
SPECIAL ISSUE TITLE
Editor: Name, xxxx@email

Model-Driven Development of
Service Robot Applications
Dealing with Uncertain Human
Behavior
Livia Lestingi
Dipartimento di Elettronica, Informazione e Bioingegneria at Politecnico di Milano, Milan, Italy.

Marcello M. Bersani
Dipartimento di Elettronica, Informazione e Bioingegneria at Politecnico di Milano, Milan, Italy.

Matteo Rossi
Dipartimento di Meccanica at Politecnico di Milano, Milan, Italy.

Abstract—In the future, robots will interact with humans in highly variable and unpredictable
settings, such as healthcare and home assistance. Frameworks are, therefore, fundamental to
analyze and develop interactive robotic applications that can deal by design with the uncertainty
of human behavioral and physiological features. Our framework is built upon formal modeling,
verification, and learning techniques providing sound mathematical guarantees of human
wellbeing preservation throughout the interaction and timely mission completion despite the
uncertainties at play. The framework’s workflow makes it accessible to professional figures
without expertise in formal methods, and the high degree of automation minimizes the manual
effort required throughout the toolchain. The development toolchain has been tested on use
cases from the healthcare setting, in which human behavior is unconstrained, and subjects are
often in critical mental or physical conditions.

EMERGING TECHNOLOGIES are bound to
transform the service sector in the upcoming
years. In particular, robots are rapidly evolving
from mere high-performing industrial equipment
to sophisticated machines making decisions in
delicate and uncertain situations. Tasks involv-

ing personal care or domestic assistance, once
considered reserved for human workers, are now
susceptible to robotization. Recent studies esti-
mate that roles such as healthcare support workers
and personal care aides have a 60-74% chance
of being automated, and the percentage grows to
96% for receptionists and information clerks [1].

JOURNAL NAME Published by the IEEE Computer Society c© 20XX IEEE 1

Department Head

SCENARIO
CONFIGURATION

OUTCOME
ESTIMATION

SCENARIO
DEPLOYMENT

DEPLOYMENT
TRACES

MISSION
REPLANNING

HUMAN BEHAVIOR
LEARNING

SHA NETWORK MODEL-TO-CODE
TRANSFORMATION

MITL PROPERTIES

LEARNED
SHA

MODELING
HUMAN

ACTIONS

<latexit sha1_base64="7gmBmsac16GqJ8+vrq+2OJJ7yJ8=">AAACD3icbVC7TsNAEDyHVwivAGWaExFSaCIbgaCMoKFBChJ5SEkUnS+bcMrZPt2tkSLLBZ/AV9BCRYdo+QQK/gXbuICEqUYzu9rZcZUUBm370yosLa+srhXXSxubW9s75d29tglCzaHFAxnorssMSOFDCwVK6CoNzHMldNzpZep37kEbEfi3OFMw8NjEF2PBGSbSsFzpewzvXDdqxsOMai+6jmt9ZcTRsFy163YGukicnFRJjuaw/NUfBTz0wEcumTE9x1Y4iJhGwSXEpX5oQDE+ZRPoJdRnHphBlD0R08PQMAyoAk2FpJkIvzci5hkz89xkMs1p5r1U/M/rhTg+H0TCVyGCz9NDKCRkhwzXImkH6EhoQGRpcqDCp5xphghaUMZ5IoZJXaWkD2f++0XSPq47p3X75qTauMibKZIKOSA14pAz0iBXpElahJMH8kSeyYv1aL1ab9b7z2jBynf2yR9YH98VWZzW</latexit>

PM()

<latexit sha1_base64="D6dttq0xQHd/jwoRQ7XaxGjIkxU=">AAAB/HicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQ4MUJPIQiRWdL5twyt3ZulsjRVb4Clqo6BAt/0LBv2AbF5Aw1WhmVzs7QSSFRdf9dBYWl5ZXVktr5fWNza3tys5uy4ax4dDkoQxNJ2AWpNDQRIESOpEBpgIJ7WB8mfntBzBWhPoWJxH4io20GArOMJXueorhvVHJ9bRfqbo1NwedJ15BqqRAo1/56g1CHivQyCWztuu5EfoJMyi4hGm5F1uIGB+zEXRTqpkC6yd54ik9jC3DkEZgqJA0F+H3RsKUtRMVpJNZQjvrZeJ/XjfG4bmfCB3FCJpnh1BIyA9ZbkRaBdCBMIDIsuRAhaacGYYIRlDGeSrGaTfltA9v9vt50jqueac19+akWr8omimRfXJAjohHzkidXJEGaRJONHkiz+TFeXRenTfn/Wd0wSl29sgfOB/fqb6VkQ==</latexit>

M

<latexit sha1_base64="SpKy9UELysI9SWzuC23NzcdsTwo=">AAAB9nicbVC7TsNAEFyHVwivACXNiQiJKrIRCMoIGsogkYeUWNH5sklOOT90t0ZEVn6BFio6RMvvUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe563KCSAbZIksJupJH7nsKON73J/M4DaiPD4J5mEbo+HwdyJAWnTOo3jRxUa3bdzsGWiVOQGhRoDqpf/WEoYh8DEoob03PsiNyEa5JC4bzSjw1GXEz5GHspDbiPxk3yrHN2EhtOIYtQM6lYLuLvjYT7xsx8L530OU3MopeJ/3m9mEZXbiKDKCYMRHaIpML8kBFapiUgG0qNRDxLjkwGTHDNiVBLxoVIxThtpZL24Sx+v0zaZ3Xnom7fndca10UzZTiCYzgFBy6hAbfQhBYImMATPMOL9Wi9Wm/W+89oySp2DuEPrI9voOOSsw==</latexit>

<latexit sha1_base64="lk5JaM+uEXcbjrmGRxxZAaUrQkM=">AAACDXicbVC7TsNAEDyHVwgvAxWiOREhIYrIRiAoAzQpKIIgDykJ0fmyCaecz9bdGimyLD6Br6CFig7R8g0U/AuOSQGBqWZndrW744VSGHScDys3Mzs3v5BfLCwtr6yu2esbdRNEmkONBzLQTY8ZkEJBDQVKaIYamO9JaHjD87HfuANtRKCucRRCx2cDJfqCM0ylrr3V9hneaj++SG72u1lh+vFV5TTp2kWn5GSgf4k7IUUyQbVrf7Z7AY98UMglM6blOiF2YqZRcAlJoR0ZCBkfsgG0UqqYD6YTZy8kdDcyDAMagqZC0kyEnxMx840Z+V7amd047Y3F/7xWhP2TTixUGCEoPl6EQkK2yHAt0myA9oQGRDa+HKhQlDPNEEELyjhPxSgNq5Dm4U5//5fUD0ruUcm5PCyWzybJ5Mk22SF7xCXHpEwqpEpqhJN78kieyLP1YL1Yr9bbd2vOmsxskl+w3r8Abqeb8Q==</latexit>

L⇤
SHA

Figure 1. Diagram representing the workflow of the model-driven framework. The approach has a cyclical
structure, starting with the configuration of the interactive scenario and, subsequently, the evaluation of its
outcome. The scenario is deployed, and the collected deployment traces are used to learn a model of human
actions. The updated model is used to reconfigure the robot mission, if necessary.

Robots are already being deployed as care-
givers, performing tasks such as delivery services,
human activity monitoring, and physical therapy.
Nevertheless, they are far from fully integrated
into service settings. For robots to successfully
provide services to human customers, especially
in healthcare environments, it is paramount that
the robot’s reasoning factors the recipient’s men-
tal and physical state. Service settings are de-
manding due to their high variability degree as
human behavior is essentially unconstrained, un-
like factories where human workers cycle through
known sets of actions. Therefore, practitioners
require tools to develop reliable robotic appli-
cations incorporating flexible models of human
behavior that can evolve based on field observa-
tions [2]. This article presents a model-driven
framework for the development of interactive
robotic scenarios in service settings. The frame-
work covers scenarios set in a known and fixed
floorplan, featuring mobile robots (thus, industrial
manipulator applications are out-of-scope) where
human behavior is, instead, partially unknown.
The framework, whose complete workflow is

shown in Fig. 1, supports practitioners from the
early design stage of the robotic application to
the final deployment.

The framework exploits formal analysis to
reliably estimate the probability of success of
human-robot interaction scenarios while remain-
ing accessible to designers without expertise in
formal modeling. To this end, the formal model
exploits a state-based formalism, also capturing
the behavior of humans interacting with the robot.
The formal model features a mathematical model
of human behavioral and physiological aspects
measured through suitable sensors (in our specific
case, physical fatigue). Existing modeling and
verification approaches dealing with the uncer-
tainty of human behavior mainly adopt either a
game-based or a probabilistic approach. Game-
based approaches model human-robot interaction
as an adversarial game, in which human moves
are unpredictable, and the robot must be pro-
grammed with a proper reaction to any possible
contingency [3], [4]. Probabilistic approaches pri-
marily exploit formalisms such as Markov Deci-
sion Processes (MDPs) to model human behavior

2 JOURNAL NAME

and Probabilistic Model Checking to compute
the probability that the human performs specific
actions and the robot is able to complete the
task [5]. The proposed approach, first introduced
in [6], [7], is the first to combine a stochastic
formalization of human decisions (thus, falling
into the probabilistic category) with a continuous-
time model of physiological variables with non-
linear dynamics (specifically, Ordinary Differ-
ential Equations constraining muscular fatigue),
featuring a model of the scenario as a network of
Stochastic Hybrid Automata (SHA) [8], [9].

A novel automata learning algorithm, intro-
duced in this article for the first time, allows
for a seamless refinement of the human model
based on data collected at runtime, dampening the
sources of uncertainties that affect the design-time
analysis. The algorithm, L∗SHA, combines hypoth-
esis testing with time series analysis to learn an
SHA modeling human actions. The learned SHA
captures humans’ sequence of actions in a spe-
cific scenario, which is partially unknown when
first planning the robotic mission. Learning about
human actions is the subject of research lines such
as behavior informatics [10] and interaction learn-
ing [11], and it could be tackled through machine
learning techniques (e.g., deep neural networks).
However, the output of these approaches is not
strictly compatible with formal verification nor
easily interpretable, in contrast to the framework’s
application domain requirements. Existing au-
tomata learning algorithms in the literature also
target probabilistic models (specifically, MDPs)
and learn the probability that, while in a specific
state, the human will perform a specific action
[12]. Other works target Hybrid Automata and
exploit clustering techniques to identify when
two signal segments have comparable dynamics
(i.e., they capture the same state of the system)
[13]. L∗SHA is the first automata learning algorithm
combining the stochastic and hybrid aspects. We
present a range of case studies from the health-
care setting illustrating the effectiveness of the
framework and how the automata learning phase
reduces the error of design-time results.

Design-Time Analysis
The entry point to the framework is the

configuration of the interactive scenario under
analysis. Through a custom, user-friendly textual

<latexit sha1_base64="6a6nXuYwXn2m8tkwp5Q7jvD+7gM=">AAACAHicbVC7TsNAEDyHVwivACXNiQiJKrIRCMoIGsogkYeUhGh92YRTzmfrbo0UWWn4Clqo6BAtf0LBv2CbFJAw1WhmVzs7fqSkJdf9dApLyyura8X10sbm1vZOeXevacPYCGyIUIWm7YNFJTU2SJLCdmQQAl9hyx9fZX7rAY2Vob6lSYS9AEZaDqUASqW7bgB0LymxBHow7ZcrbtXNwReJNyMVNkO9X/7qDkIRB6hJKLC247kR9RIwJIXCaakbW4xAjGGEnZRqCND2kjz1lB/FFijkERouFc9F/L2RQGDtJPDTySylnfcy8T+vE9PwopdIHcWEWmSHSCrMD1lhZFoH8oE0SARZcuRScwEGiNBIDkKkYpz2U0r78Oa/XyTNk6p3VnVvTiu1y1kzRXbADtkx89g5q7FrVmcNJphhT+yZvTiPzqvz5rz/jBac2c4++wPn4xsc/ZeE</latexit>

stand
<latexit sha1_base64="RI5b9GwrV8omhSQVtIvFHSDe2j0=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkk8pASK1pfNuGU84O7NSiyUvAVtFDRIVo+hYJ/wTYuIGGq0cyudna8SElDtv1pLSwuLa+sltbK6xubW9uVnd2WCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgy89v3qI0MgxuaROj6MArkUAqgVHJ7PtCtpOQB1Hjar1Ttmp2DzxOnIFVWoNGvfPUGoYh9DEgoMKbr2BG5CWiSQuG03IsNRiDGMMJuSgPw0bhJHnrKD2MDFPIINZeK5yL+3kjAN2bie+lkFtLMepn4n9eNaXjuJjKIYsJAZIdIKswPGaFl2gbygdRIBFly5DLgAjQQoZYchEjFOK2nnPbhzH4/T1rHNee0Zl+fVOsXRTMlts8O2BFz2BmrsyvWYE0m2B17Ys/sxXq0Xq036/1ndMEqdvbYH1gf30uUlw8=</latexit>

walk

<latexit sha1_base64="35hE+o+oNkYpdzg539Cm6baBBwc=">AAACCHicdVDLTgJBEJz1ifjCx83LRGLiicyCKNyIJsQjJqImQMjs2MiE2YczvSa44Qf8Cq968ma8+hce/BdnERM1WqdKVXe6urxISYOMvTlT0zOzc/OZhezi0vLKam5t/cyEsRbQFKEK9YXHDSgZQBMlKriINHDfU3DuDY5S//wGtJFhcIrDCDo+vwpkTwqOVurmNuttBddtn2Pf9JJ6N8H+aNTN5VmB7ZerJUZZoczcg2rVEsb2K6UidS1JkScTNLq59/ZlKGIfAhSKG9NyWYSdhGuUQsEo244NRFwM+BW0LA24D6aTjNOP6E5sOIY0Ak2lomMRvm8k3Ddm6Ht2chzzt5eKf3mtGHuVTiKDKEYIRHoIpYLxISO0tLUAvZQaEHmaHKgMqOCaI4KWlAthxdj2lLV9fD1N/ydnxYJbLrCTvXztcNJMhmyRbbJLXHJAauSYNEiTCHJL7skDeXTunCfn2Xn5HJ1yJjsb5Aec1w+G7Jp5</latexit>

F Fth
<latexit sha1_base64="qDQmo/sqbaTGYU3YqLfIeRfNznU=">AAACAHicdVC7TsNAEDyHd3gFKGkOIiSqyI4MSYmgoQSJkEhJiNaXTTjl/NDdGhRZafgKWqjoEC1/QsG/YJsgAYKpRjO72tnxIiUN2fabVZiZnZtfWFwqLq+srq2XNjYvTRhrgQ0RqlC3PDCoZIANkqSwFWkE31PY9EYnmd+8QW1kGFzQOMKuD8NADqQASqWrjg90TZTcghpNdnqlsl05dOvVusPtip0jI65Tc13uTJUym+KsV3rv9EMR+xiQUGBM27Ej6iagSQqFk2InNhiBGMEQ2ykNwEfTTfLUE74XG6CQR6i5VDwX8ftGAr4xY99LJ7OU5reXiX957ZgG9W4igygmDER2iKTC/JARWqZ1IO9LjUSQJUcuAy5AAxFqyUGIVIzTfoppH19P8//JZbXiHFTsc7d8dDxtZpFts122zxxWY0fslJ2xBhNMs3v2wB6tO+vJerZePkcL1nRni/2A9foBBHOXdg==</latexit>

walk!

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?

<latexit sha1_base64="JyEr9HxH0Vi7quU6jgcQeEth820=">AAACLHicdZDBSiNBEIZ7XN2N0V3jevTSGASFJcyIuvEW9LInUTBRyMRQ0ymzjd09Q3eNEIa8io/gU3jVk5dFvO5z7MwYRcNap6rvr6Kq/ihR0pHv//FmPs3Off5Sma8uLH79tlRb/t5xcWoFtkWsYnsWgUMlDbZJksKzxCLoSOFpdHlQ6KdXaJ2MzQmNEuxpGBp5IQVQjvq1ZqiBfgtQ2eF4I9Rpv6ytzhyBGYx/8NDJoYbzrSlhs1+r+40dP9jbDbjf8MvgrySYkDqbxFG/9hQOYpFqNCQUONcN/IR6GViSQuG4GqYOExCXMMRunhrQ6HpZ+eGYr6cOKOYJWi4VLyG+nchAOzfSUd5ZnOmmtQL+T+umdNHsZdIkKaERxSKSCstFTliZW4d8IC0SQXE5cmm4AAtEaCUHIXKY5l5Wcz9enuYfJ52tRrDT8I+36639iTMVtsrW2AYL2E/WYr/YEWszwa7ZLbtj996N9+A9ek/PrTPeZGaFvQvv7z8ynamQ</latexit>

N (µstand,�2
stand)

<latexit sha1_base64="ufnYBtUu9IqZNdAPEmGXb90FguY=">AAACKnicdZDNSsNAEMc3flu/qh69LBZBQUoift6KXjyJglWhqWWyjnXpbhJ2J0oJfRMfwafwqidvIt58EJNYRUXnNPP7zzAz/yBW0pLrPjsDg0PDI6Nj46WJyanpmfLs3ImNEiOwLiIVmbMALCoZYp0kKTyLDYIOFJ4Gnb1cP71GY2UUHlM3xqaGdigvpQDKUKu86WugKwEqPegt+zppFbXR6Q2oTm+V+1a2NZyv/eQrrXLFrW643s6mx92qWwT/Il6fVFg/DlvlV/8iEonGkIQCaxueG1MzBUNSKOyV/MRiDKIDbWxkaQgabTMt/uvxpcQCRTxGw6XiBcTvEyloa7s6yDrzK+1vLYd/aY2ELrebqQzjhDAU+SKSCotFVhiZGYf8Qhokgvxy5DLkAgwQoZEchMhgkjlZyvz4fJr/n5ysVb2Nqnu0Xqnt9p0ZYwtskS0zj22xGttnh6zOBLtl9+yBPTp3zpPz7Lx8tA44/Zl59iOct3dt5Kim</latexit>

N (µwalk,�
2
walk)

<latexit sha1_base64="e+z+Slhubf6LBEToDZyB1YmLgX8=">AAACFXicdZC7SgNBFIZnvRtvUUub0SBECGFXvBaCKIilgjGBJISzkxMdMnth5qwgS2ofwaew1cpObK0tfBdnYxQVPdXh+8/192MlDbnuqzM0PDI6Nj4xmZuanpmdy88vnJso0QIrIlKRrvlgUMkQKyRJYS3WCIGvsOp3DzO9eoXayCg8o+sYmwFchLIjBZBFrfxyox1RetTb67QaAdClDlKvV6QSbyg7pA1rpVa+4JY3XW93y+Nu2e0H/yLegBTYIE5a+Tc7UyQBhiQUGFP33JiaKWiSQmEv10gMxiC6cIF1m4YQoGmm/Vd6fDUxQBGPUXOpeB/i944UAmOuA99WZuea31oG/9LqCXV2mqkM44QwFNkikgr7i4zQ0nqEvC01EkF2OXIZcgEaiFBLDkJYmFjTctaPz6f5/8n5etnbLLunG4X9g4EzE2yJrbAi89g222fH7IRVmGA37I7dswfn1nl0npznj9IhZ9CzyH6E8/IOieGelQ==</latexit>

Ḟ = f1(t,�),
<latexit sha1_base64="zsLAkU0L4VMqpzuJIpzYbIz2kNg=">AAACCXicdZDJSgNBEIZ74hbjNiqevDQGIUIIPWJcDkJQEI8RzAJJCD2dStKkZ6G7RghDnsCn8Konb+LVp/DguziJUVT0PxXfX9VV/buhkgYZe7VSM7Nz8wvpxczS8srqmr2+UTVBpAVURKACXXe5ASV9qKBEBfVQA/dcBTV3cD72azegjQz8axyG0PJ4z5ddKTgmqG1vNTsBxhej026b5TBPm7of7OXbdpYVisw5OXQoK7CJ6BdxpiRLpiq37bfkHRF54KNQ3JiGw0JsxVyjFApGmWZkIORiwHvQSEqfe2Ba8eT8Ed2NDMeAhqCpVHQC4ftEzD1jhp6bdHoc++a3N4Z/eY0Iu8etWPphhOCL8SKUCiaLjNAyyQVoR2pA5OPLgUqfCq45ImhJuRAJjJKgMkken5+m/xfV/YJTLLCrg2zpbJpMmmyTHZIjDjkiJXJJyqRCBInJHbknD9at9Wg9Wc8frSlrOrNJfsh6eQeQW5kn</latexit>

Ḟ = f0(t, ⇢),

<latexit sha1_base64="qHPfC6qjvhb44Za2hkSLs/2Q7WM=">AAACAHicdVC7TsNAEDyHVwivACXNiQiJyrIjQ9IRQUMZJPKQEhOdL5tw4vzQ3RopstLwFbRQ0SFa/oSCf8E2RgIEU41mdrWz40VSaLSsN6O0sLi0vFJeraytb2xuVbd3ujqMFYcOD2Wo+h7TIEUAHRQooR8pYL4noefdnGV+7xaUFmFwibMIXJ9NAzERnGEqXQ19hteIicYwmp+MqjXLPHaa9aZNLdPKkRHHbjgOtQulRgq0R9X34TjksQ8Bcsm0HthWhG7CFAouYV4Zxhoixm/YFAYpDZgP2k3y1HN6EGuGIY1AUSFpLsL3jYT5Ws98L53MUurfXib+5Q1inDTdRARRjBDw7BAKCfkhzZVI6wA6FgoQWZYcqAgoZ4ohghKUcZ6KcdpPJe3j62n6P+nWTfvItC6cWuu0aKZM9sg+OSQ2aZAWOSdt0iGcKHJPHsijcWc8Gc/Gy+doySh2dskPGK8fV1mXqw==</latexit>

stop?
<latexit sha1_base64="BMSuCxyPIja/bzEhhD/lVkiBr58=">AAACAHicdVC7SkNBFNwb3/EVtbRZDIKNYTeoiZ1oY6lgHpDEsHdzEpfsfbB7rhAuafwKW63sxNY/sfBf3BsjqOhUw8w5nDnjx1pZZOzNy83Mzs0vLC7ll1dW19YLG5t1GyVGQk1GOjJNX1jQKoQaKtTQjA2IwNfQ8Idnmd+4BWNVFF7hKIZOIAah6isp0EnXfL8dCLyx/TQed3m3UGQlxhjnnGaEV46YI8fH1TKvUp5ZDkUyxUW38N7uRTIJIESphbUtzmLspMKgkhrG+XZiIRZyKAbQcjQUAdhOOkk9pruJFRjRGAxVmk5E+L6RisDaUeC7yUnG314m/uW1EuxXO6kK4wQhlNkhVBomh6w0ytUBtKcMIIosOVAVUimMQASjqJDSiYnrJ+/6+Hqa/k/q5RI/LLHLg+LJ6bSZRbJNdsge4aRCTsg5uSA1Iokh9+SBPHp33pP37L18jua86c4W+QHv9QM7AJb6</latexit>

1 � p1

<latexit sha1_base64="c8nl7In69wGrIS5f07r240M86Vs=">AAAB/nicdVDLSgNBEJyN7/iKevQyGARPYSb4SG5BLx4VTAwkIcyOHR2c3R1megVZAn6FVz15E6/+igf/xdk1gorWqajqpqsrNFo5ZOwtKE1Nz8zOzS+UF5eWV1Yra+sdl6RWQlsmOrHdUDjQKoY2KtTQNRZEFGo4D6+Pcv/8BqxTSXyGtwYGkbiM1UhJgV7q9yOBV26UmfGQDytVVmOMcc5pTvjBPvOk2WzUeYPy3PKokglOhpX3/kUi0whilFo41+PM4CATFpXUMC73UwdGyGtxCT1PYxGBG2RF5jHdTp3AhBqwVGlaiPB9IxORc7dR6CeLjL+9XPzL66U4agwyFZsUIZb5IVQaikNOWuXLAHqhLCCKPDlQFVMprEAEq6iQ0oupb6fs+/h6mv5POvUa36ux091q63DSzDzZJFtkh3ByQFrkmJyQNpHEkHvyQB6Du+ApeA5ePkdLwWRng/xA8PoBWcqWiA==</latexit>p1

<latexit sha1_base64="/0yGIpV8CVOaa3/fMaVxC4xLfWY=">AAACEHicdVCxbhNBEN0LEIyBcCElFKtYSFTWXhw7cRclTcpEwokl3+k0tx6bVXbvTrtzIOvkJp/AV9CGig7R5g8o+JfsGSMBCq96em9G8+ZlpVaOhPgRbDx4+GjzcetJ++mz51svwu2XF66orMSRLHRhxxk41CrHESnSOC4tgsk0XmZXJ41/+QGtU0X+jhYlJgbmuZopCeSlNHwdz8EYSOvYAL23pp5ZxDj9qLReLtOwI7pi0B/2BBfdvogOhkNPhBgc9vZ45EmDDlvjLA1/xtNCVgZzkhqcm0SipKQGS0pqXLbjymEJ8grmOPE0B4MuqVdfLPmbygEVvETLleYrEf/cqME4tzCZn2yyun+9RrzPm1Q0O0xqlZcVYS6bQ6Q0rg45aZWvB/lUWSSCJjlylXMJFojQKg5SerHyfbV9H7+f5v8nF3vdqN8V5/udo+N1My32iu2ytyxiB+yInbIzNmKSXbPP7IZ9CT4FX4NvwfdfoxvBemeH/YXg9g5ia549</latexit>�free will

Figure 2. Example of SHA modeling human behavior.
Flow conditions and probability distributions are in
purple, actions in red, guard conditions in green, and
probability weights in blue.

notation, the user defines: how many agents (i.e.,
the humans and the robots) are at play, their
characteristics and how each human interacts with
the robot. The framework covers a set of pat-
terns capturing recurring human-robot interac-
tions (e.g., leader-follower dynamics) and is open
to extension thanks to the underlying formalism.
User-defined parameters automatically customize
the formal model capturing all the system entities:
the mobile robot providing services, the humans
receiving such services, and the layout of the
building where they operate.

The formal model is an SHA network, rep-
resenting the agents: robots and their batteries,
humans, and orchestrators—the SHA managing
the robotic mission by sending instructions to the
agents. The network captures the synchroniza-
tion between the agents as they interact through
messages signaling the start or end of an action.
Agents’ behavior changes based on their current
state: for instance, while resting, humans behave
differently than while walking.

Fig. 2 shows an example SHA modeling hu-
man behavior in our scenarios. The human can ei-
ther stand or walk, modeled by as many locations.
The SHA captures the evolution of muscular
fatigue, modeled by real-valued time-dependent
variable F . Each location l is labeled with a
flow condition (i.e., the differential equations con-
straining physical variables while in l) and the
probability distribution of random parameters. In
Fig. 2, each location is characterized by either
flow f0(t, ρ) or flow f1(t, λ), where ρ and λ are
the recovery and fatigue rates, which are normally
distributed [14].

Agents switch from one location to another

MONTH 20XX 3

Department Head

when they are notified that an action x started
(corresponding to label x?) or by actively sig-
naling the start of an action x (label x!). For
example, upon switching from stand to walk ,
when sufficiently rested (i.e., when fatigue F is
smaller than threshold Fth, which guard F ≤ Fth

captures), the SHA modeling the human notifies
the orchestrator through label walk!. Also, the
human receives the instruction to stop walking
from the orchestrator, captured by label stop?.
The dashed edge back to stand captures the
possibility of humans ignoring instructions or
making autonomous decisions out of free will.
When the orchestrator issues instruction stop!,
the human abides with probability p1 and ignores
it (thus, the location does not change) with prob-
ability 1− p1. The SHA also captures through
the solid edge transition the human switching
back to stand irrespectively of the orchestrator’s
instructions. This switch may fire when guard
γfree will holds, whose Boolean value results from
a coin toss approximating human free will [15].
The developed SHA are thoroughly described in
[6].

Given their stochastic nature, SHA are el-
igible for Statistical Model Checking (SMC)
[16]. Instead of exhaustively exploring the state
space as in traditional model-checking, SMC
applies statistical techniques to a set of sam-
ples (i.e., “traces”) decreasing verification times
significantly. Each trace is checked against the
desired property, expressed in Metric Interval
Temporal Logic (MITL). In the specific case of
human-robot interaction, we estimate probability
PM(�≤τ scs) of the mission eventually (operator
�) ending with success (Boolean variable scs)
within time-bound τ given SHA network M,
whose value is a range [p − ε, p + ε]. If a trace
satisfies (resp., does not satisfy) the property, it
is considered a success (resp., a failure): the set
of traces is thus mapped to a sample set of a
Bernoulli variable. SMC relies on a procedure
that iteratively generates traces by simulating the
SHA network through a Monte Carlo approach.
For the procedure to terminate, a criterion to
stop generating the traces must be in place. The
decision revolves around range p±ε, to whom the
real success rate belongs: the smaller the range,
the more accurate the analysis needs to be and

the more traces are required.
The framework exploits Uppaal to formally

model the scenario and run SMC experiments [9].
Uppaal is a tool for modeling and verifying real-
time systems, recently extended to cover stochas-
tic timed systems and SMC. In Uppaal, p ± ε is
calculated through the Clopper-Pearson method
[17], and the tool stops generating traces, con-
cluding the SMC experiment when ε is smaller
than a user-defined parameter.

When the SHA model is ready, and SMC
results are available, the designer assesses the
resulting success rate range. If the probability
of success is insufficient, the designer reconfig-
ures the scenario and iterates the procedure to
increase the chances of success. Possible recon-
figuration measures include assigning the mission
to a different robot, changing the order in which
humans are served, or changing the destination
of a service if no logical constraints forbid it.
Otherwise, the design-time analysis is complete,
and the application is ready for deployment.

Application Deployment
The framework features a code generation

technique described in detail in [7], mapping
each element of the SHA network to an element
of a deployment unit. A deployment unit is an
executable script replicating the behavior of one
of the agents—robot or human—or of the orches-
trator managing the execution of the mission. The
key requirement for the deployment phase is that
the model-to-code transformation is such that, at
runtime, the behavior of the system matches the
estimates obtained at design time.

The deployment approach allows for flexible
interaction between the cyber and physical layers
of the robotic application. Also, the deployment
environment (i.e., the agents instrumented with
suitable sensors and the layout) can be entirely
virtual or hybrid. In the latter case, real robotic
devices interact with virtual humans in the simu-
lation scene in compliance with the digital-twin
paradigm. Human avatars can be fully auto-
mated via simulator scripts or respond to manual
commands sent by the designer to have real-
istic decision-making also in simulation. Since
the framework’s domain includes healthcare and
home assistance settings, human subjects in the
scenarios are often in critical physical or mental

4 JOURNAL NAME

conditions. The hybrid deployment setting allows
analysts to validate the design-time results with
hundreds of runs without placing a significant
burden on real subjects, which would call into
question the ethicality of the validation approach.

Human Behavior Learning
The model of human behavior, of which a

snippet is shown in Fig. 2, is usually an un-
derapproximation of real human behavior. In our
framework, SHA modeling human actions dis-
criminate between different locations based on
how fatigue evolves. Therefore, only human be-
haviors that impact fatigue are relevant to the
model (e.g., speaking or eating do not meet this
criterion, but walking does). Complex human be-
haviors (besides standing and walking) for a spe-
cific scenario are typically only partially known
when drafting the formal model the first time,
possibly leading to design choices that do not
fully safeguard the subjects’ wellbeing. However,
the eligible range of human actions is too broad
to produce an all-encompassing SHA manually.
Even if this were possible, it would result in an
unreasonably complex model (thus, long verifica-
tion times) since, given a specific scenario, not all
states are feasible, or the probability of subjects
performing specific actions may be negligible.

To overcome this issue, the framework ex-
ploits sensor logs and action sequences (referred
to as traces) collected at runtime to learn a more
accurate SHA. We have developed an automata
learning algorithm, called L∗SHA, that infers an
SHA from traces featuring observations of hu-
man behavior throughout the interaction with the
robot. L∗SHA extends the well-known algorithm
L∗ for Deterministic Finite Automata learning
[18] to also learn stochastic and hybrid features.
The resulting SHA modeling human behavior is
up-to-date with the accumulated knowledge and
is plugged back into the SHA network to repeat
the design-time analysis.

L∗SHA relies on the interaction between a
learner and a teacher. Learning occurs in rounds
and, during each round, hypothesis SHA Ahyp

modeling the system under learning is progres-
sively updated. The learner stores Ahyp and it-
eratively refines it by submitting queries to the
teacher. The teacher stores the knowledge ac-
cumulated about the system—i.e., the collected

traces. When the learner submits a query, the
teacher extracts information from the traces to
reply. At the end of each round,Ahyp must satisfy
the following two properties:

a) there exists a location featuring a flow con-
dition and probability distribution for all
the fatigue dynamics observed in the traces
analyzed up to that point (Ahyp is closed);

b) there is no location with more than one
outgoing edge labeled with the same action
(Ahyp is consistent).

Queries determine how the system behaves
after a specific action sequence s occurs for each
trace stored in the teacher. For SHA, the system’s
behavior depends on which flow conditions con-
strain physical variables (e.g., f0(t, ρ) in Fig. 2)
and which probability distributions yield random
parameter values (e.g., N (µstand, σ

2
stand) in Fig.

2).
L∗SHA features four types of queries. To iden-

tify the flow conditions, the learner submits mod-
el-fitting queries (mf(s)). In the SHA modeling
humans, flow conditions constrain the real-valued
variable corresponding to fatigue. The teacher
examines the collected fatigue signals and iden-
tifies the function that best fits them out of a
pre-determined set through the Derivative Dy-
namic Time Warping approach [19].

The learner submits hypothesis testing
(ht(s)) queries to identify probability distri-
butions. The teacher performs a Kolmogorov-
Smirnov test [20] to determine whether the col-
lected observations of the random parameters (in
our case, the rest and fatigue rates ρ and λ) are
samples of a known distribution with the required
confidence level. Otherwise, a new distribution
is identified. For example, when the learner first
queries about the system behavior for a sequence
ending with action “sit,” the teacher will find that,
in such location, fatigue decreases exponentially
(thus, according to flow condition f0(t, ρ)), but
the resting rate samples are not statistically com-
patible with action “stand” modeled by means
of N (µstand, σ

2
stand). Humans, indeed, recover

more quickly while sitting than while standing:
a new distribution N (µsit, σ

2
sit) is thus identified,

resulting in a new SHA location.
L∗SHA is an active learning algorithm: if the

teacher finds that the observations of action se-

MONTH 20XX 5

Department Head

quence s are not sufficient to answer query ht(s),
it can actively ask the system for new traces by
submitting a knowledge refinement query (ref).
The method of generating traces depends on the
system under scrutiny. In our case, when deploy-
ing the application, it is not feasible to enforce the
occurrence of a specific action sequence program-
matically. Therefore, L∗SHA is suspended until new
traces featuring sequence s are available.

At the end of each learning round, the learner
asks the teacher through a cex query if there is an
action sequence for which sufficient observations
are available and which leads to a system state
different from the one envisaged by Ahyp. A trace
satisfying this criterion is called a counterexam-
ple. Specifically, trace t is a counterexample if:

a) actions in t lead to a system’s state ex-
hibiting fatigue properties—flow and rate
distribution—that do not match any location
of the hypothesis automaton;

b) the addition of edges corresponding to the
actions in t would make the current hypoth-
esis automaton not consistent.

If the teacher finds a counterexample, the learner
performs a new learning round to refine Ahyp. If
the teacher cannot find a counterexample, Ahyp,
i.e., the SHA learned up to that point, is consistent
with the available traces, and L∗SHA terminates.

Healthcare Case Studies
We illustrate the effectiveness of the approach

while developing robotic applications through six
experimental scenarios from the healthcare set-
ting. The experiments showcase how the frame-
work supports the designer from an early design
stage in analyzing and deploying a wide range of
interactive robotic tasks with different categories
of human subjects. We also discuss how the
learning procedure based on data collected at
runtime reduces the error of verification results
when exploiting automata learned through a batch
of deployment traces to estimate the outcome of
new scenarios.

Experimental Setting
Scenarios take place in a floor layout made

up of a hall (with an area of approximately
60m2) connected to two side wings (approxi-
mately 100m2 each), with doors leading to a

waiting room, an examination room, cupboards
containing medical kits, and doctors’ offices.

Scenarios DP0 through DP2 involve a
Doctor-Patient pair with a healthcare professional
(e.g., a doctor or a nurse) and a patient, each
requesting two services provided by one mobile
robot. Scenario DP3 features two doctors and two
patients, each requesting two services, served by
one robot. The last scenario, MR (Multi-Robot),
features two mobile robots serving three humans
(two doctors competing for a resource and a pa-
tient). Patients (indicated as Px in Table 1) require
the robot to lead them to the waiting room, while
professionals (indicated as Dx in Table 1) require
assistance in fetching and delivering resources
or carrying tools while following them to the
examination room. When the examination room
is ready, the robot escorts the patient to be visited
and assists the professional in administering the
medication (i.e., by holding or handing over the
required tools).

We assume that healthcare professionals are
healthy, while patients exhibit a more critical fa-
tigue profile (i.e., fatigue rate λ is higher than the
doctors’ by one order of magnitude). In MR, the
initially active robot’s charge level is insufficient
to complete the mission, requiring the task to
be handed over to another robot. Furthermore,
scenario MR features two doctors competing for
the same medical kit (for example, during an
emergency). This situation highlights how the
framework handles missions with alternative out-
comes (i.e., scenarios MR1 and MR2) depending
on who wins the competition and collects the item
first.

Validation Process
To validate the framework, for each exper-

imental scenario, we follow the workflow pre-
sented throughout the article. The application
designer configures the scenario (i.e., the layout,
the involved agents, humans and robots, and
the tasks constituting the robotic mission), and
the tool automatically generates SHA network
M. For the first round of design-time analysis,
the SHA network features the manually drafted
version of automata modeling human behavior,
of which Fig. 2 shows a snippet. Subsequently,
SMC experiments are performed to estimate the
probability of success of the robotic mission for

6 JOURNAL NAME

CS τ
Success Probability ([%])

PM(�≤τ scs)
Complexity
|M| ([×103])

Verification
Time [min] HUM

Exp. Fatigue ([%])
E≤τ̂ [max(FHUM)]

DT-1 DT-2 DEPL ∆Ep(τ) DT-1 DT-2 DT-1 DT-2 DT-1 DT-2 DEPL ∆Ef (τ̂)

DP0
340s 95.0± 5 83.5± 5 80.5 -14.3

175.9 267.5

6.74 14.4
P1
D1

24.6± 4
5.4± 1

39.2± 7
7.4± 1

41.4
6.8

-35.2
-11.4260s 56.5± 5 44.5± 5 41.3 -29.1 4.50 10.0

180s 12.5± 5 9.48± 5 8.75 -34.5 2.47 6.11

DP1
600s 95.0± 5 79.3± 5 74.0 -21.2

175.9 267.5

16.4 34.8
P1
D1

20.4± 3
5.5± 1

38.4± 7
6.2± 1

31.1
5.88

-10.7
-1.0500s 58.6± 5 46.7± 5 40.0 -29.8 9.09 20.9

400s 6.5± 5 5.0± 5 5.0 -30.0 4.67 14.8

DP2
580s 95.0± 5 75.3± 5 81.0 -10.2

179.3 291.5

14.8 32.0
P1
D1

21.7± 1
7.6± 2

41.0± 3
13.4± 2

34.2
10.9

-16.7
-7.5520s 60.2± 5 45.5± 5 49.0 -15.7 8.08 14.7

460s 6.67± 5 11.0± 5 10.0 -23.3 4.75 8.34

DP3

1500s 93.7± 5 74.1± 5 80.0 -9.8

193.4 397.0

31.6 92.1 P1 22.6± 4 32.7± 2 28.6 -13.2

1400s 74.2± 5 55.6± 5 61.0 -12.8 24.9 70.9 D1 5.9± 1 4.4± 3 5.1 -2.0
1300s 37.9± 5 25.2± 5 28.0 -25.4 20.9 54.3 P2 51.9± 3 62.9± 9 61.7 -13.9

1200s 6.5± 5 5.0± 5 5.0 -30.0 18.5 37.6 D2 2.2± 1 2.8± 1 2.4 8.3

MR1

1200s 95.0± 5 85.1± 5 89.0 -2.4

371.7 626.8

26.0 89.9
P1
D1
D2

39.4± 3
2.8± 1
1.2± 1

48.3± 4
2.9± 1
1.8± 1

46.9
3.1
1.5

-12.9
-3.2
6.9

1000s 63.5± 5 45.5± 5 51.0 -13.7 16.3 51.6

800s 27.9± 5 23.7± 5 22.0 -19.1 12.9 33.4

700s 6.89± 5 6.34± 5 6.0 -9.2 8.70 14.5

MR2

1200s 91.2± 5 81.3± 5 80.0 -12.4

368.3 602.8

28.7 83.8
P1
D1
D2

35.7± 2
4.0± 3
1.5± 1

43.6± 2
7.4± 3
1.8± 1

40.4
5.8
1.6

-11.6
-3.4
5.0

1000s 58.6± 5 42.4± 5 47.0 -14.9 17.1 50.4

800s 24.5± 5 18.7± 5 21.0 -5.7 13.7 37.5

700s 7.68± 5 6.81± 5 5.0 -17.4 7.46 12.9

Table 1. Experimental results obtained from the case studies (CS). For each scenario, the complexity of the SHA
network (|M|) is the cumulative size of its SHA (one for each agent), which is a function of the number of locations,
edges, and of the cardinality of variables’ domains. When reporting success probability and expected fatigue estimations,
the darker the cells the worse the metric is (success probability is low or fatigue level is high). When reporting error
differences (∆Ep(τ) and ∆Ef (τ̂)), green cells indicate a reduction of the error whereas red cells indicate an increase.

decreasing values of time bound τ (expression
PM(�≤τ scs)). Success probability ranges are of
the form p± ε: we recall that SMC ends when
ε ≤ εth holds, where εth equals 5% in our case.
For all scenarios, we calculate through Uppaal
the value of expression E≤τ̂ [max(FHUM)], which
is the maximum fatigue reached by each human
(indicated as HUM) with the highest time bound
considered for that scenario (indicated as τ̂ , e.g.,
340s in DP0). Fatigue estimations are also of
the form f ± ε; in this case, the calculation ends
when Uppaal identifies the value of ε such that
the expected maximum fatigue level falls within
range [f − ε, f + ε] with confidence higher than
95% (thus, the value of ε varies between different
subjects). The results of the first round of design-
time analysis for all scenarios are shown in Table
1 (columns DT-1).

As a second phase, we exploit the virtual
deployment environment to gather a large amount
of data without putting a strain on real subjects.
Collected traces are fed to L∗SHA to learn human
behavior. Indeed, through the simulation environ-
ment, it is possible to replicate a broader spectrum

of human behaviors affecting the fatigue curve
throughout the scenario. These actions range from
running and carrying loads (which are daily tasks
for healthcare professionals) to sitting or standing
in an uncomfortable environment (i.e., with a very
low or very high room temperature or a high
degree of humidity, such as in field hospitals).
We perform multiple simulations of scenario DP0
to collect a large batch of runtime observations
(i.e., traces), serving as training data as human
subjects perform a wider range of actions than
the ones captured by the initial SHA. For this
specific experiment, 5407 traces (with automated
human avatars) have been collected, each lasting
approximately 340s. To obtain the same amount
of data in a physical environment, running the
application non-stop for 21 workdays would be
necessary. With this pool of traces, L∗SHA termi-
nates in approximately 37min returning an SHA
modeling human behavior that has five times
the number of locations than the original one.
The updated SHA modeling human actions is
then plugged into the SHA network to repeat the
design-time analysis, for all scenarios, with the

MONTH 20XX 7

Department Head

refined model (columns DT-2 in Table 1).
The learned model is tested with scenarios

different than DP0 (i.e., the source of training
data). DP1, DP2, and DP3 are deployed in the
hybrid setting with a real robotic device, while
MR1 and MR2 are fully simulated. Runtime
observations collected while deploying these five
scenarios (collectively, 500 runs) serve as testing
data. To decrease the simulation-to-reality gap of
features subject to learning, fatigue signals are
extracted from real physical trials and a real user
controls the actions performed by subjects in the
simulation. This also ensures that training and
testing data capture human behavior in compa-
rable conditions. Table 1 reports the success rate
and maximum fatigue level observed at runtime
(columns DEPL). Testing scenarios are newly
verified with Uppaal with the refined model of hu-
man behavior to evaluate how the learning phase
reduces the estimation error of SMC results, as
explained in the following. Let XDT-i(τ) be the
average of metric X (the success rate or fatigue
level) calculated in Uppaal with time bound τ for
phase i ∈ {1, 2}. Let XDEPL(τ) be the average
value of metric X observed at runtime within
time bound τ . Let EX,i(τ) be the error between
estimation XDT-i(τ) and XDEPL(τ), calculated as
in Eq.1.

EX,i(τ) =
|XDT-i(τ)−XDEPL(τ)|

XDEPL(τ)
· 100 (1)

We indicate as ∆EX(τ) = EX,2(τ)− EX,1(τ)
the difference between the error with the model
learned through L∗SHA and the initial model.
When ∆EX(τ) is negative, SMC results obtained
through the SHA network (partially) learned by
L∗SHA are more accurate than the manually drafted
network (EX,1(τ) > EX,2(τ) holds). We remark
that, since L∗SHA is the first automata learning
algorithm targeting SHA, we can internally assess
its impact on our design and development frame-
work, but we cannot evaluate its performance
against that of alternative algorithms.

Discussion
The source of the large estimation errors of

DT-1 experiments is the wider range of actions
that humans perform at runtime, which are not
captured by the initial SHA network but learned

0 20 40 60 80 100

Walk

Stand

Manually Drafted Human Behavior Model

0 5 10 15 20 25 30 35
Avg. Time [s]

Run (D)

Walk in
Uncomf. Env.

Carrying
Load (D)

Walk

Assisted
Walk (P)

Stand in
Uncomf. Env.

Stand

Sit in
Uncomf. Env.

Sit After
Running (D)

Sit

Learned Human Behavior Model

Highest
Fatigue Rate

Highest
Recovery Rate

Figure 3. Average time ([s]) spent by the case study
subjects in each state of the human behavior model
state. States that are only feasible to a professional
(resp. patient) are marked with a (D) (resp. (P)). The
bars color code is shown at the bottom.

through L∗SHA and taken into consideration for
DT-2 experiments. To highlight the gap between
known human actions before and after the learn-
ing phase, Fig. 3 shows how long, on average,
the subjects from scenario DP0 spend in each
state of the SHA modeling human behavior (e.g.,
stand and walk in Fig. 2). The upper bar plot
shows the distributions for the initial behavior
model, whereas the bottom bar plot shows the
distributions for the SHA learned by L∗SHA. Dis-
tributions are obtained by analyzing 1000 traces
of the SHA network generated through Uppaal.
The plot highlights how human behavior has a
significantly higher degree of variability than the
one accounted for by the initial model. More
specifically, the refined model features locations
with more critical fatigue rates distributions (e.g.,
walking in uncomfortable environments), which

8 JOURNAL NAME

justify the gap between the two rounds of fatigue
estimations.

When exploiting the model learned through
L∗SHA to estimate fatigue for all subjects of sce-
narios other than DP0 (i.e., the source of traces
used for learning), we obtain ∆Ef (τ̂) < 0 in
11 cases out of 14, indicating that the learning
procedure results in a formal model that more
accurately captures reality. The three subjects for
which ∆Ef (τ̂) ≥ 0 holds are professionals with
non-critical fatigue profiles, indicating that the
learned model may lead to an overestimation of
the fatigue level for this category of subjects. We
remark that, in both rounds, for these subjects the
estimated fatigue levels are not critical (< 10%),
thus, small fluctuations do not overturn the result
of the design-time analysis.

As shown in Table 1, DT-1 experiments es-
tablish that all scenarios can be completed suc-
cessfully with probability greater than 90% with
τ ranging from about 6min (for DP0) to 25min
(for DP3). For decreasing values of τ , the success
probability decreases as well as the robots and the
humans do not have sufficient time to complete
their tasks. Nevertheless, as per Table 1, the suc-
cess rate observed at runtime (column DEPL) is
lower than its initial estimation. Fatigue impacts
the probability of success since the orchestrator
(i.e., the robot’s controller) instructs humans to
stop and rest when their fatigue level exceeds
a critical threshold, leading to a delay in the
completion of the mission (thus, the success prob-
ability within a certain time bound decreases).
The error reduction of fatigue estimation corre-
sponds to an improvement in the success proba-
bility calculation. As for success probability, we
obtain ∆Ep(τ) < 0 for all scenarios and all time
bounds.

Reducing the error has a price in terms of
verification time. The time required to perform
the estimations for phase DT-1, reported in Table
1, ranges from 2.47min to 31.6min, with approx-
imately 400 runs required to conclude the SMC
experiment. For phase DT-2, SMC experiments
last from 6min to 92min in the worst case. The
duration of a verification experiment depends on
the duration of the robotic mission—indicated by
τ—and the size of the SHA network (indicated as
|M| in Table 1). In this experimental campaign,
verification time increases more steeply with τ

than with |M|. As Table 1 highlights, smaller
(in terms of |M|), longer (in terms of τ) mis-
sions (e.g., DP3 with τ = 1500s) take longer to
verify than bigger, shorter ones (e.g., MR1 with
τ = 1200s).

Future Directions
The framework presented in this article shows

promising results in developing interactive sce-
narios tackling the unpredictability of human be-
havior and physiological variability with an inno-
vative approach. The approach can pave the way
toward deploying assistive robotic applications
that smoothly adapt to human needs, significantly
promoting the diffusion of the service robotic
technology.

As with any verification approach, increasing
the scenario complexity inevitably increases ver-
ification times. We plan to extend L∗SHA to learn
probability weights on edges (e.g., to learn that
a subject might run and the likelihood of such
action), which might help dampen the growth
of verification time with larger human behavior
models. The level of support provided to the
designer can also be increased by automating the
mission replanning phase, specifically by com-
puting alternative mission plans without any user
intervention.

REFERENCES
1. C. B. Frey and M. A. Osborne, “The future of employ-

ment: How susceptible are jobs to computerisation?”

Technological Forecasting and Social Change, vol. 114,

pp. 254–280, 2017.

2. S. Garcı́a, D. Strüber, D. Brugali, T. Berger, and P. Pel-

liccione, “Robotics software engineering: A perspective

from the service robotics domain,” in ESEC/FSE, 2020,

pp. 593–604.

3. H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Cor-

rect, reactive, high-level robot control,” IEEE Robotics &

Automation Magazine, vol. 18, no. 3, pp. 65–74, 2011.

4. M. M. Bersani, M. Soldo, C. Menghi, P. Pelliccione, and

M. Rossi, “PuRSUE-from specification of robotic envi-

ronments to synthesis of controllers,” Formal Aspects of

Computing, vol. 32, no. 2, pp. 187–227, 2020.

5. S. Junges, N. Jansen, J.-P. Katoen, and U. Topcu,

“Probabilistic Model Checking for Complex Cognitive

Tasks–A case study in human-robot interaction,” arXiv

preprint arXiv:1610.09409, 2016.

MONTH 20XX 9

Department Head

6. L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi,

“Formal verification of human-robot interaction in

healthcare scenarios,” in SEFM. Springer, 2020, pp.

303–324.

7. ——, “A deployment framework for formally verified

human-robot interactions,” IEEE Access, vol. 9, pp.

136 616–136 635, 2021.

8. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho,

“Hybrid Automata: An algorithmic approach to the spec-

ification and verification of Hybrid Systems,” in Hybrid

Systems. Springer, 1992, pp. 209–229.

9. A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B.

Poulsen, J. Van Vliet, and Z. Wang, “Statistical Model

Checking for networks of Priced Timed Automata,” in

Intl. Conf. on Formal Modeling and Analisys of Timed

Systems. Springer, 2011, pp. 80–96.

10. L. Cao, T. Joachims, C. Wang, E. Gaussier, J. Li, Y. Ou,

D. Luo, R. Zafarani, H. Liu, G. Xu, Z. Wu, G. Pasi,

Y. Zhang, X. Yang, H. Zha, E. Serra, and V. Subrahma-

nian, “Behavior informatics: A new perspective,” IEEE

Intelligent Systems, vol. 29, no. 4, pp. 62–80, 2014.

11. C. Wang, F. Giannotti, and L. Cao, “Learning complex

couplings and interactions,” IEEE Intelligent Systems,

vol. 36, no. 1, pp. 3–5, 2021.

12. C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli,

“Mining behavior models from user-intensive web ap-

plications,” in Intl. Conf. on Software Engineering, 2014,

pp. 277–287.

13. R. Medhat, S. Ramesh, B. Bonakdarpour, and S. Fis-

chmeister, “A framework for mining hybrid automata

from input/output traces,” in EMSOFT. IEEE, 2015,

pp. 177–186.

14. B. Liu, L. Ma, C. Chen, and Z. Zhang, “Experimental

validation of a subject-specific maximum endurance

time model,” Ergonomics, vol. 61, no. 6, pp. 806–817,

2018.

15. C. Calude, F. Kroon, and N. Poznanovic, “Free will is

compatible with randomness,” Philosophical Inquiries,

vol. 4, no. 2, pp. 37–52, 2016.

16. G. Agha and K. Palmskog, “A survey of statistical model

checking,” TOMACS, vol. 28, no. 1, pp. 1–39, 2018.

17. C. J. Clopper and E. S. Pearson, “The use of confidence

or fiducial limits illustrated in the case of the binomial,”

Biometrika, pp. 404–413, 1934.

18. D. Angluin, “Learning regular sets from queries

and counterexamples,” Information and computation,

vol. 75, no. 2, pp. 87–106, 1987.

19. E. J. Keogh and M. J. Pazzani, “Derivative dynamic time

warping,” in Intl. Conf. on Data Mining. SIAM, 2001, pp.

1–11.

20. H. W. Lilliefors, “On the kolmogorov-smirnov test for

normality with mean and variance unknown,” Journal of

the American statistical Association, vol. 62, no. 318,

pp. 399–402, 1967.

Livia Lestingi is a Ph.D. Candidate in Information
Technology at Politecnico di Milano. Her research in-
terests include the analysis of complex cyber-physical
systems through formal methods and software engi-
neering techniques for service robotics. Contact her
at: livia.lestingi@polimi.it.

Marcello M. Bersani is a senior assistant profes-
sor at Politecnico di Milano. His research interests
are mainly focused on Formal Methods, Tempo-
ral logic and Verification. Contact him at: marcel-
lomaria.bersani@polimi.it.

Matteo Rossi is an associate professor at Politec-
nico di Milano. His research interests are in formal
methods for safety-critical and real-time systems,
architectures for real-time distributed systems, and
transportation systems both from the point of view of
their design, and of their application in urban mobility
scenarios. Contact him at: matteo.rossi@polimi.it.

10 JOURNAL NAME

	Design-Time Analysis
	Application Deployment
	Human Behavior Learning
	Healthcare Case Studies
	Experimental Setting
	Validation Process
	Discussion

	Future Directions
	REFERENCES
	Biographies
	Livia Lestingi
	Marcello M. Bersani
	Matteo Rossi

