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Andrea C. Morelli†, Alessandro Morselli‡, Carmine Giordano§, and Francesco Topputo¶

Politecnico di Milano, Milan, Italy, 20156

I. Introduction
Following the advances of autonomous terrestrial vehicles, spacecraft with autonomous Guidance, Navigation, and

Control capabilities are also becoming appealing, and this motivates the current momentum of research on computational

guidance [1] of deep-space satellites [2–4]. Real-time low-thrust guidance implies solving an optimal control problem

onboard. This poses significant challenges, as autonomous trajectory optimization introduces exceptionally strict

requirements on algorithmic convergence and speed, as a feasible solution must be found without human intervention.

Classical direct and indirect methods [5] are in general not suitable for real-time optimization as they are not fast and

robust enough, respectively [3]. Therefore, machine learning [6] and convex optimization [7] have recently emerged as

most promising techniques for onboard applications. However, machine learning-based methods lack of a complete

theoretical framework [8]. Instead, convex optimization represents an interesting direct approach to solve the problem

because it provides high levels of robustness with reduced computational effort [9]. Moreover, it relies on sound

theoretical guarantees [10]. It has recently been applied to several aerospace-related problems [11]. Still, one major

disadvantage of convex optimization is that it only provides the solution at the discretization points. Therefore, its output

should be carefully used onboard as is, because interpolation between nodes must be performed to obtain the solution at

the desired time instants. Therefore, the physical constraints may be violated, so making the required thrust commands

in-between collocation points infeasible or affected by errors.

To overcome the aforementioned issues some works proposed to exploit the covector mapping theorem [12]

associated with either direct methods and mesh refinement techniques [3, 13] or a combination of direct and indirect

methods [14]. The approach in [13] for nonlinear programs solves the whole optimization problem multiple times using

denser mesh grids with a number of nodes that can depend on the discretization error. Moreover, the technique in [3]

for convex optimization consists of solving the problem twice using modified mesh grids where the nodes are placed

at the expected switch on and off times. Finally, recent work developed a convex optimization-based strategy able

to provide bang-bang thrust profiles [15]. However, none of the existing strategies is able to compute a feasible and

perfectly bang-bang thrust profile with analytical expressions of the thrust components in a quick and robust fashion. In

particular, analytical expressions of the thrust angles are desirable because they intrinsically satisfy the constraints at all
∗Part of this work was presented as paper AAS 23-186 at the 33𝑟𝑑 AAS/AIAA Space Flight Mechanics Meeting
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time instants. Moreover, they can be used for estimations and computations by other subsystems (e.g., the autonomous

navigation algorithm). Finally, computing their derivatives may be relevant as well [16].

This work addresses the need for an exact definition of the thrust profile in terms of switch on and off times

and thrust angles by proposing a double-layer algorithm that relies on convex optimization and also exploits a direct

shooting method [17]. The utmost advantage of the proposed approach is that it offers a fast and reliable way to obtain

near-optimal solutions for the low-thrust spacecraft trajectory optimization problem with analytical expressions for

the thrust variables with no further iterative processes other than SCP and no a priori imposition of the thrust profile

structure. Another key feature of our approach is the regularization of each thrust arc separately through a single

shooting method, therefore simplifying the optimization procedure and enhancing the convergence properties, contrary

to previous works in literature. Finally, we develop an analytical procedure based on simple physical considerations to

generate the initial guess for the switch on and off times of the thrust arcs. Overall, our approach develops a guidance

[18] process that outputs standardized control commands. The approach can consist both of a closed-loop one in case of

onboard use and of a method to design trajectories on ground. The fact that each thrust arc is regularized separately is

in fact tailored to closed-loop guidance, where only a portion of the computed commands are executed. We test the

proposed algorithm in extensive simulations using the widely-used and effective Hermite–Simpson (HS) discretization

[4] for the convex optimization algorithm.

The remainder of the article is organized as follows. Section II describes the problem that will be solved throughout

the article. Section III explains the proposed strategy. Section IV assesses the performance of the strategy. Finally,

section V concludes the work.

II. Problem Formulation

A. The Convex Low-Thrust Trajectory Optimization Problem

We consider the problem of finding the minimum-fuel trajectory of a spacecraft in motion around a primary body

and equipped with a low-thrust engine. The equations of motion of such spacecraft can be written as [9]



¤r(𝑡)

¤v(𝑡)

¤𝑚(𝑡)


=



v(𝑡)

−` r(𝑡)
∥r(𝑡)∥3

2
+ T(𝑡)

𝑚(𝑡)

− ∥T(𝑡)∥2
𝐼sp𝑔0


(1)

where r = [𝑥, 𝑦, 𝑧]⊤, v = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]⊤, and 𝑚 are the position, velocity, and mass variables, respectively. The

gravitational parameter of the primary body is indicated as `, T = [𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧]⊤ is the thrust vector, 𝐼sp is the specific

impulse, and 𝑔0 is the gravitational acceleration of the Earth at sea level. As the dynamics in Eq. (1) are nonconvex,
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they have to be modified for the problem to be expressed in a convex form. The dimensionless convexified low-thrust

trajectory optimization problem therefore reads [9, 19]

minimize
u(𝑡)

− 𝑤(𝑡 𝑓 ) + _

∫ 𝑡 𝑓

𝑡0

∥𝝂(𝑡)∥1 d𝑡 + _

∫ 𝑡 𝑓

𝑡0

max (0, [(𝑡)) d𝑡 (2a)

subject to: ¤x(𝑡) = f(x̄(𝑡), ū(𝑡)) + A(x̄(𝑡)) (x(𝑡) − x̄(𝑡)) + B(u(𝑡) − ū(𝑡)) + 𝝂(𝑡) (2b)

Γ(𝑡) ≤ 𝑇∗
maxe−�̄�(𝑡) (1 − 𝑤(𝑡) + �̄�(𝑡)) + [(𝑡) (2c)

∥𝝉(𝑡)∥2 ≤ Γ(𝑡) (2d)

∥x(𝑡) − x̄(𝑡)∥1 ≤ 𝑅 (2e)

r(𝑡0) = r0, v(𝑡0) = v0, 𝑤(𝑡0) = 𝑤0 (2f)

r(𝑡 𝑓 ) = r 𝑓 , v(𝑡 𝑓 ) = v 𝑓 (2g)

x𝑙 ≤ x ≤ x𝑢, u𝑙 ≤ u ≤ u𝑢. (2h)

x = [r⊤, v⊤, 𝑤]⊤ and u = [𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧 , Γ]⊤ = [𝝉⊤, Γ]⊤ are the new state and control variables, respectively; in particular,

𝑤(𝑡) = ln[𝑚(𝑡)] is the modified mass variable, and the relationship between the SCP controls u(𝑡) and the canonical

thrust variables is [19]

𝑇𝑞(𝑡) = 𝜏𝑞(𝑡)𝑒𝑤(𝑡), 𝑞 = 𝑥, 𝑦, 𝑧; ∥T(𝑡)∥2 = Γ(𝑡)𝑒𝑤(𝑡). (3)

𝝂(𝑡) and [(𝑡) are slack variables introduced to avoid artificial infeasibility, and _ > 0 is a constant weight. The times 𝑡0

and 𝑡 𝑓 are the initial and final transfer times, 𝑇∗
max is the dimensionless maximum allowable thrust, and 𝑅 is the radius of

the trust region assuring that the convexification of the problem is valid. In Eq. (2b), the matrices A and B are defined as

A(x̄(𝑡)) ..=
𝜕f
𝜕x

�����
x̄(𝑡)

, B ..=
𝜕f
𝜕u

�����
ū(𝑡)

, (4)

where f = f(x, u) are the dynamics

f(x, u) =



v(𝑡)

− r(𝑡)
∥r(𝑡)∥3

2
+ 𝝉(𝑡)

− Γ(𝑡)
𝐼∗sp𝑔

∗
0


. (5)

The quantities (·)∗ indicate dimensionless parameters. The original optimal control problem is solved through the

sequential convex programming (SCP) [20], an iterative technique that considers a sequence of convex subproblems of

the form (2a)–(2h).
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Fig. 1 Typical thrust profile obtained with convex optimization for an Earth–Dionysus transfer.

B. The Thrust Regularization Problem

Figure 1 shows a typical thrust profile obtained with SCP for an Earth to asteroid Dionysus transfer. The profile

has (almost) the classical bang-bang structure, indicating that a (sub-)optimal solution to the problem has been found.

However, there are some intermediate points (red filled circles) that are neither 0 nor 𝑇max. On top of that, Eq. (2d)

expresses the convexified version of the real physical constraint on the thrust variables
√︃
𝜏2
𝑥(𝑡) + 𝜏2

𝑦(𝑡) + 𝜏2
𝑧 (𝑡) = Γ(𝑡).

Note that this is a constraint that arises when the problem is written in convex form. Due to discretization, this

relationship is only satisfied at the collocation points 𝑡 𝑗 (i.e., the points where the constraints are actually imposed), with

𝑗 = 1, . . . , 𝑀 , independently of the discretization strategy. Outside of these points, the controls must be interpolated.

In this work, the Hermite–Simpson discretization is used, and therefore the thrust variables are linearly interpolated

in-between two nodes. This causes the constraint on the thrust variables to exceed the convergence tolerance outside of

the collocation points [21], as shown in Fig. 2. Let us define the ratio b between the maximum violation of the constraint

on the SCP thrust variables and the value 𝑇max associated with the selected engine for the considered transfer as

b = 𝑒𝑤(𝑡)

√︃𝜏2
𝑥(𝑡) + 𝜏2

𝑦(𝑡) + 𝜏2
𝑧 (𝑡) − Γ(𝑡)


𝑇max

× 100, 𝑡 ∈ [𝑡0, 𝑡 𝑓 ]. (6)

The left 𝑦-axis of Fig. 3 shows how max
𝑡 ∈[𝑡0 ,𝑡 𝑓 ]

b varies as a function of the discretization intervals for the Earth–Dionysus

transfer.

The right 𝑦-axis of the same figure reports the CPU time required to solve the problem as a function of the

discretization intervals. The error ratio is in the range of ≈ 0.5 − 7%, i.e., in the same order of magnitude of the

state-of-the-art low-thrust engines execution errors ([22] indicates that these are in the order of 5%). It is worth noting

that Fig. 3 only shows the maximum point wise error, and hence the cumulative error will be higher. Increasing the

number of discretization points does not solve the issue: as Fig. 3 shows, the correspondent CPU time also increases

rapidly with the number of intervals. On top of these considerations, the strategy developed in this work generates the
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Fig. 2 Thrust constraint violation during the whole duration
of a typical Earth–Dionysus transfer, where the red dashed
line indicates the SCP algorithm convergence threshold.
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Fig. 3 Max. of ratio b (empty circles, left
𝑦-axis) and SCP CPU time (filled circles, right
𝑦-axis).

thrust profile of a low-thrust spacecraft by formulating the so-called thrust regularization problem (TRP):

Find a(𝑖), b(𝑖), 𝑡(𝑖)ON, 𝑡
(𝑖)
OFF (7a)

such that T(𝑖)(𝑡) = 𝑇max



cos [𝛽(𝑖)(𝑡)] cos [𝛼(𝑖)(𝑡)]

cos [𝛽(𝑖)(𝑡)] sin [𝛼(𝑖)(𝑡)]

sin [𝛽(𝑖)(𝑡)]


(7b)


𝛼(𝑖)(𝑡) =

𝑝∑︁
𝑗=0

𝑎
(𝑖)
𝑗
𝑡 𝑗 = a(𝑖) · [1, 𝑡, . . . , 𝑡 𝑝]

𝛽(𝑖)(𝑡) =
𝑝∑︁
𝑗=0

𝑏
(𝑖)
𝑗
𝑡 𝑗 = b(𝑖) · [1, 𝑡, . . . , 𝑡 𝑝]

(7c)

for all the thrust segments 𝑖 = 1, . . . , 𝑁T that can be identified in the SCP solution of a low-thrust space trajectory

optimization problem. We want to find the switch on and off times 𝑡(𝑖)ON and 𝑡
(𝑖)
OFF, respectively, and the coefficients of the

polynomials that describe the thrust angles, such that the thrust magnitude is always 𝑇max inside the thrust arcs and

0 elsewhere, i.e., we want to obtain a perfect bang-bang profile. This is justified by the theory, which shows that the

solution of the problem in Eq. (2) has such structure [23].

It can be noted that the above statement of the TRP is similar to what is usually done in either indirect or direct

shooting methods. The former, although relatively computationally inexpensive, require very good initial guesses for the

costates and are therefore not robust enough for onboard applications. On the other hand, the combination of classical

nonlinear transcription and direct shooting usually requires long computational times. Our method, instead:
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1. builds an algorithm that possesses the three characteristics of robustness, accuracy, and rapidity at the same time;

2. regularizes each thrust arc separately, hence strongly simplifying the optimization process;

3. relies on an analytical initial guess.

Remark 1: in the points above and throughout the rest of the paper, the term accuracy is used differently with respect

to how it is used in Ref. [24]. In this work, we refer to the term as the property of the guidance output to not introduce

any errors when it is evaluated outside of the collocation points and that, when used to propagate its state, allows the

spacecraft to reach the target up to a selected threshold.

III. Strategy
Figure 4 shows the flowchart of the strategy proposed to solve the whole low-thrust trajectory optimization problem.

The thin grey boxes indicate the SCP algorithm, whereas the bold blue boxes highlight the methodology developed in

this paper, which consists of an initial guess generator and a direct shooting regularization (DSR).

Initial guess for
shooting method

Initial guess 
for SCP SCP DSR

Constraints 
under

 threshold

Shooting method
cannot be performed 

Fig. 4 High-level description of the thrust regularization procedure.

The rhomboid block establishes whether the thrust regularization can be performed or not. If the state and control

constraints violation of the SCP procedure is below a certain threshold, it is possible to proceed. Otherwise, no further

operation can be executed.

A. Thrust Regularization Initial Guess

The DSR initial guess generation consists of three steps. To distinguish among the thrust-regularized, the initial

guess for the thrust regularization procedure, and the SCP quantities, we use the notations [·], ˆ[·], and ˜[·], respectively.

Step 1 First, the thrust arcs must be identified. We consider a threshold YT under which the SCP thrust magnitude is

considered to be 0. Consequently, the SCP thrust on and off times 𝑡(𝑖)ON and 𝑡
(𝑖)
OFF are defined as the instants when the

thrust magnitude becomes higher or lower than the selected threshold, respectively. The actual value of YT is found

through preliminary analysis. The thrust arcs identification process can be formalized as in Algorithm 1. In order to

more precisely capture the thrust arcs, the thrust and state variables are interpolated at a higher number of points 𝑁INT

with respect to the collocation points.
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Algorithm 1 Algorithm used for the definition of the thrust arcs.
1: 𝑖 = 1, 𝑗old = 1, 𝑁T = 0;
2: while 𝑗old ≤ 𝑁INT do
3: for 𝑗 = 𝑗old, . . . , 𝑁INT do
4: if

T(𝑡 𝑗 )


2 ≥ YT then
5: 𝑡

(𝑖)
ON = 𝑡 𝑗 ;

6: 𝑖 = 𝑖 + 1;
7: for 𝑘 = 𝑗 + 1, . . . , 𝑁INT do
8: if ∥T(𝑡𝑘)∥2 ≤ YT then
9: 𝑡

(𝑖)
OFF = 𝑡𝑘 ;

10: 𝑗old = 𝑘 + 1;
11: break;
12: end if
13: end for
14: break;
15: end if
16: end for
17: end while
18: 𝑁T = 𝑖 − 1;

Remark 2: any arbitrary collocation method can be used associated with the proposed strategy. In the case of

methods that parameterize the controls (such as pseudsospectral [3] or higher-order Hermite interpolation-based [4]

discretization), however, it is required that the interpolating polynomials of the controls do not exceed the imposed thrust

bounds; otherwise, the thrust arcs identification procedure described in Algorithm 1 may fail. A possible approach

would be to use Bernstein polynomials to interpolate the controls. In this case, in fact, it has been proven that they

remain within the feasible set for all times in case of convex feasible sets [16].

Step 2 We generate the initial guess for the times 𝑡ON and 𝑡OFF considering the following hypotheses. For each thrust

arc 𝑖,

1) the total change of spacecraft velocity Δ̃𝑉
(𝑖)
of the SCP solution is considered equal to the total change of spacecraft

velocity Δ̂𝑉
(𝑖)
associated with the thrust regularization initial guess, where

Δ̃𝑉
(𝑖) ≡

∫ 𝑡
(𝑖)
OFF

𝑡
(𝑖)
ON

Γ(𝑡) d𝑡. (8)

2) the barycentric time 𝑡(𝑖)𝑐 of the SCP solution is considered equal to the barycentric time 𝑡
(𝑖)
c associated with the

initial guess thrust profile, where

𝑡
(𝑖)
c ≡

∫ 𝑡
(𝑖)
OFF

𝑡
(𝑖)
ON

𝑡Γ(𝑡) d𝑡∫ 𝑡
(𝑖)
OFF

𝑡
(𝑖)
ON

Γ(𝑡) d𝑡

, (9)

The integrals in Eqs. (8) and (9) are computed numerically.
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3) The thrust magnitude is always equal to the maximum value 𝑇max, i.e., ∥T(𝑡)∥2 ≡ 𝑇max.

In the light of these considerations, the following system of equations can be written to define the initial guess values for

the times 𝑡(𝑖)ON and 𝑡
(𝑖)
OFF: 

∫ 𝑡OFF

𝑡ON

𝑇max
𝑚

d𝑡 = Δ̃𝑉

∫ 𝑡OFF

𝑡ON

𝑡
𝑇max
𝑚

d𝑡∫ 𝑡OFF

𝑡ON

𝑇max
𝑚

d𝑡
= 𝑡𝑐

¤𝑚 = − 𝑇max
𝐼sp𝑔0

(10)

where the only unknowns are 𝑡ON and 𝑡OFF, i.e. the initial guesses for the times 𝑡ON and 𝑡OFF. In Eqs. (10), the apex 𝑖 has

been dropped for simplicity. Considering the third of Eqs. (10), we have

𝑚 𝑓 = 𝑚𝑖 −
𝑇max
𝐼sp𝑔0

(𝑡OFF − 𝑡ON), (11)

where 𝑚𝑖 = 𝑚(𝑡ON) and 𝑚 𝑓 = 𝑚(𝑡OFF). According to the Tsiolkovsky equation and under the hypothesis that the first of

Eqs. (10) holds, 𝑚 𝑓 can also be found as

𝑚 𝑓 = 𝑚𝑖 exp
(
− Δ̃𝑉

𝐼sp𝑔0

)
. (12)

Therefore,

𝑚𝑖 −
𝑇max
𝐼sp𝑔0

(𝑡OFF − 𝑡ON) = 𝑚𝑖 exp
(
− Δ̃𝑉

𝐼sp𝑔0

)
𝑇max
𝐼sp𝑔0

(𝑡OFF − 𝑡ON) = 𝑚𝑖

[
1 − exp

(
− Δ̃𝑉

𝐼sp𝑔0

)]
,

and, finally,

𝑡OFF = 𝑡ON +
𝑚𝑖 𝐼sp𝑔0

𝑇max

[
1 − exp

(
− Δ̃𝑉

𝐼sp𝑔0

)]
. (13)
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Let 𝑘1 ≡ 𝑚𝑖 𝐼sp𝑔0
𝑇max and 𝑘2 ≡ exp

(
− Δ̃𝑉

𝐼sp𝑔0

)
. If we now substitute Eq. (11) at a general time instant 𝑡 inside the second of

Eqs. (10), we obtain

𝑡𝑐

∫ 𝑡OFF

𝑡ON

𝑇max

𝑚𝑖 − 𝑇max
𝐼sp𝑔0

(𝑡 − 𝑡ON)
d𝑡 =

∫ 𝑡OFF

𝑡ON

𝑡
𝑇max

𝑚𝑖 − 𝑇max
𝐼sp𝑔0

(𝑡 − 𝑡ON)
d𝑡

𝑡𝑐

∫ 𝑡OFF

𝑡ON

1
𝑡 − (𝑘1 + 𝑡ON)

d𝑡 =
∫ 𝑡OFF

𝑡ON

𝑡

𝑡 − (𝑘1 + 𝑡ON)
d𝑡

𝑡𝑐

[
ln |𝑡 − 𝑘1 − 𝑡ON |

] 𝑡OFF
𝑡ON

=
[
(𝑘1 + 𝑡ON) ln |𝑡 − 𝑘1 − 𝑡ON | + 𝑡

] 𝑡OFF
𝑡ON

𝑡𝑐 ln
(
−𝑡OFF + 𝑘1 + 𝑡ON

𝑘1

)
= (𝑘1 + 𝑡ON) ln

(
−𝑡OFF + 𝑘1 + 𝑡ON

𝑘1

)
+ (𝑡OFF − 𝑡ON)

(14)

By substituting the expression of 𝑡OFF obtained in Eq. (13), we get

𝑡𝑐 ln 𝑘2 = (𝑘1 + 𝑡ON) ln 𝑘2 + 𝑘1 − 𝑘1𝑘2

𝑡ON =
𝑡𝑐 ln 𝑘2 + 𝑘1(𝑘2 − ln 𝑘2 − 1)

ln 𝑘2
.

(15)

Finally, by back-substituting the constants 𝑘1 and 𝑘2, it is obtained

𝑡ON = 𝑡𝑐 −
𝑚𝑖 𝐼sp𝑔0

𝑇max

[
1 +

𝐼sp𝑔0

Δ̃𝑉

(
exp

(
− Δ̃𝑉

𝐼sp𝑔0

)
− 1

)]
(16)

Figure 5 shows the scheme of the thrust profile as obtained by the SCP algorithm (together with the associated

switch on and off times 𝑡(𝑖)ON and 𝑡
(𝑖)
OFF) and the initial guess for the switch on and off times of the regularized thrust profile

𝑡
(𝑖)
ON and 𝑡

(𝑖)
OFF, respectively. The red filled circles represent the thrust magnitude at the interpolation points.

Thrust

Time

Fig. 5 Comparison of SCP (black solid line) and initial-guess identified (blue dashed line) thrust profiles.
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Step 3 The thrust angles generation procedure consists of three sub-steps:

1. the thrust variables of the SCP algorithm {𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧 ,Γ} are transformed into the canonical thrust variables{
𝑇𝑥 , 𝑇𝑦 .𝑇𝑧 , ∥T∥2

}
[19].

2. After that, a change of coordinates is performed to obtain the values of the thrust angles in Eqs. (7c) at the SCP

collocation points.

3. Finally, a least-square polynomial interpolation is executed to finally obtain the coefficients of the polynomials in

Eqs. (7c).

Remark 3: Note that the initial guess times 𝑡ON and 𝑡OFF represent significantly better estimates for the regularized

times 𝑡ON and 𝑡OFF if compared with the SCP switch on and off times 𝑡ON and 𝑡OFF: it has been verified that, for the

Earth–Dionysus transfer,

|𝑡ON − 𝑡ON |≈ |𝑡OFF − 𝑡OFF |≈ 101 days

|𝑡ON − 𝑡ON |≈ |𝑡OFF − 𝑡OFF |≈ 10−1 − 100 days,

i.e., the proposed initial guesses are more precise than using the simple SCP results by at least one order of magnitude.

B. Direct Shooting Optimization

A direct shooting method is used to solve the TRP described in Eqs. (7). Algorithm 2 summarizes the fundamental

steps of the approach. The whole strategy consists of imposing that the spacecraft state at the beginning and at the end

of each thrust arc is the same before and after the thrust regularization procedure. First, the states x(1)
1 and x(1)

2 associated

with the SCP switch on and off times of the first thrust segment are fed to the algorithm (line 1). Then, for each thrust

arc 𝑖, the shooting method iterations 𝑘 are initialized, and the initial guess for 𝑡(𝑖)ON, 𝑡
(𝑖)
OFF, and for the coefficients of the

thrust angles polynomials a(𝑖) and b(𝑖) are provided (lines 2–4). Referring to Fig. 5, the previously-defined instants 𝑡(𝑖)ON,

𝑡
(𝑖)
ON, 𝑡

(𝑖)
OFF, and 𝑡

(𝑖)
OFF identify three time intervals. Starting at x

(𝑖)
1 , the spacecraft free dynamics is propagated from 𝑡

(𝑖)
ON to

𝑡
(𝑖)
ON,𝑘 , i.e. the switch on time of the regularized thrust profile associated with the shooting method iteration 𝑘 (line 6).

Then, the low-thrust dynamics in Eq. (1) is propagated from 𝑡
(𝑖)
ON,𝑘 to 𝑡

(𝑖)
OFF,𝑘 (line 7), where the latter is the switch off

time of the regularized thrust profile associated with the shooting method iteration 𝑘 . In Eq. (1), the thrust vector T(𝑡) is

such that its components are defined as in Eq. (7b). The free dynamics is further propagated from 𝑡
(𝑖)
OFF,𝑘 to 𝑡

(𝑖)
OFF (line

8). The∞-norm of the error between the spacecraft state after the thrust regularization procedure, x(𝑖)
𝑐,𝑘
, and the target

spacecraft state x(𝑖)
2 is computed (line 9). The algorithm stops when the error is below a certain threshold or if either the

elapsed optimization time Δ𝑠 or the shooting iterations 𝑘 overcome some thresholds 𝑠max and 𝑘max, respectively (line

5). The overlying procedure is executed separately for each thrust arc; this means that the user can choose whether

10



Algorithm 2 Thrust regularization algorithm

1: x(1)
1 = x(𝑡(1)

ON), x(1)
2 = x(𝑡(1)

OFF);
2: for 𝑖 = 1, . . . , 𝑁T do
3: 𝑘 = 1, 𝑠𝑖 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒, Δ = 1, 𝑡(𝑖)ON,0 = 𝑡

(𝑖)
ON, 𝑡

(𝑖)
OFF,0 = 𝑡

(𝑖)
OFF, a

(𝑖)
0 = â(𝑖), b(𝑖)

0 = b̂(𝑖);
4: while Δ > YST and 𝑘 < 𝑘max and Δ𝑠 < 𝑠max do
5: Starting at x(𝑖)

1 , propagate the free dynamics from 𝑡
(𝑖)
ON to 𝑡

(𝑖)
ON,𝑘 and obtain x(𝑖)

𝑎,𝑘
;

6: Starting at x(𝑖)
𝑎,𝑘
, propagate the low-thrust dynamics in Eq. (1) from 𝑡

(𝑖)
ON,𝑘 to 𝑡

(𝑖)
OFF,𝑘 and obtain x(𝑖)

𝑏,𝑘
;

7: Starting at x(𝑖)
𝑏,𝑘
, propagate the free dynamics from 𝑡

(𝑖)
OFF,𝑘 to 𝑡

(𝑖)
OFF and obtain x(𝑖)

𝑐,𝑘
;

8: Δ =
x(𝑖)

𝑐,𝑘
− x(𝑖)

2


∞
; ⊲ Note that the constraint does not include the mass.

9: Update variables 𝑡ON,k, 𝑡OFF,k, a(𝑖)
𝑘
, b(𝑖)

𝑘
;

10: 𝑘 = 𝑘 + 1;
11: Δ𝑠 = 𝑠𝑖 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒;
12: end while
13: 𝑡

(𝑖)
ON = 𝑡

(𝑖)
ON,𝑘−1, 𝑡

(𝑖)
OFF = 𝑡

(𝑖)
OFF,𝑘−1, a

(𝑖) = a(𝑖)
𝑘−1, b

(𝑖) = b(𝑖)
𝑘−1;

14: if 1 < 𝑖 < 𝑁T − 1 then
15: Starting at x(𝑖)

c,𝑘 , propagate the free dynamics from 𝑡
(𝑖)
OFF to 𝑡

(𝑖+1)
ON and obtain x(𝑖)

𝑑,𝑘
;

16: x(𝑖+1)
1 = x(𝑖)

𝑑,𝑘
, x(𝑖+1)
2 = x(𝑡(𝑖+1)

OFF );
17: else if 𝑖 ≡ 𝑁T − 1 then
18: x(𝑖+1)

1 = x(𝑖)
𝑑,𝑘
, x(𝑖+1)
2 = x 𝑓 ;

19: end if
20: end for

to perform the regularization for the whole thrust profile or not. In the first case, the initial state x(𝑖+1)
1 is obtained by

further propagating the free dynamics from 𝑡
(𝑖)
OFF to 𝑡

(𝑖+1)
ON , for 𝑖 = 1, . . . , 𝑁T − 2 (lines 15–16). For the first thrust arc, on

the contrary, the state x(1)
1 is directly obtained by interpolating the SCP solution and evaluating it at time 𝑡

(1)
ON (line 1).

Moreover, for the last thrust arc (i.e., 𝑖 = 𝑁T−1), the state x(𝑁T)
2 is considered to be the final boundary condition (line 19).

The MATLAB® function fmincon with the active-set algorithm is used in this article to solve the shooting optimization.

Remark 4: Due to the imperfect bang-bang structure of the thrust profile obtained with SCP, the times 𝑡(𝑖)ON and 𝑡
(𝑖)
OFF

are such that

𝑡
(𝑖)
ON > 𝑡

(𝑖)
ON, 𝑡

(𝑖)
OFF < 𝑡

(𝑖)
OFF, (18)

and in particular 𝑡(1)
ON > 𝑡

(1)
ON ≥ 𝑡0 and 𝑡(𝑁T)

OFF < 𝑡
(𝑁T)
OFF ≤ 𝑡 𝑓 , i.e. the thrust regularization problem is feasible even when the

thrust profile starts or terminates with the thrust on. If errors from previous thrust arcs regularization procedures are

encountered, however, the regularization of the last thrust arc for the case 𝑡(𝑁T)
OFF ≈ 𝑡 𝑓 may fail to converge.

IV. Numerical Simulations
The performance of the proposed algorithm is assessed in several simulations where the entire thrust profile is

regularized. The Earth–Venus and Earth–Dionysus transfers are considered as test cases. Data on the transfers and

the associated spacecraft engines can be found in literature, together with various parameters that are used to solve

the SCP layer [9]. Table 1 summarizes the thrust regularization algorithm parameters. To address the quality of the

11



Table 1 Parameters for the thrust regularization algorithm

Parameter Value

Shooting convergence threshold YST 1 × 10−11

Thrust threshold YT 1 × 10−6

Elapsed optimization time threshold 𝑠max, s 5
Max. shooting iters. 𝑘max 10
Max. SCP iters. 𝑘SCPmax 70, 100
Thrust regularization flag threshold YSCP 1 × 10−4
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Fig. 6 Comparison of thrust profiles as obtained by the SCP algorithm and after regularization.

proposed algorithm, we perform the following simulations. We select different number of discretization nodes and

we run 100 simulations for each of them, providing the SCP algorithm with poor perturbed cubic interpolation-based

initial guesses [9]. We run the thrust regularization strategy even in the cases for which the SCP algorithm is close to

convergence after a maximum number of iterations, but still it did not satisfy the convergence criterion. The maximum

number of admissible SCP iterations 𝑘SCPmax and the threshold YSCP that is used to decide whether to perform the thrust

regularization are also reported in Table 1. Clearly, the value of YSCP is higher than the SCP convergence threshold,

which in our case is 1 × 10−6 as in [9]. All simulations are carried out in MATLAB® version R2020b on an Intel Core

i7-10700@2.90 GHz desktop computer with 16 GB of RAM. Figure 6 shows examples of regularized thrust profiles for

the Earth–Venus and Earth–Dionysus transfers, respectively. Finally, Figs. 7a and 7b highlight the thrust components of

the regularized thrust profiles.

A. Convergence Assessment

The following criterion is used when deciding whether the SCP algorithm or the thrust regularization procedure find

a feasible solution. First, the equations of motion in Eq. (1) are propagated with the obtained controls and the functions

𝑔 =
rprop(𝑡 𝑓 ) − r 𝑓


2 − 103 [km] (19a)

ℎ =
vprop(𝑡 𝑓 ) − v 𝑓


2 − 100 [m/s] (19b)
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Fig. 7 Regularized thrust magnitude and components for the considered transfers.

are defined. The chosen values are compatible with state-of-the-art autonomous navigation algorithms errors [25]

given the large time of flights of the considered trajectories. The algorithms are considered to find a feasible solution

when the condition

𝑄 = max(𝑔, ℎ) < 0 (20)

is respected. In the case of the SCP solution, we want to use physically feasible controls (recall that the constraint in Eq.

(2d) is not respected outside of the collocation points). Therefore, we integrate the dynamics with the obtained values of

[𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧] and we define the thrust magnitude as ∥T∥2 =
√︃
𝑇2
𝑥 + 𝑇2

𝑦 + 𝑇2
𝑧 at each time step. We refer to this set of thrust

variables as feasible controls. Table 2 presents the convergence results. Usually, it is considered that the SCP algorithm

reaches convergence when the nonlinear constraints violation at the collocation points of the candidate solution are

below a certain threshold [9]. The columns Conv. SCP in the table refer to this type of convergence and it will also be

indicated as SCP-convergence, whereas the columns 𝑄SCP and 𝑄ST refer to the criterion in Eq. (20).

With regard to the Earth–Venus transfer, the convergence of the standard SCP algorithm is in general low [9].

Surprisingly, the integration of the equations of motion with feasible SCP controls only respected the criterion in Eq.

(20) once. On the other hand, the convergence of the shooting method satisfies the convergence criterion in many cases,

often outperforming the SCP algorithm convergence itself, meaning that the thrust regularization procedure is robust

against not-fully converged SCP solutions. With regard to the Earth–Dionysus transfer, none of the SCP computed

(physically feasible) thrust profiles was able to satisfy the constraint in Eq. (20). Notably, the shooting method procedure

results in many cases for which the condition in Eq. (20) is respected, even though in this second case the𝑄-convergence

of the thrust regularization is lower than the 𝑆𝐶𝑃-convergence of the SCP algorithm itself.
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Table 2 Convergence results

Case Earth–Venus Earth–Dionysus

Nr. Nodes Conv. SCP, % 𝑄SCP,% 𝑄ST,% Nodes Conv. SCP, % 𝑄SCP,% 𝑄ST,%

1 50 53.0 0.0 35.0 100 82.0 0.0 44.0
2 100 32.0 0.0 53.0 150 76.0 0.0 58.0
3 150 26.0 0.0 44.0 200 79.0 0.0 68.0
4 200 21.0 0.0 43.0 250 77.0 0.0 68.0
5 250 18.0 1.0 33.0 300 80.0 0.0 69.0

Average 150 30.0 0.2 41.6 200 78.8 0.0 61.4

Table 3 Performance results

Case Earth–Venus Earth–Dionysus

Nr. Mass SCP, kg 𝜌𝑚,% 𝑇𝑖𝑚𝑒, s 𝜏,% Mass SCP, kg 𝜌𝑚,% 𝑇𝑖𝑚𝑒, s 𝜏,%

1 1094.1 +1.14 9.8 70.1 2277.5 +0.56 18.6 70.9
2 1186.6 +0.21 14.7 38.3 2265.0 +0.31 20.8 52.4
3 1213.5 +0.22 23.6 20.9 2270.6 +0.17 26.0 37.3
4 1224.3 +0.11 34.8 12.0 2262.9 +0.22 33.1 27.9
5 1205.0 +0.12 44.7 9.6 2294.9 +0.20 43.5 20.9

Average 1184.7 +0.36 25.5 30.2 2274.2 +0.29 28.4 41.9

B. Performance Assessment

Table 3 describes the performance of the proposed strategy in terms of final spacecraft mass and CPU time. The

columns 𝜌𝑚 report the quantity

𝜌𝑚 =
𝑚SCP

𝑓
− 𝑚ST

𝑓

𝑚0
× 100. (21)

The regularization procedure does not affect the optimality of the solutions. In the table, the column 𝑇𝑖𝑚𝑒 refers to the

total CPU time (SCP & thrust regularization) taken by the algorithm. The column 𝜏 indicates instead the ratio between

the average time required by the thrust regularization procedure and the total time. The whole procedure (i.e., SCP plus

thrust regularization) takes only seconds to converge on the considered machine. The left 𝑦-axis of Fig. 8 presents the

average CPU times. As the number of nodes increases, the time required by the SCP algorithm increases while the

time required by the shooting method decreases and therefore the regularization represents a lower fraction of the total

CPU time (as the green lines show). Moreover, note that the sum of the SCP and thrust regularization times for a given

number of nodes is often lower (or approximately equal) to the sole SCP time of the following case, especially for the
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Fig. 8 Average regularization and SCP CPU times and regularization-to-total time ratio.

Earth–Venus case. In conclusion, Table 20 and Fig. 8 show that even though the thrust regularization increases the CPU

time of the total procedure for a given number of SCP nodes, it also allows to use less nodes (because of its higher

convergence according to Eq. (20) regardless of the value 𝑁 assumes), and therefore to decrease the actual required

CPU time.

V. Conclusions
In this work, a double-layer strategy to solve the low-thrust spacecraft trajectory optimization problem was proposed.

The results show that our methodology outperforms the simple SCP optimization in terms of error on the final boundary

conditions without any relevant degradation of the optimality of the solution and keeping the computational effort low.

This finding is paramount for future autonomous guidance scenarios, because the accuracy of the solution may affect the

correct execution of the thrust commands and could therefore strongly influence the amount of propellant required to

reach the target celestial body. Our method being a post-processing procedure, the failure of the thrust regularization

does not affect the convergence of the SCP algorithm, which can therefore still be used when a regularized solution is

not available.
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