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Abstract 

In the recent years, the number of launches has increased dramatically, showing a tendency beyond the current 

space transport systems. Such a problem, partially provoked by the increased number of space users due to the industry 

inclusion, as well as by the shift of interest towards smaller satellites and constellation missions, demands of innovative 

and economical solutions. One of these is the capability of an upper stage to directly inject multiple satellites into their 

respective differentiated orbits, reducing this way the number of necessary launches while allowing the growth of the 

space environment usage.  

Such multi-payload multi-orbit injection trajectory requires of a control law that can provide the manoeuvres while 

minimising both the fuel consumption and the overall mission time. Its definition is not straight forward and requires 

solving a complex optimisation problem composed by the visiting sequence and the individual transfers. The current 

paper proposes a strategy to define such a trajectory by diving the problem into two: a preliminary bi-level bi-objective 

optimisation algorithm that determines the ideal orbit order and the approximate necessary Lambert transfers. 

The result is a flexible algorithm that can provide for the full set of transfers given a set of orbits and satellites to 

be delivered, regardless of the final injection orbits and mass properties of the payloads. This algorithm is then used to 

analyse a certain payload injection scenario, given realistic mission data from the space industry. The performance of 

the upper stage in terms of total time and consumed fuel is examined, providing an assessment on the feasibility of this 

type of mission. The same case scenario is then studied under different conditions in terms of randomness, decision 

criteria and routing constraints to achieve further understanding on the possible real case scenarios. It is shown that in 

all cases the algorithm is able to converge towards feasible solutions, and that the nature of the resulting trajectories 

depends highly on the scenarios themselves, but also on the logical operation of the bi-level optimisation loop.  

Keywords: Lambert, Optimisation, Traveling Salesman Problem, Multi-Rendezvous 

 

Nomenclature 

a = semi-major axis [m] 

e = eccentricity [-] 

F = penalty factor [-] 

g0 = gravitational acceleration at Earth’s surface 

[m/s2] 

i = inclination [deg] 

i, j = generic numbering of nodes [-] 

Isp = specific impulse [s] 

m = mass [kg] 

p = probability [-] 

r = position vector [m] 

r = distance magnitude [m] 

RE = radius of the Earth at the equator [m] 

t = time [s] 

T = orbital period [s] 

ΔV = impulsive manoeuvre magnitude [m/s] 

η = heuristic measure [-] 

θ = true anomaly [deg] 

λ = penalty function [variable unit] 

μ = gravitational parameter of the central body 

[m3/s2] 

τ = pheromone concentration [-] 

ω = argument of perigee [deg] 

Ω = right-ascension of ascending node [deg] 

 

Acronyms/Abbreviations 

Ant Colony Optimisation (ACO) 

Active Debris Removal (ADR) 

First-in First-out (FIFO) 

Genetic Algorithm (GA) 

On-Orbit Servicing (OOS) 

Mixed Integer Nonlinear Optimisation Problem 

(MINLP) 

Multi-Objective Particle Swarm Optimisation 

(MOPSO) 

Population-based Ant Colony Optimisation (P-ACO) 

Particle Swarm Optimisation (PSO) 

Time of Flight (TOF) 

Traveling Salesman Problem (TSP) 
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1. Introduction 

The development of society in the last years has been 

tightly coupled with that of technologies related to 

communication and access to information. This has made 

the dependence on spaceborne systems devoted to such 

activities crucial for today’s way of living, entailing an 

increasing need of satellites orbiting the planet. In fact, 

current predictions estimate the growth rate in the 

number planned small satellite launches in this decade to 

be four times that of the previous decade [1]. The 

increasing interest in constellation missions, in addition 

to the higher accessibility to space for modest users, is 

pushing further the aforementioned growth, leading the 

space infrastructure towards a logistically and 

ecologically unsustainable position. New and efficient 

ways to deliver payloads into orbit are clearly necessary.  

Current methods for multiple satellite delivery 

involve piggybacking strategies, which limit the 

flexibility of launch and injection for non-primary loads. 

Such practice could discourage new projects, particularly 

those coming from the private sector, preventing the 

expansion of this market. The new way of accessing 

space efficiently should then focus on the injection of 

multiple payloads into dedicated and different orbits. A 

similar strategy has been tested using kick-stages which 

behave as intermediary vehicles between the primary 

orbit and those of the secondary small satellites (for 

instance the Small Launch Orbital Manoeuvring Vehicle 

[2], or the Sherpa-NG project of Spaceflight Inc. [3]). 

Thus, multiple-payload multiple-orbit delivery has been 

proven feasible, becoming a concept that could 

drastically change the way in which launches are planned 

and performed.  

To define the trajectory necessary to deliver multiple 

payloads into different orbits, both the order of injection 

and the individual transfers must be specified. This multi-

rendezvous problem has been studied previously, mainly 

for missions related to Active Debris Removal (ADR) 

and On-Orbit Servicing (OOS), in which the distinction 

between both mentioned problems is clearly 

distinguished. Generally, these problems are separated, 

and different strategies are used to solve them 

individually, coupling them at a certain point in the 

optimisation process. Regarding the visitation sequence 

problem, its combinatorial nature has led to identify it as 

a specific case of the Traveling Salesman Problem (TSP) 

[4]. As such, typical solutions to this problem have been 

used. On the one hand, one can find the use of extensive 

search algorithms such as in in Chen et al. [5] or 

Daneshjou et al. [6]. These methods, while providing for 

a global optimum to the sequence selection, require of 

high computational efforts to calculate of possible 

permutations, reaching unfeasible levels when the 

number of orbits to be visited is medium-to-high. As an 

alternative, tree-search algorithms have been proposed in 

a way that the different sequences or “branches” are 

extended or cut based on some criteria. Two interesting 

examples are the Series Method [7] or the Branch-and-

Bound strategy [8-11]. However, similar to the previous 

methods, after a certain number of orbits, the 

computational effort becomes prohibitive. To overcome 

this issue, heuristic algorithms have been proposed 

providing with a sub-optimal solution but at lower 

computational times. Among these, the Ant Colony 

Optimisation (ACO) is frequently used as its structure 

resembles the tree-shape structure characteristic of the 

combinatorial problem [12-14]. Other heuristic methods 

proposed include evolutionary algorithms such as the 

Genetic Algorithm (GA) [8,15] or Simulated Annealing 

[16,17]. 

As stated before, the multi-rendezvous problem 

entails a second part related to the definition of the 

individual transfers given a certain sequence. Typically, 

the cost or ΔV associated to a certain transfer is estimated 

or pre-computed and stored in a matrix to be accessed by 

the combinatorial solver. The cost is normally simplified 

to be time-independent, such that moving from an orbit 

to another one has a certain constant cost, normally that 

of a Hohmann transfer [10,18]. However, a more realistic 

computation requires the time to be taken account. This 

can be done by generating a time grid and computing all 

possible costs between orbits given an initial and final 

time using Lambert manoeuvres [9,11,17], and then 

storing them in higher-dimension arrays. This method 

allows for a fast computation of the costs but requires 

large data storage. Among the different strategies, Bang 

et al. [19] shows a more efficient method of pre-

computation by looking for the local minima in each of 

the transfers, which are the only ones stored and 

considered in the overall optimisation, reducing the 

search space. None of these strategies consider the 

optimisation of the transfers themselves, thus reaching 

solutions of generally less quality. In fact, several studies 

have shown that optimising the transfers within the 

complete problem can improve the overall solution. This 

complete optimisation is normally done through heuristic 

algorithms such as GAs [15] or evolutionary algorithms 

[8,16]. These methods, however, require of the 

discretisation of time, therefore not considering its 

continuous nature. To overcome this, other algorithms 

are considered, among which the most interesting is the 

Particle Swarm Optimisation (PSO) [5,6,20].  

Nevertheless, these strategies rely on building up the 

trajectory by adding the individual optimisations of the 

transfers one by one, in a similar manner to the (pseudo-

)exact methods of the combinatorial problem, instead of 

considering the complete visitation sequence and set of 

transfers as a whole. Therefore, the optimisation of each 

transfer is influenced by the decisions and values of the 

previous ones, limiting the search space. In addition, it 

behaves similar to a greedy algorithm which considers 

the best immediate solution at each step, disregarding 
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those that (even if they have a higher cost) would lead to 

overall smaller values of the cost function.  

The paper focuses on the solution of a time and fuel 

mass constrained multi-rendezvous mission, assuming 

impulsive manoeuvres, with the objective of visiting all 

required orbits minimising both fuel and time. An 

optimisation tool has been developed as a bi-level solver 

conformed of a Population-based ACO (P-ACO) for the 

combinatorial problem, and a Multi-Objective PSO 

(MOSPO) for the set of transfers. The algorithm is then 

used to study a typical multi-injection case scenario 

under different considerations for its analysis. To do so, 

first the mission and the mathematical problem are stated 

in Section 2. Then, the tool is presented in Section 3. 

Section 4 will show the solution to the case scenario and 

the results of the different analyses performed. Finally, 

Section 5 will present the main conclusions and steps 

forward.  

 

2. Problem Definition  

Before presenting the optimisation tool for the multi-

rendezvous problem, it is necessary to define the specific 

mission under consideration and its subsequent 

mathematical formulation and modelling.  

 

2.1 Mission Definition 

Let us consider an upper stage which is used as means 

to deliver a set of N payloads into N distinct orbits or 

positions in space. These orbits, as well as the masses of 

the payloads, are specified before-hand based on the 

requirements of the missions related to their deployment. 

In this study, it is assumed that the trajectory definition 

starts at the orbit of the first deployed satellite, once it has 

been released, in a way that the launch cost is not 

included as part of the cost function as it is assumed that 

the differences in ΔV from Earth to any orbit are 

negligible. However, the selection of the first orbit (the 

initial one) is given to the optimiser as part of the 

sequence definition. Additionally, it is considered that, in 

order to comply with the mitigation guidelines on space 

debris, the upper stage is to finish its trajectory at a 

previously designated disposal orbit. The optimisation of 

this disposal orbit (related to the parameters ensuring a 

certain orbital decay, security, etc.) is not within the 

scope of this work. Therefore, an arbitrarily chosen orbit 

that fulfils these requirements, and which is “close” to the 

set of target orbits, will be used.  

Thus, the complete mission is stated as follows: the 

vehicle, after deploying the first payload, moves into the 

following target orbit where it releases the next satellite. 

It then waits until the next manoeuvre to reach the 

following orbit, making sure that this waiting time is 

enough to perform the injection activity. This sequence 

is the repeated until all satellites are injected, after which 

the vehicle transfers to the final disposal orbit, at which 

the mission is over.  Generally, the target is the orbit itself 

and not a specific point within it (unless several satellites 

within the same orbit and with a certain phase difference 

among them is required). Therefore, the point at which 

the transfer arrival is performed is not crucial, and all 

points are considered to be equally interesting when 

performing the optimisation.  

 When dealing with the deployment of satellites, and 

considering the point of view of possible customers, the 

former are desired to be operational as fast and cheap as 

possible, within a certain threshold. As such, the solution 

should minimise both the total mission time and the fuel 

mass consumption, ensuring that they are always within 

the allowed margins given by the requirements. Finally, 

it must be noted that, since upper stages usually operate 

with high thrust chemical propulsion systems, all firings 

of the main engine are modelled as impulsive 

manoeuvres. 

 

2.2 Mathematical Formulation 

As stated in Section 1, the problem of defining an 

optimal visitation sequence falls into those categorised as 

TSP. In this problem, a certain salesperson needs to visit 

a pre-defined set of cities only once, while minimising 

the total cost of the trip (either time, distance, fuel 

consumption, etc.) and finishing at the starting city. Such 

a problem is translated into the graph problem 𝒢 =
(𝒱, 𝒜) with 𝒱 = {1, … , 𝑁} being the set of vertices or 

nodes; and 𝒜 = {(𝑖, 𝑗) ∈ 𝒱, 𝑖 ≠ 𝑗} being the set of links 

between those nodes. However, the multi-rendezvous 

problem present significant differences with respect to 

the typical TSP, some of which have been already lightly 

mentioned before: 

1) The problem is time-dependent due to the 

nonlinearity of the dynamics involved in the 

motion of the vehicle, in a way that the tarting 

and ending points in time for a certain transfer 

will affect the cost of such link.  

2) The problem is open-route, meaning that the 

vehicle will start and finish at different orbits.  

By defining then the set of payloads to be delivered 

as with 𝒮 = {1, … , 𝑁}, the set of vertices to be visited 

becomes 𝒱 = {0, 𝒮, 𝑁 + 1}, where 𝑖 = 0 has been 

included for the sake of completeness in the case that the 

initial vertex is the launching site or a parking orbit. The 

last node included is, as expected, the final disposal orbit. 

As stated by point 1, time influences the problem, not 

only within the equations of motion, but as a direct 

involvement in the possible arcs between two nodes and 

their associated cost. This characteristic of the problem 

can be understood with the schematic shown in Fig. 1, in 

which some connections are represented, among the 

(infinite) range of possibilities for each one. Properly 

including the time within the problem is crucial to 

accurately solve the optimal transfers in between two 

consecutive orbits. To do so, the initial and final position, 

as well as the time-of-flight (TOF), are optimisation 
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variables for each one of the transfers. Nevertheless, the 

order in which the transfers are performed will also affect 

the solution, as time will change but also the set of 

possible nodes to be visited will decrease, enabling or not 

certain paths. In fact, by solving the transfers 

sequentially, all subsequent manoeuvres will be 

constrained to the time and fuel mass left by the previous 

one. To counteract this problem, it is necessary to 

optimise the complete sequence in terms of both 

variables. This characteristic highlights the complex 

coupling of both mathematical problems being discussed.  

The presented optimisation problem, involving both 

the sequential and the transfer parts, can be 

mathematically stated as: 

 

𝑚𝑖𝑛{∑ 𝑚𝑓,𝑖
𝑁+1
𝑖=1 , 𝑡𝑡𝑜𝑡}    (1) 

 

In a way that each transfer is dominated by the 

dynamic equations of motion [21]: 

 

�̇�= −
𝜇

𝑟3 𝒓 +
𝑇

𝑚
𝒆𝑻𝛿 + 𝒇𝒅𝒊𝒔𝒕  (2) 

�̇� = −
𝑇𝛿

𝐼𝑠𝑝𝑔0
    (3) 

 

Where T is the thrust magnitude, 𝒆𝑻 the thrust 

direction vector, δ the main engine relay on-off function, 

and 𝒇𝒅𝒊𝒔𝒕 the acceleration due to environmental 

disturbances. However, for the purposes of the current 

study, some simplifications are considered. On the one 

hand, all engine firings are modelled as impulsive 

manoeuvres for which the ΔV is estimated accordingly. 

Two kinds of motion are considered in this paper: 

Lamber targeting, and phasing within a certain orbit. On 

the other hand, all disturbances are neglected, and ideal 

Kepler orbits are assumed. In addition, the problem is 

subject to the constraints: 

 

∑ 𝑠𝑖,𝑗 = 0𝑁+1
𝑖=0 ;   ∑ 𝑠𝑖,𝑗 = 0𝑁+1

𝑗=0    (4) 

 

∑ 𝑚𝑓,𝑘 ≤ 𝑚𝑓,𝑚𝑎𝑥
𝑁+1
𝑘=1 ;   ∑ 𝑡𝑘 ≤ 𝑡𝑚𝑎𝑥

𝑁+1
𝑘=1  (5) 

 

Equations (4) are related to the combinatorial 

problem and ensure that each orbit is visited only once. 

Equations (5) establish the constraint in terms of 

maximum fuel mass consumed and mission time given 

for the specific trajectory. The complete mathematical 

formulation of the problem enables to easily spot the two 

differentiated sub-problems already mentioned. On the 

one hand, one has the optimisation of the transfers given 

by Equations (2) and (3), which falls into the category on 

Nonlinear Continuous Programming. On the other hand, 

there is the combinatorial problem related to the visi- 

 
Fig. 1. Schematic of the TSP time-dependent links 

 

tation sequence with the single-time visiting constraint 

given by Equations (4), which falls into the category of 

Integer Programming. Being both tightly coupled, the 

complete mathematical problem can be categorised as a 

mixed integer nonlinear programming (MINLP) case. 

This problem does not have straightforward solutions and 

other strategies need to be considered to solve both the 

continuous and the integer sub-problems.  

 

3. Bi-level Optimisation 

The MINLP optimisation problem can be classified 

among the NP-hard type, meaning that it needs 

computational times which grow in a factorial manner 

with the number of orbits to be visited to solve it in a 

deterministic way. Therefore, heuristic algorithms that 

reach good sub-optimal solution at reasonable times are 

of interest for the problem under consideration. In 

addition, the complexity of the overall problem can be 

reduced by separating the two sub-problems mentioned 

in Section 2 and using different strategies for each of 

them according to their nature, and hose solutions can be 

put together to achieve the final optimal trajectory.  

This paper follows such a line of thought, so that a bi-

level optimisation algorithm is proposed, in a way that 

each level solves one of the sub-problems while their 

coupling is kept. The structure of this approach is as 

follows: an internal layer solving the transfer 

optimisation problem among all orbits, given a specific 

sequence; and an outer layer dealing exclusively with the 

combinatorial visitation order problem. As stated before, 

these are connected, as they rely on each other to achieve 

a proper solution to the MINLP problem. In fact, the 

inner layer needs a certain sequence given by the outer 

level to calculate the transfers among orbits; while the 

outer level uses the time and total fuel mass consumption 

associated to a certain sequence calculated by the inner 

level as cost function. To achieve this interconnection, 

the nested structure allows for easy information transfer.  
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However, an issue arises regarding this transfer of 

information as, as stated previously, there are two 

objectives to be minimised. The strategy followed in the 

algorithm is such that both the inner and the outer loop 

make use of Pareto dominance to establish the possible 

Pareto front optimal solutions for their respective 

problems. Thus, for a given sequence, one would get an 

array of possible solutions instead of a pair of values, 

which would make the comparison with other sequences 

difficult. A decision function is used to pick the cost pair 

solution for a given sequence from the inner loop to be 

forwarded to the outer loop, which will be further 

detailed in Section 3.3.  

 

3.1 Cost of a Single Transfer 

Before diving into the algorithm structure, it is 

important to show how the single transfers between two 

consecutive orbits are computed in terms of ΔV, fuel 

mass and TOF. Two types of manoeuvres are envisaged 

and will be presented in this subsection: Lambert 

targeting, and phasing. The selected manoeuvre at any 

transfer is picked based on a comparison of the Kepler 

elements among the two consecutive orbits. This set of 

variables are used as state representation as they are the 

ones used to define operational orbits for the satellites 

when designing a mission.  

In the most general transfer, an impulsive Lamber 

manoeuvre is used. This boundary-value problem looks 

to find the initial and final velocity of a particle in a 2-

body system needed to go from a specific initial position 

to a final one given a certain TOF [22]. Being a classic 

problem in space, several solutions have been presented 

along history. Among these, the most famous one is the 

one proposed by Gooding [23], which is based on that of 

Lancaster and Blanchard [24] with some variations, due 

to its robustness. A more efficient algorithm was 

proposed by D. Izzo [25], which trades a faster solution 

for less robustness. The present study uses a mixture of 

both algorithms in a way that, as a general rule, Izzo’s 

strategy is used, unless it is unable to converge until a 

number of iterations, after which Gooding’s algorithm is 

used. Therefore, all calls to the Lambert solver will reach 

a solution, and the slower strategy is only called when the 

faster one fails, speeding up the process. This 

implementation has been based on that of R. Oldenhuis 

[26]. 

In the case of constellation missions where several 

satellites are to be injected within the same orbit, a 

phasing manoeuvre is used. This strategy consists of a 

first impulsive firing to reach the phasing orbit, in which 

the upper stage waits until correct phasing is achieved, 

after which it performs a second firing. These are 

performed at the apogee or perigee of the original orbit 

to reach a phasing orbit with smaller or higher orbital 

period depending on whether the final position is ahead 

or behind, respectively [27]. Considering 𝑡𝐴𝐵 to be the 

time needed to close the gap, the semi-major axis of this 

intermediate orbit is obtained by first calculating its 

necessary orbital period: 

 

𝑇𝑝ℎ = 𝑇1 −
𝑡𝐴𝐵

𝑁𝑟𝑒𝑣
    (6) 

 

𝑎𝑝ℎ = √𝜇(𝑇𝑝ℎ/2𝜋)23    (7) 

 

This value allows to obtain the remaining orbital 

parameters, allowing to calculate the required ΔV and the 

TOF based on the number of revolutions 𝑁𝑟𝑒𝑣. 

 

3.2 Outer Layer 

As stated at the start of this Section, the outer layer is 

in charge of solving the combinatorial problem, using the 

inner level as the cost function for each sequence. A 

Population-based ACO (P-ACO) was used for this 

purpose due to its tree-shape structure (typical also of 

combinatorial problems). Such a strategy was introduced 

in Ref. [28] and expanded towards multi-objective 

problems in Ref. [29]. As an advantage of its use, it has 

been already proven to work in the domain of multi-

rendezvous problems by L. Simões et al. [30].  

The algorithm is based on the basic concept of ACO 

strategies, that is an ant travels a certain path given by a 

sequence, leaving a trail of pheromones on it, denoted by 

τ. The probability of another ant to take a certain path will 

be directly related to the amount of pheromones left by 

the previous generation of ants on the different paths. In 

addition, the problem considers another measure of 

“desirability” for an ant to pick a specific track, which is 

given by a heuristic value η related to the problem. For 

this case, the heuristic picked is an estimate of the 

theoretical ΔV to change individually each of the Kepler 

elements among two orbits, using approximate analytic 

equations [29]. Both the pheromone concentration and 

heuristic are scaled in relative importance at decision-

making by means of exponential factors. With these two 

values, the probability for an ant at node i to move 

towards node j, which can be any subset S of nodes still 

unvisited is:  

 

𝑝(𝑖, 𝑗) =
𝜏(𝑖,𝑗)𝛼𝜂(𝑖,𝑗)𝛽

∑ 𝜏(𝑖,𝑧)𝛼𝜂(𝑖,𝑧)𝛽
𝑧∈𝒮

            (8) 

 

The difference of P-ACO with respect to the basic 

ACO is that pheromones are not deposited by all ants, but 

rather by a subset of ants, or Population, composed of the 

beast ants of each generation. These ants enter the 

population in a FIFO-queue manner. In the specific case 

of a bi-objective optimisation problem, the population is 

composed by the members of the Pareto Front of the 

previous generation, as proposed in Ref. [30]. This set of 

solutions, or Elite, is emptied and updated at each  
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Fig. 2. Pseudo-code of P-ACO 

 

generation, such that it is conformed of all non-

dominated solutions used to recalculate the pheromone 

matrix. The algorithm implementation has been done as 

a modification of the one provided as open-source code 

developed by L. Simões et al. [30]. A pseudo-code is 

shown in Fig. 2 as a summary of the main steps.  

 

3.3 Inner layer 

The evaluation of the fitness of each of the ants is 

made by calling the inner layer of the algorithm, which 

computes the optimal set of impulsive manoeuvres given 

the sequence that determines the ant’s path. To solve this 

problem, a heuristic algorithm is used, being the one 

selected the Multi-Objective PSO (MOPSO). This 

strategy was first proposed by C. Coello [31], and the 

main difference with respect to the single objective PSO 

is the definition of the leader particle. In this case, it is 

not a single leader, but a set of non-dominated particles 

kept in a repository which lead the remaining particles. 

At each iteration, a random particle is selected from this 

repository which serves as leader for the new generation. 

The algorithm has been proven to work in the multi-

rendezvous problem Daneshjou et al. [6] and was 

selected due to its ability to exploit the continuous time 

domain, as opposed to the typical time-grid-strategies. 

The implementation was modified from the open-source 

code of V. Martínez-Cagigal [32]. A pseudo-code is 

presented in Fig. 3. The equation of motion for the 

particles is included, being each of the contributions 

weighted by a certain importance factor and a random 

number.  

 

 
Fig. 3. Pseudo-code of MOPSO 

 
The MOPSO is called to optimise a certain function, 

which is to be constructed based on the different orbits to 

be visited and their order. In fact, the optimisation 

variables depend on which manoeuvre is taking place, 

Thus, once an ant has selected a tour, the inner function 

is called which constructs the different manoeuvres to be 

followed and specifying the set of variables to be used, 

as well as their limits (to restrict the search space to 

reasonable bounds).  All these are stacked into an array 

of decision variables, which is the one to be optimised. 

Once this is done, the objective function is fully 

constructed based on these on-line defined manoeuvres. 

For each transfer, both the ΔV and TOF are calculated 

based on the type of manoeuvre, checking that 1) the 

transfer orbit is elliptical (ensuring that the transfer time 

is greater than Barker’s time [33]), and 2) the vehicle 

does not crash into the atmosphere. The fuel consumed is 

then computed using Tsiolkovsky’s equation:  

 

𝑚𝑓 = 𝑚0(1 − 𝑒𝑥𝑝 (
−∆𝑉

𝐼𝑠𝑝𝑔0
))                 (9) 

 

It must be noted that at each new leg, the initial mass 𝑚0 

is that of the upper stage after the previous leg, minus the 

mass of the payload deployed at the last visited orbit. 

This means that the mass evolution of the upper stage is 

discrete at some points, at it must be accounted for in the 

generation of the cost function. After all transfers are 

completed, constraints in maximum TOF and fuel mass 

are included via penalty functions of the type: 
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𝜆(𝑓, 𝐿) = (𝑚𝑎𝑥{0, 𝑓 − 𝐿})2           (10) 

 

𝑓 = 𝑓 + 𝐹 ∙ 𝜆(𝑓, 𝐿)                       (11) 

 

The cost output by the cost function is then the pair of 

TOF and fuel mass, plus the value of the penalty function, 

ensuring that the particles move by their own means 

towards feasible ranges. This on-line construction of this 

cost function allows for increased flexibility on the range 

of possible missions and does not require of previous 

knowledge among the possible sequences to construct the 

cost of any trajectory. In addition, by limiting the 

generation of the sequence of transfers to this part, it 

allows to include any other possible manoeuvre without 

needing to modify any other part of the optimisation 

process. 

However, as stated at the introduction of this Section 

3, the output of the MOPSO algorithm is a set of non-

dominated particles instead of one. Since a single cost 

pair is to be attributed to a single ant, a decision has to be 

taken on which particle from the Pareto Front is given to 

the tour as its fitness. Different logic strategies are 

implemented that can be followed:  

1) The minimum fuel solution 

2) The minimum time solution 

3) Random solution 

4) Solution that maximises the compliance of the 

trajectory both in terms of fuel mass and TOF.  

This last option is done by establishing a weighted 

function which considers the consumed fuel and time 

with respect to the maximum allowable and outputs a 

value from 0 to 1 depending on how much of both is 

remaining at the end of the mission. This function is as 

introduced by L. Simões et al. [30], and it is generated by 

firstly computing the remaining fraction of fuel and time 

(Equations (12)). With these values, the weights (or 

importance) given to each one are calculated in a way that 

the variable which has consumed the most fraction of its 

maximum allowed value is considered more important 

than the other one (Equations (13)). This logic follows by 

an effort to punish solutions close to not fulfilling the 

constraints and rewarding those which leave safe margins 

in terms of both variables.  

 

𝑚 =
𝑚𝑓,𝑚𝑎𝑥−𝑚𝑓

𝑚𝑓,𝑚𝑎𝑥
;   𝑡 =

𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
               (12) 

 

𝑤𝑚 = 1 −
𝑚

𝑚+𝑡
;  𝑤𝑡 = 1 −

𝑡

𝑚+𝑡
                (13) 

 

𝐴 = 𝑤𝑚 ∙ 𝑚 + 𝑤𝑡 ∙ 𝑡                (14) 

 

The weighted function (Equation (14)) is then 

constructed with both variables, and the outputted fitness 

is the non-dominated solution which maximises A.  

 

4. Analysis of Case Scenarios 

The tool is then to be used in solving a complex case 

of multi-orbit visitation to prove its validity and analyse 

the different possibilities that it proposes depending on 

different criteria. For this purpose, a mixture of part of a 

constellation mission and several nanosatellites is 

considered, based on historical data. For the constellation 

satellites, it was decided to include 3 satellites similar to 

the Starlink constellation, for which a mass of 200 kg was 

assumed. For their operational orbit, the elements of the 

4th shell were used [34], which are included in Table 1. 

Regarding their injection, an approximate 6-degree true 

anomaly phase difference among the satellites is 

required, based on the population of each orbit. On the 

other hand, for the nanosatellites, the history of already 

successfully launched university- and institution-owned 

payloads was studied. The distribution of the semi-major 

axis altitude (subtracting the Earth radius), eccentricity, 

inclination, and mass of these payloads is shown in Fig. 

4. It is observed how their masses are generally below 5 

kg, with a few exceptions; and their orbits tend to be 

quasi-circular. A wider variety is observed when it comes 

to their altitudes, being two sectors the more interesting 

ones: in the 400–500-kilometre range; and in the 600-

700-kilometre range. Similarly, two inclination 

magnitudes are mainly used: around 60 degrees; and near 

100 degrees. In fact, a correlation is observed among both 

characteristics, as lower inclination orbits tend to 

correspond to lower altitude orbits, while higher 

inclinations relate to higher altitudes. This is due to the 

purpose of these orbits, which is easily seen by, for 

instance, the Sun-Synchronous regime. For the case 

under consideration, it was decided that 7 random 

satellites in the near-100-degree area would be picked. 

Their main orbital and payload characteristics are given 

in Table 1.  

 

Table 1. Target orbits and associated payloads 

Index a-RE 

[km] 

e [-] i [deg] m [kg] 

1-3 557.1 0 97.70 200 

4 720.55 0.0095 98.10 1 

5 659.1 0.0060 97.93 26 

6 409.6 0.0008 97.44 3.2 

7 678.6 0.0039 98.20 10 

8 723.6 0.0006 98.28 1 

9 726.6 0.0104 98.10 1 

10 631.6 0.0014 97.90 1 

 

The study is then focused on solving the given multi-

rendezvous problem, analysing the effect of random 

operations within the optimisation algorithm, the 

influence of the criteria used to attribute a certain cost to 
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an ant, and finally the impact of “forcing” the algorithm 

to start the sequence in a specific orbit. The results of the 

subsequent studies are given in the following 

subsections. 

In all cases, the upper stage considered is inspired on 

the design of AVUM, with a dry mass of 660 kg and a 

specific impulse of 320 s [35]. However, due to the 

higher manoeuvring load, higher fuel masses are 

considered. Also, the disposal orbit used in the current 

study has been arbitrarily picked to be circular with a 300 

km altitude, and with an inclination of 1.71 radians 

(which is about 97.976 degrees), such that it is 

geometrically located near all the target orbits. It must be 

considered, also, that for the sake of simplicity of this 

problem, all RAANs and arguments of perigee are set to 

zero.  

 

 4.1 Solution to the base problem 

The single solution of the problem is obtained for two 

cases: one in which the maximum fuel mass is 2500 kg 

and another one with a maximum fuel mass of 2000 kg. 

This is done to observe the compliance of the algorithm 

to respect boundaries and study the effect of reduced fuel 

mass and its impact on the total weight of the system. The 

results can be observed in Fig. 5.  

As a first remark, it can be easily seen how the overall 

fuel masses needed in the second test are lower (due to 

the more stringent maximum fuel mass), while showing 

a larger spread in terms of total TOF of the mission. In 

fact, better results can be obtained with a lower amount 

of fuel mass, even though it could be expected that, 

having a greater amount of fuel, the upper stage could 

“allow” itself for faster and more expensive manoeuvres. 

This behaviour can be attributed to the fact that the extra 

500 kg in fuel mass that must be carried by the upper 

stage generate a detrimental effect on the performance of 

the impulsive manoeuvres, as higher mass fuel is needed 

to perform the same change in ΔV (Equation (9)). A 

break-even point must there exist in which the mounted 

fuel is the exact needed (plus some safety margin) to 

perform all the manoeuvres without excessive remaining 

unused mass to achieve an optimal solution. 

Nevertheless, it can be seen how the optimiser converges 

towards feasible solutions.  

Regarding the generated solutions, certain trends 

were observed (which had been previously discussed in 

Ref. [36]). As such, in both cases the lowest fuel mass 

consumption trajectories involve delivering the three 

heavier constellation satellites, which are in the same 

orbit, as soon as possible (sometimes the first ones, 

sometimes after delivering a previous nanosatellite). In 

this way, the total mass of the upper stage and its 

payloads is reduced, and the subsequent manoeuvres 

require less propellant to perform. Nevertheless, as these 

phasing manoeuvres are generally more time consuming, 

the algorithm proposes solutions of intermediate 

transfers and/or phasing (without the three of the 

constellation satellites being delivered sequentially) to 

achieve faster injections, at the expense of a higher fuel 

cost.  

Fig. 4. Historical distribution of the a, e, i, and payload mass of considered nanosatellites 
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In addition, it is noted that the effect of the orbit 

eccentricity on the decision of the sequence is almost 

non-existent, and the main factors are both the semi-

major axis and the inclination of the orbits. In fact, as 

noted previously in [36], the optimiser looks for trends 

based on the first orbit and the location of the disposal 

orbit. As such, it generates a balanced inclination 

sequence, completing all the injections at inclinations 

below the one of the disposal orbit, then those above and 

finally it manoeuvres itself towards the final one (or the 

opposite motion). Regarding altitudes, it either proposes 

lowering sequentially the orbital altitudes until reaching 

the lowest one (the disposal orbit), or a growing change 

from the constellation satellites’ operational orbit, 

through the rest, until the disposal orbit.  

However, it can be seen how the optimiser is able to 

provide with several trajectory options, each one with its 

own geometrical sequence logic and cost, which allows 

the user to decide depending on their own interests.  

4.2 Analysis of random operations 

Once the main problem solution has been studied, it 

is interesting to understand how the different random 

operations within the program can affect the final 

solution. To do so, it was run 10 times for both the 2500 

kg and the 2000 kg mass fuels (for a total of 20 full 

solving processes) changing at each time the seed of the 

random number generator. The results for the 2500 kg 

fuel case are shown in Fig. 6; while the results for the 

2000 kg fuel case are shown in Fig. 7. It must be noted 

that the final Pareto Front of the 10 runs is highlighted 

with respect to the other solutions.  

In the case of the 2500 kg fuel mass scenario, results 

of similar magnitude to the base solution are reached, 

with most of the solutions demanding fuel masses 

between 1500 and 2000 kg, and times close to a full day. 

The best solutions after the 10 runs, however, show how 

it can reach trajectories requiring less than a day, but 

beyond the 1500 kg of fuel mass required. An interesting 

Fig. 5. Solutions for the problem for maximum fuel masses of 2500 kg and 2000 kg 

             Fig. 6. Results of the problem for 10 runs with 2500 kg of fuel.  
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sequence is found which needs of a day and a half but is 

able to achieve all target orbits and the disposal one 

within 1300 kg, saving 200 kg of fuel both for the activity 

itself but also for the launcher. Longer times and cheaper 

mass consumption is related to the delivery of the 

constellation satellites first through phasing manoeuvres, 

to then follow into the injection of the nanosatellites, 

whereas faster deliveries might not necessarily include 

the full set of constellation payloads first or in sequence.  

A similar analysis can be done from the results of the 

case in which 2000 kg of fuel are available, although the 

general trend is to (obviously) require less mass fuel, 

generally between 1300 kg and 1800 kg, and slightly 

higher times. These solutions, similar to the previous 

scenario, deliver first all the constellation satellites 

through phasing, and afterwards moves towards the 

delivery of the nanosatellites. The lower fuel mass 

consumption with lower (or similar times) is attributed to 

the excess weight given with higher usable fuel mass 

(500 kg) that must be dragged at all times during 

subsequent manoeuvres as long as it is not consumed. 

Therefore, it is necessary to investigate what would be 

the break-even mass fuel point in which just the 

necessary fuel is mounted on board.  

For both cases, however, not all the solutions from all 

the runs lie within the overall Pareto Front. This is a 

normal behaviour but highlights the high effect of 

randomness within heuristic algorithms, which dominate 

the behaviour of the solver. In fact, while all solutions 

converged to similar results, either more generations of 

ants are required to achieve trajectories lying closer to the 

non-dominated solutions, or more runs are to be 

performed to get an overall Pareto Front (as done in this 

case). Nevertheless, it proves how heuristic algorithms 

provide with a solution which, while being time-efficient 

might not necessarily provide the global optimum.  

4.3 Analysis of ant cost decision 

As stated in Section 3.3, each ant can only carry a bi-

objective cost from the internal MOMPSO, and different 

criteria can be used to select which one of the non-

dominated solutions is to be attributed to a certain ant. 

Four different possibilities are envisioned: 1) picking the 

lower fuel consumption solution; 2) picking the lower 

TOF solution; 3) picking a random solution; and 4) 

picking the solution that maximises the weight function 

of Equation (15). The problem is solved again four times, 

each time with a different criterion to understand the 

effect of this decision on the final outputted solution. The 

results are plotted in Fig. 8. In this case, a maximum of 

2500 kg is considered as maximum fuel mass.  

Similar to the previous study, it is observed how not 

all the solutions lie within the Pareto Front. This 

behaviour was expected based on the previous results. 

However, more interestingly, these results display a 

certain trend based on their own nature. Within the 

overall distribution, it is seen how the minimum time 

decision criterion provides solutions which lie within the 

left-most side of the plot giving faster but more fuel-

consuming solutions (except for one case), whereas the 

minimum fuel criterion generates solutions within the 

more right-hand side, where longer times but cheaper 

solutions are found. Of course, this was something to be 

expected, as it follows the own nature of the criteria. On 

the other hand, using the weighted function shows a nice 

distribution across both sides, giving solutions which are, 

in comparison, closer to the origin of the axes, a desired 

condition of bi-objective optimality. Finally, as expected, 

by picking a random cost, less evenly distributed results 

are obtained, as well as less points in the plot, as such 

criterion does not contribute to converge towards a 

certain part of the Pareto Front, requiring of more 

computation to achieve a shape of non-dominated 

             Fig. 7. Results of the problem for 10 runs with 2000 kg of fuel.  
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solutions distribution. However, the benefit of using this 

random decision can be observed as one of the outputted 

solutions is such that the fuel consumption is the lowest, 

within a time similar to the fastest TOF.  

Therefore, it can be stated that the criterion to be used 

depends on the requirements and the desired outputs, 

whether it is a lower fuel interest or lower TOF interest, 

or a balanced one among both.  

 

4.4 Effect of starting at a certain orbit 

As a final analysis, the effect of restricting the 

algorithm to start at a certain node is to be studied. This 

would be the case of, for instance, a certain payload being 

high priority with respect to the other ones in terms of 

timely injection for quick operational status. For this 

study, a maximum of 2500 kg of fuel mass is assumed, 

and three different target orbits are considered: orbit 3, 

orbit 5 and orbit 7. The resulting costs are shown in Fig. 

9.   

As a first note, it is observed how the results tend to a 

certain Pareto Front, without necessarily lying on it, as it 

would be expected. It is interesting however, that even if 

a certain orbit is specified, the overall results tend to be 

similar both in terms of time and consumed fuel. For the 

case of the mission scenario in which the upper stage is 

forced to start at orbit 3, it is seen how in all provided 

orders, the constellation satellites are delivered first 

through phasing, and then all the remaining nanosatellites 

are injected. These provide with overall lower fuel 

consumption than for the other two cases, while the lower 

TOF results show poorer behaviour with respect to them. 

For the other two cases, all results show how after 

delivering the first required satellite, they immediately 

move towards orbit 3 to perform the phasing, through 

             Fig. 9. Results of the problem when forced to start at certain nodes.  

             Fig. 8. Results of the problem under different ant cost selection criteria.  
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orbits 2 and 1, and then the vehicle moves towards the 

remaining target orbits. This shows how, in fact, even if 

a certain mandatory initial orbit is given, the optimiser 

finds delivering the heaviest and same-orbit satellites as 

soon as possible to minimise the fuel consumption. 

Therefore, it can be stated that it efficiently 

accommodates for additional routing requirements 

depending on the necessities of possible customers.  

As a final note, it is observed how the closeness to the 

supposed Pareto Front across all case scenarios is higher 

than in the previous analyses. This is in fact attributed to 

the fact that, by fixing the first orbit, the optimisation 

problem magnitude has been reduced from 10! to 9! (a 

complete order of magnitude) and thus convergence is 

expected to be much faster in terms of iterations, and the 

effect of randomness is then slightly reduced.  

 

5. Conclusions  

This work has proposed an optimisation algorithm 

that can decide both the sequence and the specific 

transfers for the multi-rendezvous problem of multiple 

payload injection within a single launch, minimising the 

fuel consumption and the total mission time. This is 

achieved by separating the integer combinatorial problem 

(solved with a P-ACO strategy) and the continuous 

manoeuvring problem (solved with MOPSO) and nesting 

them as to generate a link between both. A strategy that 

optimises the full set of transfers at once, instead of the 

typical block building method, is implemented as to 

achieve a better global optimum.  

The algorithm was studied for a case mixing 

constellation satellites deployment and nanosatellites to 

study both the flexibility and the performance of the 

algorithm under realistic industrial case scenarios. It was 

shown that in all cases, the tool converges towards 

feasible solutions proposing several possible sequences 

with the respective impulsive manoeuvres. The results 

were also influenced by the maximum allowable fuel 

mass, which showed how having access to more 

propellant does not necessarily translate to faster 

manoeuvres, as the excess mass affects the consumption 

for a given transfer. In addition, due to the combinatorial 

nature of the sequence problem and the effect of 

randomness in heuristics, it is suggested to use the tool 

several times or with more iterations to achieve a better 

overall set of non-dominated solutions.  

All the solutions, however, were shown to be affected 

by different characteristics of the case scenario to be 

solved. In fact, depending on the desires of the user in 

terms of solutions of interest, the attribution of a certain 

cost to an ant linking both the MOPSO and the P-ACO 

algorithms, can be selected among the different options. 

In addition, if any payload is to be delivered first due to 

mission requirements, it can be accommodated, and will 

solve the remaining visitation trajectory successfully.  

The results allow to conclude that the tool can 

correctly achieve solutions for the multi-rendezvous 

problem within the required time and fuel limits, in a 

timely manner. In addition, the different case scenario 

characteristics that could impact the performance and 

results of the algorithm can be easily accommodated, 

proving the flexibility of the proposed strategy, and its 

usefulness towards real industrial case scenarios. Finally, 

the tool provides with feasible solutions that can be 

realistically considered towards the multi-orbit multi-

injection activity of an upper stage, bringing closer this 

innovative and more efficient way of satellite injection in 

the quickly growing space access sector.  
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