =

[

1 −1 −1 1
]

 . 
Ports  2, 3, and 4 are connected to the magnetic port of 
junction M1/E1 , M1/E2 , and M1/E3 , respectively. The 
resistive voltage sources Vin1 and Vin2 at the primary side 
of the transformer are also linear, and are connected to the 
electric ports of junction M1/E1 and M1/E2 , respectively. 
Finally, the WD one-port block related to the nonlinear 

Fig. 11  Core magnetic structure under consideration

Fig. 12  Core geometry of the output transformer. All dimensions are 
in millimeters ( 10−3

m ). a Front view. b Side view

Table 2  Values of the parameters of the circuit in Fig. 10

Rp1 [�] nt1 Rp2 [�] nt2 Rs [�] nt3 RL [�] LL [mH]

5 25 5 25 5 12 8 0.05

Fig. 13  Equivalent circuit model of the magnetic structure shown in 
Fig. 11
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reluctance R is connected to port 1 of the magnetic topo-
logical junction as shown in Fig. 15.

The reference circuit contains a single nonlinear 
one-port element, which means that it is possible to 
solve the WD structure by employing the algorithm 
described in Section 2.5 and illustrated in Fig. 4. Since, 
as a first approximation, the two generators are assumed 
to be identical, we set Vin1 = Vin2 = A cos(2πkf0/fs) , 
where k is the sampling index and fs is the sampling 
frequency. We choose the frequency f0 = 50  Hz. We 
set A = 250 V, a value high enough to force the trans-
former to reach core saturation, in accordance to the 
available measurement dataset [74].

Before the main WD simulation loop, we run an ini-
tialization phase to define the initial hidden state of 
the WD Preisach-RNN. Namely, we set the signals 
Vin1 = Vin2 = A , i.e., the first value of the sinusoidal 
input signal, and we run the discrete-time simulation for 
two seconds. Both the input buffer and the hidden states 
of the WD Preisach-RNN are populated using the values 
obtained at the end of the initialization loop. The ini-
tialization of incident and reflected wave variables at the 
ports of ME junctions is also performed in the same way.

6.1 � Results
In this subsection, we discuss the numerical results 
obtained from the simulation of the WD structure shown 
in Fig. 15. The simulation of a single input period takes on 
average 784 ms on a laptop-mounted Intel Core i5-1240P 
1.70 GHz CPU. Figure 16 shows the voltage vZL across the 
series between resistor RL and inductor LL , which models 
the loudspeaker connected to the secondary side of the 
transformer, whereas Fig. 17 shows the operation points 
on the nonlinear reluctance curve visited during the sim-
ulation. Being proportional to the derivative of the mag-
netic flux, the voltage vZL exhibits sharp peaks associated 
to magnetic core transitions from a positive magnetic 
flux saturation region to a negative saturation region, and 
vice versa. It is difficult to quantify the accuracy of the 
simulation results shown in Fig. 16, due to the fact that 
there is no easy way to simulate such a rate-dependent 
nonlinearity within existing circuit simulation software 
such as LTspice or Mathworks Simscape. However, refer-
ring to Fig. 17, we may state that the hysteretic curve is 
correctly visited throughout the discrete-time simulation, 
raising our confidence as far as the accuracy of the pro-
posed method is concerned. The predicted curve reacts 

Fig. 14  Output stage of a vacuum tube guitar amplifier including a multiphysics transformer model

Fig. 15  WD structure implementing the output stage of a vacuum tube guitar amplifier in a multiphysics fashion. The T-shaped stubs indicate port 
adaptation
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to different input frequencies f0 with an hysteresis that 
is in fact comparable to the physical measurements con-
tained in the dataset presented in Section 5.

7 � Conclusions
The modeling and discrete-time circuit simulation of 
magnetic hysteresis is a notoriously challenging task, 
especially due to its rate-dependent nature. For this 
reason, despite the pervasive presence of magnetic 
components in analog audio gear, circuits with hyster-
etic elements are usually not tabled for virtual analog 

applications. In this manuscript, we explored, for the 
first time, the possibility of using an RNN-based archi-
tecture to model hysteretic nonlinear elements in the 
WD domain. By properly converting the training data 
expressed as Kirchhoff variables into wave variables, we 
defined a data-driven WD circuital block that encapsu-
lates a neural network capable of modeling reluctances 
with rate-dependent hysteresis. Thus, we successfully 
employed the proposed WD block for the emulation of 
the output stage of a vacuum tube guitar amplifier, where 
the nonlinear transformer is modeled in a multiphysics 
fashion. More in general, this work does not only con-
stitute the first example of using RNNs to model rate-
dependent hysteresis behaviors in the WD domain but 
also a first step into the exploration of deep learning-
based solutions for the WD modeling of nonlinearities 
with memory for virtual analog applications.

Future work may concern refining the proposed model 
by considering a dataset of magnetic measurements at 
input rates spanning the entire audio bandwidth that 
includes minor hysteresis loops. A noteworthy extension 
would also be integrating the WD hysteresis block into 
audio circuits with multiple nonlinearities, which can be 
then efficiently emulated in the WD domain by exploit-
ing iterative techniques, such as the hierarchical scatter-
ing iterative method introduced in [12, 13]. We envision 
scenarios where data-driven methods could be further 
developed to supplement the WDF framework in the 
characterization of circuit nonlinearities directly from 
experimental measurements. This is done with the full 
awareness that, in the future, the availability of more effi-
cient simulation algorithms and of more computational 
power will lead the way towards the real-time implemen-
tation of increasingly complex audio circuits.
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