
Citation: Greco, D.; Fasihiany, M.;

Ranjbar, A.V.; Masulli, F.; Rovetta, S.;

Cabri, A. Computer Vision

Algorithms on a Raspberry Pi 4 for

Automated Depalletizing. Algorithms

2024, 17, 363. https://doi.org/

10.3390/a17080363

Academic Editor: Guanqiu Qi

Received: 21 June 2024

Revised: 14 August 2024

Accepted: 15 August 2024

Published: 18 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Computer Vision Algorithms on a Raspberry Pi 4 for
Automated Depalletizing
Danilo Greco 1 , Majid Fasihiany 2, Ali Varasteh Ranjbar 3, Francesco Masulli 2,3,* , Stefano Rovetta 2,3

and Alberto Cabri 2,4

1 Department of Management, Economics and Industrial Engineering, Politecnico di Milano,
20156 Milan, Italy

2 Vega Research Laboratories s.r.l., 16121 Genoa, Italy
3 Department of Informatics, Bioengineering, Robotics and Systems Engineering, Università degli Studi di

Genova, 16146 Genoa, Italy
4 Department of Informatics “Giovanni degli Antoni”, Università degli Studi Statale di Milano,

20122 Milan, Italy
* Correspondence: francesco.masulli@unige.it

Abstract: The primary objective of a depalletizing system is to automate the process of detecting and
locating specific variable-shaped objects on a pallet, allowing a robotic system to accurately unstack
them. Although many solutions exist for the problem in industrial and manufacturing settings,
the application to small-scale scenarios such as retail vending machines and small warehouses has
not received much attention so far. This paper presents a comparative analysis of four different
computer vision algorithms for the depalletizing task, implemented on a Raspberry Pi 4, a very
popular single-board computer with low computer power suitable for the IoT and edge computing.
The algorithms evaluated include the following: pattern matching, scale-invariant feature transform,
Oriented FAST and Rotated BRIEF, and Haar cascade classifier. Each technique is described and
their implementations are outlined. Their evaluation is performed on the task of box detection and
localization in the test images to assess their suitability in a depalletizing system. The performance of
the algorithms is given in terms of accuracy, robustness to variability, computational speed, detection
sensitivity, and resource consumption. The results reveal the strengths and limitations of each
algorithm, providing valuable insights for selecting the most appropriate technique based on the
specific requirements of a depalletizing system.

Keywords: depalletizing systems; single-board computer; Raspberry Pi 4; computer vision; object
detection; pattern matching; scale-invariant feature transform (SIFT); Oriented FAST and Rotated
BRIEF (ORB); Haar cascade classifier; industrial automation; robotic manipulators

1. Introduction

In modern factory settings, depalletizing, which involves the ordered removal of
specific objects from a pallet, is a crucial task for maintaining efficient material handling
and inventory management. Traditional depalletizing methods are labor-intensive, time-
consuming, and prone to errors, leading to potential safety risks and productivity losses.
Consequently, there is a growing demand for automated depalletizing systems that can
streamline this process, reduce human intervention, and enhance overall operational
efficiency. Automated depalletizing systems equipped with robotic arms can operate
continuously without fatigue, significantly increasing the throughput compared to manual
depalletizing. Robots can handle repetitive tasks with consistent speed and precision,
leading to higher productivity and reduced cycle times. For industrial use cases, several
solutions have been available for quite a long time. Many of them rely heavily on computer
vision algorithms for accurate object detection and localization. They leverage image

Algorithms 2024, 17, 363. https://doi.org/10.3390/a17080363 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17080363
https://doi.org/10.3390/a17080363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0011-7001
https://orcid.org/0000-0002-6612-0932
https://orcid.org/0000-0003-3865-2613
https://orcid.org/0000-0003-1373-8402
https://doi.org/10.3390/a17080363
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17080363?type=check_update&version=1


Algorithms 2024, 17, 363 2 of 15

processing algorithms to identify and locate the desired objects on the pallet, enabling
a robotic system to pick and move them precisely.

With technical, economical, and societal changes, however, automation is becoming
more and more pervasive. Robotics has entered small productive contexts and even every-
day life, and machine learning-based artificial intelligence is being adopted in almost every
aspect of productivity. In this scenario, the need has arisen for solving the depalletizing
problem in a cost-effective way so as to make the technology available, for instance, to
retailers of goods such as wood pellet bags or to small warehouses, just to mention two
use cases.

Out of a complete depalletizing system, involving mechanical parts, power, and other
components, this paper studies the sub-problem of identifying and locating objects on
a pallet. These are assumed to have mildly irregular shapes and to be featuring possibly
complex textures and patterns. The focus is on small-scale, cost-effective computers suitable
for implementing edge-computing systems, i.e., systems not relying on either the cloud or
a central server. The reference architecture here is a Raspberry PI 4, a single-board computer
built around a custom Broadcom SoC particularly suitable for Internet of Things (IoT) and
edge-computing applications due to its low cost, low power consumption, and ease of
interfacing with cameras and other sensors, even if these advantages are counterbalanced
by its small memory size and low computing power.

It should be noted, however, that working under the hypothesis of computing lim-
itations constitutes a specific design requirement. These limitations rule out the use of
more sophisticated, but computationally demanding, solutions. The focus is therefore on
some classic object detection algorithms that, while lacking the flexibility of recent deep
learning-based models, can be easily implemented in this kind of hardware architecture.

This paper presents a comprehensive comparative analysis of four computer vision
algorithms for implementing a depalletizing system as follows: pattern matching, scale-
invariant feature transform (SIFT), Oriented FAST and Rotated BRIEF (ORB), and Haar
cascade classifier [1–8]. Each of these algorithms offers unique strengths and limitations,
and their performance is evaluated based on several key factors, including accuracy, ro-
bustness to variability, computer speed, detection sensitivity, and resource consumption.
Although in the literature, the four chosen algorithms have already been implemented
on various Raspberry architectures [9–14], in this work, we developed them on a specific
Raspberry PI 4 platform and evaluated their performance on the same test images specific to
the depalletizing application so that we could compare them and choose the most suitable
ones for a specific system, considering their accuracy and recognition latency.

The experimental setup is based on a Raspberry PI 4, a camera, and a simulated
physical environment. In the following sections, the implementation of each technique is
described in detail, and the results are thoroughly analyzed and discussed.

The paper organization is as follows: in Section 2, we provide a foundation for under-
standing the current state of the art. Section 3 details the experimental setup and the specific
computer vision algorithms employed, including SIFT, ORB, and others, along with the
criteria for their selection. Section 4 presents the findings from the experiments, comparing
the performance of different algorithms based on indices such as accuracy, processing time,
and resource consumption. This is followed by a discussion that interprets the results,
highlighting the strengths and limitations of each algorithm and their implications for
practical deployment in industrial settings. The paper ends with Section 5 summarizing
the key insights and suggesting directions for future research.

2. Background and Motivation
2.1. Depalletizing Systems in Industrial Environments

A pallet is a structural element used to provide stability to a set of items when they
are moved as a unit by mechanical means, such as a forklift. Typical pallets are wooden
frames, but other materials are also used. There exist dimensional standards to facilitate
handling at different locations (source, transportation, destination).



Algorithms 2024, 17, 363 3 of 15

Depalletizing systems play a crucial role in modern industrial environments, where
efficient material handling and inventory management are vital for streamlining operations
and minimizing downtime [15–17]. These systems are designed to automate the process of
either moving entire pallets or removing specific objects from a pallet, reducing the need
for manual labour and mitigating potential safety risks associated with repetitive tasks.

Manual depalletizing can be labour-intensive, time-consuming, and prone to errors.
Additionally, it may expose workers to potential hazards, such as repetitive strain injuries
and accidents caused by the improper handling or lifting of heavy objects. Automated
methods can employ single-purpose depalletizer machines, working on regular arrange-
ments (see e.g., [18] for a description), or robotic arms. The latter, in turn, can be either
programmed (e.g., [19]) or semi-autonomous, based on machine vision (e.g., [20]).

Focusing on machine vision-guided robotic arms, they have been one of the first
pioneering experiments in AI-based robotics [21,22] and are currently widely available for
traditional applications, as well as being the object of much current research [23–28].

However, when targeting resource- and cost-constrained computing as required in
such environments as retail delivery automation or small-scale production, the options
become more limited.

2.2. Computer Vision Techniques for Object Detection and Localization

Although the palletizing process aims at providing a regular arrangement of items, not
all use cases for unpalletizing systems can rely on strict geometric assumptions. Figure 1
shows some examples of more complex cases.

(a) (b)

(c) (d)

Figure 1. Some use cases: (a) pellet fuel bags, (b) stones, (c) leather (image credit: Ted McGrath on
Flickr, CC BY-NC-SA 2.0), (d) coffee bags.



Algorithms 2024, 17, 363 4 of 15

Computer vision techniques have revolutionized the field of object detection and
localization, with numerous algorithms and approaches being developed and applied
across various domains [29,30]. These techniques leverage sophisticated image processing
algorithms and machine learning models to identify and locate specific objects within
complex visual scenes [31].

2.3. Previous Work on Comparing Methods

Numerous studies have been conducted in the field of computer vision for object
detection and localization, exploring various techniques and their applications in different
domains. However, research specifically focused on the comparative analyses of these
algorithms for depalletizing system implementation under resource constraints is relatively
limited. The applications related to vision-based depalletizing reveal an abundance of sci-
entific literature; however, the number of methods covered by each study may be restricted
and is sometimes out of date. For instance, pioneering work was conducted in object
detection with SIFT-based clustering [2] to pick and place objects; while this is presented as
a single technique, it is highly flexible for different objects. In another work, Ahaitouf and
Mansouri [3] propose two feature selection algorithms Haar-like feature selection and Local
Binary Patterns (LPB) for the detection of a single object and multiple objects in the same
scene and for both standard platforms and embedded systems. Bansal and Kumar [32]
presented the performance of various object recognition approaches in a comparative
analysis of SIFT, SURF, and ORB feature descriptors and multiple combinations of these
feature descriptors. This experimental work was conducted using a public dataset, namely
Caltech-101.

In other research [5], the development and comparison of two distinct approaches,
a machine learning strategy based on Support Vector Machines (SVMs) [33] and a deep
learning approach employing the YOLO (You Only Look Once) [34] network, for small
target detection is analysed. Due to the restrictions in the region of interest (ROI) selec-
tion, the SVM-based method performs better in terms of computing resources and time
consumption but suffers from accuracy and robustness problems in some cases, such as
occlusion, illumination fluctuations, and tilting. Conversely, the YOLO network-based deep
learning approach has better accuracy but has trouble in reaching real-time performance,
particularly on onboard computers that have weight and power limitations.

Recent changes in the YOLO network architecture made it possible to run the system
on low computing power edge devices, although the issue of detection latency may not
be suitable for real-time operation. Furthermore, the training of deep learning algorithms
requires a large amount of data, and the process of creating a dataset and manually labelling
it takes a long time. As a result, object detection techniques should be properly chosen
based on the application and design requirements, and adjustments must be made as
needed. For these reasons, deep learning approaches are not considered in this work.

3. Methodology
3.1. Problem Specifications

The motivating application was the design of an automatic vending machine for
bulk goods packaged into plastic bags to be used by a retailer. As noted in the intro-
duction, large-scale industrial applications, warehouse management, and manufacturing
scenarios are not of interest since there are already available solutions. The targeted use
case also imposes the requirement for inexpensive computing architecture, with cost and
computing-power limitations.

The problem addressed is depalletizing, which consists of removing goods from
a pallet using a robotic arm. Of all the phases of the task, we focus on object identification
to provide the location of the next best object to be removed. There is no assumption about
the mechanical part (robotic arm and gripper). The robotic arm will be positioned according
to the output of the algorithm, while the gripper will be tailored to the specific use case.



Algorithms 2024, 17, 363 5 of 15

We assume the palletized items are roughly convex, but not of regular shape, although
we expect them to be similar to each other (we refer to the previous Figure 1 for examples).
Likewise, we assume that the items are organized into mostly horizontal layers, although
not necessarily regular. This allows us to employ methods that do not rely on 3D vision,
but simply require assessing the z-order of items. A rangefinder can then provide the actual
z coordinate.

We also assume that the pallet is axis-aligned, which is a realistic assumption since it
is a trivial task to axis-align a mostly rectangular target with image processing techniques.
As for the items, when their geometric aspect ratio is not 1, we assume that they are mostly
oriented along two directions. This is typically true for pallets containing items that do not
have the same aspect ratio as the pallet itself and are organized so as to optimize their fit
on the pallet’s surface.

Since we do not target manufacturing scenarios, which may have to deal with complex
shapes and possibly random orientations, we consider the exact orientation of the items to
be irrelevant. This will make it sufficient to locate items by their bounding box.

3.2. The Object Detection Methods

Pattern Matching is a classic algorithm in image processing that involves comparing
a predefined template against different regions of the target image. This technique is partic-
ularly effective when the appearance of the object is well defined and can be represented
by a template. However, its performance may be influenced by factors such as variations in
scale, rotation, illumination, and background.

The scale-invariant feature transform (SIFT) is a robust algorithm that operates by
identifying distinctive local features, or key points, within an image that is invariant
to changes in scale, rotation, and illumination [4]. The SIFT generates descriptors that
encapsulate the local image information around each key point, enabling efficient matching
between key points in different images.

The Oriented FAST and Rotated BRIEF (ORB) algorithm is an efficient method for
feature detection in image processing [6]. ORB starts by identifying key points using
the FAST algorithm, assigns an orientation to each key point for rotation invariance, and
extracts binary descriptors using BRIEF to represent local intensity patterns. This algorithm
enables efficient matching between key points in different images.

Finally, the Haar cascade classifier is a machine learning-based object detection method
widely used in image processing [35]. This classifier is trained on positive and negative
samples of a target object, creating a model that can efficiently identify instances of that
object in new images. The Haar cascade model excels in detecting objects with specific
structural patterns, making them particularly suitable for tasks like face detection. Each
of these computer vision algorithms offers unique strengths and limitations, and their
suitability for depalletizing system implementation depends on the already mentioned
indices, specifically tuned to take into account the time constant of edge computing tasks.

3.3. Experimental Setup

The experimental setup for this research involved the utilization of a low computing
power edge solution, i.e., one that does not rely on remote resources (a centralized server,
cloud computing) to provide computing power. The device was equipped with a camera
and operated in a controlled environment. The Raspberry PI 4 acted as the primary com-
puting platform, responsible for running the computer vision algorithms and processing
the captured images. The camera was mounted in a fixed position, vertically placed above
the pallet and roughly centered, ensuring consistent image capture and analysis.

The Raspberry PI 4 serves also as the central controller of our setup, orchestrating the
various components. Images are captured at a resolution of 1280 × 720, RGB 24 bpp, using
the PI camera model HBV-1708 with autofocus and a 2592 × 1944 maximum resolution (see
Figure 2). The software was developed in Python 3.8 using OpenCV and other libraries
under the Raspberry Pi operating system.



Algorithms 2024, 17, 363 6 of 15

Figure 2. Raspberry PI 4 and camera.

Pallet items are detected on the Raspberry Pi 4, and non-maximum suppression [36] is
applied to remove multiple overlapping observations. Then, the position of their center is
estimated and in the final system can be transmitted to the robot to remove the identified
item from the stack and place it onto the target position (which can be a conveyor belt or
another pallet, depending on the task). Ideally, at each new iteration, the algorithm must
guarantee that the topmost layer is emptied before moving to the next one. This can be
achieved using a depth sensor (for instance, a rgb+d camera or a laser rangefinder). Since
the setup did not involve a depth sensor, and since this function is implemented almost
trivially by always targeting the object with the maximum z-order, the present work does
not cover this aspect.

The experiments cover several feature extraction methods. The foreseen setup of the
final equipment is illustrated in Figure 3.

PC 
(Raspberry 

Pi)

RobotCamera

Pallet 1 (Pick) Pallet 2 (Place)

Detecting

Object

Figure 3. Reference setup.



Algorithms 2024, 17, 363 7 of 15

In the rest of this paper, we will evaluate the performance of the four selected algo-
rithms (pattern matching, Haar cascade, SIFT and ORB), comparing them based on their
accuracy, speed, robustness to image variability, computer efficiency, detection sensitivity,
and resource consumption. The methodology is outlined in Figure 4.

• Collecting the image data.
• Preprocessing and generating feature vectors using four feature descriptors, pattern

matching, Haar cascade, SIFT, and ORB, individually.
• Comparing outcome algorithms.
• Selecting the most suitable algorithm for a specific depalletizing system.

Figure 4. Experimental methodology.

3.4. Pattern Matching

Pattern matching is a common image-processing operation which detects and locates
predetermined templates inside an image. With a special emphasis on the integration of
template matching with non-maximum suppression, a widely used technique in this field,
this Section provides some technical detail.

Pattern matching involves comparing a predefined template against different regions
of the target image. In this research, the implementation of pattern matching followed
these key steps:

1. Template Generation:Templates images are selected and augmented by applying
rotations at various angles.

2. Image Processing: The system captured a grayscale image to simplify subsequent
computations and facilitate robust feature extraction.

3. Template Matching: Image patches are compared to templates by using an appropri-
ate similarity metric, discussed in the following.

4. Non-maximum suppression: Of a set of overlapping candidate regions, only the top
scoring is retained.

5. Result Visualization

Image-template similarity is computed by normalized cross-correlation (NCC). This is
the Pearson correlation coefficient [37], used in its 2D form and computed as follows:

R(x, y) =
∑i,j(T(i, j)− T̄)(I(x + i, y + j)− Īx,y)√

∑i,j(T(i, j)− T̄)2 ∑i,j(I(x + i, y + j)− Īx,y)2

where T is the template, I is the image, (x, y) is the origin of the image patch being
compared, T̄ and Īx,y denote mean pixel value in the template and in the image patch,
respectively.



Algorithms 2024, 17, 363 8 of 15

The matchTemplate function from OpenCV [30] was employed, and a threshold was
applied to filter out false positives.

Non-maximum suppression (NMS) removes redundant bounding boxes, ensuring
only the most relevant boxes are retained. Given a similarity score matrix R obtained after
template matching, NMS retains the score at any pixel location that is a local maximum in
its 3 × 3 neighborhood; otherwise, it suppresses it by setting it to 0.

As a final step, the end result is then displayed, indicating the detected objects’ centers
and their corresponding identification numbers (Figure 5).

Figure 5. Pattern matching object detection technique tested on the matchboxes image.

3.5. Scale-Invariant Feature Transform (SIFT)

The scale-invariant feature transform (SIFT) is a robust algorithm for keypoint detec-
tion and feature matching in image processing [4]. This algorithm extracts the features of an
object considering different scales, rotations, illumination, and geometric transformations.
SIFT has been proven to be the most widely used algorithm in object recognition. It works
in four phases as follows:

• Scale-space Extrema Detection;
• Keypoint Localization;
• Orientation Assignment;
• Keypoint Descriptor.

SIFT builds a multi-resolution pyramid over the input image and has proven to be
very robust to noise and invariant to scaling, rotation, translation, and (to some extent)
illumination changes.

In the code developed for this application, there are a few preprocessing steps applied
to the images before performing object detection. The implementation of SIFT in this
research followed these steps:

1. SIFT Feature Extraction: SIFT key points are detected and descriptors are extracted
from key points in both the template and target images as histograms of local intensity
gradients at multiple scales using differences of Gaussians.

2. Looping Over Image Regions: The code iterates over different regions.
3. Matching and selection: Matches between descriptors are selected, with a minimum

match count.



Algorithms 2024, 17, 363 9 of 15

4. Filtering Matches: A ratio test is applied to filter out good matches from the initial set
of matches comparing the distances between the nearest descriptor and the second
one in each descriptor.

5. Homography Estimation: a perspective transformation matrix M is estimated based
the best-matched key points to align the template with the current region of interest.

6. Perspective Transformation: Transformation M is applied.
7. Bounding Box Computation
8. Drawing and Visualization: The bounding box and center of each detected object are

visualized on the target image.

The result of detection is shown in Figure 6.

Figure 6. SIFT object detection technique tested on the matchboxes image.

3.6. Oriented FAST and Rotated BRIEF (ORB)

The Oriented FAST and Rotated BRIEF (ORB) algorithm is an efficient method for
feature detection and matching in image processing, presented by Rublee and colleagues [6].
Compared to the SIFT and SURF, ORB is substantially faster in the usual situation.

ORB is a robust and efficient method for feature detection in image processing. It
starts by identifying key points using the FAST algorithm, which efficiently locates areas
with significant intensity changes. Unlike traditional FAST, ORB assigns an orientation to
each key point, ensuring rotation invariance. The algorithm then extracts binary descrip-
tors using BRIEF, representing the local intensity patterns around each key point. These
descriptors enable efficient matching between key points in different images.

As in the SIFT, the matching process involves comparing the binary descriptors
of key points in the target image with those in a reference template, then filtering out
unreliable matches, and finally applying non-maximum suppression. The final result is a
representation of detected objects with bounding boxes.

The ORB implementation in this research

1. implements the ORB detector for feature extraction in both the template and target image;
2. applies a sliding window approach with a defined step size for efficient detection;
3. employs a Brute-Force Matcher with Hamming distance for descriptor matching;
4. filters matches based on a predefined threshold;
5. performs non-maximum suppression to merge nearby bounding boxes;
6. marks the center of each bounding box and assigns a unique identifier.

The result of detection is shown in Figure 7.



Algorithms 2024, 17, 363 10 of 15

Figure 7. ORB object detection technique tested on the matchboxes image.

3.7. Haar Cascade Classifier

Haar cascade is a machine learning-based object detection method widely used in
image processing. It is a classifier trained on positive and negative samples of a target
object. Classification is based on features provided by rectangular filters.

Once trained, a Haar cascade classifier is applied to an image through a sliding window
approach. Features are efficiently compared at different scales and positions. If a region of
the image matches the learned pattern for the object, the classifier identifies it as a positive
detection. The method is computationally efficient, but may have limitations in handling
complex backgrounds or objects with varying orientations, as the training data need to
encompass diverse instances of the target object for optimal performance.

The Python code used trains a Haar cascade classifier with OpenCV, creates a positive
picture and various negative examples, and generates positive examples [35]. The primary
steps are listed as follows:

1. Prepare Negative Images: A folder for negative images was created by copying
images from a source directory. A background file (bg.txt) listed the negative images.

2. Resize and Edit Images: Positive and negative images were resized to consistent
dimensions (the size 93 × 142 pixels was used for positive images).

3. Create Positive Samples: The opencv_createsamples tool generated positive samples
and related information for each positive image in a separate directory for each
image’s data. The default configuration includes parameters like angles, number of
samples, width, and height.

4. Merge Vector Files: Positive sample vector files were merged into a single file for
training input.

5. Train Cascade Classifier: The opencv_traincascade tool trained the classifier.
6. Completion: After training, object detection is performed.

The resulting output is shown in Figure 8.



Algorithms 2024, 17, 363 11 of 15

Figure 8. Haar classifier object detection technique tested on the matchboxes image.

4. Results and Discussion

In this section, we will present the performance evaluation of each computer vision
technique based on several key factors as follows: accuracy, robustness to variability,
computer speed, detection sensitivity, and resource consumption. We refer to Table 1 for
quantitative results; this Section discusses them in the light of the problem requirements.

4.1. Accuracy

• Pattern Matching: This achieved high accuracy in object detection, with straightfor-
ward configuration by adjusting a single threshold and angle.

• SIFT: This demonstrated efficiency in finding key points, especially effective in rotation
scenarios, contributing to its versatility across various applications.

• ORB: This maintained reliable detection accuracy for the front side of objects under
certain conditions but showed limitations in recognizing the back part of matchboxes.

• Haar cascade: Despite a time-intensive training process, this exhibited only acceptable
accuracy.

4.2. Robustness to Variability

• Pattern Matching: This demonstrated robustness to variability, showcasing resilience
to changes in object appearance, lighting, and orientation.

• SIFT: This proved robust against scale, rotation, and illumination changes, contributing
to its adaptability in diverse conditions.

• ORB: This displayed limitations in recognizing specific object orientations, impacting
its robustness to variability. However, it remained reliable under certain conditions.

• Haar Cascade: This showed resilience to variations in object appearance and lighting
conditions, contributing to its effectiveness in real-world scenarios.

4.3. Computing Speed

• Pattern Matching: This achieved fast detection speed, taking only a few seconds for
implementation.

• SIFT: This boasted a fast implementation with efficient key point detection, contribut-
ing to its real-time applicability.

• ORB: This exhibited slower execution speed, contrary to expectations for a binary
method, suggesting potential performance optimizations.



Algorithms 2024, 17, 363 12 of 15

• Haar Cascade: This demonstrated quick detection post-training, with the inevitable
and initial time investment required during the training phase.

4.4. Detection Sensitivity

• Pattern Matching: This exhibited sensitivity to changes in the detection threshold,
offering flexibility in configuration.

• SIFT: This showed sensitivity to parameter adjustments, with a relatively quick tuning
process.

• ORB: This displayed sensitivity to object orientation, requiring careful parameter
tuning for optimal performance.

• Haar Cascade: This required attention to parameters such as setting variation and
rotation angle, contributing to the time-consuming tuning process.

4.5. Resource Consumption

• Pattern Matching, SIFT, and ORB: These demonstrated efficient resource consumption,
making them suitable for practical applications.

• Haar Cascade: This required significant computer resources during the training phase,
with efficient resource consumption during detection.

The comparative analysis of the four algorithms—pattern matching, Haar cascade clas-
sifier, SIFT, and ORB—reveals distinct strengths and limitations across various performance
indices and computational aspects. The results are summarized in Table 1.

Table 1. Performance indices of the implemented algorithms

Training Time (h) Latency (s) Total Matches Precision Recall F1 Score

Pattern Matching – 0.13 7 1.00 1.00 1.00

Haar Classifier 3.55 0.09 7 1.00 1.00 1.00

SIFT – 0.39 6 1.00 0.86 0.92

ORB – 12.06 4 1.00 0.57 0.73

Training Time

• Pattern Matching, SIFT, and ORB: These algorithms do not require training, making
them advantageous in scenarios where rapid deployment is needed.

• Haar Classifier: This requires a substantial training time of 3.55 h, indicating an initial
setup cost. However, this investment pays off with excellent detection performance.

Detection Latency

• Haar Classifier: The fastest detection time (0.09 s) highlights its efficiency post-training.
• Pattern Matching: The quick detection time (0.13 s) without the need for training

makes it a strong candidate for real-time applications.
• SIFT: The moderate detection time (0.39 s) reflects its computer complexity due to the

detailed feature extraction process.
• ORB: Surprisingly, ORB takes the longest detection time (12.06 s), which is unexpected

for a binary feature descriptor. This may be attributed to implementation details or
the specific test conditions.

Total Matches

• Pattern Matching and Haar Classifier: Both achieve the highest number of matches
(7), indicating high effectiveness in object detection.

• SIFT: Slightly lower total matches (6), reflecting its robustness but also its selective nature.
• ORB: The lowest total matches (4), highlighting potential limitations in detecting all

relevant objects, especially in more complex scenarios.

Precision, Recall, and F1 Score



Algorithms 2024, 17, 363 13 of 15

• Precision: All four algorithms exhibit perfect precision (1.00), indicating that when
they do make detections, they are consistently accurate.

• Recall: pattern matching and the Haar classifier achieve perfect recall (1.00), showing
their ability to detect all relevant objects. SIFT has a slightly lower recall (0.86), while
ORB has the lowest (0.57), indicating it misses more objects.

• F1 Score: The F1 Score combines precision and recall into a single index. Pattern
matching and the Haar classifier both achieve the highest possible F1 score (1.00). SIFT
has a respectable F1 score (0.92), while ORB lags behind at 0.73.

4.6. Additional Remarks

As it can be observed from Figure 7, ORB, while reliable for the front side of objects,
shows limitations in recognizing the back part of boxes. However, it maintains acceptable
detection accuracy under certain conditions. It displays limitations in recognizing specific
object orientations, impacting its robustness to variability. However, it remains reliable
under certain conditions as well. ORB exhibits the slowest execution speed in implemen-
tation, contrary to expectations for a binary method, suggesting potential performance
optimizations, requiring careful parameter tuning for optimal performance. This technique
is able to work with restricted resources.

The Haar cascade exhibits moderately effective detection performance, resulting
in acceptable accuracy. However, it shows resilience to variations in expressions and
lighting conditions, contributing to its effectiveness in real-world scenarios. Concerning its
computer speed, it demonstrates quick detection post-training, with inevitable and initial
time investments required during the training phase. It requires attention to parameters
such as setting variation, rotation angle, and different thresholds contributing to the time-
consuming tuning process. In this approach, significant computer resources are required
during the training phase, with efficient resource consumption during detection in a large
number of negative images and a few positive images.

5. Conclusions

This article presented the implementation of four computer vision algorithms, namely
pattern matching, scale-invariant feature transform (SIFT), Oriented FAST and Rotated
BRIEF (ORB), and Haar cascade classifier [1–8], on a single hardware platform with low
computing power, consisting of a Raspberry Pi 4, and evaluates their performance on
the task of box recognition and localization to assess their suitability in a depalletizing
system. Each technique has been described in detail and the respective implementations
have been outlined. The experimental results were analyzed, evaluating the performance
of the algorithms in terms of accuracy, robustness to variability, computer speed, sensitivity
of detection, and resource consumption.

The results showed that pattern matching achieved high accuracy in object detection
with a simple configuration process. SIFT demonstrated robustness to variations in scale,
rotation, and illumination, contributing to its versatility in various applications. ORB
showed limitations in detecting certain object orientations, but remained reliable under
certain conditions. Despite a long training process, the Haar cascade classifier showed
effective detection performance and acceptable accuracy.

The choice of the most appropriate technique depends on the specific requirements of
the particular depalletizing system, considering factors such as accuracy, robustness, com-
puter speed, and resource constraints. Each method has shown strengths and limitations,
and the optimal choice may vary based on the unique characteristics of the application.

Future research in this area could significantly benefit from exploring the integration
of multiple computer vision techniques. By leveraging their respective strengths and
mitigating their limitations, we can create more robust and efficient systems. “Accuracy”
and “diversity” are two relevant keywords in this context [38]. For example, an integration
of the pattern matching, SIFT, and Haar classifier models studied in this paper could be
promising, each having low latency, good detection capability, and being very different



Algorithms 2024, 17, 363 14 of 15

from each other. It is also worth noting that the detection latency of the combined model
would be no more than 1 s, which is entirely compatible with the time constants of the
application at hand.

Additionally, as already discussed in Section 2.3, investigating advanced deep learning-
based object detection methods and their applicability to depalletizing systems could further
enhance the system’s performance and robustness even when not running on a Raspberry.

Overall, this research contributes to the advancement of automated object detection
and localization in industrial environments, paving the way for more efficient and reliable
depalletizing processes, ultimately enhancing productivity and operational excellence in
factory settings.

Author Contributions: D.G.: conceptualization, supervision, methodology, writing, drafting of the
article, review and editing, M.F. and A.V.R.: software implementation, experiments and data curation;
F.M., S.R. and A.C.: conceptualization, visualization, supervision, review. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declares no conflict of interest.

References
1. Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2009.
2. Piccinini, P.; Prati, A.; Cucchiara, R. Real-time object detection and localization with SIFT-based clustering. Image Vis. Comput.

2012, 30, 573–587. [CrossRef]
3. Guennouni, S.; Ahaitouf, A.; Mansouri, A. A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection

and Local Binary Patterns in Several Platforms. Model. Simul. Eng. 2015, 2015, 948960. [CrossRef]
4. Lowe, D.G. Distinctive image features from scale-invariant key points. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
5. Wang, J.; Jiang, S.; Song, W.; Yang, Y. A comparative study of small object detection algorithms. In Proceedings of the 2019

Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 8507–8512.
6. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the

2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011;
pp. 2564–2571.

7. Brown, M.; Szeliski, R.; Winder, S. Multi-image matching using multi-scale oriented patches. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005;
IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 510–517.

8. Muja, M.; Lowe, D.G. Fast approximate nearest neighbors with automatic algorithm configuration. In Proceedings of the
VISAPP 2009, Lisboa, Portugal, 5-8 February, 2009. 2009, 2, 2.

9. Widiawan, B.; Kautsar, S.; Purnomo, F.; Etikasari, B. Implementation of Template Matching Method for Door Lock Security
System Using Raspberry Pi. VOLT J. Ilm. Pendidik. Tek. Elektro 2017, 2, 143. [CrossRef]

10. Wang, W.; Li, W.; Zhang, Z. A Parallel PCA-SIFT Algorithm Based on Raspberry Pi 4B. In Proceedings of the 2023 7th International
Conference on Electronic Information Technology and Computer Engineering, Xiamen, China 20–22 October 2023; pp. 913–920.

11. Bhatlawande, S.; Nahar, S.; Mundada, S.; Shilaskar, S.; Shaikh, M.D. Driver Assistance System for Detection of Marked Speed
Breakers. In Proceedings of the 2024 2nd International Conference on Advancement in Computation & Computer Technologies
(InCACCT), Gharuan, India, 2–3 May 2024; pp. 618–622. [CrossRef]

12. KAYMAK, C.; UCAR, A. Implementation of Object Detection and Recognition Algorithms on a Robotic Arm Platform Using
Raspberry Pi. In Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya,
Turkey, 28–30 September 2018; pp. 1–8. [CrossRef]

13. Kumar, V.P.; Aravind, P.; Pooja, S.N.D.; Prathyush, S.; AngelDeborah, S.; Chandran, K.R.S. Driver Assistance System using
Raspberry Pi and Haar Cascade Classifiers. In Proceedings of the 2021 5th International Conference on Intelligent Computing
and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1729–1735. [CrossRef]

14. Greco, D.; Masulli, F.; Rovetta, S.; Cabri, A.; Daffonchio, D. A cost-effective eye-tracker for early detection of mild cognitive
impairment. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy,
14–16 June 2022; pp. 1141–1146.

15. Mohamed, I.S.; Capitanelli, A.; Mastrogiovanni, F.; Rovetta, S.; Zaccaria, R. Detection, localisation and tracking of pallets using
machine learning techniques and 2D range data. Neural Comput. Appl. 2020, 32, 8811–8828. [CrossRef]

http://doi.org/10.1016/j.imavis.2012.06.004
http://dx.doi.org/10.1155/2015/948960
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.30870/volt.v2i2.2047
http://dx.doi.org/10.1109/InCACCT61598.2024.10551163
http://dx.doi.org/10.1109/IDAP.2018.8620916
http://dx.doi.org/10.1109/ICICCS51141.2021.9432361
http://dx.doi.org/10.1007/s00521-019-04352-0


Algorithms 2024, 17, 363 15 of 15

16. Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the Computer Vision–ECCV 2006:
9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 404–417.

17. Gue, K. Automated Order Picking. In Warehousing in the Global Supply Chain: Advanced Models, Tools and Applications for Storage
Systems; Manzini, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 151–174.

18. Zhang, J.; Xie, J.; Zhang, D.; Li, Y. Development of Control System for a Prefabricated Board Transfer Palletizer Based on S7-1500
PLC. Electronics 2024, 13, 2147. [CrossRef]

19. Okura Flexible Automation Systems Pte Ltd. Okura Robot Palletizer Models A1600III and A700III Brochure. Available online:
https://okura.com.sg/pdf/RobotPalletizer.pdf (accessed on 2 August 2024).

20. Asea Brown Boveri Ltd. ABB Robotic Depalletizer Brochure. Available online: https://search.abb.com/library/Download.aspx?
DocumentID=9AKK108466A9114 (accessed on 2 August 2024).

21. Horn, B.K. Patrick Winston and the MIT AI Lab Copy Demo (1970). Available online: https://people.csail.mit.edu/bkph/phw_
copy_demo.shtml (accessed on 2 August 2024).

22. Ikeuchi, K.; Horn, B.K. The Mechanical Manipulation of Randomly Oriented Parts. Sci. Am. 1984, 251, 100–111.
23. Holz, D.; Topalidou-Kyniazopoulou, A.; Stückler, J.; Behnke, S. Real-time object detection, localization and verification for fast

robotic depalletizing. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, 28 September–2 October 2015; pp. 1459–1466.

24. Chiaravalli, D.; Palli, G.; Monica, R.; Aleotti, J.; Rizzini, D.L. Integration of a Multi-Camera Vision System and Admittance Control
for Robotic Industrial Depalletizing. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 667–674. [CrossRef]

25. Arpenti, P.; Caccavale, R.; Paduano, G.; Andrea Fontanelli, G.; Lippiello, V.; Villani, L.; Siciliano, B. RGB-D Recognition and
Localization of Cases for Robotic Depalletizing in Supermarkets. IEEE Robot. Autom. Lett. 2020, 5, 6233–6238. [CrossRef]

26. Aleotti, J.; Baldassarri, A.; Bonfè, M.; Carricato, M.; Chiaravalli, D.; Di Leva, R.; Fantuzzi, C.; Farsoni, S.; Innero, G.; Lodi Rizzini,
D.; et al. Toward Future Automatic Warehouses: An Autonomous Depalletizing System Based on Mobile Manipulation and 3D
Perception. Appl. Sci. 2021, 11, 5959. [CrossRef]

27. Prasse, C.; Skibinski, S.; Weichert, F.; Stenzel, J.; Müller, H.; ten Hompel, M. Concept of automated load detection for de-palletizing
using depth images and RFID data. In Proceedings of the 2011 IEEE International Conference on Control System, Computing
and Engineering, Penang, Malaysia, 25–27 November 2011; pp. 249–254. [CrossRef]

28. Vu, V.D.; Hoang, D.D.; Tan, P.X.; Nguyen, V.T.; Nguyen, T.U.; Hoang, N.A.; Phan, K.T.; Tran, D.T.; Vu, D.Q.; Ngo, P.Q.; et al.
Occlusion-Robust Pallet Pose Estimation for Warehouse Automation. IEEE Access 2024, 12, 1927–1942. [CrossRef]

29. Li, Y.; Qi, H.; Dai, J.; Ji, X.; Wei, Y. Fully convolutional instance-aware semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2359–2367.

30. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008.
31. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: advantages, challenges, and applications.

Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]
32. Bansal, M.; Kumar, M.; Kumar, M. 2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors.

Multimed. Tools Appl. 2021, 80, 18839–18857. [CrossRef]
33. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
34. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
35. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1,
pp. I-511–I-518.

36. Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS–improving object detection with one line of code. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5561–5569.

37. Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [CrossRef]
38. Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics13112147
https://okura.com.sg/pdf/RobotPalletizer.pdf
https://search.abb.com/library/Download.aspx?DocumentID=9AKK108466A9114
https://search.abb.com/library/Download.aspx?DocumentID=9AKK108466A9114
https://people.csail.mit.edu/bkph/phw_copy_demo.shtml
https://people.csail.mit.edu/bkph/phw_copy_demo.shtml
http://dx.doi.org/10.1109/ETFA46521.2020.9212020
http://dx.doi.org/10.1109/LRA.2020.3013936
http://dx.doi.org/10.3390/app11135959
http://dx.doi.org/10.1109/ICCSCE.2011.6190531
http://dx.doi.org/10.1109/ACCESS.2023.3348781
http://dx.doi.org/10.1080/21693277.2016.1192517
http://dx.doi.org/10.1007/s11042-021-10646-0
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.2307/2685263

	Introduction
	Background and Motivation
	Depalletizing Systems in Industrial Environments
	Computer Vision Techniques for Object Detection and Localization
	Previous Work on Comparing Methods

	Methodology
	Problem Specifications
	The Object Detection Methods
	Experimental Setup
	Pattern Matching
	Scale-Invariant Feature Transform (SIFT)
	Oriented FAST and Rotated BRIEF (ORB)
	Haar Cascade Classifier

	Results and Discussion
	Accuracy
	Robustness to Variability
	Computing Speed
	Detection Sensitivity
	Resource Consumption
	Additional Remarks

	Conclusions
	References

