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Bayesian Nonparametric Model-based
Clustering with Intractable Distributions:

An ABC Approach

Mario Beraha∗ and Riccardo Corradin†

Abstract. Bayesian nonparametric mixture models offer a rich framework for
model-based clustering. We consider the situation where the kernel of the mixture
is available only up to an intractable normalizing constant. In this case, the most
commonly used Markov chain Monte Carlo (MCMC) methods are unsuitable. We
propose an approximate Bayesian computational (ABC) strategy, whereby we ap-
proximate the posterior to avoid the intractability of the kernel. We derive an
ABC-MCMC algorithm which combines (i) the use of the predictive distribution
induced by the nonparametric prior as proposal and (ii) the use of the Wasserstein
distance and its connection to optimal matching problems. To overcome the sensi-
bility concerning the parameters of our algorithm, we further propose an adaptive
strategy. We illustrate the use of the proposed algorithm with several simulation
studies and an application on real data, where we cluster a population of networks,
comparing its performance with standard MCMC algorithms and validating the
adaptive strategy.

Keywords: approximate Bayesian computation, Markov chain Monte Carlo,
adaptive sampling scheme, Bayesian nonparametric, Wasserstein distance,
mixture models.

1 Introduction
For a generic dataset, cluster analysis consists of identifying a meaningful partition
of observations into homogeneous clusters, that is, groups for which data in the same
group are more similar than data in different groups. Clustering is a valuable tool in
analyzing complex data as it allows for exploring the variability in a dataset and can
constitute an effective pre-processing tool for downstream tasks. In a Bayesian model-
based approach, clustering is performed by assuming a mixture likelihood for the data,
where observations in each cluster are assumed i.i.d. from a (typically parametric) ker-
nel density, K(· | θ) for some value of the parameters θ ∈ Θ. Then, the homogeneity of
a cluster means that observations in that cluster are suitably modeled by K(· | θ). See,
e.g. Frühwirth-Schnatter et al. (2019) and the references therein for a recent overview
of Bayesian model-based clustering. The choice of K plays a crucial role in the inter-
pretability of the clustering. In several real-world applications, the model assumed for
the data-generating process leads to K being intractable, that is, impossible to evaluate
analytically. Such intractability is due, for instance, to the presence of latent variables
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2 ABC-MCMC Clustering

integrated out of the model or to the use of a physical model involving differential
equations. Specific instances, addressed later in the paper, include stochastic volatility
models for time series and the exponential random graph distribution for networks.

Approximate Bayesian computation (ABC) is a recent growing area of research
dealing with statistical problems involving intractable distributions, i.e. distributions
known up to a normalizing constant which is parameter-dependent (doubly-intractable
distributions) or for which evaluating the probability density function is computationally
prohibitive. We refer to the pioneering studies of these methodologies by mentioning the
works of Rubin (1984); Tavaré et al. (1997); Pritchard et al. (1999); Beaumont et al.
(2002). See also Sisson et al. (2018) and Karabatsos and Leisen (2018) for recent reviews.
In the ABC setting, the direct application of Bayes’ theorem to obtain the posterior
distribution is infeasible due to the intractability of the likelihood. ABC strategies deal
with this issue by introducing an approximation of the original posterior distribution,
whereby the evaluation of the likelihood function is replaced by the evaluation of the
distance between the observed data and a synthetic dataset generated from the model
(or a surrogate) given parameters’ values. The true and synthetic data are considered
close if their distance is smaller than threshold ε, where both the distance and the
threshold are specified by the user and problem-dependent. Intuitively, if the true and
synthetic data are close, the parameters used to generate the synthetic dataset should be
informative about the posterior distribution of parameters, given the true dataset. An
approximation of the true posterior can then be constructed by considering the values of
the parameters leading to synthetic datasets similar to the observed one. Therefore, ABC
strategies require that simulating synthetic data is possible and feasible in a reasonable
time.

The application of ABC methods spreads over many fields. Remarkable examples
are recent usages in astronomy and cosmology (e.g. Cameron and Pettitt, 2012; Weyant
et al., 2013), genetics (e.g. Beaumont and Rannala, 2004; Technow et al., 2015) and fi-
nance (e.g. Picchini, 2014; Calvet and Czellar, 2014), among others. Many ABC methods
and extensions have been proposed in the literature over the last few decades, mainly by
considering different strategies to approximate the posterior distribution, such as rejec-
tion sampler (e.g. Pritchard et al., 1999; Beaumont et al., 2002) and kernel methods (e.g.
Beaumont et al., 2002; Wilkinson, 2013) among others. These strategies can be further
combined with various standard computational methods, obtaining, for example, ABC
rejection sampler (e.g. Tavaré et al., 1997; Pritchard et al., 1999), ABC importance
sampler and sequential Monte Carlo (e.g. Fearnhead and Prangle, 2012; Sisson et al.,
2007, 2009; Beaumont et al., 2009), ABC Markov chain Monte Carlo (e.g. Marjoram
et al., 2003; Bortot et al., 2007), and ABC Variational Inference (e.g. Barthelmé and
Chopin, 2014).

This work studies the Bayesian model-based clustering approach when the mixture
kernel K(· | θ) is intractable. Standard techniques for estimating the posterior distribu-
tion are based on Markov chain Monte Carlo (MCMC) algorithms, which become either
impractical or impossible in this case. We propose an ABC-MCMC algorithm (Marjo-
ram et al., 2003) to sample from an approximation of the true posterior distribution of
interest. The main quantities to define such an approximate strategy are the proposal
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distribution of the MCMC scheme, the choice of a distance to compare observed and
synthetic data, and a threshold. As far as the proposal is concerned, we exploit the pre-
dictive law induced by the exchangeable partition probability function (cf. Section 2.1)
of the mixing measure, which ensures that, if the distance between observed and syn-
thetic data is smaller than the threshold, we accept the proposed values with probability
one. To compare two datasets, we employ the Wasserstein metric between the empirical
probability distributions. See, e.g., Villani (2008) for an overview of foundations and
theoretical results and Peyré et al. (2019) for the computational aspects. The primary
motivation for this choice comes from the geometry of the underlying problem, i.e.
partitions’ estimation, and its connection with optimal transport. Recent attention was
given in the literature to combining Wasserstein distance with ABC procedures. See, for
example, Bernton et al. (2019b). Compared to previous approaches, where the Wasser-
stein distance was used as a mean to avoid summary statistics, here we make use of the
optimal transport map to perform efficient inference on the latent partition of the ob-
served data, starting from the latent partition of synthetic data. Recently, Nguyen et al.
(2022) proposed a similar idea to define a coupling between Markov chains on the space
of partitions, in the context of parallel MCMC for mixture models. Finally, we propose
an adaptive strategy for the threshold, which improves the sampler’s performance while
simplifying its specification.

We validate our ABC-MCMC strategy through several simulated examples: when
data are univariate, we consider mixtures of Gaussian and g-and-k distributions, show-
ing that with an intractable kernel our approach yields better performance in terms of
accuracy of the cluster detection, runtime and effective sample size, when compared to
standard MCMC algorithms. Specifically, in the case of g-and-k distribution, we ap-
proximate the density numerically when running the standard MCMC sampler. When
data are multivariate, we consider mixtures of bivariate g-and-k distributions and mix-
tures of the Lévy driven stochastic volatility model (Barndorff-Nielsen and Shephard,
2002), showing that our approach recovers the ground-truth clustering. Finally, we con-
sider mixtures of exponential random graph densities and apply the model to cluster
similar US air companies based on their connections among airports. In this case, each
observation is represented by a network.

The paper is structured as follows: Section 2 reviews mixture modelling, latent ran-
dom partition, intractable kernel distributions, and some results fundamental to the
following sections. Section 3 introduces the ABC-MCMC sampling strategy for latent
random partitions in mixture models in a general setting and discusses the use of an
adaptive strategy for the rejection threshold. In Section 4, we present numerical illus-
trations where we compare our ABC-MCMC algorithm with standard MCMC samplers
based on Gibbs sampling, demonstrating the usefulness of the adaptive threshold selec-
tion strategy. We conclude the paper with some final comments and remarks. Proofs of
main results are deferred to the Supplementary Material (Beraha and Corradin, 2024).
All the routines used for the analyses and simulations presented in the manuscript are
available at https://github.com/mberaha/abc_partition.

https://github.com/mberaha/abc_partition
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2 Bayesian mixture models
Consider observations y1:n = (y1, . . . , yn) such that each yi belongs to a Polish space
(Y,Y), for i = 1, . . . n. We will always assume the Borel σ-field and skip measure-
theoretic details in the following. A possible way to account for sources of heterogeneity
in the observed data y1:n is to consider a mixture model specified through a mixing
distribution p̃. We then assume that observations are i.i.d. conditionally on the mixing
measure p̃, with

y1, . . . , yn | p̃ iid∼ f̃(·) =
∫

Θ
K(· ; θ)p̃(dθ), (1)

where K(·, ·) is measurable in its two arguments, K(·, θ) is a probability density function
for each value of θ ∈ Θ, and p̃ is an almost surely discrete random probability measure,
i.e., p̃ a.s.=

∑
h whδθ∗

h
with both the weights wh’s and the atoms θ∗h’s random quantities.

Note that the number of components in p̃ can be either finite or infinite, depending
on specific modelling choices. We further assume the distribution of the weights wh’s
independent of the distribution of the locations θ∗h’s, where the latter is usually assumed
diffuse on Θ.

Although our methodology is valid regardless of the specific choice of K, it is suited,
in particular, to deal with cases when K is not analytically available. For instance, K
could depend on the numerical solution of a differential equation, involve latent variables
that are marginalized out, or simply be known up to an intractable normalizing constant
depending on the parameters. In cases when K is known explicitly, a variety of efficient
algorithms to fit mixture models have been proposed in the literature.

We can rewrite model (1) in a hierarchical fashion by assuming that yi | θi ind∼ K(·; θi)
and θi | p̃ iid∼ p̃, i = 1, . . . , n. In particular, the sequence θ1, . . . , θn is exchangeable and,
due to the almost sure discreteness of p̃, there is a positive probability of having ties
among the θi’s which identify the clusters. Exchangeability is paramount in designing
our ABC-MCMC algorithm, cf. Section 3.2 below. Moreover, by the de Finetti’s theorem
(de Finetti, 1937), exchangeability further motivates the assumption of a prior Q for p̃.
We highlight two possible specifications for Q below.

Example 1 (Pitman-Yor process mixture model). The Pitman-Yor process (Pitman
and Yor, 1997; Ishwaran and James, 2001) is a popular nonparametric prior for
Bayesian mixture model and species sampling problems. We write p̃ ∼ PY(ϑ, σ,G0),
where σ ∈ [0, 1), ϑ > −σ and G0 is a diffuse probability measure on Y. Then, p̃ =∑∞

h=1 whδθ∗
h

with θ∗1 , θ
∗
2 , . . .

iid∼ G0 and {wh}h is a sequence of weights distributed ac-
cording to a two-parameter Griffiths–Engen–McCloskey distribution, i.e., w1 = ν1,
wh = νh

∏
j≥h(1 − νj) for h > 1, with νh

iid∼ Beta(1 − σ, ϑ + hσ).

Example 2 (Mixture of finite mixtures). Introduced in Gnedin and Pitman (2006)
and recently popularized by Miller and Harrison (2018), the mixture of finite mixtures
(MFM) assumes p̃ =

∑m
h=1 whδθ∗

h
where wh |m ∼ Dirm(α), i.e. the symmetric Dirichlet

distribution on the (m−1)-dimensional simplex, the θ∗i ’s are independent and identically
distributed from a diffuse probability measure G0, and m ∼ π(m). Specifically, we will
consider the case (m− 1) ∼ Poi(λ).
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2.1 Exchangeable random partitions and mixture models

For our purposes, it is easier to think of a mixture model in terms of a latent partition
and a set of cluster-specific parameters. Specifically, let [n] = {1, . . . , n}, denote with
ρn = {A1, . . . , Ak} a random partition of [n] (i.e.

⋃
j Aj = [n] and Ai ∩Aj = ∅ if i �= j)

and let θ∗ = (θ∗1 , . . . , θ∗k). Writing p(·) for a generic density and p(· | ·) for a conditional
density, we assume that

p(y1, . . . , yn |θ∗,ρn) =
k∏

j=1

∏
i∈Aj

K(yi; θ∗j ). (2)

The Bayesian approach requires specifying a prior distribution for (ρn,θ
∗). We assume

that ρn is independent of θ∗ and that conditionally on the number of elements of the
partition k (henceforth denoted as clusters), θ∗1 , . . . , θ∗k are independent and identically
distributed random variables from a diffuse probability distribution G0 that does not
depend on (ρn, k), so that θ∗i �= θ∗j for i �= j almost surely. For the class of distri-
butions considered here (see below), the representations in (1) and (2), together with
prior assumptions, are indeed equivalent. In particular, (2) can be derived from (1) by
marginalizing out p̃. See, for instance, James et al. (2009) and the references therein.

As far as the prior for ρn is concerned, we only require for our algorithm (cf. Sec-
tion 3.2) that the law of the random partition allows for explicit formulas for P(ρn+1 | rn)
where rn = {Ai}ki=1 is a partition of [n] and ρn+1 denotes the random partition of [n+1].
In particular, P(ρn+1 | rn) is the law of the extension of rn to [n + 1], i.e. the partition
of [n + 1] conditionally to the first n elements being partitioned according to rn.

A well studied class of random partitions is the one of exchangeable partitions (King-
man, 1978; Pitman, 1995), for which P(ρn = rn) depends on rn = {Ai}ki=1 only through
the cardinalities nj = |Aj | of each set Aj and k. Further, there exists a symmetric func-
tion p(n)

k (n1, . . . , nk) named exchangeable partition probability function (EPPF) such
that

P(ρn = rn) =
∫

Θk

Ep̃

⎡⎣ k∏
j=1

p̃nj (dθ∗j )

⎤⎦ = p(n)
k (|A1|, . . . , |Ak|) = p(n)

k (n1, . . . , nk),

where the first equality in the previous equation highlights the connection between (1)
and (2). From the EPPF it is straightforward to derive the predictive law P(ρn+1 | rn)
as

P(ρn+1 = {A1, . . . , Aj ∪ {n + 1}, . . . , Ak} | rn) = p(n+1)
k (n1, . . . , nj + 1, . . . , nk)

p(n)
k (n1, . . . , nk)

,

P(ρn+1 = {A1, . . . , Ak, {n + 1}} | rn) =
p(n+1)

k+1 (n1, . . . , nk, 1)
p(n)

k (n1, . . . , nk)
.

(3)



6 ABC-MCMC Clustering

Example 3. (Pitman-Yor process mixture model (continued)) the EPPF of a PY pro-
cess can be explicitly characterized as

p(n)
k (n1, . . . , nk) =

∏k−1
j=1 (ϑ + jσ)
(ϑ + 1)n−1

k∏
j=1

(1 − σ)nj−1,

where (x)n = x(x + 1) · · · (x + n − 1) denotes the Pochhammer symbol. Moreover it is
straightforward to derive simpler expressions for the probabilities in (3)

P(ρn+1 = {A1, . . . , Aj ∪ {n + 1}, . . . , Ak} | rn) ∝ nj − σ

P(ρn+1 = {A1, . . . , Ak, {n + 1}} | rn) ∝ ϑ + kσ,

Example 4. (MFM (continued)) the predictive probabilities for a MFM process satisfy

P(ρn+1 = {A1, . . . , Aj ∪ {n + 1}, . . . , Ak} | rn) ∝ nj + α

P(ρn+1 = {A1, . . . , Ak, {n + 1}} | rn) ∝ Vn(k + 1)
Vn(k) α,

where the weights Vn(k)s are defined as

Vn(k) =
∑
�≥1

Γ(� + 1)Γ(γk)
Γ(�− k + 1)Γ(γk + n)ψ(k)1[�<k],

and the weights can be computed recursively using Vn+1(k + 1) = Vn(k)/α − (n/α +
k)Vn+1(k). See Miller and Harrison (2018) for further details.

Other well-known EPPFs are the Ewens sampling formula (Blackwell and Mac-
Queen, 1973), which corresponds to Example 3 when σ = 0, and the ones induced
by Gibbs-type priors (Gnedin and Pitman, 2006; De Blasi et al., 2013), which include
both our examples as special cases. Enriching the predictive structure of Gibbs-type
EPPFs while maintaining the analytical tractability is an active area of research, see,
e.g., Camerlenghi et al. (2023).

2.2 Dealing with intractable kernel density functions
Traditionally employed MCMC algorithms for fitting Bayesian mixture models require
that K is known in closed form. To understand the issues arising with intractable ker-
nels and motivate our approach, let us focus here on the case when K is known up to a
normalizing constant, i.e. K(·; θ) = g(yi; θ)/Zθ, where Zθ is an intractable normalizing
constant depending on the parameters. Algorithm 1 reports the celebrated algorithm 2
in Neal (2000), one of the cornerstone MCMC algorithms for Bayesian mixture models.
Both updates present nontrivial challenges. Step (A) of Algorithm 1 requires sampling
from a so-called doubly intractable distribution. Assuming that a perfect simulation
algorithm from K is available, sampling from p(θh | · · · ) can be performed through an
exchange algorithm as the one in Møller et al. (2006). However, as pointed out in Mur-
ray et al. (2006), the exchange algorithm can lead to low acceptance rates and a better
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Algorithm 1: Neal’s Algorithm 2 (Neal, 2000).
[1] input a set of data y1:n

[2] set admissible initial values for θ
∗(0)
1:k and ρn;

[3] for r = 1, . . . , R do
[4] (A) for h = 1, . . . , k do
[5] sample each θ

∗(r)
h independently from

p(θ∗(r)h | · · · ) ∝
∏
i∈Ah

K(yi; θ∗h)G0(θ∗(r)h ) =
(
Z
θ
∗(r)
h

)−nh ∏
i∈Bh

g(yi; θ∗(r)h )G0(θ∗h)

[6] (B) for i = 1, . . . , n do
[7] update the cluster allocation of each observation sampling from

P(i ∈ Ah | · · · ) ∝{
p(n)

k (n−i
1 , . . . , n−i

h + 1, . . . n−i
k )g(yi; θ∗(r)h )/Z

θ
∗(r)
h

: h = 1, . . . , k
p(n)

k (n−i
1 , . . . n−i

k , 1)
∫
Θ g(yi; θ)/Zθp(dθ) : h = k + 1

where the superscript −i means that the i-th observation has been
removed from the calculations.

[8] end

solution would be to employ a sequence of tempered transitions, which still requires
nontrivial implementations and fine-tuning. Step (B) involves a distribution over the
integers {1, . . . , k + 1}. The probability associated with k + 1 involves an integral, but
this can be overcome by using, for instance, Neal’s Algorithm 8. Hence, for the sake of
argument, let us ignore the last term. Usually, one computes the unnormalized probabil-
ities, normalizes them and samples from the resulting discrete probability distribution.
However, each term also contains Zθh , which is unknown in this case, so this simple
strategy is not possible. One could instead employ a Metropolis-Hastings step with a
proposal over {1, . . . , k + 1}, which would require again the use of some form of the
exchange algorithm to get rid of the ratios of normalizing constants. In summary, the
presence of an intractable normalizing constant in K severely impacts the feasibility of
commonly used MCMC algorithms for mixture models and presents a major bottleneck
for efficiency.

3 Approximate inference for random partitions
By applying Bayes’ theorem, the posterior of the partition ρn given data y can be
written as

π(ρn |y1:n) = p(ρn)p(y1:n |ρn)∑
ρn∈P1:n

p(dρn)p(y1:n |ρn) , (4)
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where P1:n is the space of all possible partitions of n elements, p(ρn) is the prior
distribution, and

p(y1:n |ρn) =
k∏

j=1

∫ ∏
i∈Aj

K(yi; θ)G0(dθ) =
k∏

j=1

∫ ∏
i∈Aj

g(yi; θ)
Zθ

G0(dθ).

To overcome the analytical intractability of the mixture kernel, we propose to consider
an approximation of the posterior in (4), namely πε defined as:

πε(ρn |y1:n) =
p(ρn)

∫
Yn 1[d(y1:n,s1:n)<ε]p(ds1:n |ρn)∑

ρn∈P1:n
p(dρn)

∫
Yn 1[d(y1:n,s1:n)<ε]p(ds1:n |ρn)

, (5)

where d : Yn × Y
n → [0,+∞) is a metric (specific choices will be discussed later) and

p(ds1:n |ρn) is the distribution of a synthetic dataset generated from (2) conditional on
the partition ρn. In particular (5) is an ABC posterior as in Equation (1.5) of Sisson
et al. (2018), where the ABC kernel is 1[d(y1:n,s1:n)<ε].

Algorithm 2: ABC rejection sampling for random partitions.
[1] input a set of data y1:n
[2] for r = 1, . . . , R do
[3] repeat
[4] sample a partition ρ̃

(r)
n = {Aj}kj=1 from the prior.

[5] sample θ
∗(r)
j

iid∼ G0 j = 1, . . . , k and {si}i∈Aj | θ
∗(r)
j

iid∼ K(·; θ∗(r)j ).
[6] until d(y1:n, s1:n) < ε;
[7] end

Many different techniques can be considered to obtain a sample from (5). A basic
acceptance-rejection ABC algorithm can be straightforwardly derived. Although it is
not the one we will employ (see Section 3), it is instructive to report it in Algorithm 2
for the discussion below. First, we note that the distance d(·, ·) has not been specified
yet. Traditionally, ABC algorithms employed statistics ν : Y

n → R
d and considered

d(y1:n, s1:n) = ‖ν(y1:n) − ν(s1:n)‖, where ‖ · ‖ is the Euclidean metric on R
d. For

instance, ν could compute the mean and variance of y1:n. Using summary statistics
simplifies the computations as it allows for great dimensionality reduction but also
causes a loss of information. Further, the choice of which summary statistics to use is
not obvious (Fearnhead and Prangle, 2012). More recently, the use of statistical distances
to compare the empirical distributions of y1:n and s1:n has been proposed to overcome
the issues related to summarization. See, for instance, Drovandi and Frazier (2022) and
the references therein. Moreover, another issue is evident when inspecting the output
of the acceptance-rejection algorithm: the partition ρ̃n in Algorithm 2 describes the
clusters associated to s1:n and provides little information about the clustering of the
observations y1:n. In the following, we show how to overcome both issues by a suitable
choice of distance, namely the Wasserstein distance.
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Given two measures μ1, μ2 over Y with finite q-th moment and a cost function
c : Y×Y → [0,+∞), assumed convex in the following, the Wasserstein distance of order
q is defined as

Wq(μ1, μ2) :=
{

inf
γ∈Γ(μ1,μ2)

∫
Y×Y

c(x1, x2)qdγ(x1, x2)
} 1

q

, (6)

where Γ(μ, ν) denotes the Radon space of all measures defined on Y×Y with marginals
μ1 and μ2. Letting μ1 = n−1∑ δyi and μ2 = n−1∑ δsi , we can use Wq, with a suitable
choice of the cost function, to compare y1:n and s1:n. We will write Wq(y1:n, s1:n) to
make this explicit. This is the case of the Wasserstein-ABC algorithm in Bernton et al.
(2019a), where the authors propose to use the Wasserstein distance principally to avoid
the choice of statistics for the ABC-SMC scheme. See also, e.g., Bassetti et al. (2006)
and Bernton et al. (2019b) for further uses of the Wasserstein distance in the statistical
framework.

In this work, the Wasserstein distance is valuable for avoiding summarization, but it
is also the key ingredient that allows inference on the partition of y1:n starting from ρ̃n

the partition of s1:n. First, we note that since μ1 and μ2 are always discrete measures, (6)
reduces to

Wq(y1:n, s1:n) :=

⎧⎨⎩ min
P∈Mn×n

n∑
i=1

n∑
j=1

c(yi, sj)qPi,j

⎫⎬⎭
1
q

=
{

min
P∈Mn×n

< C(q), P >

} 1
q

, (7)

where, referring to an optimal transport notation, C(q) denotes the cost matrix of order
q, with i, j-th element C

(q)
i,j = c(yi, sj)q and P is an n × n matrix encoding a discrete

distribution with n2 support points y1:n × s1:n with marginals equal to μ1 and μ2
respectively. In particular, P ∈ Mn×n where Mn×n is the space of n × n matrices
with positive entries summing to one and whose rows and columns all sum to n−1.
Observe also how the infimum in (6) has been replaced with a minimum in (7). For our
purposes, it is useful to think of P as a transport matrix associating to each element of
the synthetic dataset one or more elements of the observed dataset. If this mapping is
one-to-one, then it becomes straightforward to refer the partition ρ̃n of the synthetic
data to a partition of the observed data. This is indeed the case as clarified by the
following proposition.

Proposition 1. Let μ =
∑n

i=1 aiδxi and ν =
∑m

i=1 biδyi . If m = n and a = b,
ai = bi = 1/n for all i ∈ {1, . . . , n}, then there exists an optimal solution to problem (7)
P ∗ = Pλ∗ , which is a permutation matrix associated to an optimal permutation λ∗ in
the class of permutations of n elements.

We refer to Proposition 2.1 of Peyré et al. (2019) for a detailed proof of Proposi-
tion 1. Hence, by computing the Wasserstein distance between y1:n and s1:n, we are
also matching the partition ρ̃n of s1:n to a corresponding partition ρn of y1:n, by con-
sidering ρn = λ∗(ρ̃n). This result is remarkable as it allows us to find a solution to the
assignment problem in a polynomial time using, for instance, the well-known simplex
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algorithm (Peyré et al., 2019), while the space of all permutations of n objects has
size n!. Hence, when the distance Wq(y1:n, s1:n) is less than the threshold ε, we accept
λ∗(ρ̃n) as a realization from πε(ρn |y1:n). We further remark that such rearrangement
is legitimate in force of the exchangeability of the observed data.

3.1 Computation of the Wasserstein distance
When the data are univariate, computing the Wasserstein distance between y1:n and
s1:n and the related optimal permutation can be efficiently done. The minimization
problem is available in close form, as described in the following remark (remark 2.30 in
Peyré et al., 2019).

Remark 1. For measures μ, ν on R, denote with Fμ (Fν) the cumulative distribution
function of μ (ν) from R to [0, 1], defined as Fμ(x) =

∫ x

−∞ dμ for all x and its pseu-
doinverse F−1

μ (x) = minz{z ∈ R ∪ {−∞} : Fμ(z) ≥ x}. Then for any q ≥ 1 one has
Wq(μ, ν)q =

∫ 1
0 |F−1

μ (x) − F−1
ν (x)|qdx.

Letting μ and ν be equal to the empirical measures of y1:n and s1:n, it is appar-
ent that the optimal solution is given by sorting both the vectors y1:n and s1:n. The
computational cost of solving the problem in an optimal way is of order n logn. In the
multivariate setting, (7) can be solved exactly using the Hungarian algorithm, which has
a cost of order n3. This cost can become prohibitive for large sample sizes, but we can re-
sort to approximating the Wasserstein distance, which significantly saves computational
time.

Let τ ≥ 0 be a real-valued regularization term. By introducing an entropic regular-
ization factor in (6), we obtain the so-called Sinkhorn distance{

W τ
q (μ, ν)

}q = min
γ∈Γ(μ,ν)

∫
c(x1, x2)qdγ(x1, x2) − τKL(γ||μ⊗ ν),

where KL is the Kullback Leibler divergence and μ⊗ ν denotes the product measure.

In the case of discrete measures, Cuturi (2013) showed that the solution to the
Sinkhorn distance could be computed by an iterative algorithm, which requires a cost
of n2 per iteration and converges in O(τ−2) iterations, up to a logarithmic factor.
Moreover, the Sinkhorn distance converges to the regular Wasserstein distance as τ → 0.
More recently, Altschuler et al. (2017) proposed a greedy variant of the original Sinkhorn
algorithm, which runs in a nearly linear time. Nonetheless, both these algorithms require
the computation of the full pairwise cost matrix C, which is still O(n2).

3.2 ABC-MCMC approach for random partitions
The main problem we face when sampling from πε is that the size of the partitions’ space
P1:n escalates quickly as n increases (its growth is super-exponential), which makes the
acceptance-rejection ABC algorithm useless in practical applications. Below, we outline
an ABC-MCMC sampling scheme that overcomes these difficulties. In ABC-MCMC,
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the value for the parameters at the r-th iteration is sampled from a transition kernel
which depends on the value of the parameters at the (r−1)-th iteration. Specifically, we
propose to use the predictive distribution of an additional sample of size n as transition
kernel. At each iteration, we sample a candidate partition and the associated synthetic
dataset until the distance between the true and synthetic data is less than a threshold.
Once that such condition is satisfied, we perform a Metropolis-Hastings step to accept
the proposed value or remain on the current state of the latent partition. We further
show that with our choice of proposal distribution, the acceptance rate of the Metropolis-
Hastings step is always equal to one.

First, observe that model (2) together with a prior for π(ρn,θ
∗) that factorizes into

the EPPF of ρn times
∏k

j=1 G0(dθ∗j ) is equivalent to assuming yi | θi ∼ K(· | θi) and

P (θ ∈ dθ) = p
(n)
k (n1, . . . , nk)

k∏
j=1

G0(dθ∗j ),

where the θ∗j ’s are the unique values in θ = (θ1, . . . , θn), each appearing with frequen-
cies nj . Then, the predictive distribution for the (n + 1)-th latent parameter θn+1,
conditionally on θ1, . . . , θn, is given by

P(θn+1 ∈ dt | θ1, . . . , θn) =
p(n+1)

k+1 (n1, . . . , nk, 1)
p(n)

k (n1, . . . , nk)
G0(dt)

+
k∑

j=1

p(n+1)
k (n1, . . . , nj + 1, . . . nk)

p(n)
k (n1, . . . , nk)

δθ∗
j
(dt). (8)

Observe that the predictive distribution is a convex combination of the prior guess,
expressed in terms of G0, and the empirical information of the previous values of the
latent parameters, driven by the EPPFs’ ratios.

We can exploit the chain rule to produce a sample n step further from the current
state, obtaining

P(θn+1:2n |θ1:n) = P(θn+1 |θ1:n)P(θn+2 |θ1:n, θn+1)
. . .P(θ2n |θ1:n, θn+1, . . . , θ2n−1). (9)

Since at each step of the chain rule we are using the predictive distribution in (8),
the resulting θ′

1:n = θn+1:2n, is a combination of the prior guess and the empirical
information of θ1:n. Thanks to the fact that θ1:2n is an exchangeable sequence, we can
think on θ′

1:n as a standalone sample form p̃, with latent partition ρ′
n here termed raw

candidate. We can then sample a set of synthetic data s1:n conditionally on θ′
1:n, with

the generic Si ∼ K(si; θ′i) for all i ∈ {1, . . . , n}.
Once we have produced a set of synthetic data, we evaluate its distance from the

observed data y1:n via the Wasserstein metric by solving Wq(y1:n, s1:n). From Proposi-
tion 1, as a byproduct of the computation of the Wasserstein metric, we also compute
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an optimal permutation λ∗ of [n] in the sense of Proposition 1. This is used to match
the synthetic data to the observed one and, in particular, the partition of the synthetic
data ρ′

n with the corresponding partition of the observed data ρ′′
n := λ∗(ρ′

n), providing
also a permuted version of the latent parameters θ′′

1:n := λ∗(θ′
1:n). The fact that we can

propose ρ′
n and then permute it into ρ′′

n without impacting the limiting distribution
of the chain is due to the exchangeability assumption underlying the mixture model,
that is, the invariance with respect to permutation of the joint distribution of the ob-
servations yi and the latent parameters θi. Whenever Wq(y1:n, s1:n) is smaller than a
threshold ε, we can perform a Metropolis-Hastings step to update the state of the la-
tent partition or stay on the current value. We notice that the acceptance rate of this
latter Metropolis-Hastings step is always 1, since we are proposing a partition according
to (8) and (9). Let q(θ1:n → θ′′

1:n) = P(θ′′
1:n |θ1:n) be the proposal distribution for the

latent parameters, with θ′′
1:n the optimal permuted version of θ′

1:n, and q(ρn → ρ′′
n) the

proposal distribution induced on the latent partition. Indeed, the acceptance rate of the
Metropolis-Hasting step is equal to

α(ρ′′
n,ρn) = 1 ∧ P(θ1:n)q(θ1:n → θ′′

1:n)
P(θ′′

1:n)q(θ′′
1:n → θ1:n) = 1 ∧ P(θ1:n)P(θ′′

1:n,θ1:n)P(θ′′
1:n)

P(θ′′
1:n)P(θ1:n,θ′′

1:n)P(θ1:n) = 1,

where P(θ′′
1:n,θ1:n) = P(θ1:n,θ

′′
1:n) in force of the exchangeability of the latent param-

eters. Such behaviour is caused by the usage of the predictive distribution as proposal
distribution.

Algorithm 3: ABC-MCMC for latent random partitions.
[1] input a set of data y1:n, a threshold ε, and possibly hyperparameters for

K(·; θ);
[2] set admissible initial values for θ

(0)
1:n;

[3] for r = 1, . . . , R do
[4] repeat
[5] propose a move from θ

(r−1)
1:n to θ′

1:n according to a transition kernel
q(θ(r−1)

1:n → θ′
1:n), with related partition ρ′

n;
[6] sample s1:n |θ′

1:n vector of synthetic data, where Si ∼ K(·, θ′i);
[7] until Wq(y1:n, s1:n) < ε; denote with λ∗ the optimal permutation, cf.

Proposition 1;
[8] accept ρ′′

n := λ∗(ρ′
n) as realization from πε(ρn |y1:n);

[9] end

An implementation of the previous strategy is reported in Algorithm 3. We can easily
prove that Algorithm 3 is effectively producing R realizations from a Markov chain
which has invariant distribution corresponding to the ε-approximation of the posterior
distribution. We synthesize in the following Lemma the convergence of Algorithm 3.

Lemma 1. Assume {ρn,1,ρn,2, . . .} be a sample from an ABC-MCMC scheme according
to algorithm 3, with proposal q(ρn → ρ′

n) described in (8) and (9). Then the produced
chain has invariant distribution πε(ρn |y1:n).
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The proof of Lemma 1 is trivial, and follows from Marjoram et al. (2003). To help the
understanding of the proof of Theorem 1, we report in Section S1 of the Supplementary
Material a proof of Lemma 1. The presented strategy could be a first simple approach to
perform approximate inference of latent random partitions. Nevertheless we can relax
the assumption of a fixed threshold ε along the chain.

3.3 An adaptive strategy for ε

The threshold ε strongly impacts the computational time and the quality of the results
of Algorithm 3. See, e.g., the simulation studies in Section S4 of the Supplementary
Material where small ε leads to a poor mixing (it is hard to accept a proposed value)
and large ε provides a rough approximation of the true posterior. Choosing a suitable
threshold seems an essential task, but as remarked by Vihola and Franks (2020), thresh-
old selection (see e.g. Beaumont et al., 2002; Wegmann et al., 2009) may not be suitable
in an MCMC regime with weakly informative prior.. Instead of a fixed ε, a possible
strategy is to consider a sequence {εl}l≥1, which allows for larger thresholds in the
early phase of the chain, leading to a larger acceptance rate in the early phase of the
algorithm.

Algorithm 4: adaptive ABC-MCMC for latent random partitions.
[1] input a set of data y1:n, a threshold ε0, and possibly hyperparameters for

K(·; θ);
[2] set admissible initial values for θ

(0)
1:n, set l = 1;

[3] for r = 1, . . . , R do
[4] repeat
[5] propose a move from θ

(r−1)
1:n to θ′

1:n according to a transition kernel
q(θ(r−1)

1:n → θ′
1:n), with related partition ρ′

n;
[6] sample s1:n |θ′

1:n vector of synthetic data, where Si ∼ K(·, θ′i);
[7] update εl and set l = l + 1;
[8] until Wp(y1:n, s1:n) ≤ ε�; denote with λ∗ the optimal permutation, cf.

Proposition 1;
[9] accept ρ′′

n := λ∗(ρ′
n), as realization from πεl(ρn |y1:n);

[10] end

Algorithm 4 describes an implementation of the adaptive strategy. We remark that
while we are sampling R values from the approximate posterior distribution, the thresh-
old update can also be done when we reject the proposed values.

By assuming that the sequence {εl}l≥1 converges to a fixed threshold ε∗, we are able
to characterize the limit behaviour of the target distribution, showing that the MCMC
has invariant distribution corresponding to the ε∗-approximation of the posterior dis-
tribution πε∗(ρn |y1:n), as stated in the following Theorem.
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Theorem 1. Let {εl}l≥1 be an R
+-valued sequence of elements, such that liml→+∞|εl−

ε∗| = 0. Let
{
ρ

(1)
n ,ρ

(2)
n , . . .

}
be a sample from an ABC-MCMC scheme according to

Algorithm 4, with proposal q(ρn → ρ′
n) according to (8) and (9). Let p(w) denotes the

density function of Wq(y1:n, s1:n), where s1:n denotes the l-th synthetic sample, and
assume 0 < p(w) < M for all l. Then, for l → +∞, we have that πε∗(ρn |y1:n) is the
invariant distribution of the chain.

To prove Theorem 1 we exploit the continuity of Wp(y1:n, s1:n), and the convergence
of {εt}t∈T to its limit. A detailed proof is reported in Section S2 of the Supplementary
Material.

The sequence of thresholds {εl}l≥1 can be specified in many ways. One can, for ex-
ample, define a decreasing sequence from a large initial value ε0 to a smaller target value
ε∗. Such a strategy provides more flexibility than a fixed threshold, as in Algorithm 3,
but it requires particular care. For example, if the sequence is quickly approaching the
optimal value and the algorithm visits a local mode, it can be stuck in the neighbour-
hood of such value. To overcome this issue it is reasonable to assume a sequence which
is actually adapting over the sampling times, i.e. it becomes smaller or larger depending
on if we are accepting too many or too few proposed values, but also the adaptation is
vanishing as far as the number of values sampled from the posterior is increasing. We
define the sequence of thresholds on a log-scale, according to Vihola and Franks (2020),
with

log(εl) = log(ε0) +
l∑

j=1

(α∗ − 1[Wp(y1:n,s1:n)<εj−1])
j2/3 , (10)

where α∗ denotes the target acceptance rate. A strategy as in (10) produces a sequence
with diminishing adaptation of order o(l−3/2). Further, in Section S3 of the Supple-
mentary Material we show that the adaptation scheme in Equation 10 satisfies the
hypotheses of Theorem 1. Vihola and Franks (2020) suggest stopping the adaptation
after the burn-in phase, allowing control of the approximation level by imposing a fixed
threshold from a certain point of the chain (strategy ABCad1 in Section 4). However, in
some scenarios, we found that updating the threshold along the entire sampling led to
slightly better numerical results (strategy ABCad2 in Section 4). Within this strategy,
we waive controlling the degree of approximation of the target distribution to increase
the flexibility of the sampler since the threshold might increase or decrease over the en-
tire sampled chain. Nevertheless, we remark that it is not possible to provide a proper
interpretation of the degree of approximation included in the sampling strategy even if
the threshold is fixed.

Alternatively, one can refer to a post-processing algorithm as in Vihola and Franks
(2020). Let the threshold εl vary across the whole chain and then select a new δ < εl
threshold and weight the posterior samples taking into account the difference between
δ and ε. See their Theorem 1. However, in our simulations, we found that this was
superfluous. Although letting εl vary across the whole chain results in a loss of control on
the degree of approximation introduced by the ABC likelihood, the posterior inference
we obtain is consistent with the true data generating process and similar to the one
obtained using competitor algorithms.
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4 Numerical illustrations
We present some numerical illustrations of the ABC-MCMC sampling scheme for la-
tent partitions. Section 4.1 shows a comparison with a marginal sampler for the non-
conjugate case (Neal, 2000). Section 4.2 illustrates the effect of the Sinkhorn approxi-
mation in a multivariate setting. In Section 4.3 we present a synthetic example where
the data generating process and the kernel match the Lévy-driven stochastic volatility
model (Barndorff-Nielsen and Shephard, 2002; Chopin et al., 2013), and we are able to
infer the latent partition of a sample of time series. Section 4.4 discusses an example
where the data lies on a more abstract space. Further examples are deferred to the
Supplementary Material. In particular, in Section S4 we consider a tractable case where
the data are generated from a mixture of Gaussian distributions and the kernel func-
tion matches a Gaussian distribution. From this scenario we can appreciate that the
inclusion of an adaptation step slightly increases the computational time, but produces
more precise estimates of the latent partition.

For all the illustrations, once we have run the algorithms we estimate the optimal
latent partition of the data by resorting to a decision theoretic approach based on the
variation of information loss function (Wade and Ghahramani, 2018; Rastelli and Friel,
2018). When comparing the estimated latent partition with the true partition, we resort
to the normalized variation of information, i.e.

VI(r1, r2) = 1
logn (H(r1) + H(r2) − 2I(r1, r2)),

where r� = {A1,�, . . . , Ak�,�}, � = 1, 2, H(r) =
∑k

j>1 pj(r) log pj(r) represents the en-
tropy associated to the partition r, while

I(r1, r2) =
k1∑
i=1

k2∑
j=1

pij(r1, r2) log[pij(r1, r2)/(pi(r1)pj(r2))]

denotes the mutual information of r1 and r2, with pj(r�) = |Aj,�|/n, pij(r1, r2) =
|Ai,1 ∩ Aj,2|/n, and k, k1, k2 denote the cardinality of r, r1, r2 respectively. Lower
values of the variation of information indicate that r1 and r2 are close. To measure the
mixing of the MCMC, we report the effective sample size (see, e.g., Equation (11.6) in
Chapter 11 of Gelman et al., 2013) of the chains of a functional of the visited partitions
{r(j)}j≥1, namely the entropy H(r(j)). When considering the adaptive ABC-MCMC,
we set the target acceptance rate α∗ equal to 0.1, (i.e., the optimal rate as defined in
Vihola and Franks, 2020), and we update the thresholds according to (10). The chains
are sampled for 15 000 iterations, discarding the first 5 000 as burn-in.

4.1 Comparing ABC and standard MCMC approaches
We consider a scenario where the density is known up to an intractable constant. We
simulate sets of data from an unbalanced mixture of two g-and-k distributions, i.e.

f0(y) = 0.75ψ(y;−3, 0.75,−0.9, 0.1, 0.8) + 0.25ψ(y; 3, 0.5, 0.4, 0.5, 0.8),
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Figure 1: Simulation summaries for the mixture of g-and-k distributed data. Different
sample sizes n ∈ {100, 250} (dark gray and light gray respectively). The results are
averaged over 100 replications. Different sampling strategies: adaptive ABC-MCMC
algorithm (ABCad1) with adaptation stopped after the burn-in phase; adaptive ABC-
MCMC algorithm (ABCad2); marginal sampler (M1 - M2).

where ψ(x; a, b, g, k, c) denotes the density function of a g-and-k distribution with lo-
cation parameter a, scale parameter b, shape parameter g (mainly affecting the skew-
ness), shape parameter k (mainly affecting the kurtosis), and the parameter c fixed
and equal to 0.8. The g-and-k distribution is defined through its quantile function
F−1
GK(u) : [0, 1] → R with

F−1
GK(u) = a + b (1 + c tanh(gu/2))Φ−1(u)

(
1 + Φ−1(u)2

)k (11)

and Φ−1(u) denotes the quantile function of a standard Gaussian distribution. We con-
sider different sample sizes, with n ∈ {100, 250}. Our prior model specification consists
of a g-and-k mixture with MFM mixing measure, with α = 1 and λ = 1. Moreover,
the base measure G0 equals a product of independent distribution for the relevant pa-
rameters of the model, with a ∼ N(0, 25), b ∼ Inv-Gamma(1, 2), g ∼ N(0, 25), and
k ∼ Inv-Gamma(1, 2).

We consider two cases of adaptive ABC-MCMC: a case where the adaptation is
stopped after the burn-in phase (ABCad1) and a case where the adaptation is car-
ried over the entire sampled chains (ABCad2). The performances of the ABC-MCMC
sampler are further compared with a marginal sampling scheme with a Monte-Carlo
integration to estimate the probability of sampling a new value, in the spirit of Al-
gorithm 8 of Neal (2000), where we consider m ∈ {10, 100} temporary values for the
Monte-Carlo integration (algorithms M1 and M2 respectively). We remark that while
sampling a realization from a g-and-k distribution can be done efficiently, the evaluation
of the density requires numerical optimizations, which also impacts the Monte Carlo
integration step.

Figure 1 shows the computational time required to obtain a single realization, the
computational time required to perform a single independent realization, the effective
sample size of the entropy of the partitions and the distance of the latent partition
estimate and the true latent partition, for different sample sizes n and different sam-
pling strategies. The ABC-MCMC algorithms are significantly faster than the marginal
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strategies. Further, the increased computational cost of the marginal strategies does
not translate into more precise estimates of the partition, as shown in Figure 1. The
marginal sampler, known for its performances in terms of mixing of the sampled chains,
is showing performances comparable to the ABC-MCMC adaptive strategy. Further in-
sights on this example, but with larger numbers of components in the data generating
process, are deferred to Section S5 of the Supplementary Material. In particular, as
the number of components increases, the adaptive ABC approach maintain its relative
efficiency with respect to the competitor, but the accuracy of the estimates is getting
similar for all the different methods.

4.2 The effect of Sinkhorn approximation
Here we want to illustrate the effect of the Sinkhorn approximation on the clustering.
As a multivariate extension of the example in Section 4.1, we consider data from the
multivariate g-and-k distribution, in dimension p = 2. The multivariate g-and-k distri-
bution shares the same intractability as the univariate one, with the further addition
that, to the best of our knowledge, it is not possible to approximate the probability
density function numerically. To generate from the bivariate g-and-k distribution it suf-
fices to simulate (u1, u2) from a bivariate Gaussian distribution with zero mean, unit
marginal variances and correlation ρ and then let

yi = ai + bi (1 + ci tanh(giui/2))ui

(
1 + u2

i

)ki
, i = 1, 2.

As in the previous example, we assume ci fixed and equal to 0.8 and the correlation
between the ui’s fixed as ρ = 0.5. A priori, we assume a multivariate g-and-k mixture
model with Pitman-Yor process mixing measure, with ϑ = 1 and σ = 0.1. The base
measure G0 over parameters {ai, bi, gi, ki} i = 1, 2 factorizes into the product of the
marginal distributions, that are assumed identical to the ones in Section 4.1 for each
i = 1, 2. We simulated data from an equally-weighted mixture of bivariate g-and-k
distributions, with parameters (along each direction i = 1, 2) equal to the ones in
Section 4.1. We exploit an adaptive ABC-MCMC scheme with the adaptation carried
over the entire sampled chains.

Figure 2 shows an example of simulated data (left) with the posterior estimate of
the similarity matrix (middle), while the right column shows the effective sample size
of the entropy H(r) of the visited partitions (right-top) and the VI distance (right-
bottom) evaluated for 100 of replications, for different sample sizes. Both methods show
comparable effective sample sizes, while the Sinkhorn algorithm produces slightly more
precise estimates of the latent partitions. Regarding the computational cost, we did not
observe any significant difference comparing the runtimes when using the Wasserstein
or Sinkhorn distance within this particular scenario.

4.3 Time series stratification
We consider another scenario where observations are multivariate and the kernel is
intractable. Specifically, let yi = (yi,1, . . . , yi,T ), i = 1, . . . , n and think of each obser-
vation as a time series. The kernel K(·; θ) equals the Lévy-driven stochastic volatility
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Figure 2: Left column: an example of data generated from the mixture of multivariate g-
and-k distributions. Middle column: an example of estimated posterior similarity matrix.
Right column: effective sample size of the entropy (top) and VI distance from the true
partition (bottom) of different replications for the multivariate g-and-k scenario.

model (Barndorff-Nielsen and Shephard, 2002; Chopin et al., 2013) with parameters
θ = (μ, β, ξ, ω, η), i.e., we assume

yi,t+1 |μi, βi, vi,t+1 ∼ N(μi + βivi,t+1, vi,t+1), t = 1, . . . , T

vi,t+1 = η−1
i

(
zi,t − zi,t−1 +

k∑
j=1

ei,j

)
, zi,t+1 = e−ηizi,t +

k∑
j=1

e−ηi(t+1)−ci,jei,j

ci,1, . . . , ci,ki | ki
iid∼ Unif(t, t + 1), ei,1, . . . , ei,ki | ki

iid∼ Exp(ξi/ω2
i ), ki ∼ Poi(ηiξ2

i /ω
2
i ),

where we suppressed the dependence of k, the ci,j ’s and ei,j ’s on the time t. Indeed,
these are generated independently at each time.

The Lévy-driven stochastic volatility model is popular in financial applications,
where it is used to model the log-return of stocks, i.e., yt = log(xt+1 − xt)/xt where
xt is the price of the stock at time t. A similar scenario, but with a single time series,
was analyzed with ABC tools in Bernton et al. (2019a) as a challenging example in the
context of state-space models. Observe how their goal is different from ours: they set to
perform inference on the parameters of the stochastic volatility model that generated a
single time series, while our aim is to cluster similar elements belonging to a sample of
multiple time series.

As central part of our methodology, we need to select a distance function between
two time series {yt}Tt=1 and {st}Tt=1. In our example, we follow Bernton et al. (2019a)
in their choice of distance as detailed below, but note here that our methodology is
valid for any choice of cost. See Dyer et al. (2021) for other possibilities. To define
our distance, we consider the 1-lagged time series, i.e. the pointclouds {Yi}T−1

i=1 ⊂ R
2,

Yi = (yi, yi+1), and {Si}T−1
i=1 defined analogously from {st}Tt=1. Then, we consider the

Hilbert space-filling curve and obtain one-dimensional projections of the Yi’s and Si’s
on the curve and compute an optimal matching, say σ∗, between the one-dimensional
projections. Finally we set d2

H({yt}Tt=1, {st}Tt=1) =
∑T−1

i=1 ‖Yi − Sσ∗
i
‖2. From a practical
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Figure 3: Left column: data generated from the mixture of Lévy-driven stochastic volatil-
ity models. Right column: an example of estimated posterior similarity matrix.

viewpoint, we use the hilbertsort function in the CGAL C++ library that directly
finds the optimal sorting σ∗ without needing to compute the Hilbert curve.

We generated n = 50 time series with T = 50 observed times, from a two-component
mixture with equal weights. In the first component, data are generated from the Lévy-
driven stochastic volatility model with parameters (1.5, 2.75, 1.0, 2.5, 1.0) while in the
second with parameters (1.0, 2.0, 0.6, 1, 0.4), see Figure 3 (left panel). The base measure
G0 is the product of independent distributions, namely μ ∼ N(1, 42), β ∼ N(1, 42),
ξ ∼ Gamma(1, 2), ω ∼ Gamma(1, 1) and η ∼ Gamma(1, 1). We further set a Pitman-
Yor process as mixing measure, with ϑ = 1 and σ = 0.1.

We ran the adaptive ABC-MCMC (ABCad2) algorithm. The right column of Fig-
ure 3 shows the posterior similarity matrix (right) and the point estimate of the random
partition obtained using the greedy algorithm in Rastelli and Friel (2018) highlighted
with different colours (left), the adjusted rand index between the estimated and true
partition is equal to one. To give a rough estimate of the computational cost, the run-
time required by this simulation is approximately three hours on a Macbook Pro M1
with 16GB of RAM.

4.4 Clustering a population of networks
As a final illustration, we analyze data from n = 52 airline companies serving the US
airports.1 For each airline, we represent the covered routes as the edges of a graph
(also called network) Gi = {Vi, Ei}, where Vi represents an M -dimensional set of nodes
(or vertexes) for the i-th observation, i = 1, . . . , n, and Ei denotes the set of tuples
(j, k) ∈ Vi × Vi. The airports are shared by all the companies, so that Vi = V for all
i = 1, . . . , n, and, in particular, the M = 100 nodes correspond to the 100 most served
airports in the US. We further assume the graph to be undirected. With the aim of
clustering together graphs with similar topology, we consider unlabelled networks, so
that, for instance, the two networks in Figure 4 are completely identical.

1Data are available on the OpenFlights database (https://openflights.org/).

https://openflights.org/
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Figure 4: An example of two graphs differing only on the labeling of the nodes, but with
the same topology. The graph in the right picture is recovered starting from the graph
in the left picture by renaming the nodes as D → A, C → B, F → C, B → D, A → F ,
E → E.

To measure the distance between two specific graphs Gi and Gj we use as cost
operator C(Gi,Gj), the spectral distance between graphs, as defined in Gu et al. (2015),
that is

C(Gi,Gj)2 =
∣∣|Ei| − |Ej |

∣∣+ 1
min{|Ei|, |Ej |} + 1‖λGi − λGj‖2

2,

where |Ei| is the number of vertices of the i-th graph, and λG is the vector of eigenvalues
of the Laplacian of the graph G, defined as I − D−1/2GD−1/2 where D is a diagonal
matrix with entries Dii =

∑
j Gi,j . Among different possible choices for a metric to

compare graphs, the spectral distance is particularly suited for our purpose, as it focuses
on the topology of the networks rather than on the labeling of the nodes.

Remark 2. The main difference between this application and the previous sections is
that the observed data G1:n are not a subset of Rd anymore. Nonetheless, the formulation
of the Wasserstein distance in Equation (7), and then the consequent results, remains
valid for general choices of the cost operator C.

We consider as data generating process an Exponential Random Graph Model
(ERGM, see, e.g., Robins et al., 2007). Recall that we denote by M the number of
nodes, assumed fixed, and let Y an M × M binary matrix such that Yjk = 0 if j
and k are not connected and Yjk = 1 otherwise. In this context, the matrix Y is usu-
ally termed adjacency matrix, and it is in one-to-one correspondence with G = (V, E),
when we assume G an unlabeled network. The assumption underlying ERGMs is that
the topology of an observed graph y can be explained by a set of statistics s(y). In
particular we assume

P (Y = y |θ) = exp (θᵀs(y))
Zθ

, (12)

where Zθ is a normalizing constant, not available in closed form. Simulation strategies
from (12) are discussed in Morris et al. (2008). The model specification is completed by
specifying the statistics s(y). Generally the choice of these statistics is problem specific,
and there is no one-fits-all choice. For the airlines networks, we have the following struc-
tural behaviour: (i) several networks have a strong hub-and-spoke behaviour, meaning
that there is one node connected to most of the other ones and, apart from that par-
ticular node, the rest of the network is barely connected, i.e. companies with a main
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airport connected to most other ones; (ii) several networks instead have a more con-
nected topology, meaning that most of the nodes are connected to many other nodes,
i.e. companies which are diffuse over the airports; (iii) in both cases, there are nodes
that are not connected to any other node, i.e. connections not served by the company.
These insights led us to consider:

s(y) =

⎛⎝ M∑
i,j=1

yij ,

M∑
j=1

1[yj•=0],

M∑
j=1

1[yj•=1],

M∑
j=1

1[yj•∈[2,10]],

M∑
j=1

1[yj•∈[11,50]]

⎞⎠ ,

where yj• =
∑M

k=1 yjk. Despite the simplicity of the model, maximum likelihood esti-
mates of the parameters θ for our sample of networks are hard to compute, and most of
the time we incur in numerical errors. We set a Pitman-Yor process as mixing distribu-
tion, with ϑ = 1 and σ = 0.1, and we complete the specification of the model by letting
G0 be a five dimensional Gaussian distribution with covariance equal to 10I5, where I5
denotes the identity matrix of dimension 5, and mean (−4, 3, 3, 15,−20). The values of
the mean parameters were chosen via an empirical Bayes procedure as the maximum
likelihood estimates when considering all the data together. We obtain a sample from
the posterior distribution of interest using an adaptive ABC-MCMC scheme where the
adaptation is carried over the entire sampled chain.

Figure 5: Posterior similarity matrix for the airline dataset.

The point estimate of the latent partition identifies 2 clusters, highlighted in Figure 5,
with the cluster sizes nj reported in Table 1. We can appreciate that the two clusters
strongly differ from each other: the first cluster is characterized by observations with
a large number of nodes with no connections and a small number of nodes with few
connections, i.e. the airline companies belonging to this cluster are serving few airports
in the network. On the counterpart, the second cluster is composed by airline companies
which are serving several airports.
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Statistics 1st cluster 2nd cluster
Cardinality 37 15∑M

i,j=1 yij (2, 6, 12) (142, 198, 913)∑M
j=1 1[yj•=0] (93, 96, 98) (11, 25, 54)∑M
j=1 1[yj•=1] (2, 2, 4) (7, 22, 34.5)∑M
j=1 1[yj•∈[2,10]] (0, 1, 3) (10, 31, 54)∑M
j=1 1[yj•∈[11,50]] (0, 0, 0) (1, 5, 11.5)

Table 1: Summary statistics in the two clusters. Values in the second and third columns
correspond to the first, second, and third quartile of the statistics in the first and second
clusters respectively.

5 Discussion
In this paper, we introduced an approximate sampling strategy to deal with model-based
clustering whenever the kernel function is known up to an intractable normalizing con-
stant, but it is easy to define a distance between pairs of observations. We proposed an
ABC-MCMC algorithm, exploiting the predictive distribution induced by the under-
lying random probability measure, and using the Wasserstein distance, in connection
to the optimal transportation problem. Further, we proposed an adaptive strategy to
avoid the arduous choice of the threshold ε, providing theoretical and numerical re-
sults as support. In extensive simulation studies we have shown that our proposal is a
suitable choice in many contexts where the problem is hardly tractable or intractable.
Despite its simplicity, we have obtained good performance for both computational cost
and quality of the estimates, especially for the adaptive extension. The generality of
the model allows us to work on abstract spaces, as shown for example in the case study
described in Section 4.4.

Our algorithm suffers from the curse of dimensionality, as all the other MCMC
algorithms for mixture models. In particular, when the dimension of the parameter
space increases it becomes more and more difficult to propose suitable values for the
cluster parameters, while when the dimension of the data increases both the observed
and synthetic data suffer from sparsity. In this situation, we would advise to first project
the data on a lower dimensional subspace, via, e.g., principal component analysis, and
then perform model-based clustering on the lower dimensional projections.

ABC-MCMC arguably does not receive as much attention as ABC-SMC. In the
context explored in this paper, the design of an ABC-SMC strategy is cumbersome
due to the combinatorial nature of the problem. As argued in Bernton et al. (2019a),
one possibility is to combine our ABC-MCMC proposal within an ABC-SMC scheme.
However, the resulting strategy may lack effectiveness as the SMC particles do not
tend to diversify, so that, essentially, one ends up using ABC-MCMC paying a higher
computational price. We leave it as an interesting question for future investigation to
design effective ABC-SMC schemes for nonparametric mixture models.

Several extensions are possible. On the algorithmic side, it could be interesting to
add an acceleration step to sample the unique values, similar to the algorithms in Neal
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(2000). This would bring our approach closer to the Gibbs-like algorithm in Clarté
et al. (2020). As far as the model is concerned, we could consider generalizations be-
yond the exchangeable case. Note in fact that our approach holds only if the observa-
tions are assumed exchangeable. We believe that partial exchangeability could be easily
dealt with, while dependence on continuous covariates such as in the PPMx model
(Müller and Quintana, 2010) would require more work. Finally, it would be interesting
to investigate the estimation of the group-specific parameters, either by assuming non-
exchangeable prior distributions (see, e.g., Kunkel and Peruggia, 2020) or by developing
post-processing procedures akin to the ones in Egidi et al. (2018).
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