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a b s t r a c t 

Magnetoencephalography (MEG) is a powerful tool for estimating brain connectivity with both good spatial 

and temporal resolution. It is particularly helpful in epilepsy to characterize non-invasively the epileptic net- 

works. However, using MEG to map brain networks requires solving a difficult inverse problem that introduces 

uncertainty in the activity localization and connectivity measures. Our goal here was to compare independent 

component analysis (ICA) followed by dipole source localization and the linearly constrained minimum-variance 

beamformer (LCMV-BF) for characterizing regions with interictal epileptic activity and their dynamic connectiv- 

ity. After a simulation study, we compared ICA and LCMV-BF results with intracerebral EEG (stereotaxic EEG , 

SEEG) recorded simultaneously in 8 epileptic patients, which provide a unique ‘ground truth’ to which non- 

invasive results can be confronted. We compared the signal time courses extracted applying ICA and LCMV-BF 

on MEG data to that of SEEG, both for the actual signals and the dynamic connectivity computed using cross- 

correlation (evolution of links in time). 

With our simulations, we illustrated the different effect of the temporal and spatial correlation among sources 

on the two methods. While ICA was more affected by the temporal correlation but robust against spatial con- 

figurations, LCMV-BF showed opposite behavior. Moreover, ICA seems more suited to retrieve the simulated 

networks. 

In case of real patient data, good MEG/SEEG correlation and good localization were obtained in 6 out of 8 

patients. In 4 of them ICA had the best performance (higher correlation, lower localization distance). In terms 

of dynamic connectivity, the evolution in time of the cross-correlation links could be retrieved in 5 patients out 

of 6, however, with more variable results in terms of correlation and distance. In two patients LCMV-BF had 

better results than ICA. In one patient the two methods showed equally good outcomes, and in the remaining 

two patients ICA performed best. 

In conclusion, our results obtained by exploiting simultaneous MEG/SEEG recordings suggest that ICA and 

LCMV-BF have complementary qualities for retrieving the dynamics of interictal sources and their network in- 

teractions. 
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. Introduction 

Magnetoencephalography (MEG) is a non-invasive neurophysiolog-
cal tool that records the (tiny) magnetic fields produced by neurons.
t has proven to be useful both in fundamental research and in clinical
ractice ( Baillet, 2017 ). An application of choice is in presurgical evalu-
tion of drug-resistant partial epilepsy, where it can be used to map the
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rain regions producing interictal epileptic discharges recorded on the
urface ( Jmail et al., 2016 ; Lin et al., 2003 ; Malinowska et al., 2014 ). 

The classical analysis of MEG consists of performing source local-
zation on interictal epileptiform discharges (IEDs) or ‘epileptic spikes’,
hich are more abundant than seizures and more likely to be captured

n non-invasive recording with electroencephalography (EEG) and MEG.
ipole localization of IED, for example, is a commonly used method to
ber 2022 
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dentify the cortical areas that may be involved in interictal discharge
 Lin et al., 2003 ), but this approach presents several drawbacks. In par-
icular, spikes should be detected at the M/EEG sensors level and clus-
ered prior to localization, to obtain a reliable result ( Kobayashi et al.,
999 ; Lin et al., 2003 ; Merlet and Gotman, 1999 ). An averaging step
ay also be necessary to improve the signal-to-noise ratio (SNR), and
 dipole may be fitted to each averaged spike. Unfortunately, this ap-
roach prevents the characterization of the temporal dynamic of the
ED events. Indeed, since epilepsy is mainly a disease of brain net-
orks ( Bartolomei et al., 2017 ), MEG should be able to define, in a
on-invasively way, the spatio-temporal organization of such networks.

In order to improve the non-invasive analysis of interictal activities,
ifferent techniques of brain source separation and localization have
een explored to extract the spatio-temporal dynamics of the underlying
etwork in M/EEG ( Hall et al., 2018 ; Hassan et al., 2017 ; Li et al., 2021 ;
alinowska et al., 2014 ; Wilenius et al., 2020 ). In 1999, Kobayashi

 Kobayashi et al., 1999 ) proposed for the first time the use of the in-
ependent component analysis (ICA) to separate the interictal compo-
ents from the background EEG activity and applied the dipole source
odeling approach without the need for averaging. The possibility of

lso recovering the propagation of the IED from one component to the
thers was shown. This result was further validated ( Kobayashi et al.,
002 , 2001 ) by comparing the extracted epileptiform component to
pike dipole localization and SEEG signals. In particular, the authors
ointed out two main advantages of ICA in this context: the preservation
f the individual spike waveform, which may be lost in the averaging,
nd the ‘objectivity’ of spike component separation. In fact, the fixed
patial field of the component can be used to fit the dipole source in-
tead of modeling a dipole for each spike (or cluster of spikes). ICA was
lso applied to MEG data to improve the automatic detection of spikes,
hich were subsequently localized ( Ossadtchi et al., 2004 ). More re-

ently, a fractional type of blind source separation was introduced to
xtract with high accuracy the ‘dominant’ component associated to IED,
enerated by a unique epileptogenic zone, in multichannel MEG data
 Matsubara et al., 2020 ). 

Using simultaneous intracerebral (SEEG) and MEG recordings, Pizzo
nd colleagues proved that ICA can disentangle the activity of deep net-
orks from that of neocortical structures, further supporting the pos-

ibility to separate the different epileptic sources as independent com-
onents and then localize them ( Pizzo et al., 2019 ). To complement
pilepsy research, a similar approach (second order blind identification)
as used by López-madrona and colleagues to identify correspondences
etween MEG and SEEG activities from mesial brain networks related
o cognitive processes ( López ‐Madrona et al., 2022 ). 

However, the possibility that interictal activity detected at the scalp
urface may involve multiple sources has been rarely explored with this
pproach. Malinowska used ICA on MEG alone in order to extract spik-
ng components and recover interictal propagation network in MEG sig-
als of epileptic patients ( Malinowska et al., 2014 ). The propagation
etwork was obtained by exploiting the spike co-occurrences and delays
n multiple ICs, showing a significant overlap to the epileptic network
s identified by analyzing SEEG recordings. 

Another popular approach to investigate the interictal activity in
pilepsy, is based on spatial filtering or “beamformer ”, which is widely
pplied for reconstructing the time courses at specific brain locations.
ne example is the linearly constrained minimum-variance beamformer

LCMV-BF) ( Van Veen et al., 1997 ). Beamformers can be used on the
pileptic spikes ( Bouet et al., 2012 ), but also on the continuous traces in
ombination with kurtosis mapping to identify the sources associated to
ED and to reduce the amount of data to inspect ( Hall et al., 2018 ). This
atter procedure works by estimating the source time series for each po-
ition, called ‘virtual electrode’, in the source space grid and then com-
uting the kurtosis value for each of these time series ( Hall et al., 2018 ;
i et al., 2021 ; Wilenius et al., 2020 ). This method has been shown to be
eliable and comparable to equivalent current dipole (ECD) techniques
nd validated by surgical outcomes ( Hall et al., 2018 ; Wilenius et al.,
2 
020 ). The possibility to also detect deep epileptic sources was shown
n two patients ( Hillebrand et al., 2016 ). 

A supposed advantage of ICA over the beamformer technique is a po-
ential reduction of the cross-talk problem between sources (or ‘source
eakage’), thanks to its sparsity. In fact, cross-talk manifests itself as a
purious connectivity between time series in the sources domain, due
o the fact that “signals reconstructed at spatially separate brain loca-
ions are not necessarily independent ” ( Brookes et al., 2012 ) because of
he smoothing introduced by the inverse problem and its ill posed na-
ure. This is particularly important when studying connectivity, because
ven working at the source level, ‘source leakage’ may produce instanta-
eous artificial connections. Thus, connectivity measures that exclude
he ‘zero-lag’ interaction have been suggested (reviewed in He et al.,
019 ). Conversely, the beamformer technique has the advantage of an
ntrinsic localization of the reconstructed sources, without requiring a
urther localization step. 

In the present study, we exploited both simulated data and simulta-
eously acquired MEG and SEEG signals to compare ICA and LCMV-BF
pproach for characterizing the interictal epileptic dynamics. The aim
f our study was to understand if ICA and LCMV-BF could be valuable
pproaches in identifying spiking sources and their dynamic network re-
ations. With the simulation study, we stressed advantages and possible
itfalls of both the methods in a controlled framework. On spontaneous
EG data from eight epileptic patients, we further tested and compare

he two methods performance evaluated with simultaneously recorded
EEG data ( Badier et al., 2017 ). 

. Materials and methods 

In this section, the datasets of simulated and real data are introduced.
hen, the methods under analysis, are applied to both simulated and real
ata to point out their theoretical bases and assumptions. Finally, the
rocedure adopted to evaluate the interictal source separation and lo-
alization methods on simulated and the real data is described in details.

.1. Simulated and real data description 

.1.1. Simulated data 

Two simulation studies were carried out: SIM1 to explore the influ-
nce of the temporal and spatial correlation between two sources, and
IM2 to assess the possibility of retrieving the dynamic of a 3-source
etwork configuration. 

To obtain realistic MEG simulated data, we started from real imaging
nd MEG sensor locations from an epileptic patient with bilateral SEEG
mplantation and simultaneous MEG recordings. To model the head vol-
me conductor, a boundary element method (BEM) model was obtained
sing OpenMEEG software in Brainstorm toolbox ( Tadel et al., 2011 ).
he BEM was computed from the cortex surface mesh with 15,005 ver-
ices. The model was composed of three layers modeling the scalp and at
ach mesh vertex a dipole was modeled with unconstrained orientation.
he obtained lead field was then used to project the sources, simulated
s described below, to the 248 MEG sensors space. 

To simulate the background activity (S BKG ), several intracerebral sig-
als (monopolar SEEG channels) with no epileptic activity were selected
rom the patient and segmented in 5-second sections. The coefficients
f an autoregressive (AR) model were estimated for each section (MAT-
AB LPC function) and averaged over the pieces of the same channel to
ave an estimate of the background activity. This procedure was pre-
iously implemented in ( Roehri et al., 2017 ) to obtain realistic back-
round brain noise. The Akaike information criterion (AIC) was em-
loyed to select the model order p. 

The sources representing the background activity were uniformly
istributed within the brain using 400 source positions composing the
 BKG . To simulate the interictal activity (S int ), an in-house MATLAB code
as used which simulates time series with spikes waveform as a super-
osition of gamma distribution ( Grova et al., 2006 ). By setting specific
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arameters, such as probability of co-occurrence, time delay and jitter
n the delay, it was possible to control the timing of the spikes and
o simulate different levels of connectivity among the source activities.
ime series representing S int were associated to selected cortical patches.

Simulated signals X sim 

are finally obtained as 

 𝑠𝑖𝑚 = 𝐿 𝐹 𝑖𝑛𝑡 ∗ 𝑆 𝑖𝑛𝑡 + 𝜗𝐿 𝐹 𝐵𝐾𝐺 ∗ 𝑆 𝐵𝐾𝐺 (1)

here LF int and LF BKG are the leadfields associated to the selected active
nterictal sources and the background sources respectively and ϑ is a
oefficient to tune the SNR at the sensors level. The leadfield of the
ources was modeled by summing up the gain of the vertices within a
ortical patch after constraining the source orientation to be normal to
he cortex. 

The SNR was estimated as the ratio between the variance of the in-
erictal activity and the variance of the background activity averaged
cross sensors as in (2) . 

𝑁𝑅 = 10 𝐿𝑜𝑔 10 
( 

𝑉 𝑎𝑟 𝑖𝑛𝑡 

𝑉 𝑎𝑟 𝐵𝐾𝐺 

) 

(2)

For the simulation case SIM1, two sources were simulated. To modu-
ate the temporal correlation, 13 different configurations of parameters
ere selected resulting in a temporal correlation (computed ‘a posteri-
ri’) among the 2 sources spanning from 0.95 to 0.26. Since our interest
as also on the effect of the spatial correlation between the two sources,
fter selecting the fixed patch S1 in the left frontal lobe, the second one
as selected among the 400 patches of the uniform parcellation of the

ortex performed in Brainstorm. The selection criteria were a decreas-
ng mean spatial canonical correlation of its leadfield with the one of S1,
nd increasing distance, computed as Euclidean distance between their
entroids. Repeating the procedure, eleven spatial configurations with
wo sources were obtained (S1 - Si, with i from 2 to 12) with a mean
anonical correlation value in the range [0.99, 0.50] and distances rang-
ng from 20 mm to 115 mm (Supplementary Fig. S1 displays the S1-S12
ositions). 

In SIM1, since our interest is on the effect of the correlation among
he sources, a fixed SNR of 0 dB was used. 

Three sources were simulated in SIM2, with a simpler temporal pat-
ern of spike co-occurrences. Assuming that S1 is the first spiking source,
pikes in the second source (S2) can occur with 0.7 probability after a
pike occurrence in S1, with a 10 ms delay. In the third source (S3) the
robability of occurrence of a spike after the occurrence in S1 was set to
.5 and the delay was set to 30 ms. The three patches were selected in
he frontal lobe, one in the left mesial position (S1) and two in the right
emisphere, one mesial (S2) and one in a distal position (S3). Spatially,
1 and S2 were selected to be the same in SIM1, and the final configu-
ation used in SIM2 was inspired by an actual case. For the MEG signal
n SIM2, the SNR was simulated at 5, 3, 1, 0, − 1, − 3 and − 5 dB using
he same background matrix. 

Fig. 1 shows the simulation schema implemented in this work to ob-
ain MEG simulated signals. In both cases, 5 min of data were simulated
ith a sampling rate equal to 2035 Hz, equivalent to the rate of the MEG

ecording system. Finally, simulated MEG signals were filtered between
 and 45 Hz using a zero-phase FIR filter. 

.1.2. MEG and SEEG simultaneous recordings 

Simultaneous MEG and SEEG recordings of 8 patients with drug-
esistant epilepsies who underwent pre-surgical evaluation were in-
luded in this study ( Table 1 ). Details of the recording procedure are
rovided in Badier et al., 2017 .The ethical approval was obtained at the
omité de Protection des Personnes Sud Méditerranée I under ID RCB
 2012-A00644–39. For each patient, at least 10 min of simultaneous
EEG and MEG recording were obtained at rest either at the beginning
r after a task session. 

For all the patients, MEG Signals were acquired on a 4D
euroimaging TM 3600 whole head system at a sampling rate of
034.51 Hz with a total of 248 magnetometers. The simultaneous SEEG-
EG recording was carried out at the end of the long-term video-SEEG
3 
onitoring period. SEEG and MEG were offline temporally aligned by
esampling the SEEG from 2500 Hz to 2034.51 Hz ( Badier et al., 2017 ).

For each patient, CT-scan/MRI data fusion was performed in order
o find the anatomical position of each SEEG contact along the electrode
rajectory. For this purpose, the in-house software GARDEL (a Graphical
ser Interface for Automatic Registration and Depth Electrodes Local-

zation) was employed. This Matlab- based tool which allows the co-
egistration of MRI to the CT-scan, and the automatic segmentation
nd localization of contacts of depth electrodes by image processing
 Medina Villalon et al., 2018 ). Only SEEG contacts localized in the gray
atter were further considered and the signals were formated in a bipo-

ar configuration keeping only non-contiguous bipolar channels. 

.2. Interictal source separation and localization methods 

.2.1. Independent component analysis and dipole localization 

Independent component analysis (ICA) is an approach for blind
ource separation widely used in MEG and EEG data analysis to sep-
rate the multivariate signal into additive and maximally statistically
ndependent components ( Comon, 1994 ). If the N 

∗ T matrix X represent
he multivariate signals of length T samples recorded at the N sensors,
CA decomposes the signals in M ≤ N components having a correspond-
ng time series in the M 

∗ T matrix S and a spatial representation given
y the weight matrix W using the observation model given in Eq. (3) 

 = 𝑊 𝑆. (3)

Here, the Infomax algorithm ( Bell and Sejnowski, 1995 ) was cho-
en to unmix the MEG data and identify components associated to
nterictal spiking activities with no priors about their occurrences
 Kobayashi et al., 1999 ). Specifically, this algorithm searches for inde-
endent components with a distribution showing positive kurtosis (su-
er Gaussian distribution) and identifies a weight matrix W which max-
mizes the entropy of the set of independent sources. Each independent
omponent carries both a spatial and a temporal information. The spa-
ial information can be used to localize the component ( Barborica et al.,
021 ; Kobayashi et al., 2002 , 1999 ; Pizzo et al., 2019 ). 

In this work, for the MEG forward calculation, we used a single shell
pherical head model as implemented in FieldTrip ( Oostenveld et al.,
011 ), building a regular grid within the brain volume (10 mm of spa-
ial resolution). At each point of the 3-dimensional grid, a triplet of or-
hogonal dipole was positioned. A linear regression was performed to fit
he dipole model into the selected IC map and retained the resulting best
oodness of fit (GOF) ( Pizzo et al., 2019 ). The same head model was also
sed to reconstruct the sources with the beamformer techniques as ex-
lained in the next section, to provide a basis for the source localization
omparison. 

.2.2. LCMV beamformer and kurtosis mapping 

The linearly constrained minimum-variance beamformer (LCMV-
F) is a source localization and reconstruction technique, proposed
y ( Van Veen et al., 1997 ), and implemented in many toolboxes
 Jaiswal et al., 2020 ). It is based on the application of a spatial filter
hat associates the magnetic field measured by the MEG sensors outside
he brain to the neural activities within the brain. It exploits the covari-
nce of the recorded signals and does not require prior assumption on
he number of active sources. The weights of the spatial filter that trans-
er information from the sensor to the brain sources are computed at
ach location at the positions of interest in the brain. The same equa-
ion presented in (1) can be used to describe the model, but in this case
he matrix S contains the sources at any location of interest in the brain,
nd the number of sources M can be much greater than the number of
ensors N, while W represents the leadfield. The latter is used in the
eamformer calculation, to obtain a N 

∗ 3 spatial filter at each source lo-
ation that allows estimating the source time-courses from sensor data
 Jaiswal et al., 2020 ; Sekihara et al., 2002 ; Van Veen et al., 1997 ). By
pplying the obtained spatial filters to the MEG data, the output of the
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Fig. 1. Summary of the simulation procedure. In both SIM1 and SIM2, and for each selected source position, a time series is simulated with interictal activity, and 

a propagation pattern is imposed among them in terms of events co-occurrences and delays. The forward model is then solved to compute the activity at the MEG 

sensors. The background activity was simulated in a similar way and added to the simulation at a given SNR. 

Table 1 

Patients’ information. 

ID AGE AT SEEG GENDER IMPLANT SIDE; EPILEPSY TYPE AGE AT EPILEPSY ONSET EPILEPSY DURATION ENGEL SCORE 

PAT 1 19 M Bilateral; Frontal 2 17 Ia 

PAT 2 41 F Left; Temporal 34 12 IVb 

PAT 3 29 F Bilateral; Temporo-occipital 19 10 NA 

PAT 4 33 M Right; Insulo-parieto-premotor 1.5 31 NA 

PAT 5 22 M Bilateral; Temporal 2 19 III 

PAT 6 45 F Bilateral; Parietal mesial and temporo-basal 11 34 III 

PAT 7 33 M Bilateral; Temporal 11 22 NA 

PAT 8 57 M Left; Temporal and Parietal 39 18 IA 
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eamformer is thus a time series for each target location representing
he activity of that source. To identify the source of interictal activity, as-
ociated with the presence of interictal spikes, we performed a Kurtosis
apping ( Kirsch et al., 2006 ). This procedure consists in computing the
urtosis for each obtained virtual electrode time series resulting in a vol-
metric map. The identification of candidate interictal epileptic sources
s based on the detection of local maxima in the volumetric map, as high
urtosis has been used as a marker for spiking activity ( Hall et al., 2018 ;
i et al., 2021 ). 

.3. Connectivity analysis 

We selected the cross-correlation index as it is a simple linear con-
ectivity method, widely used in the analysis of SEEG and MEG data in
resence of ictal and interictal events Hassan et al., 2017 ; Jmail et al.,
016 ). Specifically, the cross-correlation coefficient R 

2 quantifies the
orrelation between two signals x(t) and y(t) in function of a time delay
r lag 𝑙 between them. It is computed as in (4) 

 

2 = max 
𝑙 

𝑐𝑜𝑣 2 ( 𝑥 ( 𝑡 ) , 𝑦 ( 𝑡 + 𝑙 ) ) (
𝜎𝑥 ( 𝑡 ) 𝜎𝑦 ( 𝑡 + 𝑙 ) 

)2 (4)

here 𝜎 is the standard deviation of the data, cov indicates the covari-
nce. We applied the cross-correlation on continuous data with a 1-
econd sliding window without overlap for a series of lags ( ± 100 ms),
nd kept the lag corresponding to maximum correlation, as imple-
ented in the AnyWave software ( Colombet et al., 2015 ). 

.4. Simulated data analysis 

ICA infomax, LCMV-BF and dipole fitting were performed using
ieldtrip-based scripts ( Oostenveld et al., 2011 ) with the single-shell
4 
ead model type as previously stated. This was decided to simulate a
eal situation in which the head model used is the single shell spherical
ne and to avoid a possible bias due to the use of the same model to pro-
uce and analyze simulations (‘inverse crime’, Colton and Kress, 1992 ;
amus et al., 2012 ). The analysis schema is reported in Fig. 2 , where
he analysis applied to simulated data is highlighted in italic. 

ICA was applied with a dimensionality reduction using principal
omponent analysis (PCA) to extract 50 and 100 components. ICs pre-
enting the simulated spiking activity were visually selected. These were
hen localized by means of single dipole fitting with an interval of con-
dence method (IoC) ( Pizzo et al., 2019 ). 

LCMV-BF spatial filter was applied to the data scanning the 3D grid
uilt in the brain volume with the order of 3000 positions (10 mm reso-
ution). For each point of the grid within the brain volume, a time series
as obtained representing the reconstructed activity of each dipole. For

ach time series the kurtosis value was computed and for comparison
o the spiking ICs, the beamformer virtual electrodes associated with
he highest local maxima of kurtosis values were retained. After visu-
lly checking the results, the highest two (SIM1) or three (SIM2) virtual
lectrodes were further considered. 

.4.1. Source identification 

The Pearson’s correlation coefficient R was computed between the
econstructed interictal activity and the source simulated activity con-
idering the concatenated spike events. Results of the correlation were
sed to derive an index for the quality of the reconstruction ( 𝑄𝑜𝑓𝑅 )
n each condition (varying temporal and spatial correlation or varying
NR). 

Specifically, in SIM1, for each of the 143 realizations (corresponding
o 11 spatial configurations and 13 temporal correlation levels) only two
ndependent components, both for ICA 50 and ICA 100, and two virtual
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Fig. 2. Overview of the pipeline for data analysis. The evaluation scheme is similar for both simulated and real data, with needed differences that are highlighted 

using italic for simulated data and bold for real data. The procedure comprises two main evaluation steps: i) the analysis of the time series reconstruction and 

source localization (blue edges and arrows in the gray box), and ii) the evaluation of the correspondences between SEEG (or simulated sources) and MEG-derived 

connectivity (green edges and arrows on yellow box). For the simulations, the ‘ground truth’ refers to the different spatial and temporal configurations of SIM1, and 

the three-source simulation with connectivity pattern of SIM2. The evaluation is based on the two indices for the quality of the time series reconstruction (QofR) and 

for the quality of the sources localization (QofL). For the real data, SEEG time series and their connectivity patterns are considered as ‘ground truth’. 

e  

t  

fi  

r  

t
 

e  

d  

a  

r  

c  

|  

T  

c  

t  

r
 

t  

u  

s  

s  

m  

o  

t  

s  

u
 

c  

a  

s  

c  

w  

(  

a  

t  

w

2

 

t  

e  

(  

d  

L  

n  

a  

a  

t  

m  

t  

i  

t  

a  

l  

s  

t  
lectrodes (highest local maxima of the kurtosis map) were expected
o capture the simulated interictal sources. In SIM 2 we expected to
nd three sources for each method and condition. Then the selected
econstructed sources were matched with the simulated one based on
heir correlation value. 

We obtain a 2 × 2 (SIM2) or 3 × 3 (SIM2) correlation matrix (i.e., for
ach spatial/temporal combination and each SNR) where on the main
iagonal we put the absolute correlation |R| of the matched time series
nd on the off-diagonal element the un-matched time series. To summa-
ize the results, the correlation matrix obtained for each realization was
ompared to the ideal, one having |R| = 1 on the main diagonal and the
R| computed between the two simulated sources on the off-diagonal.
he comparison was then quantified as 𝑄𝑜𝑓𝑅 = 1 − 𝑑, where d is the Eu-
lidean distance between the two correlation matrices. By construction,
he obtained measure has an upper limit equal to 1 indicating perfect
econstruction. 

Localization errors were estimated by computing the Euclidean dis-
ance of the estimated position from the center of the corresponding sim-
lated sources on the grid. To summarize the localization performances,
imilarly to the activity reconstruction, a ‘quality of localization’ mea-
ure was derived in the same way by considering as an ideal result a
atrix having a main diagonal set to 0 (perfect localization) and on the

ff-diagonal the distance between the simulated sources. By computing
he Euclidean distance ( d ) between the localization results and the ideal
et, the summarizing measure was defined as 𝑄𝑜𝑓𝐿 = 1 − 𝑑. Again, an
pper limit equal to 1 indicated perfect localization. 

A further assessment was made to estimate the cross-talk effect. The
orrelation among the reconstructed activities (ICs and LCMV-BFs sep-
5 
rately) was performed considering windows in which S1 presented a
pike but no co-occurring spikes were present in S2, meaning that a high
orrelation values between the two reconstructed sources in that specific
indows indicate the presence of ‘phantom’ events on the component

or virtual electrode) associated to S2. We used the resulting |R| value
s an estimation of cross-talk. Only the cases where all the methods de-
ected at least two sources were considered, corresponding to the cases
ith a delay between co-occurring events. 

.4.2. Retrieval of connectivity network links 

The cross-correlation (R 

2 ) was computed between the time series of
he simulated sources (SIM2) and between the selected ICs and virtual
lectrodes separately, resulting in a connectivity matrix for each second
because of 1 s windows calculation) of simulated data for the three
atasets (simulated sources or ‘gold standard’; selected ICs; selected
CMV-BF time series). To compare the reconstructed and simulated con-
ectivity evolution in time, the connectivity matrixes were vectorized
t each time point considering the upper triangle as it is symmetric,
nd the temporal evolution of each reconstructed link was compared to
he one of the simulated connections. To quantify the degree of agree-
ent between the two dynamics, a partial correlation was computed:

he correlation between the reconstructed link and the simulated ones
s measured, controlling for the other two reconstructed links in order
o remove their influence. Then the matched and unmatched dynamics
re compared between reconstruction methods as a function of the SNR
evel (SIM2). Similar to the time series correlation analysis, a QofR mea-
ure was obtained by comparing the correlation matrix acquired from
he link correlation analysis to the identity matrix in this instance, since
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e expect null-values for off-diagonal elements when employing partial
orrelation. 

.5. Real data analysis 

Fig. 2 also shows the analysis scheme applied to real data. SEEG
ata were band-pass filtered in the 1–45 Hz frequency band with a zero-
hase FIR filter. Spike detection (Delphos v1.0.1, ( Roehri et al., 2016 ))
as applied to the SEEG channels presenting visible spikes and then
anually checked and confirmed. The channel with the largest number

f spikes was further considered as the reference channel in the subse-
uent analysis. MEG signals were filtered between 1 and 45 Hz with a
ero-phase FIR filter before the application of independent component
nalysis (ICA) and LCMV beamformer (LCMV-BF). After bad channels
nd large artifacts removal, Infomax algorithm was applied to the fil-
ered MEG signals with PCA dimensionality reduction to 100 compo-
ents, as simulations show slightly better performance with respect to
he extraction of only 50 components. 

For further analysis, ICs presenting interictal activity were visually
elected and confirmed by an expert epileptologist (F. Bonini). These
ere then localized by means of single dipole fitting with interval of

onfidence method (IoC). For the IoC method, a linear regression was
omputed to compare each ICA map to the model composed by those
riplets and retained the resulting maximum goodness of fit (GOF). The
est position is retained accordingly, and only the ICs having a GOF
 75% were further analyzed ( Pizzo et al., 2019 ). 

LCMV beamformer spatial filter ( Van Veen et al. 1997 ), was applied
o the filtered MEG data scanning the 3D grid built in the brain volume.
or further analysis and for comparison to the spiking ICs, the virtual
lectrodes identified as local maxima of the volumetric kurtosis map,
ere visually checked, and confirmed by the expert to ensure that the
igh value of kurtosis was due to the presence of interictal activity and
ot to artifacts. 

.5.1. Source identification 

Invasive (SEEG) and non-invasive (ICA 100 and LCMV-BF) data were
egmented in 1 second epochs around each spike according to the SEEG
etection timings, and the segments were concatenated. A first analysis,
o understand the activity captured, was a linear correlation analysis
etween each SEEG bipolar channel and the reconstructed MEG-based
ime series. 

Therefore, the measures of interest were: 

• Pearson’s correlation(|R|) between each MEG-based reconstructed
interictal source and SEEG signals, only correlations with an associ-
ated p-value < 0.05 were considered. 

• Distance (D) between the estimated position of the source and the
mostly correlated SEEG channel. 

We assume that the mostly correlated SEEG channel represents the
ource that is being localized ( Fahimi Hnazaee et al., 2020 ). Anyway,
his is not guaranteed and may depend on the SEEG implantation scheme
 Velmurugan et al., 2022 ). For each patient, a different number of in-
ependent components and virtual electrodes are associated to inter-
ctal activity and a one-to-one correspondence among methods is not
ossible. Thus, for each independent component and LCMV-BF virtual
lectrode, only the maximum correlation value and the corresponding
istance from the correlated SEEG bipolar channel was further consid-
red. 

.5.2. Retrieval of connectivity network links 

To assess the possibility of retrieving network organization from
EG exploiting either the sparsity of the ICA or the beamforming tech-

ique, we correlated the MEG based network (MEG-net) to the SEEG
etwork (SEEG-net). The idea was to observe the dynamic evolution of
ach network link reconstructed from MEG and to identify the corre-
ponding links of the SEEG-net thanks to the correlation between link
6 
ime-courses. Of note, for real data we used classical correlation instead
f partial correlation because the number of variables to control for were
ot fixed. 

As for the correlation between time-series and for a representative
valuation, the maximum positive and significant ( p < 0.05) correlation
f each MEG-net/SEEG-net link pair was identified. For each consid-
red link, we computed the Distance 1 (mm) as the distance between
he closest MEG-net/SEEG-net node of the link and Distance 2 (mm) as
he distance between the remaining MEG-net/SEEG-net node. The mean
f the two distances was then used for the comparison of localization
ethods. 

As for the time series correlation analysis, a different number of in-
asive and non-invasive links characterizes each patient. To simplify the
omparison, only the maximum correlation for each MEG-net link was
onsidered and the associated distances from the correlated SEEG-net
ink were computed. 

.5.3. Estimation of signal-to-noise ratio 

To better interpret the results, we estimated the signal-to-noise ratio
SNR) of MEG signals in each patient considering as signal of interest
he interictal activity and as noise the background activity. We used the
pike timings obtained from the SEEG and computed the signal variance
Var Spike) in a 200-ms window centered on the peak of each spike and
he noise variance (Var BKG ) in a 200-ms window composed of 100 ms
re- and 100 ms post-spike signal ( Pizzo et al., 2019 ). The resulting
NR, computed according to (4), was averaged across events at each
EG sensor position. The same approach was used to estimate the SNR

f the ICs and of the selected LCMV virtual electrodes. 

.6. Statistical analysis 

To assess statistical differences among methods in the SIM1 study,
ofL and QofR indexes were tested for normality with the Kolmogorov-
mirnov test. Consequently, the non-parametric Friedman’s test was em-
loyed followed by a multiple comparison analysis, corrected according
o the Bonferroni’s approach considering the three groups. The same
nalysis was applied also to test the cross-talk effect. 

A linear mixed effects (LME) analysis to explain possible differences
mong the methods was instead applied to real data, considering sep-
rately the correlation (R) and the distances (D) in both the analysis
aths: i) source identification, and ii) retrieval of connectivity network
inks. As a fixed effect we use the ‘source type’ (i.e., ICA100 or LCMV-
F) and as random effect the patients. This was necessary because each
atient had a different number of identified sources according to the
ethod, thus it was necessary to account for the inter- and intra-patient

ariability. 
Furthermore, to infer significances across patients, we applied the

ocal false discovery rate (LFDR) ( Benjamini and Heller, 2007 ) on the
orrelation values to identify a threshold of significance corresponding
o an alpha level of 0.05 and fitting a beta distribution (model of H0) in
oth analysis paths i) and ii). Consequently, we counted the number of
orrespondences above the threshold and their associated distances. 

. Results 

.1. SIM1: source identification 

Fig. 3 shows results obtained from SIM1. In terms of QofR ( Fig. 3 a),
CA showed low values with both 50 and 100 extracted components
or the high temporal correlation conditions. For the case of complete
orrelation, only one spiking component could be found preventing the
orrect source separation, but the introduction of a small delay between
he occurring events in the two sources resulted in improved ICA per-
ormance. Decreasing temporal correlation, the obtained results were
omparable to the ones obtained by the LCMV-BF. Considering the spa-
ial configurations, ICA seemed stable across different relative positions
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Fig. 3. Time series correlation results. a) The Quality of the reconstructed activity is shown in function of the spatial and temporal correlation for the three methods. 

Z-axis scale is the same as in the colormap. b) for each method the Quality of the localization is displayed in function of the spatial and temporal correlation. c) 

box-plot comparing the two measures considering all the 143 conditions at once, ∗ indicate the statistically higher QofR and QofL. d) Quantification of the crosstalk 

effect through correlation values computed in correspondence of non-occurring events. The beamformer method showed a slightly but significantly higher crosstalk 

effect ( ∗ ) with respect to both the ICA types, that were not different between themselves. 
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xcept for patch S7 where the source positioned in a deep portion of the
ortical mesh was not detected by ICA with 50 components, while the
ituation improved with 100 ICs. 

LCMV-BF results were less affected by the temporal correlation than
CA. LCMV-BF showed a stable performance against temporal correla-
ion levels, but its behavior in function of the position of the two sources
as difficult to predict. Comparing the overall results, ICA100 yielded
igher QofR values than the other two methods (ICA100 > ICA50 with p-
7 
alue < 10–5; ICA100 > LCMV-BF with p-value = 0.005), as determined
y Bonferroni-corrected post-hoc analysis after the non-parametric sta-
istical Friedman test ( Fig. 3 . c). 

Results of the quality of the localization using dipole fitting for ICA
nd the identification of the local maxima position in the Kurtosis map
re shown in Fig. 3 b. Using the same grid for the two methods, better
esults were obtained for the LCMV-BF. This was particularly evident
hen the two sources were highly correlated in time but distant. 
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Fig. 4. a) QofR, in function of the decreasing 

SNR level, associated to the time series recon- 

struction, b) QofR, in function of the decreasing 

SNR level, associated to the correspondences 

between the network links of the MEGnet and 

the SIMnet. 

Table 2 

Number (#) of identified and selected independent components and virtual electrodes. Numbers 

within brackets indicate the further analyzed ICs (with GOF > 75%). The estimated MEG SNR (in 

dB) averaged across channels and maximum values are shown. 

number of selected ICs/LCMV-BF MEG SNR (dB) 

ID # ICA-100 # LCMV-BF Mean Max (averaged on events) 

PAT1 5 (4) 5 1.55 4.77 

PAT2 8 7 2.32 5.13 

PAT3 3 6 0.47 1.39 

PAT4 4 (3) 8 0.13 1.04 

PAT5 15 (10) 10 − 0.32 0.86 

PAT6 6 (2) 10 − 0.08 0.65 

PAT7 5 (4) 8 − 0.17 0.58 

PAT8 4 (2) 8 0.04 1.17 

tot 50 (36) 62 MEAN (SD) 0.49 (0.94) 1.95 (1.87) 
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This is explainable since this combination of conditions lead to com-
onents with a non-dipolar topography that cannot be resolved with
ne dipole only. Perfect correlation between generators is unlikely in
eal cases, but it pointed out with an extreme example a main limitation
f ICA. Concerning LCMV-BF, results were stable except for few incor-
ect performances, leading to a statistically higher QofL values with re-
pect to both the groups of extracted components (i.e., LCMV-BF > ICA50
ith p-value < 10–5; LCMV-BF > ICA100 with p-value < 10–3) according

o Bonferroni corrected post-hoc analysis following the non-parametric
tatistical Friedman test ( Fig. 3 c). Results are shown in Fig. 3 d, where
lightly but significantly higher cross-talk effect can be observed for the
CMV-BF (Friedman test < 0.01; post-hoc test with Bonferroni’s correc-
ion: LCMV-BF > ICA100 p = 0.002; LCMV-BF > ICA50 p < 10–4). 

.2. SIM2: retrieval of connectivity network links 

At each SNR level of SIM2 three ICs, both for ICA 50 and ICA 100,
nd three virtual electrodes (highest local maxima of the kurtosis map)
ere further analyzed. These were assumed to capture the simulated

onnectivity pattern. In general, the ICA-based network showed a bet-
er performance with respect to the LCMV-BF, as can be appreciated in
ig. 4 where QofR results are plotted in function of the SNR, both for
he simple time-series correlation ( Fig. 4 a) and for the reconstruction
f the connectivity links ( Fig. 4 b). Since partial correlation was used in
his case, the ideal matrix was set to be simply the identity matrix. Of
ote, for the localization performance, the position of the sources- in-
pired by a real patient epileptogenic network - were easily identified
y all the methods, with a more stable performance for the LCMV-BF. 

.3. Real data 

In this section, results obtained on the real dataset are described.
ince the simulation analysis showed a better performance of the
8 
CA100 with respect to ICA50, only results related to the first approach
re discussed here in comparison to the LCMV-BF. 

In Table 2 , the details of the identified interictal sources (selected ICs
nd LCMV-BF) and of the SNR values estimated at the MEG sensors for
ach patient are reported. We verified that both methods were able to
etect interictal sources from MEG data without the need for averaging
r detect spikes prior to their application ( supplementary Table S1 ).
n illustrative example regarding PAT1 is shown in the supplementary
ig. S2 where a time segment of 10 s is displayed for MEG, SEEG and
ach source separation method. 

.3.1. Source identification: SEEG informed signal time-series correlation 

An illustrative example of the correlation analysis is shown in Fig. 5 ,
here the correlation matrices (sources vs SEEG channels), the three-
imensional representation of the highest correlation value between
Cs/LCMV-BF virtual electrodes and the SEEG time series, as well as the
veraged spike waveform are shown for a representative patient (PAT3).
he polarity of the SEEG and the source signal may be the opposite, but
till they gave high |R| values. 

Both methods identified a good match (high |R| and low Distance)
ith the SEEG channel TB6-TB7 in the right temporal lobe and the

ource localized in its proximity (IC4 and bf519 respectively). Based on
he same criteria to select good matches, a direct comparison is reported
n the supplementary Table S2, where a concordance of methods (i.e.,
 source correlated and close to the same SEEG channel) is found in
ve patients. 

Fig. 6 a illustrates the large variability across patients. The obtained
tatistical threshold on correlation values across methods and patients
as equal to 0.34. It resulted that in six out of eight cases, both meth-
ds showed at least one significant value above the threshold. PAT6 and
AT7 presented low |R| values with only one significance in LCMV-BF
nd ICA respectively. Specifically, the 50% of the ICs selected were also
orrelated above the statistical threshold, while only the 34% of the
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Fig. 5. Example of the time series correlation results in a subject (PAT3) showing very similar performances for ICA-100 and LCMV-BF in terms of correlation 

values (|R|) and distance between the localized source and the mostly correlated SEEG channel. On the left, the correlation matrix among reconstructed activities 

(sources) and all the bipolar SEEG channels is displayed (red star indicates the highest |R| value). In the middle, the 3-dimensional representation of the best match 

(source-SEEG) is shown in the middle and the correspondence to the red star on the matrix is indicated by the green arrow. On the right, the averaged spikes. 
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elected LCMV-BF sources were. For PAT1, PAT2, PAT3 and PAT4, ICA
howed slightly better results than LCMV-BF in terms of correlation val-
es and associated distances between the sources estimated position and
he matched SEEG channels, as can be observed also in Table 3 . Inter-
stingly, these patients were the ones with the highest estimated SNR
onditions. Moreover, in these patients (and PAT8), the two methods
ere concordant in identifying the interictal sources, that is, they both

dentified at least one source of epileptic spikes in proximity of the same
EEG channels with also a good correlation of their activity ( Table S2 ).

PAT5 was a particular case. The patient had already undergone
urgery for epilepsy treatment prior to SEEG (resection of the left tem-
oral gyrus) with poor surgical outcomes and persistence of drug resis-
ant seizure. No further abnormalities were present in the new MRI.
he patient’s second SEEG still presented frequent superficial spikes
detectable on the scalp and on cortical activity) with apparently inde-
endent sources in the left hemisphere and large propagation networks
hich were reflected by evident interictal activity on MEG captured by

everal components. Probably because of high temporal correlation of
he sources participating in the network, the first component reflected
tself a network organization and resulted in being highly correlated to
any bipolar SEEG channels (Supplementary Fig. S3 ). This could also

xplain the large interval of confidence in the dipole fitting procedure
Table 3 

Median and min-max range of the correlation and distances values for each patien

reconstructed sources with correlation above the LFDR threshold is also shown with

ABS(R) VALUES DISTANCE (mm) 

ICA 100 LCMV-BF ICA 100 LCMV-B

ID Median ( min -MAX) Median ( min -MAX) Median ( min -MAX) Median 

PAT1 0.474 (0.228–0.576) 0.356 (0.203–0.447) 28.0 (14.1–39.6) 43.7 (2

PAT2 0.501 (0.174–0.564) 0.357 (0.241–0.509) 9.9 (5.7–57.7) 22.6 (9

PAT3 0.454 (0.323–0.487) 0.321 (0.260–0.463) 24.3 (13.9–25.9) 42.4 (1

PAT4 0.413 (0.168–0.557) 0.250 (0.174–0.519) 24.1 (6.9–44.9) 64.1 (1

PAT5 0.276 (0.102–0.815) 0.364 (0.233–0.467) 38.6 (18.3–115.4) 31.5 (1

PAT6 0.225 (0.141–0.310) 0.192 (0.101–0.363) 40.7 (33.1–48.3) 22.8 (1

PAT7 0.274 (0.117–0.350) 0.231 (0.157–0.307) 36.2 (10.2–56.8) 21.7 (8

PAT8 0.274 (0.115–0.433) 0.323 (0.145–0.391) 35.5 (5.4–55.5) 26.3 (1

9 
ncluding more than 17% of the grid points and a maximum GOF of 77%.
n this patient, three out of ten ICs had significant |R| values, while six
ut of ten sources were significantly correlated to SEEG channels for
he beamformer method. On average, a better performance was given
y the LCMV-BF. 

Finally, PAT6, PAT7 and PAT8 showed comparable results for the
hree methods, with slightly better performances in terms of distance
etween the positions of the interictal sources and the matched SEEG
hannels for the LCMV-BF technique. In fact, probably due to a lower
NR, the topography of the selected components for PAT6 and PAT8
ere not perfectly dipolar leading to a non-optimal localization and only
 ICs with acceptable GOF ( > 0.75). 

No significant difference was found for the absolute correlation |R|
p-value = 0.078) and the distance from the mostly correlated SEEG
ontact D (p-value = 0.136) by fitting a linear mixed effect model on
he data. ICA reached overall a higher correlation value associated with
 lower average distance. Therefore, it may be interesting to investigate
he two measures together, as in Fig. 6 b where the correlation value
etween the reconstructed source (i.e., ICs or LCMV-BF sources) and the
aximally correlated SEEG bipolar channel are displayed as a function

f their distance. One can appreciate that the values of correlation above
hreshold (dashed line) are associated to lower distances and that, on
t and method. In bold the best performance for each patient. The number of 

 the maximum estimated SNR. 

# OF SIGNIFICANCE MAX SNR (AVERAGED ACROSS EVENTS) 

F ICA 100 LCMV-BF ICA 100 LCMV-BF 

( min -MAX) # # dB dB 

2.8–51.6) 3 3 5.49 3.40 

.2–40.0) 6 5 7.92 6.40 

8.0–73.0) 2 3 2.23 2.43 

2.9–4.4) 2 1 1.52 0.65 

2.0–51.5) 3 6 1.78 1.85 

3.5–99.7) 0 1 0.33 0.50 

.5–94.7) 1 0 0.60 0.31 

3.1–48.4) 1 2 1.40 2.82 
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Fig. 6. Real data results on the signal time courses. a) boxplots comparing the correlation coefficient and the distance across methods for each patient (the number # 

of ICs and LCMV-BFs is reported above). Gray markers identify under threshold R values and the associated distances. b) shows boxplots for |R| values and distances 

at group level and the scatterplot of correlation values between reconstructed sources and the mostly correlated SEEG channels (|R|) in function of their distance, 

different markers indicate different patients accordingly to panel a), the dashed line indicates the LFDR threshold across all the |R| values. 
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verage, ICs reached a better trade-off between distance and correlation
alue. 

.3.2. Retrieval of connectivity network links: correlation of MEG-net and 

EEG-net dynamics 

For each link of the MEG-net, the mostly correlated SEEG-net
ink was identified, and compared against the obtained LFDR thresh-
ld = 0.238. Supplementary Fig. S4 shows an example of the temporal
volution of connectivity links for both the MEG network and the ones
f the corresponding SEEG network for PAT1. It also displays results
rom three representative patients. For a direct comparison between the
ethods, the most concordant SEEG-net/MEG-net matches, among the

wo methods, are reported in supplementary Table S3 . 
Considering all the possible SEEG/MEG correspondences, we ob-

ained the results shown in Table 4 and Fig. 7 . 
From Fig. 7 a, it is possible to notice that PAT6 had no significant

orrespondences, similarly, PAT8 only showed acceptable results with
he LCMV-BF method. PAT1 and PAT2 were better characterized using
CA, even if in the latter case the median R values obtained with the
wo methods were equal, but with lower distances when using ICA. Pa-
ients PAT3 and PAT5 were characterized by similar results with the two
10 
ethods, but with opposite trends: higher R values for ICA and lower
istances for LCMV-BF in PAT5, the opposite behavior in PAT3. Finally,
AT7 and PAT4 both showed only one correspondence above threshold
ith ICA, more than 10 with LCMV-BF but with large variability in the
istances. Therefore, when considering the dynamics of the connectiv-
ty links, a clear correspondence between high R values and low mean
istance was not observed as shown in the scatterplot ( Fig. 7 b), where
he cloud of points is wider along the distance axis. Across all the pa-
ients, no significant differences were found between the two methods
 Fig. 7 b). It is also important to notice that the R values, obtained at
he links level, were evidently lower than the ones obtained for the time
eries correlation analysis. This is easily explained by the fact that in the
onnectivity case we did not consider the information provided by the
pike timings, but we analyzed the dynamic of the networks along the
hole 10-minute recording. 

. Discussion 

It has been proven, through a plethora of analysis methods, that MEG
on-invasive recordings help the characterization of the epileptogenic
etwork and, therefore, the presurgical evaluation ( Grova et al., 2016 ;
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Table 4 

Median and min-max range of correlation values and sum of distances among outside/inside links for each patient and method. 

R values Mean(D1, D2) [mm] Number of significances 

ICA 100 LCMV-BF ICA 100 LCMV-BF ICA 100 LCMV-BF 

ID Median ( min -MAX) Median ( min -MAX) Median ( min -MAX) Median ( min -MAX) # # 

PAT1 0.326 (0.222–0.423) 0.278 (0.163–0.428) 32.73 (12.71–45.78) 38.26 (22.30–51.40) 5 6 

PAT2 0.228 (0.178–0.495) 0 .229 (0.115–0.293) 31.66 (7.81–52.88) 44.19 (13.49–67.27) 11 8 

PAT3 0.159 (0.152–0.282) 0.217 (0.157–0.333) 19.90 (13.89–47.82) 43.85 (27.22–50.81) 1 3 

PAT4 0.196 (0.170–0.269) 0.221 (0.162–0.328) 31.79 (16.10–36.35) 54.94 (21.62–76.80) 1 12 

PAT5 0.214 (0.133–0.401) 0.199 (0.119–0.286) 53.06 (19.13–94.36) 44.42 (17.25–107.36) 13 6 

PAT6 0.138 - 0.141 (0.117–0.188) 43.70 - 51.32 (23.54–92.73) 0 0 

PAT7 0.158 (0.138–0.290) 0.239 (0.139–0.320) 46.34 (15.10–66.29) 47.13 (25.51–84.38) 1 14 

PAT8 0.152 - 0.167 (0.127–0.249) 39.53 - 39.40 (16.44–84.35) 0 2 

Fig. 7. Real data results on the link dynamics. a) Top: comparison of maximum correlation values between each MEG link and SEEG links among the two considered 

methods separately for single patients. Bottom: respective mean distances between nodes of the correlated links. Gray markers identify under threshold R values 

and the associated distances. Gray lines connect the distribution means. The number of ICs and LCMV-BFs links is reported above. b) Left: boxplots comparing the 

correlation coefficients between links. Middle: mean of the two distances between nodes for all the patients together. Right: scatterplots of the R values between 

inside/outside links as a function of the sum of the distances. Different markers represent different patients, accordingly to panel a), the dashed line indicates the 

LFDR threshold across all the R values. 
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(  
all et al., 2018 ; Jiang et al., 2022 ; Kirsch et al., 2006 ; Malinowska et al.,
014 ; Velmurugan et al., 2018 ). 

In the present work, we further validated the possibility to retrieve
he epileptic network (EN) organization from MEG data and, for the first
ime to the best of our knowledge, we compared and validated ICA and
CMV beamformer in the computation of dynamic connectivity through
11 
imulations, and against simultaneously recorded SEEG data in 8 epilep-
ic patients. 

Our first simulation (SIM1) demonstrated that both methods can ad-
quately retrieve the simulated source activities, but with different ef-
ect of the temporal correlation and spatial configuration among sources
 Fig. 3 ). It emerged that, even if ICA (both ICA 50 and ICA 100) was
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ore affected by high temporal correlation, the overall QofR was sig-
ificantly higher in the case of ICA100 than LCMV-BF and ICA50. This
esult indicated that ICA reconstructs the activity more accurately in
ost conditions. Indeed, previous studies also showed that ICA was able

o retrieve interictal sources maintaining the spike and wave morphol-
gy ( Kobayashi et al., 1999 ; Matsubara et al., 2020 ). This result was
lso related to the higher impact of the cross-talk phenomenon (leak-
ge) on the LCMV-BF reconstructed time series ( Fig. 3 d). Conversely,
he localization performances were significantly superior for the LCMV-
F in term of QofL , an index based on the localization error. Such an
utcome pointed out the already discussed difficulties in localizing non
erfectly dipolar ICA topographies ( Malinowska et al., 2014 ), and the
eliability of the beamformer technique in detecting and localizing mul-
iple sources without prior knowledge on their number ( Kirsch et al.,
006 ; Van Veen et al., 1997 ). Beamformer was also robust, up to a
ertain level, against temporal correlation with little source distortion
 Sekihara et al., 2002 ). Of note, in this work, we decided to proceed
ith the single dipole fitting method to localize ICs compare the results
cross methods, both on simulated and real data. This way, a single
ource was associated to each selected time series (ICs and virtual elec-
rode signals). Another reason supporting this choice was the intention
f performing a dynamic connectivity analysis on the extracted compo-
ents and LCMV sources as they are localized in different positions. Still,
ultiple sources could be fitted to the ICA topographies, in cases where

evel of correlation is high ( Benar et al., 2005 ; Sorrentino et al., 2014 ). 
In our study, the term ‘dynamic’ refers to the application of a connec-

ivity index (broadband cross-correlation) using a short sliding window
long the continuous data. As already discussed in ( Malinowska et al.,
014 ), to perform connectivity analysis on ICs may sound contradictory
ecause of the independency constraint that is intrinsic in the ICA algo-
ithm. In our case, the network we wanted to identify was the interictal
ne, that manifests itself during IED, thus we assumed that the spikes in-
eraction and propagation can be detected with cross-correlation, which
an capture propagation lags. Of note, we also showed that ICA can
orrectly separate correlated sources, with a correlation value up to
.8 ( Fig. 3 a), thus the independence constraint seems not to strongly
ffect source separation. In SIM2, we simulated an interictal network
ith three nodes and a connectivity pattern only based on the delay
etween the co-occurring events. We tested the possibility to retrieve
uch network dynamic using cross-correlation on both the simulated
nd reconstructed time series (i.e., selected ICs and LCMV-BF virtual
lectrodes), and correlating the time course of each link between nodes.
e mainly used this simulation as a proof of concept to test whether the

etrieval was possible and, in the used time and spatial configurations,
CA showed better performance in terms of SIM/MEG links time course
orrelation. 

Encouraging results were also obtained by applying the same
ipeline to real data of eight drug-resistant epileptic patients who un-
erwent a simultaneous SEEG/MEG recording. We excluded the ICA50
pproach since ICA100 showed better results on simulated data, prob-
bly due to the higher percentage of original data variance retained
 Artoni et al., 2018 ). Indeed, the need of maintaining as much as possi-
le the full rank of the data has been suggested for a 69 channels EEG
ataset, even if, stereotyped sources (as we can consider the IED sources)
eem not to be degraded by the application of the PCA before ICs de-
omposition ( Artoni et al., 2018 ). 

With an approach similar to the one adopted in previous studies
 Fahimi Hnazaee et al., 2020 ; Pizzo et al., 2019 ), we first extracted, for
ach identified interictal source, the mostly correlated (Pearson’s cor-
elation coefficient) bipolar SEEG channel, and then computed the Eu-
lidean distance between the SEEG channel position and the localized
ource. Since for each patient a different number of ICs and LCMV-BF
ources were identified as potentially interictal, and because of the large
ntra- and inter- patient variability, in the statistical test at the group
evel we took in consideration the random effect due to patient indi-
idual characteristics. The absence of any significant difference showed
12 
hat, on average, the approaches performed equally well. However, the
erformance changed patient by patient: at the single case level, no
ethod was evidently superior to the other. An advantage of ICA is that

t reduces drastically the dimension of the problem, leading to a more
traightforward interpretation. 

We found that, in 6 out of 8 patients, at least one significant corre-
ation was present (|R| > 0.34) and in 4 of them ICA showed a better
rade-off between correlation and estimated distance. What we already
ointed out on the simulations about the difficult localization of the ICs
hen their topography is not dipolar, was also seen in real data. As

uggested by the already mentioned work ( Malinowska et al., 2014 ), a
omplex spatial pattern could already identify a network activity, be-
ng the summation of different interictal sources interacting almost syn-
hronously, so that, because of its limitation, ICA is unable to properly
eparate them ( Makeig et al., 2004 ). If the complex spatial pattern can
e separated, for example with multi-dipole localization ( Viani et al.,
020 ), such complex topographies would already indicate a strong net-
ork connectivity between the underlying sources – in a static way

hough. 
The retrieval of the dynamic of network links was also possible, but

he interpretation is less straightforward. For simplicity we only indi-
ated the mostly correlated SEEG network link for each MEG-based
etwork link. In two patients, LCMV-BF revealed significant correspon-
ences with medium correlation values for several network links, while
nly one significance was present for IC based networks. In patient 1,
, 3 and 5 equally good outcome was found, with both close correlation
alues and distances. Therefore, we cannot identify a clear ‘winning’
ethod, but instead our results suggest that both methods provide use-

ul information that could be used in combination. In this line, an in-
eresting venue is to perform ICA on the beamformer “virtual sources ”,
hich could benefit of the complementary advantages of the two meth-
ds ( Velmurugan et al., 2022 ). 

.1. Limitations of the study and future perspectives 

With the intention of carrying out a comparison of methods as fair as
ossible, some methodological limitations were introduced in this work,
nd we want to discuss them providing suggestions for future research
nd improvements. 

As already discussed, dipole localization can be considered a sub-
ptimal method to localize ICs with complex topography, and at the
ame time, the choice of only considering the local maxima of the beam-
ormer kurtosis also is a simplification. Even though, such simplifica-
ions were considered necessary to perform a direct association with
he SEEG setup (and simulations), since our analysis was principally
ethodological. In order to investigate the clinical validity of our re-

ults, further analyses are needed, including the use of more sophisti-
ated forward models (i.e., higher spatial resolution, and BEM), multi-
ipoles ICs localization and beamformers source-leakage correction and
apping to specific atlas, i.e. the Virtual Epileptic Patient-VEP atlas

 Wang et al., 2021 ). 
In this study, we exploited the IED as a reference of interictal activ-

ty because in many cases it is clearly discernible on MEG signals and
ources time series. Since interictal activity may be generated by com-
lex networks ( Badier and Chauvel, 1995 ; Lagarde et al., 2018 ), the
nvolved brain regions may not be properly sampled by the SEEG con-
acts. Indeed, even if simultaneous SEEG recording represents a trustable
ground truth’ in controlled conditions ( Mikulan et al., 2020 ), it could
e considered imperfect in complex pathological states. Nevertheless, it
till provides the best validation option for spontaneous activity, given
ccurate pre-implantation evaluations. Therefore, identification of an
nterictal source far from the correlated SEEG contact, but still in re-
ions sampled by SEEG, was here interpreted as a ‘bad’ outcome. 

In this direction, simultaneous MEG/SEEG recordings are undoubt-
dly a step forward to a more precise EN characterization because
he MEG provide a whole brain view to the activity locally recorded



S. Coelli, S. Medina Villalon, F. Bonini et al. NeuroImage 265 (2023) 119806 

i  

d
 

t  

e  

s  

S  

t  

a  

(  

p  

2  

o  

a  

e

5

 

I  

d  

s  

t  

o  

p  

t  

i  

t  

r  

h  

m  

b  

a  

a  

w  

t  

i  

n  

l  

p  

i  

o  

t  

d  

f

D

 

s  

s  

a  

a

D

C

 

t  

i  

d  

i  

W  

M  

i  

B  

B  

s  

M  

s

D

A

 

(  

r  

b  

s  

e  

d  

I  

f  

0

S

 

t

R

A  

 

 

B  

 

B  

 

B  

B  

 

 

B  

 

B  

B  

 

B  

 

B  

B  

 

 

B  

 

C  

 

C  
nvasively ( Badier et al., 2017 ; Vivekananda et al., 2021 ), possibly re-
ucing the number of missed IED sources ( Gavaret et al., 2016 ). 

As for the connectivity analysis performed in this study, we decided
o apply a linear cross-correlation analysis and dynamically track the
volution of each network link along the whole recording with a 1-
ec time resolution. We showed that it is possible to identify which
EEG/MEG links evolve in a similar way, possibly opening the way
o the analysis of much more complex interactions between the MEG
nd SEEG networks, which has been done so far in a static manner
 Malinowska et al., 2014 ). Possible improvements will comprise the ap-
lication of non-linear connectivity indexes such as H2 ( Courtens et al.,
016 ). The idea is that it would be possible to retrieve, using MEG, the
n/off dynamic of the EN and possibly model its dynamic connectivity
s done, for example, for physiological networks ( Battaglia and Brov-
lli, 2019 ). 

. Conclusion 

We presented a first comparison of two approaches for estimating
ED activity and their dynamic connectivity non-invasively from MEG
ata, namely independent component analysis (ICA) and linearly con-
trained minimum-variance beamformer (LCMV-BF). We conclude, af-
er a simulation study and a test with SEEG data recorded simultane-
usly in 8 epileptic patients, that the two methods are comparable in
erformance and complementary in identifying the sources of interic-
al activity. Specifically, ICA reconstructed the sources more accurately
n terms of time series activity than the LCMV-BF, but it was inferior in
erm of localization on simulated data. On real simultaneous MEG/SEEG
ecordings, results showed an overall better performance of the ICA (i.e.,
igher time series correlation, lower distance between the source esti-
ated position and correlated SEEG contact). On a patient by patient

ases, it could be suggested that when the sources of interictal activity
re independent, even if relatively close in space, ICA can better separate
nd capture their dynamics and interactions in an easily interpretable
ay. Conversely, when the sources are more correlated ( Fig. S3 ), ICA

ends to merge them, while the LCMV-BF, being itself distributed, can
dentify more sources simultaneously. In this latter case, LCMV may
eed additional post-processing for a better interpretation and source
eakage correction ( Brookes et al., 2012 ). We further demonstrated the
ossibility of using ICA and LCMV-BF to retrieve the EN dynamic non-
nvasively. While in the simulated study ICA performed clearly better,
n real data the two methods showed equivalent results. This may open
o the possibility of better understanding how different epileptic sources
ynamically interacts, thus fully exploiting non-invasive whole brain in-
ormation. 

ata and code availability statements 

MEG, intracranial data and MRI images cannot be shared due to re-
trictions on patient data from APHM. The simulated data and analysis
cripts are available upon reasonable request from the corresponding
uthor. AnyWave software, used for cross-correlation analysis, is freely
vailable at https://ins-amu.fr/software . 

eclaration of Competing Interest 

The authors declare no competing financial interests. 

redit authorship contribution statement 

Stefania Coelli: Methodology, Software, Formal analysis, Visualiza-
ion, Writing – original draft, Writing – review & editing. Samuel Med-

na Villalon: Software, Methodology, Data curation, Writing – original
raft, Writing – review & editing. Francesca Bonini: Investigation, Val-
dation, Writing – review & editing. Jayabal Velmurugan: Software,
13 
riting – original draft, Writing – review & editing. Víctor J. López-

adrona: Software, Writing – original draft, Writing – review & edit-
ng. Romain Carron: Investigation, Writing – review & editing. Fabrice

artolomei: Resources, Supervision, Funding acquisition. Jean-Michel

adier: Conceptualization, Methodology, Data curation, Funding acqui-
ition, Supervision. Christian-G. Bénar: Conceptualization, Resources,
ethodology, Writing – review & editing, Supervision, Funding acqui-

ition, Project administration. 

ata Availability 

The data that has been used is confidential. 

cknowledgements 

S.C. was founded by Fondazione CRUI (GO for IT program), Italy. 
This research was also supported by grants ANR-16-CONV-0002

ILCB), ANR-17-HBPR-0005 (SCALES) from Agence Nationale de la
echerche and, A 

∗ MIDEX project ANR-17-RHUS-0004 (EPINOV) funded
y the ‘Investissements d’Avenir’ managed by the French National Re-
earch Agency. This work has received support from the French gov-
rnment under the Programme « Investissements d’Avenir », Initiative
’Excellence d’Aix-Marseille Université via A 

∗ Midex funding (AMX-19-
ET-004), and ANR (ANR-17-EURE-0029). It was performed on a plat-
orm member of France Life Imaging network (grant ANR-11-INBS-
006). 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.neuroimage.2022.119806 . 

eferences 

rtoni, F., Delorme, A., Makeig, S., 2018. Applying dimension reduction to EEG
data by principal component analysis reduces the quality of its subsequent in-
dependent component decomposition. Neuroimage 175, 176–187. doi: 10.1016/
j.neuroimage.2018.03.016 . 

adier, J., Chauvel, P., 1995. Spatio-temporal characteristics of paroxysmal in-
terictal events in human temporal lobe epilepsy. J. Physiol. 89, 255–264.
doi: 10.1016/0928-4257(96)83642-4 . 

adier, J.M., Dubarry, A.S., Gavaret, M., Chen, S., Trébuchon, A.S., Marquis, P., Régis, J.,
Bartolomei, F., Bénar, C.G., Carron, R., 2017. Technical solutions for simultaneous
MEG and SEEG recordings: towards routine clinical use. Physiol. Meas. 38, N118–
N127. doi: 10.1088/1361-6579/aa7655 . 

aillet, S., 2017. Magnetoencephalography for brain electrophysiology and imaging. Nat.
Neurosci. 20, 327–339. doi: 10.1038/nn.4504 . 

arborica, A., Mindruta, I., Sheybani, L., Spinelli, L., Oane, I., Pistol, C., Donos, C., López-
Madrona, V.J., Vulliemoz, S., Bénar, C.-G., 2021. Extracting seizure onset from surface
EEG with independent component analysis: insights from simultaneous scalp and in-
tracerebral EEG. NeuroImage Clin. 32, 102838. doi: 10.1016/j.nicl.2021.102838 . 

artolomei, F., Lagarde, S., Wendling, F., McGonigal, A., Jirsa, V., Guye, M., Bénar, C.,
2017. Defining epileptogenic networks: contribution of SEEG and signal analysis.
Epilepsia 58, 1131–1147. doi: 10.1111/epi.13791 . 

attaglia, D., Brovelli, A., 2019. Functional connectivity and neuronal dynamics : insights
from computational methods. Cogn. Neurosci. . 

ell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind sep-
aration and blind deconvolution. Neural Comput 7, 1129–1159. doi: 10.1162/
neco.1995.7.6.1129 . 

enar, C.-G., Gunn, R.N., Grova, C., Champagne, B., Gotman, J., 2005. Statistical
maps for EEG dipolar source localization. IEEE Trans. Biomed. Eng. 52, 401–413.
doi: 10.1109/TBME.2004.841263 . 

enjamini, Y., Heller, R., 2007. False discovery rates for spatial signals. J. Am. Stat. Assoc.
doi: 10.1198/016214507000000941 . 

ouet, R., Jung, J., Delpuech, C., Ryvlin, P., Isnard, J., Guenot, M., Bertrand, O.,
Mauguière, F., 2012. Towards source volume estimation of interictal spikes
in focal epilepsy using magnetoencephalography. Neuroimage 59, 3955–3966.
doi: 10.1016/j.neuroimage.2011.10.052 . 

rookes, M.J., Woolrich, M.W., Barnes, G.R., 2012. Measuring functional connectivity in
MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63,
910–920. doi: 10.1016/j.neuroimage.2012.03.048 . 

olombet, B., Woodman, M., Badier, J.M., Bénar, C.G., 2015. AnyWave: a cross-platform
and modular software for visualizing and processing electrophysiological signals. J.
Neurosci. Methods 242, 118–126. doi: 10.1016/j.jneumeth.2015.01.017 . 

olton, D., Kress, R., 1992. Electromagnetic Scatter- ing Theory. Springer, Berlin New
Edition. Ed. . 

https://ins-amu.fr/software
https://doi.org/10.1016/j.neuroimage.2022.119806
https://doi.org/10.1016/j.neuroimage.2018.03.016
https://doi.org/10.1016/0928-4257(96)83642-4
https://doi.org/10.1088/1361-6579/aa7655
https://doi.org/10.1038/nn.4504
https://doi.org/10.1016/j.nicl.2021.102838
https://doi.org/10.1111/epi.13791
http://refhub.elsevier.com/S1053-8119(22)00927-2/sbref0007
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1109/TBME.2004.841263
https://doi.org/10.1198/016214507000000941
https://doi.org/10.1016/j.neuroimage.2011.10.052
https://doi.org/10.1016/j.neuroimage.2012.03.048
https://doi.org/10.1016/j.jneumeth.2015.01.017
http://refhub.elsevier.com/S1053-8119(22)00927-2/sbref0014


S. Coelli, S. Medina Villalon, F. Bonini et al. NeuroImage 265 (2023) 119806 

C  

C  

 

F  

 

 

G  

 

G  

 

 

G  

 

H  

 

 

H  

H  

 

H  

 

 

J  

 

 

J  

 

J  

 

 

K  

 

K  

 

 

K  

 

K  

 

L  

 

 

L  

 

L  

 

 

L  

 

 

L  

 

 

M  

M  

 

M  

 

 

M  

 

 

M  

M  

 

 

 

O  

 

O  

 

 

P  

 

 

R  

 

R  

 

S  

 

S  

 

T  

 

V  

 

V  

 

 

 

V  

 

 

 

V  

V  

 

 

W  

 

 

W  

 

 

omon, P., 1994. Independent component analysis, a new concept? Signal Process. 36,
287–314. doi: 10.1016/0165-1684(94)90029-9 . 

ourtens, S., Colombet, B., Trébuchon, A., Brovelli, A., Bartolomei, F., Bénar, C.G., 2016.
Graph measures of node strength for characterizing preictal synchrony in partial
epilepsy. Brain Connect 6, 530–539. doi: 10.1089/brain.2015.0397 . 

ahimi Hnazaee, M., Wittevrongel, B., Khachatryan, E., Libert, A., Carrette, E., Dauwe, I.,
Meurs, A., Boon, P., Van Roost, D., Van Hulle, M.M., 2020. Localization of
deep brain activity with scalp and subdural EEG. Neuroimage 223, 117344.
doi: 10.1016/j.neuroimage.2020.117344 . 

avaret, M., Dubarry, A.-S., Carron, R., Bartolomei, F., Trébuchon, A., Bénar, C.-G., 2016.
Simultaneous SEEG-MEG-EEG recordings overcome the SEEG limited spatial sam-
pling. Epilepsy Res 128, 68–72. doi: 10.1016/j.eplepsyres.2016.10.013 . 

rova, C., Aiguabella, M., Zelmann, R., Lina, J.-M., Hall, J.A., Kobayashi, E., 2016.
Intracranial EEG potentials estimated from MEG sources: a new approach to
correlate MEG and iEEG data in epilepsy. Hum. Brain Mapp. 37, 1661–1683.
doi: 10.1002/hbm.23127 . 

rova, C., Daunizeau, J., Lina, J.M., Bénar, C.G., Benali, H., Gotman, J., 2006. Evaluation
of EEG localization methods using realistic simulations of interictal spikes. Neuroim-
age 29, 734–753. doi: 10.1016/j.neuroimage.2005.08.053 . 

all, M.B.H., Nissen, I.A., van Straaten, E.C.W., Furlong, P.L., Witton, C., Foley, E., Seri, S.,
Hillebrand, A., 2018. An evaluation of kurtosis beamforming in magnetoencephalog-
raphy to localize the epileptogenic zone in drug resistant epilepsy patients. Clin. Neu-
rophysiol. 129, 1221–1229. doi: 10.1016/j.clinph.2017.12.040 . 

assan, M., Merlet, I., Mheich, A., Kabbara, A., Biraben, A., Nica, A., Wendling, F., 2017.
Identification of interictal epileptic networks from dense-EEG. Brain Topogr. 30, 60–
76. doi: 10.1007/s10548-016-0517-z . 

e, B., Astolfi, L., Valdes-Sosa, P.A., Marinazzo, D., Palva, S.O., Benar, C.G., Michel, C.M.,
Koenig, T., 2019. Electrophysiological brain connectivity: theory and implementation.
IEEE Trans. Biomed. Eng. 66, 2115–2137. doi: 10.1109/TBME.2019.2913928 . 

illebrand, A., Nissen, I.A., Ris-Hilgersom, I., Sijsma, N.C.G., Ronner, H.E., van
Dijk, B.W., Stam, C.J., 2016. Detecting epileptiform activity from deeper brain
regions in spatially filtered MEG data. Clin. Neurophysiol. 127, 2766–2769.
doi: 10.1016/j.clinph.2016.05.272 . 

aiswal, A., Nenonen, J., Stenroos, M., Gramfort, A., Dalal, S.S., Westner, B.U., Litvak, V.,
Mosher, J.C., Schoffelen, J.M., Witton, C., Oostenveld, R., Parkkonen, L., 2020. Com-
parison of beamformer implementations for MEG source localization. Neuroimage
216. doi: 10.1016/j.neuroimage.2020.116797 . 

iang, X., Ye, S., Sohrabpour, A., Bagi ć, A., He, B., 2022. Imaging the extent and loca-
tion of spatiotemporally distributed epileptiform sources from MEG measurements.
NeuroImage Clin. 33, 102903. doi: 10.1016/j.nicl.2021.102903 . 

mail, N., Gavaret, M., Bartolomei, F., Chauvel, P., Badier, J.-M., Bénar, C.-G.,
2016. Comparison of Brain Networks During Interictal Oscillations and Spikes
on Magnetoencephalography and Intracerebral EEG. Brain Topogr. 29, 752–765.
doi: 10.1007/s10548-016-0501-7 . 

irsch, H.E., Robinson, S.E., Mantle, M., Nagarajan, S., 2006. Automated localization of
magnetoencephalographic interictal spikes by adaptive spatial filtering. Clin. Neuro-
physiol. 117, 2264–2271. doi: 10.1016/j.clinph.2006.06.708 . 

obayashi, K., Akiyama, T., Nakahori, T., Yoshinaga, H., Ohtsuka, Y., Gotman, J.,
Oka, E., 2002. Source estimation of spikes by a combination of indepen-
dent component analysis and RAP-MUSIC. Int. Congr. Ser. 1232, 311–316.
doi: 10.1016/S0531-5131(01)00713-0 . 

obayashi, K., James, C.J., Nakahori, T., Akiyama, T., Gotman, J., 1999. Isolation of
epileptiform discharges from unaveraged EEG by independent component analysis.
Clin. Neurophysiol. 110, 1755–1763. doi: 10.1016/S1388-2457(99)00134-0 . 

obayashi, K., Merlet, I., Gotman, J., 2001. Separation of spikes from background by
independent component analysis with dipole modeling and comparison to intracranial
recording. Clin. Neurophysiol. 112, 405–413. doi: 10.1016/S1388-2457(01)00457-6 . 

agarde, S., Roehri, N., Lambert, I., Trebuchon, A., McGonigal, A., Carron, R., Scav-
arda, D., Milh, M., Pizzo, F., Colombet, B., Giusiano, B., Medina Villalon, S., Guye, M.,
Bénar, C.G., Bartolomei, F., 2018. Interictal stereotactic-EEG functional connectivity
in refractory focal epilepsies. Brain 141, 2966–2980. doi: 10.1093/brain/awy214 . 

amus, C., Hämäläinen, M.S., Temereanca, S., Brown, E.N., Purdon, P.L., 2012. A spa-
tiotemporal dynamic distributed solution to the MEG inverse problem. Neuroimage
63, 894–909. doi: 10.1016/j.neuroimage.2011.11.020 . 

i, R., Plummer, C., Vogrin, S.J., Woods, W.P., Kuhlmann, L., Boston, R., Liley, D.T.J.,
Cook, M.J., Grayden, D.B., 2021. Interictal spike localization for epilepsy surgery
using magnetoencephalography beamforming. Clin. Neurophysiol. 132, 928–937.
doi: 10.1016/j.clinph.2020.12.019 . 

in, Y.Y., Shih, Y.H., Hsieh, J.C., Yu, H.Y., Yiu, C.H., Wong, T.T., Yeh, T.C., Kwan, S.Y.,
Ho, L.T., Yen, D.J., Wu, Z.A., Chang, M.S., 2003. Magnetoencephalographic yield of
interictal spikes in temporal lobe epilepsy: comparison with scalp EEG recordings.
Neuroimage 19, 1115–1126. doi: 10.1016/S1053-8119(03)00181-2 . 

ópez-Madrona, V.J., Medina Villalon, S., Badier, J., Trébuchon, A., Jayabal, V., Bar-
tolomei, F., Carron, R., Barborica, A., Vulliémoz, S., Alario, F.X., Bénar, C.G., 2022.
Magnetoencephalography can reveal deep brain network activities linked to memory
processes. Hum. Brain Mapp. doi: 10.1002/hbm.25987 . 
14 
akeig, S., Debener, S., Onton, J., Delorme, A., 2004. Mining event-related brain dynam-
ics. Trends Cogn. Sci. 8, 204–210. doi: 10.1016/j.tics.2004.03.008 . 

alinowska, U., Badier, J.-M., Gavaret, M., Bartolomei, F., Chauvel, P., Bénar, C.-G., 2014.
Interictal networks in Magnetoencephalography. Hum. Brain Mapp. 35, 2789–2805.
doi: 10.1002/hbm.22367 . 

atsubara, T., Hironaga, N., Uehara, T., Chatani, H., Tobimatsu, S., Kishida, K., 2020. A
novel method for extracting interictal epileptiform discharges in multi-channel MEG:
use of fractional type of blind source separation. Clin. Neurophysiol. 131, 425–436.
doi: 10.1016/j.clinph.2019.11.032 . 

edina Villalon, S., Paz, R., Roehri, N., Lagarde, S., Pizzo, F., Colombet, B., Bar-
tolomei, F., Carron, R., Bénar, C.G., 2018. EpiTools, a software suite for presurgi-
cal brain mapping in epilepsy: intracerebral EEG. J. Neurosci. Methods 303, 7–15.
doi: 10.1016/j.jneumeth.2018.03.018 . 

erlet, I., Gotman, J., 1999. Reliability of dipole models of epileptic spikes. Clin. Neuro-
physiol. 110, 1013–1028. doi: 10.1016/S1388-2457(98)00062-5 . 

ikulan, E., Russo, S., Parmigiani, S., Sarasso, S., Zauli, F.M., Rubino, A., Avanzini, P.,
Cattani, A., Sorrentino, A., Gibbs, S., Cardinale, F., Sartori, I., Nobili, L., Massi-
mini, M., Pigorini, A., 2020. Simultaneous human intracerebral stimulation and HD-
EEG, ground-truth for source localization methods. Sci. Data 7, 1–8. doi: 10.1038/
s41597-020-0467-x . 

ostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: open source software
for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput.
Intell. Neurosci. 2011, 1–9. doi: 10.1155/2011/156869 . 

ssadtchi, A., Baillet, S., Mosher, J.C., Thyerlei, D., Sutherling, W., Leahy, R.M., 2004.
Automated interictal spike detection and source localization in magnetoencephalog-
raphy using independent components analysis and spatio-temporal clustering. Clin.
Neurophysiol. 115, 508–522. doi: 10.1016/j.clinph.2003.10.036 . 

izzo, F., Roehri, N., Medina Villalon, S., Trébuchon, A., Chen, S., Lagarde, S., Carron, R.,
Gavaret, M., Giusiano, B., McGonigal, A., Bartolomei, F., Badier, J.M., Bénar, C.G.,
2019. Deep brain activities can be detected with magnetoencephalography. Nat. Com-
mun. 10, 971. doi: 10.1038/s41467-019-08665-5 . 

oehri, N., Lina, J.M., Mosher, J.C., Bartolomei, F., Benar, C.G., 2016. Time-frequency
strategies for increasing high-frequency oscillation detectability in intracerebral EEG.
IEEE Trans. Biomed. Eng. 63, 2595–2606. doi: 10.1109/TBME.2016.2556425 . 

oehri, N., Pizzo, F., Bartolomei, F., Wendling, F., Bénar, C.G., 2017. What are the as-
sets and weaknesses of HFO detectors? A benchmark framework based on realistic
simulations. PLoS ONE 12, 1–20. doi: 10.1371/journal.pone.0174702 . 

ekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., 2002. Performance of an MEG
adaptive-beamformer technique in the presence of correlated neural activities: effects
on signal intensity and time-course estimates. IEEE Trans. Biomed. Eng. 49, 1534–
1546. doi: 10.1109/TBME.2002.805485 . 

orrentino, A., Luria, G., Aramini, R., 2014. Bayesian multi-dipole modelling of a single
topography in MEG by adaptive sequential Monte Carlo samplers. Inverse Probl. 30,
045010. doi: 10.1088/0266-5611/30/4/045010 . 

adel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: a user-
friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 1–13.
doi: 10.1155/2011/879716 . 

an Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain
electrical activity via linearly constrained minimum variance spatial filtering. IEEE
Trans. Biomed. Eng. 44, 867–880. doi: 10.1109/10.623056 . 

elmurugan, J., Badier, J.M., Pizzo, F., Villalon, S.M., Papageorgakis, C., López-
Madrona, V., Jegou, A., Carron, R., Bartolomei, F., Bénar, C.-G., 2022. Virtual MEG
sensors based on beamformer and independent component analysis can reconstruct
epileptic activity as measured on simultaneous intracerebral recordings. Neuroimage
119681. doi: 10.1016/j.neuroimage.2022.119681 . 

elmurugan, J., Nagarajan, S.S., Mariyappa, N., Ravi, S.G., Thennarasu, K., Mundla-
muri, R.C., Raghavendra, K., Bharath, R.D., Saini, J., Arivazhagan, A., Rajan, J., Ma-
hadevan, A., Rao, M.B., Satishchandra, P., Sinha, S., 2018. Magnetoencephalographic
imaging of ictal high-frequency oscillations (80-200 Hz) in pharmacologically resis-
tant focal epilepsy. Epilepsia 59, 190–202. doi: 10.1111/epi.13940 . 

iani, A., Luria, G., Bornfleth, H., Sorrentino, A., 2020. Where Bayes tweaks Gauss: con-
ditionally Gaussian priors for stable multi-dipole estimation. arXiv: 2006.04141v1 . 

ivekananda, U., Cao, C., Liu, W., Zhang, J., Rugg-Gunn, F., Walker, M.C., Litvak, V.,
Sun, B., Zhan, S., 2021. The use of simultaneous stereo-electroencephalography and
magnetoencephalography in localizing the epileptogenic focus in refractory focal
epilepsy. Brain Commun 3, 1–9. doi: 10.1093/braincomms/fcab072 . 

ang, H.E., Scholly, J., Triebkorn, P., Sip, V., Medina Villalon, S., Woodman, M.M., Le
Troter, A., Guye, M., Bartolomei, F., Jirsa, V., 2021. VEP atlas: an anatomic and func-
tional human brain atlas dedicated to epilepsy patients. J. Neurosci. Methods 348,
108983. doi: 10.1016/j.jneumeth.2020.108983 . 

ilenius, J., Lauronen, L., Kirveskari, E., Gaily, E., Metsähonkala, L., Paetau, R., 2020.
Interictal magnetoencephalography in parietal lobe epilepsy – Comparison of equiva-
lent current dipole and beamformer (SAMepi) analysis. Clin. Neurophysiol. Pract. 5,
64–72. doi: 10.1016/j.cnp.2020.02.003 . 

https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.1089/brain.2015.0397
https://doi.org/10.1016/j.neuroimage.2020.117344
https://doi.org/10.1016/j.eplepsyres.2016.10.013
https://doi.org/10.1002/hbm.23127
https://doi.org/10.1016/j.neuroimage.2005.08.053
https://doi.org/10.1016/j.clinph.2017.12.040
https://doi.org/10.1007/s10548-016-0517-z
https://doi.org/10.1109/TBME.2019.2913928
https://doi.org/10.1016/j.clinph.2016.05.272
https://doi.org/10.1016/j.neuroimage.2020.116797
https://doi.org/10.1016/j.nicl.2021.102903
https://doi.org/10.1007/s10548-016-0501-7
https://doi.org/10.1016/j.clinph.2006.06.708
https://doi.org/10.1016/S0531-5131(01)00713-0
https://doi.org/10.1016/S1388-2457(99)00134-0
https://doi.org/10.1016/S1388-2457(01)00457-6
https://doi.org/10.1093/brain/awy214
https://doi.org/10.1016/j.neuroimage.2011.11.020
https://doi.org/10.1016/j.clinph.2020.12.019
https://doi.org/10.1016/S1053-8119(03)00181-2
https://doi.org/10.1002/hbm.25987
https://doi.org/10.1016/j.tics.2004.03.008
https://doi.org/10.1002/hbm.22367
https://doi.org/10.1016/j.clinph.2019.11.032
https://doi.org/10.1016/j.jneumeth.2018.03.018
https://doi.org/10.1016/S1388-2457(98)00062-5
https://doi.org/10.1038/s41597-020-0467-x
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.clinph.2003.10.036
https://doi.org/10.1038/s41467-019-08665-5
https://doi.org/10.1109/TBME.2016.2556425
https://doi.org/10.1371/journal.pone.0174702
https://doi.org/10.1109/TBME.2002.805485
https://doi.org/10.1088/0266-5611/30/4/045010
https://doi.org/10.1155/2011/879716
https://doi.org/10.1109/10.623056
https://doi.org/10.1016/j.neuroimage.2022.119681
https://doi.org/10.1111/epi.13940
http://arxiv.org/abs/2006.04141v1
https://doi.org/10.1093/braincomms/fcab072
https://doi.org/10.1016/j.jneumeth.2020.108983
https://doi.org/10.1016/j.cnp.2020.02.003

	Comparison of beamformer and ICA for dynamic connectivity analysis: A simultaneous MEG-SEEG study
	1 Introduction
	2 Materials and methods
	2.1 Simulated and real data description
	2.1.1 Simulated data
	2.1.2 MEG and SEEG simultaneous recordings

	2.2 Interictal source separation and localization methods
	2.2.1 Independent component analysis and dipole localization
	2.2.2 LCMV beamformer and kurtosis mapping

	2.3 Connectivity analysis
	2.4 Simulated data analysis
	2.4.1 Source identification
	2.4.2 Retrieval of connectivity network links

	2.5 Real data analysis
	2.5.1 Source identification
	2.5.2 Retrieval of connectivity network links
	2.5.3 Estimation of signal-to-noise ratio

	2.6 Statistical analysis

	3 Results
	3.1 SIM1: source identification
	3.2 SIM2: retrieval of connectivity network links
	3.3 Real data
	3.3.1 Source identification: SEEG informed signal time-series correlation
	3.3.2 Retrieval of connectivity network links: correlation of MEG-net and SEEG-net dynamics


	4 Discussion
	4.1 Limitations of the study and future perspectives

	5 Conclusion
	Data and code availability statements
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgements
	Supplementary materials
	References


