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1. Introduction

In the past years, Additive Manufacturing (AM)
technologies have drastically changed the manufacturing 
panorama, introducing a vast range of new possibilities in terms 
of product design, materials, and applications. Extrusion-based 
AM processes are currently under the spotlight because of the 
extensive range of printable materials (techno-polymers, 
ceramics, composite, metals etc.) and the large variability of 
printable sizes, ranging from millimeters to meters. Despite of 

this significant advantages, the low repeatability and stability 
have limited the diffusion of extrusion-based AM in industrial 
world, being unable to achieve quality standards required for 
final products.

To tackle this issue, the scientific and the industrial 
community have recently proposed methods based on in-situ 
monitoring to prevent the arising of defects, in a first-time-right 
production perspective [1,2]. Among many available 
information sources, the temperature evolution has found 
significant interest, since it allows the identification of different
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Abstract

Extrusion-based Additive Manufacturing (AM) processes have recently gained increasing attention in the scientific and industrial
communities because of the wide range of processible materials (from thermoplastics to composite and biomaterials), printable 
volumes, and industrial applications. As for many other AM processes, the actual problems with process stability and repeatability 
are still limiting the industrial process adoption, as these problems can significantly impact on the final part quality. In this 
framework, a latest research trend aims at developing in-situ monitoring solutions for inline defect detection, in a zero-waste 
production perspective. Among the existing in-situ sensing techniques, many studies showed that in-situ thermography represents 
a viable solution to describe the temperature dynamic and validate the thermal models but very few approaches have been proposed 
to quantitively study the temperature evolution to quickly detect process instabilities.
This paper presents a new approach to quickly analyse the temporal dynamic of temperature in the printed layer while providing a 
spatial mapping of the temperature homogeneities. Compared with previous methods, the current one has the main novelty feature 
of combining both the spatial and temporal signature in a synthetic mapping that allows to detect unstable or unusual problems. In 
order to show the effectiveness of the proposed solution, a real case study of Big Area Additive Manufacturing (BAAM) for
composite materials is considered. The study shows that the provided method can clearly enhance defect detection and represents
a new solution for detecting anomalous areas where thermal profiles behave differently with respect to the surrounding areas. The 
same methodology underlined the thermal evolution complexity in the BAAM case study and enabled the detection of local flaws,
i.e., hot and cold spots.
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anomalies linked to final part quality, such as lack of bonding
within layers and geometry inaccuracy [3,4]. So far, the existing 
studies on temperature analysis focused on the description of 
in-situ sensing setups (mainly based on infrared cameras) [5-7],
the validation of simulated thermal models [8-10], and the 
qualitative interpretation of temperature evolution [11,12].

Nevertheless, there is a lack of effort devoted to the use of
artificial intelligence and statistical data mining aimed to 
automatically detect the presence of process instabilities [2].
These tasks are far from being trivial, considering different 
sources of complexity. First, the high dimensionality of input 
data, which, in case of thermal profiles extracted from IR 
videos, are related to the camera resolution and frame rate 
acquisition. Then, the search of reliable analytical or numerical
thermal models is still in progress, thus the comparison of in-
situ thermal acquisition with a ground truth is still not possible.
Finally, the infrared data are characterized by a double nature,
which is jointly related to time and space. Indeed, temperature 
values depends on the time after material extrusion and their 
location within the layer. 

To tackle all these issues, this paper proposes the adoption 
of simple, computationally efficient, and model-free indicators 
for spatio-temporal analysis. Indicators have been proposed in 
the literature to study the spatial [13] and the temporal
dimensions [14,15] separately. 

In this paper, a methodology for spatio-temporal thermal 
data analysis of AM processes is proposed. The methodology is 
inspired by the paper by Gao et al. [8] in the context of data 
analysis, where a new version of the Moran’s index [13]
indicator is proposed to include a descriptor of temporal 
correlation, namely the z index [4]. The effectiveness of this 
newly defined index is firstly explored in a simulation scenario,
where different clusters of anomalous thermal profiles are 
included in the in-control profiles. These preliminary tests show
the effectiveness of the proposed solution in describing and 
highlighting spatio-temporal events. These findings are then 
explored in the real case study, where the spatio-temporal 
indicators allow one to explore the complexity of the 
temperature dynamics (despite the toolpath simplicity) and are
useful for visual inspection of local thermal flaws as hot and 
cold spots, i.e., spatially clustered temperature profiles which 
differ from the average thermal behavior.

2. Methodology

Assume a dynamic process has both a spatial and 
temporal signature that need to be investigated [16]. Let 𝒙𝒙𝒊𝒊,𝒕𝒕
represent the value of the time series in the location i at time 
t, a first ingredient of a spatio-temporal indicator is the CORT 
component, which is given by the cross correlation between 
the thermal profile 𝒙𝒙𝒊𝒊 observed at location i and the average
profile 𝒙𝒙 observed over all the spatial locations in the time 
interval [1, T]:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒙𝒙𝑖𝑖, 𝒙𝒙)

=
∑ (𝑥𝑥𝑖𝑖,𝑡𝑡+1 − 𝑥𝑥𝑖𝑖,𝑡𝑡)(𝑥̅𝑥𝑡𝑡+1 − 𝑥̅𝑥𝑡𝑡)𝑇𝑇−1

𝑡𝑡

√∑ (𝑥𝑥𝑖𝑖,𝑡𝑡+1 − 𝑥𝑥𝑖𝑖,𝑡𝑡)2𝑇𝑇−1
𝑡𝑡 √∑ (𝑥̅𝑥𝑡𝑡+1 − 𝑥̅𝑥𝑡𝑡)2𝑇𝑇−1

𝑡𝑡

( )

The CORT indicator assumes values in the interval [-1,1],
where values close to 1 (or -1) represent conditions of 
positive (or negative) correlation, i.e., situations where 𝒙𝒙𝒊𝒊
and 𝒙𝒙 increase or decrease simultaneously in the same (or 
opposite) directions. On the other side, values of CORT close 
to 0 represent the lack of significant correlation between the 
two-time series. Usually, the CORT index is transformed by 
applying the function 𝝋𝝋:

𝜑𝜑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝒙𝒙𝑖𝑖, 𝒙𝒙)) = 2
1 + 𝑒𝑒2∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒙𝒙𝑖𝑖,𝒙̅𝒙) ( )

which is an exponential adaptive tuning function used to 
remap the CORT index in a new range (0, 2) such that the
strongest is the correlation of the i-th profile with the average 
profile, the largest is the 𝜑𝜑( 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒙𝒙𝑖𝑖, 𝒙𝒙 )) component.

In order to augment the patter similarity with a second 
element to describe the magnitude/level effect, a new index is 
defined which includes information on the area underlying the 
thermal profile. Let 𝑣𝑣𝑖𝑖 and 𝑣̅𝑣 represent the areas under the
curve 𝒙𝒙𝑖𝑖 and 𝒙𝒙, respectively:

𝑣𝑣𝑖𝑖 = ∫ 𝒙𝒙𝑖𝑖
𝑇𝑇

1 𝑑𝑑𝑑𝑑; 𝑣̅𝑣 = ∫ 𝒙𝒙𝑇𝑇
1 𝑑𝑑𝑑𝑑 ( )

The new 𝒛𝒛𝒊𝒊 indicator is eventually computed to combine the
patter similarity described in 𝝋𝝋( 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒙𝒙𝒊𝒊, 𝒙𝒙 )) with the
size/level effect computed as the difference between the area 
underneath the i-th profile and one underneath the average 
thermal profile:

𝑧𝑧𝑖𝑖 = 𝜑𝜑( 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒙𝒙𝑖𝑖, 𝒙𝒙 )) ∙ (𝑣𝑣𝑖𝑖 − 𝑣̅𝑣 ) ( )

As that 𝝋𝝋(𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒙𝒙𝒊𝒊, 𝒙𝒙 )) is always above 0, the sign of
𝒛𝒛𝒊𝒊 is determined by the area component. Profiles whose
underlying area is larger (smaller) than the area under the 
average profile will get a positive (negative) value of 𝒛𝒛𝒊𝒊.

The description of the temporal dynamic provided by the 
𝑧𝑧𝑖𝑖 index is eventually combined with the spatial information
describing the association of thermal profiles in the 
neighborhoods of the i-th location:

𝐼𝐼𝑖𝑖 =
(𝑧𝑧𝑖𝑖 − 𝑧̅𝑧)

∑ (𝑧𝑧𝑖𝑖 − 𝑧̅𝑧)2
𝑖𝑖

∙ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑧𝑧𝑗𝑗 − 𝑧𝑧̅)
𝑗𝑗

here 𝒘𝒘𝒊𝒊𝒊𝒊 is a weight expressing the spatial proximity between
locations i and j≠i. the inverse of the Euclidian 
distance and 𝒛̅𝒛 is the average value of 𝒛𝒛𝒊𝒊 in all the locations.

The newly defined local Moran’s index 
𝐼𝐼𝑖𝑖 expresses the spatial correlation between the element 𝑧𝑧𝑖𝑖
observed in the neighbors. If the location i is surrounded by 
elements with similar (dissimilar) values, then  𝐼𝐼𝑖𝑖 > 0 (𝐼𝐼𝑖𝑖 < 0).
If it is surrounded by both similar and dissimilar values in a 
random arrangement, then 𝐼𝐼𝑖𝑖 ≈ 0.

In the context of Extrusion-based AM, the spatio-
temporal indicator is applied to temperature profiles, 
extracted at predefined locations in each layer. The thermal 
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cooling pattern at each location can be studied through the z
Local Moran’s I indexes.

3. Simulation Study

In this section, the behavior of the spatio-temporal 
indicators is tested using simulation. IR thermal data are 
simulated by generating 81 temperature profiles, each 
associated to a location in a 9X9 grid.  Each profile 𝒙𝒙𝒊𝒊 is
drawn considering a second-order linear model, similar to 
temperatures profiles observed in real case studies dealing 
with Extrusion-based AM [11]:

𝑥𝑥𝑖𝑖,𝑡𝑡 = 𝑒𝑒(𝛽𝛽0𝑖𝑖+𝛽𝛽1𝑖𝑖𝑡𝑡+𝛽𝛽2𝑖𝑖𝑡𝑡2+𝜀𝜀)

where  𝒙𝒙𝒊𝒊,𝒕𝒕 is a function of time t and 𝜷𝜷𝟎𝟎𝟎𝟎, 𝜷𝜷𝟏𝟏𝟏𝟏 𝐚𝐚𝐚𝐚𝐚𝐚 𝜷𝜷𝟐𝟐𝟐𝟐 are
the coefficients of a second order polynomial function, while
𝜺𝜺 ~iid N (0,𝝈𝝈𝟐𝟐 ). A clustered anomalous area is simulated
considering a 3x3 cells where the 𝜷𝜷𝟏𝟏 ’s coefficients are
altered. More in details, an out-of-control thermal profiles is 
assumed considering altered values of 𝜷𝜷𝟏𝟏𝟏𝟏

∗ with respect to
the in-control state 𝜷𝜷𝟏𝟏𝟏𝟏 , i.e., 𝜷𝜷𝟏𝟏𝟏𝟏

∗ = 𝑲𝑲𝜷𝜷𝟏𝟏𝟏𝟏 , where K was
initially set equal to 3. Hereafter, a visualization of the 
simulated temperature profiles and their spatial location is 
provided (Error! Reference source not found.).

Fig. 1. (a) Simulated Temperature profiles. Green lines represent the in-
control - IC - temperature profiles, while the red lines are the altered 

profiles - OOC. (b) Spatial disposition of IC e OOC temperature profiles. 

Error! Reference source not found. depicts the 
results of the computation of z and local Moran’s indexes.
The z indicator highlights all the defective cells, taking 
high and positive values for the out-of-control profiles. The 
positive sign is determined by the difference between the 
areas under the curve, as specified in formula (3), since the 
alteration of curve slope is positive. From the visual 
inspection of Error! Reference source not found., we can 
see that the Moran index I emphasizes the out-of-control 
cluster, underlying the presence of similar and spatially 
adjacent temperature profiles which deviate from the 
average temperature pattern. When no anomalies are 
present, the Moran’s index smooths the z values, thus 
increasing the contrast between defective and non-
defective areas.

Fig. 2. (a) z indexes and (b) local Moran’s indexes visualization through
heatmap; the defective region is highlighted with thick borders. 

The effectiveness of the spatio-temporal indicators is
further tested in terms of robustness towards defect size (D) 
and defect magnitude (K), i.e., by changing the number of 
defective profiles in each matrix and the deviation of 𝛽𝛽1𝑖𝑖
(see Error! Reference source not found.).

Results show that, for defects of small to medium sizes,
the local Moran’s index correctly highlights the defective 
areas, regardless the defect intensity. When the defective 
area is extended and takes more than a half of the total 
number of profiles, the distinction between in-control and 
out of control areas is less clear, particularly in proximity 
of the defective area’s borders.

Fig. 3. Local Moran's indexes for different values of defect 
dimension (D) and magnitude (K). 

4. Case Study

The dataset exploited for the real case study consists of 
the temperature profiles extracted from an infrared video of a 
Big Area Additive Manufacturing (BAAM) process [19]. The 
part under investigation was manufactured by the large-scale 
printer developed at the Oak Ridge National laboratories in 
collaboration with Cincinnati Incorporated [20]. 
Acrylonitrile Butadiene Styrene (ABS) with 20% of chopped 
carbon fibers weight is used to print a connected serpentine 
pattern, made by five long connected beads.  This toolpath is 
repeated for 15 layers. 

Extruder temperature was set at 230°C, while the building 
platform was pre-heated at 90°C. Extruder speed was 63.5 
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mm/s, so that a single layer printing lasts around 70 seconds. 
The infrared video was acquired at a framerate of 30 fps using 
a FLIR A35 thermal camera (FLIR® Systems Inc, 
Wilsonville, U.S.), positioned near the build area 
(approximately 1.3 m from the target object) with an 
inclination with respect to the building platform of around 
45°. 

For each layer, temperature profiles are extracted from 
506 Regions of Interest (ROI), placed along the extruder’s 
toolpath (see Error! Reference source not found.). An ID 
value was assigned to each ROI, starting from the initial 
position of the extruder (ROI ID=1), following the extruder 
toolpath up to the end of layer extrusion (ROI ID=506).

Fig. 4. Example of a frame taken from the analysed IR 
video. Black squares highlight the ROI under investigation.

4.1. Analysis of thermal evolution

Figure 5 depicts the average z values and local Moran’s 
index across the layers.

Despite the simplicity of the chosen extruder toolpath, 
both the indexes show a quite complex behavior,
highlighting the presence of relevant patterns. 

The z index takes values lower than 0 in the first and 
last beads. Thus, in these areas the measured thermal 
profiles 𝒙𝒙𝒊𝒊 stand below the layer’s average profile 𝒙𝒙. The
first bead shows also a sudden temperature jump right after 
the layers’ starting points, which progressively decreases 
towards the end of the bead. The temperature instability in 
the first bead can be explained with a machine transient 
state at the beginning of each layer, probably caused by the 
acceleration and deceleration of the extruder’s head, as 
well as change in the extrusion feed rate.  Areas with low 
values of z are also present at the beginning and at the end 
of each bead, i.e., where the extruder changes direction 
before printing a new bead. In general, the ROIs placed on 
the external borders display a faster cooling with respect to 
the average behavior, due to the lower heat retention. 
Indeed, they have less surface in contact with the rest of the
printed layer with respect to the central beads. Similar 
results have been observed in [8].

Concerning the rest of the printed beads, the central 
part of the layers shows positive and higher values of z
indexes, indicating a large area where thermal profiles 
stand above the average one. 

The bottom panel of Figure 5 depicts the average 
evolution of the local Moran’s index across. It highlights 
different zones with high spatial autocorrelation, i.e., 
clustered areas where thermal profiles behave in the same

manner. Two areas with high local Moran’s index are 
present at the beginning and at the end of the printed layer. 
As discussed before, in these clusters z takes low values,
far from those of the surrounding ROIs. Other similar 
clusters are visible in the beads turning point, particularly 
on the left size. Again, in these points z values are lower 
than 0. Finally, an extended area of positive spatial 
correlation can be observed in the layers’ left size,
particularly between the first and the third bead, where z 
values above 0 always occur, signaling an area that is hotter 
than the rest of the layer. 

Fig. 5. Top: spatial representation of z values and (b). local Moran's indexes. 
Each point represents the index mean value across the 15 layers. 

5. Conclusions

This paper proposed a new methodology that can be used as 
a powerful tool to gain a deep understanding of the thermal 
behavior in extrusion-based AM processes. The main 
advantage of the proposed solution relies on its capability to
jointly capture the temporal and the spatial information 
underlying the observed phenomenon. The effectiveness of the 
proposed solution was explored considering both a simulation 
and a real case study, where the temperature dynamics
observed in thermal videos acquired in Big Area Additive 
Manufacturing was of interest. The two proposed indicators 
were indeed able to underline the presence of different areas 
characterizes by peculiar thermal behaviors, compared with the 
average temperature profile. Moreover, local Moran’s indexes 
were useful to identify areas with high spatial correlation.

Future developments encompass the expansion of 
simulation to different scenarios, the combination of the current 
methodology with the a priori knowledge on the average (or 
target) thermal profile and the inclusion of the proposed 
solution as a basic element of a new procedure for statistical 
process monitoring or control to take full advantage of the 
proposed methodology for in-situ in-line AM process 
monitoring. 
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